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Abstract

This paper discusses a framework for supporting
heterogeneous computing systems (HCS). HCS are
physically distributed, potentially complex and evolving
systems. HCS consist of a number of computers and in-
terconnections which may have differing language and
system support, and sometimes distinct computational
( architectural ) models. By providing a large num-
ber of computational resources to the user, HCS have
the potential to allow highly efficient execution of ultra
large-scale applications. The paper provides a frame-
work for addressing some of the significant problems in
interoperability and resource management which result
from the heterogeneity in HCS.

1 INTRODUCTION

A number of distinct parallel and distributed ar-
chitectures and interconnection networks have been
designed. Although building a “general-purpose” ar-
chitecture has been a key design goal for most com-
puter architects, the reality is that many algorithms
have different structural characteristics which make
them more suitable for execution on very specific kinds
of architectures. Some algorithms require very close
interaction between processors, making architectures
with high processor connectivity suitable. Other al-
gorithms may be partitioned into components which
have strong locality properties. In this case, dis-
tributed memory architectures are appropriate. A
third group of algorithms exhibits a high degree of
data parallelism.

For example, algorithms for solving a sparse system
of linear equations partition the system of equations
into smaller blocks, and are therefore suitable for a
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medium grained machine such as a mesh. On the other
hand, algorithms for image processing have a regular
structure with very high data parallelism; this allows
efficient execution on SIMD machines such as CM2.

Large-scale applications consist of many compo-
nents, each of which may be suitable for execution on
a different kind of architecture. By developing hetero-
geneous computing systems (HCS) we can efficiently
support such applications. For example, consider an
application that can be decomposed into two compo-
nents, one of which requires very frequent processor
interaction whereas the other is data parallel. If this
application is executed on a shared memory machine,
data parallelism in the second component may not be
effectively used. On the other hand, if CM2 were to be
used, the first component of the problem would not be
implemented efficiently. If several architectures with
different characteristics are connected on a high speed
network, it may be possible to execute various com-
ponents of an application on different architectures.

There are a number of difficulties which must be
addressed in order to realize the promise of HCs. This
paper discusses two of them. First, the absence of
a uniform language and communication interface on
different systems makes programming Hcs difficult.
Thus, the programmer who writes applications for HCS
may have to program each component of the applica-
tion using the the language support for the architec-
ture on which the component is to be executed. In
particular, if a component is suitable for more than
one architecture, then the programmer may have to
provide the code for all architectures on which the
component may be executed. To address this proble,
we propose an actor-based linguistic interface model
for interoperability in HCS

Actors provide behavior abstractions which unify
abstract data types and higher-order functions. As
a consequence, modularity and reusability are sup-
ported in this linguistic framework. Experience in
practical distributed systems has shown the power of
actor languages. !

1For example, a group of programmers using Rosette (an
actor language developed at Microelectronics and Computer
Technology Consortium (MCC) in collaboration with the first



A second problem which needs to be addressed in
order to make HCS viable results from the fact that
the von Neumann architecture no longer provides a
universal model of computation. In particular, this
implies that conventional measures of space-time com-
plexity are insufficient to model resource requirements.
HCS provide a wide variety of resources; depending on
how these resources are used, varying degrees of per-
formance may be achieved. Measures of an algorithm’s
complexity and scalability may provide a quantitative
basis which helps select appropriate resources to use
in executing it. In this paper, we review several met-
rics for evaluating the utilization of computational re-
sources and discuss how they may be used in building
a resource management architecture.

The outline of this paper is as follows. We first pro-
vide examples to motivate the need for heterogeneous
processing of applications. Then we discuss the prob-
lem of providing linguistic support for HCS. In par-
ticular, we describe a reflective model of actors and
show how it can be used to meet design requirements
for interoperability in HCS. Note that reflection allows
the underlying resources to be represented and thus
provides a mechanism for affecting resource utilitza-
tion. The second half of the paper describes formal
metrics which need to be incorporated in a resource
management architecture for HCS and illustrates their
significance by means of specific examples. Finally,
we discuss the use of meta-programming for building
reusable orchestration tools.

MOTIVATING EXAMPLES

A number of large-scale applications are composed
of smaller computations each of which may require a
different kind of architecture. Solving such applica-
tions on one architecture leads to poor performance
since certain components of the application may not
be suitable for that architecture, leading to their in-
efficient implementation. We describe two such ex-
amples: applications in computer vision and precon-
ditioned conjugate gradient method for solving linear
systems of equations, a numerical computation.

Computer Vision:

Processing images and making intelligent decisions
based on the data requires different levels of process-
ing: low-level, intermediate-level and high-level [7].
Every level of processing has a different set of charac-
teristics and is suitable for a different kind of parallel
machine.

e Low-level vision tasks such as Hough transform
computation, histogram generation and template

author) was able to develop front-end to back-end switching
package which supported interoperability in heterogeneous dis-
tributed database applications. The implementation done for
the ESQL Access Group, a consortium of vendors, provided ef-
ficiency comparable to implementations done directly using low
level network communication protocols. However, the Rosette
implementation took a small team of three programmers about
six weeks, while competing implementations took three to four
times as many programmers upto a year or more.

matching require computations corresponding to
each pixel of the image. These computations are
highly regular and the same computation is per-
formed on each pixel of the image. Thus SIMD
architectures, such as the Connection Machine,
are well suited for low-level vision tasks.

e Intermediate-level processing reduces the low-
level information to a form that can be easily
processed by high-level processors. Examples of
intermediate level processing are segmentation,
computation of connected components, syntactic
pattern recognition etc. These computations are
not as regular as the low-level vision computa-
tions and the parallelism cannot be extracted very
easily. The parallel tasks generated here have a
larger granularity and hence machines such as hy-
percubes or shared-memory machines are more
suited.

e High-level processing requires making intelligent
decisions based on image data and the algorithms
are not very structured. For example image
data is transformed into information that needs
symbolic processing. Such applications may re-
quire higher connectivity or shared memory ma-
chines for processing although certain specific al-
gorithms have been developed and implemented
on the Connection Machine [7].

Preconditioned Conjugate Gradient Algo-

rithm:

This problem [10] requires various steps that have very
different requirements of the architecture. Assume the
input to the algorithm to be a large sparse system of
linear equations.

e Developing the Preconditioner: This operation
can be very unstructured and may require certain
graph algorithms to compute the preconditioner
from the input matrix. Thus 1t is best suited to
a fast sequential processor or a shared memory
multiprocessor.

Once the preconditioner is obtained, the algo-
rithm performs several iterations where each iter-
ation is composed of several components includ-
ing:

— Solution of Loosely Connected Blocks of
FEquations: This operation involves the so-
lution of several blocks of equations that are
either loosely coupled or independent of each
other. Thus, the connectivity required for
solving such an equation is not high. The
grain size of the computation depends on the
number of blocks into which the system of
equations is divided. Such a computation
is suited for a medium grain multiprocessor
which need not have very high connectivity.

— Solution of a Dense System of Fquations:
This is a structured computation that re-
quires high communication. Thus either vec-



tor processing or a strongly connected archi-
tecture, such as a hypercube, is suitable.

We analyze an application with several components
that are executable on parallel machines. Assume
there are n different components such the 7** compo-
nent is suitable for a machine M;. It is possible that
M; = M; even though i # j. Let T(Cj, M;) be the
time required for execution of component C; on ma-
chine M; and T;., be the time required for sequential
execution of the application. The speedup obtained
by executing all components of the application on one
parallel machine M} 1s:

S _ Tseq
P S T (G, My)

Instead, if an HCS is used and every component of
the application can be executed on the machine suit-
able for it, the speedup obtained 1s:

S _ Tseq
MO = S (G M) + Tvo

where To is the network overhead 1.e., the total time
spent in transferring data from one machine to another
over the network. It is advantageous to use the HCS
only if Sgcs > Spar which holds if,

n

Z(Ci’ M) > ZH:T(CZ', M)+ Twno.

i=1 i=1

Thus, we need to ensure that the network overhead
does not offset the advantage caused by efficient ex-
ecution of the components on different machines. In
the rest of the paper we assume the different machines
of an HCS to be on a very high-speed network. In the
next section we discuss the features required in the
language support for such Hes.

2 LANGUAGE SUPPORT FOR HCS

Heterogeneous Computing systems are complex,
constantly changing dynamic systems and program-
ming such systems can be highly complicated with-
out proper language support. The language should
provide enough levels of abstraction to hide unneces-
sary implementation details of an algorithm without
restricting the programmers ability to manage system
resources for efficient execution. For an HCS, such pa-
rameters include the selection of the appropriate archi-
tecture for a particular component of an application,
and the management of resources such as the number
of processors. Below are some design requirements for
providing language support for HCS. We will show
how the actor model may be used to address these
requirements.

e Inherent Concurrency: The prerequisite for any
language used for HCS is to allow concurrency.
It should be possible to create several processes
which can be executed in parallel. The creation

of processes should be dynamic. Communication
protocols are necessary to allow interaction be-
tween applications running on two different ma-
chines on the network. The language should pro-
vide some abstractions which encapsulate the de-
tails of such a protocol.

Modeling Dynamic Systems: A heterogenous sys-
tem may keep changing constantly as new ma-
chines are added and old machines are removed.
Thus a language which supports a dynamic topol-
ogy of processes is required. The static topology
required by a language such as CSP is highly re-
strictive. Functional languages are not suitable
for modeling resources since they cannot model
the state of a system. In addition, as the number
of resources in an HCS increases, the number of
failures increases and fault tolerance becomes an
important issue.

Machine Independence: The language should be
independent of the machines on which the pro-
gram is executed. If a machine independent lan-
guage is not available, the programmer may have
to use a different language for every component
of an application. If one component of an appli-
cation can be executed efficiently on more than
one machine, it should be possible for the system
to choose a suitable machine based on parameters
such as availability and load status. Thus the lack
of a machine independent language implies that
a programmer would have to provide several ver-
sions of a component code, each version suitable
for a different architecture.

Choosing the Machine Configuration for a Prob-
lem: The suitability of an architecture to a given
problem depends on several factors such as the
structure of the problem, the available paral-
lelism, the communication overhead involved, etc.
It 1s difficult to analyze a program statically and
find out the possible target architectures suitable
for it. The language should allow the user to
give various metrics associated with the applica-
tion which should help the system make resource
management decisions.

Process Placement: For certain applications, 1t 1s
useful to allow the programmer to explicitly al-
locate resources and control the data and task
placement. The user may know the most effi-
cient way of executing the program and may be
the best judge of how data should be distributed
acCross various processors.

Modularity of Code: The language should allow
modularity in design and allow a programmer to
separate the various design considerations. For
example, the code for resource management and
explicit task placement (if any) should be sepa-
rate from the code of the problem itself. Because
it 1s simpler to reason about functional code, the
code for the computation itself may be imple-
mented in a functional style. On the other hand,



the code for resource management is easier to ex-
press if one can represent states of a computation.
The object model allows us to integrate the two
styles.

2.1 THE ACTOR MODEL

Actors are self-contained, interactive, independent
components of a computing system that communicate
by asynchronous message passing. Fach actor has a
matl address, and a behavior. An actor’s acquain-
tances are all of the actors whose mail addresses it
knows. In order to abstract over processor speeds and
allow adaptive routing, preservation of message order
is not guaranteed. Addresses may be communicated,
providing a dynamic topology. New actors may be
dynamically created — providing extensibility.

State change in actors is specified using replacement
behaviors. Each time an actor processes a communi-
cation, it also computes its behavior in response to the
next communication it may process. The replacement
behavior for a purely functional actor is identical to
the original behavior; in general it may change. The
change in the behavior of an actor may represent a
simple change of state variables, such as change in the
balance of an account, or it may represent changes
in the operations (methods) which are carried out in
response to messages. For example, suppose a bank
account actor accepts a withdrawal request. In re-
sponse, it will compute a new balance which will be
used to process the next message.

The concept of actors was originally proposed by
Hewitt [11]. The actor model was formally charac-
terized by means of power domain semantics [8], by
a transition system [1], and by Colored Petri Nets
[13]. Complexity measures for actor programs have
been studied [6]. The model has also been proposed
as a basis for multiparadigm programming [2] and has
been used as a programming model for multicomput-
ers [5, 9].

2.2 LINGUISTIC EXPRESSIVENESS
FOR INTEROPERABILITY

In systems with shared memory, synchroniza-
tion constructs based on shared variables, such as
semaphores and monitors, are used. These constructs
allow various processes to synchronize and share in-
formation. However applications running on two dif-
ferent machines on a network have to synchronize by
sending messages over the network. Thus message
passing primitives such as send and receive are
used for communicating. If the send primitive does
not cause a process to block until the message reaches
the receiver, the communication is said to be asyn-
chronous. If the sender blocks until the other process
is ready to receive the message, the communication is
said to be synchronous.

There are other higher level protocols built using
these primitives e.g., remote procedure calls (RPCs)
and rendezvous. In a remote procedure call, the ser-
vicing process 1s declared as a procedure. When a
call 1s made, the procedure may get executed on a re-
mote processor. The term rendezvous refers to a form
of synchronous communication in which two processes

get to a designated point. The process that reaches
the point first waits for the other process. Another
form of synchronization 1s barrier synchronization in
which several processes meet at a point. The processes
that arrive early wait for the slow processes. As soon
as the last process reaches the barrier point, all the
processes continue execution.

The actors model uses message passing for com-
municating between tasks. The underlying network is
assumed to be asynchronous. All the other protocols
can be implemented using asynchronous message pass-
ing. For example synchronous communication can be
modelled using asynchronous message passing by forc-
ing the sender to keep waiting for the reply.

Assume that P1, P2, P3 are actors with behavior
sync—proc. These processes know the mail address of
a barrier-actor called B1. All the processes partic-
ipating in the barrier synchronization send a b-sync
message to their barrier acquaintance as soon as
they reach the synchronization point.

(defActor sync-proc (slots& barrier)
(method (send-sync)
(send b-sync barrier))
(method (other-computation)
- ))

The barrier-actor allows three processes to syn-
chronize at a point. It has three acquaintances,
the integers message-rec and barrier-size and
a list of process ids proc-list. The acquain-
tance barrier-size contains the number of pro-
cesses that can synchronize at the barrier. Thus
barrier—size receives its initial value at the cre-
ation of the barrier-actor. The acquaintance
message-rec acts as a state variable that stores the
number of processes that have sent the synchroniza-
tion message b-sync to the barrier-actor so far.
This variable is initialized to zero. Finally, proc-list
contains the list of ids of all the processes that have
sent b-sync message to barrier-sync so far. This
list is necessary to broadcast the continue message
to the synchronizing processes once the b-sync mes-
sage is received from all of them.

(defActor barrier-actor
(slots& message-rec barrier-size
proc-list)
(method (b-sync proc-id)
(seq
(increment message-rec)
(add-proc-list proc-id)
(if (= message-rec barrier-size)
(seq
(send continue
(new continuation)
proc-list)
(become (barrier-actor
0 barrier-size
NN
The procedure increment increments the value
of the variable message-rec by one, thereby chang-
ing the state of the barrier-actor. The proce-
dure add-proc-list adds the mail address of the
sync—proc actor that has sent the b-sync message



to the proc-list. The procedure broadcast sends
the continue message to all the processes in the list
proc-list.

Once barrier synchronization is achieved, the
barrier—actor sends a message to a continuation
actor. The continuation actor decides what further
action has to be taken. The simplest action is to send
a message to all the synchronizing processes to con-
tinue.

(defActor continuation
(method (continue proc-list)
(broadcast proc-list
other—computation)))
The root actor shown below creates the barrier
actor and the process actors that use the barrier for
synchronization.

(defActor root
(method (test)
(let [[B1 (new Barrier 0 3 [1)]]
(send-sync (new sync-proc B1))
(send-sync (new sync-proc B1))
(send-sync (new sync-proc
B1)))))

In fact high-level language primitives can be built
in the actor language that allow the programmer to
write concurrent applications without explicitly set-
ting up any communication protocols or synchroniza-
tion primitives between the tasks. We show an ap-
plication, the function concurrent-map to illustrate
how high level language constructs create processes
to perform computations in parallel and also hide the
communication details from the user.

The map function in lisp takes a function and
a list as arguments and returns a list formed by
applying the function to every element of the list.
The concurrent-map function i1s a concurrent im-
plementation of the map function. It recursively di-
vides the input list into two halves and applies the
concurrent-map functions to the smaller list. The
recursive division of the lists continues until single el-
ement lists are obtained. The input function is applied
to the elements of these lists and the results concate-
nated to form a list which is returned. Thus several
sub-tasks are created in a tree like fashion. The re-

sults are returned to the calling actor also in a tree
like fashion.

(defProc concurrent-map (list Function)
(if (> (size list) 1)
(concatenate
(concurrent-map ((first-half list)
Function))
(concurrent-map ((right-half list)
Function)))
(1ist (Function (car 1list)))))
The execution of the concurrent-map function is
illustrated in the Figure 2.
In the next section we discuss the features that need
to be added to the language to allow efficient resource
management.

3 RESOURCE MANAGEMENT AR-

CHITECTURE

It is difficult to decide statically, if a given task
can be efficiently executed on a given architecture.
One way of choosing suitable architectures for a given
piece of code is to let the user provide some impor-
tant metrics related to the algorithms. These metrics
should enable the system to analyze the efficiency of
execution of the application on a given architecture.
At compile time, executable code should be generated
only for machines for which the efficiency of execu-
tion is not very low. At run time the system should
choose a machine based on efficiency criteria and also
on availability of machines. Below are some metrics
which may enable a resource management system to
select a suitable machine for a given algorithm.

o Concurrency Index: The Concurrency Index (CI)
[3] gives a measure of the amount of parallelism
available in a given computation. The higher the
value of CI, the more is the parallelism available
in the computation.

o Grain Size: This metric gives the amount of com-
putation performed before a message is sent out.
Machines such as the Connection Machine have a
large number of small processors and are suitable
for computations with small grain size. Machines
with fewer but more powerful processors are pre-
ferred for computations with large grain size.

o Communication/Computation Ratio: This met-
ric 18 a measure of the amount of data commu-
nicated after performing a unit computation. A
high communication to computation ratio indi-
cates a communication intensive job which may
not be executed efficiently if a very large num-
ber of processors are used. For example, in the
Cholesky Decomposition algorithm [4] the com-
munication/computation ratio is quite high, indi-
cating that the computation will be slow if run
on a machine, such as a one-dimensional array,
which has a high latency and low bandwidth.

e Scalability Measure: This measure tries to com-
bine the information in the above two measures.
One scalability measure isoefficiency relates the
problem size to the number of processes neces-
sary for linear speedup. If the computation size
needs to grow as f(p), where p is the number
of processors, to maintain an efficiency F, then
f(p) is defined to be the isoefficiency func-
tion for efficiency F [14]. Isoefficiency functions
for quick-sort implementations are presented for
the two-dimensional mesh architecture in [14]. A
naive implementation stores the entire list in one
processor; it partitions the list into two sublists,
hands out one of the list to a free processor and
keeps the other sublist. This process continues
recursively until all processors are busy. This al-
gorithm has a very poor scalability and the isoef-
ficiency function is shown to be:

W = 02" x p)
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where k 1s a constant. A better implementation
partitions the array alternately in the vertical and
horizontal direction to increase locality. This im-
proves scalability as reflected by the correspond-
ing isoefficiency function:

W =00V x /p).

Given a scalability measure such as the isoeffi-
ciency function and the input size, the system
can decide the number of processors to be used to
solve the problem. In practice, the system should
consider the overall load and also the priority of
the computation (explained below) for deciding
the number of processors.

We discuss another algorithm, the Cholesky De-
composition to illustrate how the number of pro-
cessors affects the efficiency of an algorithm. Fig-
ure 3 gives a comparison of two different imple-
mentations of the Cholesky Decomposition algo-
rithm on matrices of size 32 x 32 and 64 x 64.
The functional implementation synchronizes af-
ter every iteration of the algorithm whereas the
concurrent implementation lets several iteration
of the algorithm run concurrently. It can be seen
that the speedup obtained by parallel execution
of the algorithm initially increases as the num-
ber of processors is increased, but starts starts

decreasing as the communication overhead over-
comes the increase in speedup obtained by the
added processors. Thus given a proper measure
of the scalability of the Cholesky Decomposition
algorithm, the system could decide the optimal
number of processors to be used for a given size
of the input matrix.

e Scheduling Computations: On a network with
several users, a priority may have to be assigned
to a computation. Thus, a computation with high
priority may be run using a large number of pro-
cessors even though the efficiency of the execution
may be low because of scalability criteria. Also, if
several other computations are dependent on one
computation system may decide to increase its
priority since slow execution of this computation
will delay the execution of several other compu-
tations. In such a case the computation may be
executed using a large number of processors so
that the overall time taken is less even though
the efficiency 1s low.

Such metrics help the system decide issues such as
the parallelism available in a computation, the com-
munication overhead associated with the parallel exe-
cution etc. The system should have a function map-
ping the various values of the above indices to different
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Figure 2: Illustrating the Execution of concurrent-map function.

architectures. This function may be implemented as a
table or as a heuristic based algorithm. For example,
for an application such as low-level image processing,
the concurrency index is usually very high, the grain
size is small and the communication/computation ra-
tio is low. Given the values of such metrics, the system
should choose the Connection Machine as one of the
suitable architecture for such an application.

For an application that can be divided into several
sub-problems, each of which has very different char-
acteristics, the above indices should be provided for
all such sub-problems. Thus, the system has to decide
where each portion of the code has to be executed
and the number of processors allocated for each sub-
problem. In certain special cases where the code is
very simple, it may be possible to decide the values of
such indices statically at compile time.

3.1 HIGH-LEVEL RESOURCE CON-
TROL

A number of problems involve speculative paral-
lelism. For example, there may be several methods for
solving a problem. In such cases, speed-up may be ob-
tained by computing multiple methods concurrently.
One can characterize such problems as search prob-
lems. In fact, in some search problems, superlinear
speed-up may be obtained by coordinating multiple

processes.?  In search problems, the computational

space may grow exponentially; an intelligent search
scheme uses partial results to control the speculative
activity. We discuss a specific example, namely branch
and bound search, to illustrate how high level resource
control may be used to optimize search using appro-
priate heuristics. The high-level resource control pro-
vides an abstraction which may be used to improve the
efficiency of execution in a heterogeneous network.

A typical branch and bound search consists of com-
puting an upper (or lower) bound on the value of
the optimal solution at each node and expanding the
search in the neighborhoods of nodes with the best
bounding values. Implementing such a search requires
a number of distinct interlinked computations to be
carried out. The required computations can be sum-
marized as follows:

node calculation: local computation on a node
graph to compute neighbors for further expan-
sion; and,

resource allocation: how much resource should be
allocated — no resources indicates the node is not
to be expanded at the present time. The resources

20f course, in such cases the original sequential algorithms
are sub-optimal and could be replaced by a time-sharing system.
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provided will determine the extent of the expan-
sion. Note the extent of expansion around a node
requires global as well as local information.

Separating the above computations into different
modules provides a separation of design concerns: for
example, high-level resource allocation policies may
be modified independently of logic of the node expan-
sions. Heuristics will then be used for partitioning the
problem on a particular architecture and computing
costs to be assessed.

We use a sponsorship mechanism which requires all
activity to be charged to sponsors. A computation
activating a number of new sub-computations is re-
quired to provide resources for those activities. Fur-
thermore, it may specify a sponsor which holds onto
more resources and allocates them dynamically based
on intermediate results — thus affecting the course of
the search as i1t proceeds. Sponsors may be dynam-
ically spawned, and resource control subdivided, so
that they do not themselves become a bottleneck.

Consider the following code. In order to de-
termine how much resource to give to a node ex-
pansion, the sponsor below uses a procedure called
sponsorship-algorithm which is parameterized by
current-resources available to the sponsor. Thus
the sponsor may drive or throttle a particular com-
putational path. Assume that node appropriately
responds to expand messages (or equivalently that
expand is a procedure which may be applied to node).
We use the with annotation to provide a hook for the

system to directly access physical resources in the un-
derlying architecture.

(procedure node-sponsor
(mutable [node current-resources
sponsorship-algorithm]
[add-resources
(let [[new-resources (+
current-resources add-resources)]]
(become node-sponsor [node
new-resources sponsorship-algorithm]))]
[expand-node
(letrec [[descendant-nodes (expand
node (with current-resources))]
[sponsorship-level
(sponsorship-algorithm current-resources)]
[new-sponsors (map
sponsorship-level descendant-nodes)]
[new-resources (apply + (map
current-resources new-sponsors))]]
(become node-sponsor [node
new-resources sponsorship-algorithm]))]
[change-algorithm
]

[request-resources
s 1))

The decision about whether to perform a subcom-
putation is thus specified independently of how the
computation itself is to be carried out. Furthermore,
this sponsorship algorithm leaves open the decision on
how to utilize the physical resources, such as memory



Figure 4: Metalevel architecture for selecting suit-
able architecture for execution of computations in
an application.

HCS CONFI

or processing power, or their associated costs. Such
flexibility is critical in building heterogeneous com-

puting systems where relative resource costs may Vary P

with different architectures.

4 A PROGRAMMING METHOD@):
OGY FOR HCS

In this section we give a detailed example of 'hovv
reflection can be used to program HCS applicatiops in
a modular fashion without interference with the ap,

resources on the
eters of a atlon (d

it can ?ﬁ% estA" 11ablé®rch1tectu c to
perform the computatlon

2. Assume that an actor A perfor
putations which are suitefﬁQ certaN
chitectural characteristics."/ Also_ass
starts this set of computation in regy

required computation. To efficiently ekecute this
set of computations, the actor computeX must be
created at an appropriate architecture.

3. To enable A to evaluate a suitable architecture
for executing computeX, the following metelevel
actors of A need top be reified.

(a) A mailq metelevel actor that traps all mes-
sages that invoke methodX.

(b) A eval_architecture metalevel actor that
keeps a list of all parameters related
to the parallel computation performed by
computeX as discussed in section 3.

(¢) A creation metalevel actor which contains
the information regarding target architec-
tures or processors where new actors are cre-
ated by A. Thus, every new command de-
fined in the method definitions of A sends a
message to the creation meta-actor which
decides the placement of the new actor and
then creates it appropriately.

The steps performed by the above metalevel archi-
tecture are as shown. The step numbers mentioned
here correspond to the numbers shown in Figure 4.

1. A message mx that invokes method methodX is
received by the mailq meta-actor of A.

2. This message is trapped at the mailq actor and
the rest of the messages are forwarded to the
base actor A. mailq sends a message to the
eval _architecture meta-actor to compute the
best available architecture for placing computeX.

e

. HCS_CONFIG actor has the list of the currently
frde architecture and evaluates the best avail-
able architecture for the given parameters of
Jarallel computation. The address of the cho-

/se(lzﬂ.)system (say M ) is communicated back to

,/ eval_architecture meta-actor.

’ 5. The eval_architecture meta-actor sends a

message to tBE€AH@Ation actor and updates it
nﬁy@taommex actor is-created on M.

message to the mailq actor to release the mx
mes’sage and send 1t to the base actor A.

7. T mailq meta-actor sends the message mx to
/th ase actor A. The code for methodX is exe-
-7 cuted.

8. When the base actor & executes the command to
create the computeX actor, it sends a message to
the creation meta-actor.

9. The creation actor takes the appropriate ac-
tions required to create computeX.

It can be seen that if methodX itself performs the
required computation (instead of creating the new ac-
tor computeX), it has to be migrated to architecture
M before the message mx is released by mailq and
sent to the base actor. It is the users responsibility to
identify the methods tha start the main parallel com-
putations of the application that require execution on
specific architectures and reify the appropriate mete-
level actors as shown above.

Having decided on what architecture to use for ex-
ecution of a certain part of the code one has to make
several low-level decisions on resource management
while executing the required code. These decisions
may be architecture sensitive and appropriate changes
have to be made to the code depending on the tar-
get architecture. The section below discusses one of
the important resource management issues namely the
placement of actors on different processors.

5 MODULAR SPECIFICATION OF
ACTOR PLACEMENT

An important criteria for efficiently executing par-
allel programs on a multiprocessor is the placement of
data on processors. This affects the load balancing of
computation and also the communication overhead be-
tween different processors. Placement of data can be
treated completely seperately from the computation
thereby getting different efficiency values for different
placements. For simple parallel computations one can
specify the placement of data elements and tasks stat-
ically. Complicated placement strategies like dynamic



placement of tasks and data elements, require an al-
gorithmic description for specification.

Efforts have been made to specify placement using
annotations in the program. These anotations occur
in the code whereever new data elements or new tasks
are created and specify the processor on which the
tasks/data elements should be created. As aresult the
code specifying the placement is mixed with the code
specifying the application. If a new placement strat-
egy 1is used, changes may have to be made at several
places in the code. In an HCS the placement strate-
gies may be changed depending on the architecture
used to solve a particular part of the application. In a
programming environment which requires annotations
for specifying placement a new version of the code is
required whenever the placement strategy is changed.
Reflection can be used specify the placement issues in
a modular fashion and the placement strategies can
be changed easily at run time.

The example shown below illustrates how place-
ment strategies can be architecture dependent.

5.1 EXAMPLE

We consider the example of Cholesky decomposi-
tion discussed in [4]. The optimal placement strategy
for such a problem depends on several factors such as
the communication overhead for point-to-point mes-
sages on the architecture, the overhead required for
a full broadcast of a message, the size of the given
matrix, the number of processors available etc. In
the Chlolesky decomposition algorithm (and also the
Gaussian Elimination algorithm) the active part of the
matrix (which is being used as input for subsequent
computation and the part which is being updated)
during the i* iteration is composed of rows from i
to n.

Two example placement strategies are described be-
low:

1. Static placement in which row ¢ is given to the
processor ¢ div P, P being the total number of
processors. This strategy causes unequal load bal-
ancing since the processors containing rows with
indices less than j are idle after the (j — 1)%" it-
eration is over.

2. The row ¢ is given to the processor ¢ mod P.
This strategy causes almost equal load balancing
throughout the execution of the algorithm but in-
volves a full broadcast of the " row for carrying
out the i iteration.

It seems that strategy 2 causes better load balance
than strategy 1 and may result in faster execution.
The strategies 1 and 2 were implemented on the in-
tel’s iPSC/2 hypercube and for several executions the
performance of strategy 1 was observed to be better
than strategy 2.

The above performance is observed because strat-
egy 2 causes several broadcast operations which strat-
egy 1 doesn’t. If an architecture with extra hardware
for speeding up broadcast operation is available, the

nodes | 32 x 32 | 64 x 64 | 128 x 128 | 256 x 256
1 101 768 6068 48203
2 91 691 5416 42919
4 69 477 3600 28734
8 99 305 2098 16265
16 28 293 1371 8940
32 23 273 1097 6033

Table 1: Results from an implementation of the
Cholesky algorithm on an Intel iPSC/2 with an equal
number of matrix rows per processor (strategy 1).
Times are in malliseconds.

nodes | 32x 3264 x64 | 128 x 128 | 256 x 256
1 145 1032 7848 61156
2 125 619 4167 31202
4 84 386 2348 16464
8 185 417 1627 9420
16 276 546 1551 6597
32 none 851 2010 6585

Table 2: Results from an implementation of the
Cholesky algorithm on an Intel iPSC/2 with a shuffled
row distribution (strategy 2). Times are in millisec-
onds.

strategy 2 may perfom better that 1. This example 1l-
lustrates how the placement decision may be architec-
ture sensitive. Currently there are no known methods
to analyse a given algorithm and decide the placement
issues automatically, the user has to provide the re-
quired information. Reflection can be used to provide
modular specification of placement issues.

For static placement strategies the modification of
the creation actor is appropriate for deciding the
placement of new actors being created. For imple-
menting dynamic placement strategies a placement
meta-actor is added. This meta-actor receives mes-
sages and evaluates certain functions to compute the
new placement of the actor. If the new placement is
different from its current placement, the actor is mi-
grated to the new processor. The messages that trig-
ger the placement can be generated by an additional
level of mailq meta-actor that traps some specific in-
coming messages. For example, for the Cholesky De-
composition example, the messages requesting initia-
tion of the next iteration can be trapped. Based on the
iteration number, at certain intervals the placement of
every actor can be re-evaluated, causing migration if
required.

6 CONCLUSIONS

A number of areas of research need to be developed
to enable effective use of HCS. Specifically, we have
identified three such areas. First, further research is
needed in determining how to best combine scalabil-
ity metrics and architectural characteristics for effi-
cient execution. Second, a fully reflective system ar-




chitecture that allows a high-level representation of
resources needs to be developed. Finally, a library of
concurrency abstractions suitable for using heteroge-
neous processing networks needs to be implemented.
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