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mediumgrained machine such as a mesh. On the otherhand, algorithms for image processing have a regularstructure with very high data parallelism; this allowse�cient execution on SIMD machines such as CM2.Large-scale applications consist of many compo-nents, each of which may be suitable for execution ona di�erent kind of architecture. By developing hetero-geneous computing systems (hcs) we can e�cientlysupport such applications. For example, consider anapplication that can be decomposed into two compo-nents, one of which requires very frequent processorinteraction whereas the other is data parallel. If thisapplication is executed on a shared memory machine,data parallelism in the second component may not bee�ectively used. On the other hand, if CM2 were to beused, the �rst component of the problem would not beimplemented e�ciently. If several architectures withdi�erent characteristics are connected on a high speednetwork, it may be possible to execute various com-ponents of an application on di�erent architectures.There are a number of di�culties which must beaddressed in order to realize the promise of hcs. Thispaper discusses two of them. First, the absence ofa uniform language and communication interface ondi�erent systems makes programming hcs di�cult.Thus, the programmerwho writes applications for hcsmay have to program each component of the applica-tion using the the language support for the architec-ture on which the component is to be executed. Inparticular, if a component is suitable for more thanone architecture, then the programmer may have toprovide the code for all architectures on which thecomponent may be executed. To address this proble,we propose an actor-based linguistic interface modelfor interoperability in hcsActors provide behavior abstractions which unifyabstract data types and higher-order functions. Asa consequence, modularity and reusability are sup-ported in this linguistic framework. Experience inpractical distributed systems has shown the power ofactor languages. 11For example, a group of programmers using Rosette (anactor language developed at Microelectronics and ComputerTechnology Consortium (MCC) in collaboration with the �rst



A second problem which needs to be addressed inorder to make hcs viable results from the fact thatthe von Neumann architecture no longer provides auniversal model of computation. In particular, thisimplies that conventional measures of space-time com-plexity are insu�cient to model resource requirements.hcs provide a wide variety of resources; depending onhow these resources are used, varying degrees of per-formancemay be achieved. Measures of an algorithm'scomplexity and scalability may provide a quantitativebasis which helps select appropriate resources to usein executing it. In this paper, we review several met-rics for evaluating the utilization of computational re-sources and discuss how they may be used in buildinga resource management architecture.The outline of this paper is as follows. We �rst pro-vide examples to motivate the need for heterogeneousprocessing of applications. Then we discuss the prob-lem of providing linguistic support for hcs. In par-ticular, we describe a re
ective model of actors andshow how it can be used to meet design requirementsfor interoperability in hcs. Note that re
ection allowsthe underlying resources to be represented and thusprovides a mechanism for a�ecting resource utilitza-tion. The second half of the paper describes formalmetrics which need to be incorporated in a resourcemanagement architecture for hcs and illustrates theirsigni�cance by means of speci�c examples. Finally,we discuss the use of meta-programming for buildingreusable orchestration tools.MOTIVATING EXAMPLESA number of large-scale applications are composedof smaller computations each of which may require adi�erent kind of architecture. Solving such applica-tions on one architecture leads to poor performancesince certain components of the application may notbe suitable for that architecture, leading to their in-e�cient implementation. We describe two such ex-amples: applications in computer vision and precon-ditioned conjugate gradient method for solving linearsystems of equations, a numerical computation.Computer Vision:Processing images and making intelligent decisionsbased on the data requires di�erent levels of process-ing: low-level, intermediate-level and high-level [7].Every level of processing has a di�erent set of charac-teristics and is suitable for a di�erent kind of parallelmachine.� Low-level vision tasks such as Hough transformcomputation, histogram generation and templateauthor) was able to develop front-end to back-end switchingpackage which supported interoperability in heterogeneous dis-tributed database applications. The implementation done forthe ESQL Access Group, a consortium of vendors, provided ef-�ciency comparable to implementations done directly using lowlevel network communication protocols. However, the Rosetteimplementation took a small team of three programmers aboutsix weeks, while competing implementations took three to fourtimes as many programmers upto a year or more.

matching require computations corresponding toeach pixel of the image. These computations arehighly regular and the same computation is per-formed on each pixel of the image. Thus SIMDarchitectures, such as the Connection Machine,are well suited for low-level vision tasks.� Intermediate-level processing reduces the low-level information to a form that can be easilyprocessed by high-level processors. Examples ofintermediate level processing are segmentation,computation of connected components, syntacticpattern recognition etc. These computations arenot as regular as the low-level vision computa-tions and the parallelism cannot be extracted veryeasily. The parallel tasks generated here have alarger granularity and hence machines such as hy-percubes or shared-memory machines are moresuited.� High-level processing requires making intelligentdecisions based on image data and the algorithmsare not very structured. For example imagedata is transformed into information that needssymbolic processing. Such applications may re-quire higher connectivity or shared memory ma-chines for processing although certain speci�c al-gorithms have been developed and implementedon the Connection Machine [7].Preconditioned Conjugate Gradient Algo-rithm:This problem [10] requires various steps that have verydi�erent requirements of the architecture. Assume theinput to the algorithm to be a large sparse system oflinear equations.� Developing the Preconditioner: This operationcan be very unstructured and may require certaingraph algorithms to compute the preconditionerfrom the input matrix. Thus it is best suited toa fast sequential processor or a shared memorymultiprocessor.Once the preconditioner is obtained, the algo-rithm performs several iterations where each iter-ation is composed of several components includ-ing:{ Solution of Loosely Connected Blocks ofEquations: This operation involves the so-lution of several blocks of equations that areeither loosely coupled or independent of eachother. Thus, the connectivity required forsolving such an equation is not high. Thegrain size of the computation depends on thenumber of blocks into which the system ofequations is divided. Such a computationis suited for a medium grain multiprocessorwhich need not have very high connectivity.{ Solution of a Dense System of Equations:This is a structured computation that re-quires high communication. Thus either vec-



tor processing or a strongly connected archi-tecture, such as a hypercube, is suitable.We analyze an application with several componentsthat are executable on parallel machines. Assumethere are n di�erent components such the ith compo-nent is suitable for a machine Mi. It is possible thatMi = Mj even though i 6= j. Let T (Ci;Mj) be thetime required for execution of component Ci on ma-chine Mj and Tseq be the time required for sequentialexecution of the application. The speedup obtainedby executing all components of the application on oneparallel machine Mk is:SPM = TseqPni=1 T (Ci;Mk)Instead, if an hcs is used and every component ofthe application can be executed on the machine suit-able for it, the speedup obtained is:SHCS = TseqPni=1(Ci;Mi) + TNO ;where TNO is the network overhead i.e., the total timespent in transferring data fromone machine to anotherover the network. It is advantageous to use the hcsonly if SHCS > SPM which holds if,nXi=1(Ci;Mk) > nXi=1 T (Ci;Mi) + TNO :Thus, we need to ensure that the network overheaddoes not o�set the advantage caused by e�cient ex-ecution of the components on di�erent machines. Inthe rest of the paper we assume the di�erent machinesof an hcs to be on a very high-speed network. In thenext section we discuss the features required in thelanguage support for such hcs.2 LANGUAGE SUPPORT FOR hcsHeterogeneous Computing systems are complex,constantly changing dynamic systems and program-ming such systems can be highly complicated with-out proper language support. The language shouldprovide enough levels of abstraction to hide unneces-sary implementation details of an algorithm withoutrestricting the programmers ability to manage systemresources for e�cient execution. For an hcs, such pa-rameters include the selection of the appropriate archi-tecture for a particular component of an application,and the management of resources such as the numberof processors. Below are some design requirements forproviding language support for hcs. We will showhow the actor model may be used to address theserequirements.� Inherent Concurrency: The prerequisite for anylanguage used for hcs is to allow concurrency.It should be possible to create several processeswhich can be executed in parallel. The creation

of processes should be dynamic. Communicationprotocols are necessary to allow interaction be-tween applications running on two di�erent ma-chines on the network. The language should pro-vide some abstractions which encapsulate the de-tails of such a protocol.� Modeling Dynamic Systems: A heterogenous sys-tem may keep changing constantly as new ma-chines are added and old machines are removed.Thus a language which supports a dynamic topol-ogy of processes is required. The static topologyrequired by a language such as CSP is highly re-strictive. Functional languages are not suitablefor modeling resources since they cannot modelthe state of a system. In addition, as the numberof resources in an hcs increases, the number offailures increases and fault tolerance becomes animportant issue.� Machine Independence: The language should beindependent of the machines on which the pro-gram is executed. If a machine independent lan-guage is not available, the programmer may haveto use a di�erent language for every componentof an application. If one component of an appli-cation can be executed e�ciently on more thanone machine, it should be possible for the systemto choose a suitable machine based on parameterssuch as availability and load status. Thus the lackof a machine independent language implies thata programmer would have to provide several ver-sions of a component code, each version suitablefor a di�erent architecture.� Choosing the Machine Con�guration for a Prob-lem: The suitability of an architecture to a givenproblem depends on several factors such as thestructure of the problem, the available paral-lelism, the communication overhead involved, etc.It is di�cult to analyze a program statically and�nd out the possible target architectures suitablefor it. The language should allow the user togive various metrics associated with the applica-tion which should help the system make resourcemanagement decisions.� Process Placement: For certain applications, it isuseful to allow the programmer to explicitly al-locate resources and control the data and taskplacement. The user may know the most e�-cient way of executing the program and may bethe best judge of how data should be distributedacross various processors.� Modularity of Code: The language should allowmodularity in design and allow a programmer toseparate the various design considerations. Forexample, the code for resource management andexplicit task placement (if any) should be sepa-rate from the code of the problem itself. Becauseit is simpler to reason about functional code, thecode for the computation itself may be imple-mented in a functional style. On the other hand,



the code for resource management is easier to ex-press if one can represent states of a computation.The object model allows us to integrate the twostyles.2.1 THE ACTOR MODELActors are self-contained, interactive, independentcomponents of a computing system that communicateby asynchronous message passing. Each actor has amail address, and a behavior. An actor's acquain-tances are all of the actors whose mail addresses itknows. In order to abstract over processor speeds andallow adaptive routing, preservation of message orderis not guaranteed. Addresses may be communicated,providing a dynamic topology. New actors may bedynamically created { providing extensibility.State change in actors is speci�ed using replacementbehaviors. Each time an actor processes a communi-cation, it also computes its behavior in response to thenext communication it may process. The replacementbehavior for a purely functional actor is identical tothe original behavior; in general it may change. Thechange in the behavior of an actor may represent asimple change of state variables, such as change in thebalance of an account, or it may represent changesin the operations (methods) which are carried out inresponse to messages. For example, suppose a bankaccount actor accepts a withdrawal request. In re-sponse, it will compute a new balance which will beused to process the next message.The concept of actors was originally proposed byHewitt [11]. The actor model was formally charac-terized by means of power domain semantics [8], bya transition system [1], and by Colored Petri Nets[13]. Complexity measures for actor programs havebeen studied [6]. The model has also been proposedas a basis for multiparadigmprogramming [2] and hasbeen used as a programming model for multicomput-ers [5, 9].2.2 LINGUISTIC EXPRESSIVENESSFOR INTEROPERABILITYIn systems with shared memory, synchroniza-tion constructs based on shared variables, such assemaphores and monitors, are used. These constructsallow various processes to synchronize and share in-formation. However applications running on two dif-ferent machines on a network have to synchronize bysending messages over the network. Thus messagepassing primitives such as send and receive areused for communicating. If the send primitive doesnot cause a process to block until the message reachesthe receiver, the communication is said to be asyn-chronous. If the sender blocks until the other processis ready to receive the message, the communication issaid to be synchronous.There are other higher level protocols built usingthese primitives e.g., remote procedure calls (RPCs)and rendezvous. In a remote procedure call, the ser-vicing process is declared as a procedure. When acall is made, the procedure may get executed on a re-mote processor. The term rendezvous refers to a formof synchronous communication in which two processes

get to a designated point. The process that reachesthe point �rst waits for the other process. Anotherform of synchronization is barrier synchronization inwhich several processes meet at a point. The processesthat arrive early wait for the slow processes. As soonas the last process reaches the barrier point, all theprocesses continue execution.The actors model uses message passing for com-municating between tasks. The underlying network isassumed to be asynchronous. All the other protocolscan be implemented using asynchronous message pass-ing. For example synchronous communication can bemodelled using asynchronous message passing by forc-ing the sender to keep waiting for the reply.Assume that P1, P2, P3 are actors with behaviorsync-proc . These processes know the mail address ofa barrier-actor called B1 . All the processes partic-ipating in the barrier synchronization send a b-syncmessage to their barrier acquaintance as soon asthey reach the synchronization point.(defActor sync-proc (slots& barrier)(method (send-sync)(send b-sync barrier))(method (other-computation)... ))The barrier-actor allows three processes to syn-chronize at a point. It has three acquaintances,the integers message-rec and barrier-size anda list of process ids proc-list . The acquain-tance barrier-size contains the number of pro-cesses that can synchronize at the barrier. Thusbarrier-size receives its initial value at the cre-ation of the barrier-actor . The acquaintancemessage-rec acts as a state variable that stores thenumber of processes that have sent the synchroniza-tion message b-sync to the barrier-actor so far.This variable is initialized to zero. Finally, proc-listcontains the list of ids of all the processes that havesent b-sync message to barrier-sync so far. Thislist is necessary to broadcast the continue messageto the synchronizing processes once the b-sync mes-sage is received from all of them.(defActor barrier-actor(slots& message-rec barrier-sizeproc-list)(method (b-sync proc-id)(seq(increment message-rec)(add-proc-list proc-id)(if (= message-rec barrier-size)(seq(send continue(new continuation)proc-list) (become (barrier-actor0 barrier-size[])))))))The procedure increment increments the valueof the variable message-rec by one, thereby chang-ing the state of the barrier-actor . The proce-dure add-proc-list adds the mail address of thesync-proc actor that has sent the b-sync message



to the proc-list . The procedure broadcast sendsthe continue message to all the processes in the listproc-list .Once barrier synchronization is achieved, thebarrier-actor sends a message to a continuationactor. The continuation actor decides what furtheraction has to be taken. The simplest action is to senda message to all the synchronizing processes to con-tinue.(defActor continuation(method (continue proc-list)(broadcast proc-listother-computation)))The root actor shown below creates the barrieractor and the process actors that use the barrier forsynchronization.(defActor root(method (test)(let [[B1 (new Barrier 0 3 [])]](send-sync (new sync-proc B1))(send-sync (new sync-proc B1))(send-sync (new sync-procB1)))))In fact high-level language primitives can be builtin the actor language that allow the programmer towrite concurrent applications without explicitly set-ting up any communication protocols or synchroniza-tion primitives between the tasks. We show an ap-plication, the function concurrent-map to illustratehow high level language constructs create processesto perform computations in parallel and also hide thecommunication details from the user.The map function in lisp takes a function anda list as arguments and returns a list formed byapplying the function to every element of the list.The concurrent-map function is a concurrent im-plementation of the map function. It recursively di-vides the input list into two halves and applies theconcurrent-map functions to the smaller list. Therecursive division of the lists continues until single el-ement lists are obtained. The input function is appliedto the elements of these lists and the results concate-nated to form a list which is returned. Thus severalsub-tasks are created in a tree like fashion. The re-sults are returned to the calling actor also in a treelike fashion.(defProc concurrent-map (list Function)(if (> (size list) 1)(concatenate(concurrent-map ((first-half list)Function))(concurrent-map ((right-half list)Function))) (list (Function (car list)))))The execution of the concurrent-map function isillustrated in the Figure 2.In the next section we discuss the features that needto be added to the language to allow e�cient resourcemanagement.

3 RESOURCE MANAGEMENT AR-CHITECTUREIt is di�cult to decide statically, if a given taskcan be e�ciently executed on a given architecture.One way of choosing suitable architectures for a givenpiece of code is to let the user provide some impor-tant metrics related to the algorithms. These metricsshould enable the system to analyze the e�ciency ofexecution of the application on a given architecture.At compile time, executable code should be generatedonly for machines for which the e�ciency of execu-tion is not very low. At run time the system shouldchoose a machine based on e�ciency criteria and alsoon availability of machines. Below are some metricswhich may enable a resource management system toselect a suitable machine for a given algorithm.� Concurrency Index: The Concurrency Index (CI)[3] gives a measure of the amount of parallelismavailable in a given computation. The higher thevalue of CI, the more is the parallelism availablein the computation.� Grain Size: This metric gives the amount of com-putation performed before a message is sent out.Machines such as the Connection Machine have alarge number of small processors and are suitablefor computations with small grain size. Machineswith fewer but more powerful processors are pre-ferred for computations with large grain size.� Communication/Computation Ratio: This met-ric is a measure of the amount of data commu-nicated after performing a unit computation. Ahigh communication to computation ratio indi-cates a communication intensive job which maynot be executed e�ciently if a very large num-ber of processors are used. For example, in theCholesky Decomposition algorithm [4] the com-munication/computation ratio is quite high, indi-cating that the computation will be slow if runon a machine, such as a one-dimensional array,which has a high latency and low bandwidth.� Scalability Measure: This measure tries to com-bine the information in the above two measures.One scalability measure isoe�ciency relates theproblem size to the number of processes neces-sary for linear speedup. If the computation sizeneeds to grow as f(p), where p is the numberof processors, to maintain an e�ciency E, thenf(p) is de�ned to be the isoe�ciency func-tion for e�ciency E [14]. Isoe�ciency functionsfor quick-sort implementations are presented forthe two-dimensional mesh architecture in [14]. Anaive implementation stores the entire list in oneprocessor; it partitions the list into two sublists,hands out one of the list to a free processor andkeeps the other sublist. This process continuesrecursively until all processors are busy. This al-gorithm has a very poor scalability and the isoef-�ciency function is shown to be:W = �(2kp � p)
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Figure 1: Implementing Barrier Synchronization using Asynchronous Message-passing in Actorswhere k is a constant. A better implementationpartitions the array alternately in the vertical andhorizontal direction to increase locality. This im-proves scalability as re
ected by the correspond-ing isoe�ciency function:W = �(2pkp �pp):Given a scalability measure such as the isoe�-ciency function and the input size, the systemcan decide the number of processors to be used tosolve the problem. In practice, the system shouldconsider the overall load and also the priority ofthe computation (explained below) for decidingthe number of processors.We discuss another algorithm, the Cholesky De-composition to illustrate how the number of pro-cessors a�ects the e�ciency of an algorithm. Fig-ure 3 gives a comparison of two di�erent imple-mentations of the Cholesky Decomposition algo-rithm on matrices of size 32 � 32 and 64 � 64.The functional implementation synchronizes af-ter every iteration of the algorithm whereas theconcurrent implementation lets several iterationof the algorithm run concurrently. It can be seenthat the speedup obtained by parallel executionof the algorithm initially increases as the num-ber of processors is increased, but starts starts
decreasing as the communication overhead over-comes the increase in speedup obtained by theadded processors. Thus given a proper measureof the scalability of the Cholesky Decompositionalgorithm, the system could decide the optimalnumber of processors to be used for a given sizeof the input matrix.� Scheduling Computations: On a network withseveral users, a priority may have to be assignedto a computation. Thus, a computation with highpriority may be run using a large number of pro-cessors even though the e�ciency of the executionmay be low because of scalability criteria. Also, ifseveral other computations are dependent on onecomputation system may decide to increase itspriority since slow execution of this computationwill delay the execution of several other compu-tations. In such a case the computation may beexecuted using a large number of processors sothat the overall time taken is less even thoughthe e�ciency is low.Such metrics help the system decide issues such asthe parallelism available in a computation, the com-munication overhead associated with the parallel exe-cution etc. The system should have a function map-ping the various values of the above indices to di�erent
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Figure 2: Illustrating the Execution of concurrent-map function.architectures. This function may be implemented as atable or as a heuristic based algorithm. For example,for an application such as low-level image processing,the concurrency index is usually very high, the grainsize is small and the communication/computation ra-tio is low. Given the values of such metrics, the systemshould choose the Connection Machine as one of thesuitable architecture for such an application.For an application that can be divided into severalsub-problems, each of which has very di�erent char-acteristics, the above indices should be provided forall such sub-problems. Thus, the system has to decidewhere each portion of the code has to be executedand the number of processors allocated for each sub-problem. In certain special cases where the code isvery simple, it may be possible to decide the values ofsuch indices statically at compile time.3.1 HIGH-LEVEL RESOURCE CON-TROLA number of problems involve speculative paral-lelism. For example, there may be several methods forsolving a problem. In such cases, speed-up may be ob-tained by computing multiple methods concurrently.One can characterize such problems as search prob-lems. In fact, in some search problems, superlinearspeed-up may be obtained by coordinating multiple
processes.2 In search problems, the computationalspace may grow exponentially; an intelligent searchscheme uses partial results to control the speculativeactivity. We discuss a speci�c example, namely branchand bound search, to illustrate how high level resourcecontrol may be used to optimize search using appro-priate heuristics. The high-level resource control pro-vides an abstraction which may be used to improve thee�ciency of execution in a heterogeneous network.A typical branch and bound search consists of com-puting an upper (or lower) bound on the value ofthe optimal solution at each node and expanding thesearch in the neighborhoods of nodes with the bestbounding values. Implementing such a search requiresa number of distinct interlinked computations to becarried out. The required computations can be sum-marized as follows:node calculation: local computation on a nodegraph to compute neighbors for further expan-sion; and,resource allocation: how much resource should beallocated { no resources indicates the node is notto be expanded at the present time. The resources2Of course, in such cases the original sequential algorithmsare sub-optimal and could be replaced by a time-sharing system.
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Figure 4: Metalevel architecture for selecting suit-able architecture for execution of computations inan application.or processing power, or their associated costs. Such
exibility is critical in building heterogeneous com-puting systems where relative resource costs may varywith di�erent architectures.4 A PROGRAMMING METHODOL-OGY FOR hcsIn this section we give a detailed example of howre
ection can be used to program hcs applications ina modular fashion without interference with the ap-plication code. The following structure is required:1. An actor HCS CONFIG which has the currentknowledge about the available architectures andresources on the hcs. For a given set of param-eters of a computation (discussed in section 3)it can evaluate the best available architecture toperform the computation.2. Assume that an actor A performs a set of com-putations which are suited to certain speci�c ar-chitectural characteristics. Also assume that Astarts this set of computation in response to amessage that invokes methodX . The methodXcreates an actor computeX which performs therequired computation. To e�ciently execute thisset of computations, the actor computeX must becreated at an appropriate architecture.3. To enable A to evaluate a suitable architecturefor executing computeX , the following metelevelactors of A need top be rei�ed.(a) A mailq metelevel actor that traps all mes-sages that invoke methodX .(b) A eval architecture metalevel actor thatkeeps a list of all parameters relatedto the parallel computation performed bycomputeX as discussed in section 3.(c) A creation metalevel actor which containsthe information regarding target architec-tures or processors where new actors are cre-ated by A . Thus, every new command de-�ned in the method de�nitions of A sends amessage to the creation meta-actor whichdecides the placement of the new actor andthen creates it appropriately.The steps performed by the above metalevel archi-tecture are as shown. The step numbers mentionedhere correspond to the numbers shown in Figure 4.1. A message mx that invokes method methodX isreceived by the mailq meta-actor of A .2. This message is trapped at the mailq actor andthe rest of the messages are forwarded to thebase actor A . mailq sends a message to theeval architecture meta-actor to compute thebest available architecture for placing computeX .

3. The eval architecture meta-actor sends amail to the HCS CONFIG actor, giving it theparameters related to the parallel executionspawned by computeX .4. HCS CONFIG actor has the list of the currentlyfree architecture and evaluates the best avail-able architecture for the given parameters ofparallel computation. The address of the cho-sen system (say M ) is communicated back toeval architecture meta-actor.5. The eval architecture meta-actor sends amessage to the creation actor and updates itso that any new computeX actor is created on M .This update must be completed before the nextstep.6. The eval architecture meta-actor then sendsa message to the mailq actor to release the mxmessage and send it to the base actor A .7. The mailq meta-actor sends the message mx tothe base actor A . The code for methodX is exe-cuted.8. When the base actor A executes the command tocreate the computeX actor, it sends a message tothe creation meta-actor.9. The creation actor takes the appropriate ac-tions required to create computeX .It can be seen that if methodX itself performs therequired computation (instead of creating the new ac-tor computeX ), it has to be migrated to architectureM before the message mx is released by mailq andsent to the base actor. It is the users responsibility toidentify the methods tha start the main parallel com-putations of the application that require execution onspeci�c architectures and reify the appropriate mete-level actors as shown above.Having decided on what architecture to use for ex-ecution of a certain part of the code one has to makeseveral low-level decisions on resource managementwhile executing the required code. These decisionsmay be architecture sensitive and appropriate changeshave to be made to the code depending on the tar-get architecture. The section below discusses one ofthe important resource management issues namely theplacement of actors on di�erent processors.5 MODULAR SPECIFICATION OFACTOR PLACEMENTAn important criteria for e�ciently executing par-allel programs on a multiprocessor is the placement ofdata on processors. This a�ects the load balancing ofcomputation and also the communicationoverhead be-tween di�erent processors. Placement of data can betreated completely seperately from the computationthereby getting di�erent e�ciency values for di�erentplacements. For simple parallel computations one canspecify the placement of data elements and tasks stat-ically. Complicated placement strategies like dynamic



placement of tasks and data elements, require an al-gorithmic description for speci�cation.E�orts have been made to specify placement usingannotations in the program. These anotations occurin the code whereever new data elements or new tasksare created and specify the processor on which thetasks/data elements should be created. As a result thecode specifying the placement is mixed with the codespecifying the application. If a new placement strat-egy is used, changes may have to be made at severalplaces in the code. In an hcs the placement strate-gies may be changed depending on the architectureused to solve a particular part of the application. In aprogramming environment which requires annotationsfor specifying placement a new version of the code isrequired whenever the placement strategy is changed.Re
ection can be used specify the placement issues ina modular fashion and the placement strategies canbe changed easily at run time.The example shown below illustrates how place-ment strategies can be architecture dependent.5.1 EXAMPLEWe consider the example of Cholesky decomposi-tion discussed in [4]. The optimal placement strategyfor such a problem depends on several factors such asthe communication overhead for point-to-point mes-sages on the architecture, the overhead required fora full broadcast of a message, the size of the givenmatrix, the number of processors available etc. Inthe Chlolesky decomposition algorithm (and also theGaussian Elimination algorithm) the active part of thematrix (which is being used as input for subsequentcomputation and the part which is being updated)during the ith iteration is composed of rows from ito n.Two example placement strategies are described be-low:1. Static placement in which row i is given to theprocessor i div P , P being the total number ofprocessors. This strategy causes unequal load bal-ancing since the processors containing rows withindices less than j are idle after the (j � 1)th it-eration is over.2. The row i is given to the processor i mod P .This strategy causes almost equal load balancingthroughout the execution of the algorithm but in-volves a full broadcast of the ith row for carryingout the ith iteration.It seems that strategy 2 causes better load balancethan strategy 1 and may result in faster execution.The strategies 1 and 2 were implemented on the in-tel's iPSC/2 hypercube and for several executions theperformance of strategy 1 was observed to be betterthan strategy 2.The above performance is observed because strat-egy 2 causes several broadcast operations which strat-egy 1 doesn't. If an architecture with extra hardwarefor speeding up broadcast operation is available, the

nodes 32� 32 64� 64 128� 128 256� 2561 101 768 6068 482032 91 691 5416 429194 69 477 3600 287348 55 305 2098 1626516 28 293 1371 894032 23 273 1097 6033Table 1: Results from an implementation of theCholesky algorithm on an Intel iPSC/2 with an equalnumber of matrix rows per processor (strategy 1).Times are in milliseconds.nodes 32� 32 64� 64 128� 128 256� 2561 145 1032 7848 611562 125 619 4167 312024 84 386 2348 164648 185 417 1627 942016 276 546 1551 659732 none 851 2010 6585Table 2: Results from an implementation of theCholesky algorithm on an Intel iPSC/2 with a shu�edrow distribution (strategy 2). Times are in millisec-onds.strategy 2 may perfom better that 1. This example il-lustrates how the placement decision may be architec-ture sensitive. Currently there are no known methodsto analyse a given algorithm and decide the placementissues automatically, the user has to provide the re-quired information. Re
ection can be used to providemodular speci�cation of placement issues.For static placement strategies the modi�cation ofthe creation actor is appropriate for deciding theplacement of new actors being created. For imple-menting dynamic placement strategies a placementmeta-actor is added. This meta-actor receives mes-sages and evaluates certain functions to compute thenew placement of the actor. If the new placement isdi�erent from its current placement, the actor is mi-grated to the new processor. The messages that trig-ger the placement can be generated by an additionallevel of mailq meta-actor that traps some speci�c in-coming messages. For example, for the Cholesky De-composition example, the messages requesting initia-tion of the next iteration can be trapped. Based on theiteration number, at certain intervals the placement ofevery actor can be re-evaluated, causing migration ifrequired.6 CONCLUSIONSA number of areas of research need to be developedto enable e�ective use of hcs. Speci�cally, we haveidenti�ed three such areas. First, further research isneeded in determining how to best combine scalabil-ity metrics and architectural characteristics for e�-cient execution. Second, a fully re
ective system ar-
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