
Towards a Theory of Actor Computation(Extended Abstract)Gul AghaUniversity of Illinoisagha@cs.uiuc.edu Ian A. MasonStanford Universityiam@cs.stanford.edu Scott SmithJohns Hopkins Universityscott@cs.jhu.edu Carolyn TalcottStanford Universityclt@sail.stanford.eduAbstractIn this paper we present preliminary results of a rigorous development of the actormodel of computation. We present an actor language which is an extension of a simplefunctional language, and provide a precise operational semantics for this extension. Ouractor systems are open distributed systems, meaning we explicitly take into account theinterface with external components in the speci�cation of an actor system. We de�ne andstudy various notions of equivalence on actor expressions and systems. We show that theusual tripartite family of testing equivalence relations collapses to two in the presence offairness. We de�ne a notion of operational bisimulation as a tool for establishing equivalenceunder fairness assumptions, and illustrate its use.1. IntroductionThe actor model of computation was originally proposed by Hewitt [5]. Actorsare self-contained, concurrently interacting entities of a computing system. Theycommunicate via message passing which is asynchronous and fair. Actors can bedynamically created and the topology of actor systems can change dynamically. Theactor model is a primitive model of computation, but nonetheless easily expressesa wide range of computation paradigms. It directly supports encapsulation andsharing, and provides a natural extension of both functional programming and objectstyle data abstraction to concurrent open systems [1, 2].The main features of an open distributed system are that new componentscan be added, existing components can be replaced, and interconnections can bechanged, largely without disturbing the functioning of the system. Componentshave no control over the components with which they might be connected. Thebehavior of a component is locally determined by its initial state and the historyof its interactions with the environment through its interface. The internal state ofa component must only be accessible through operations provided by the interface.Since the actor model has a built-in notion of local component and interface, it is anatural model to use as a basis for a theory of open distributed computation.The semantics we de�ne combines the message passing features of the primitiveactor model with an applicative functional language for describing individual actorbehaviors. This provides a simple yet expressive language with a manageable formalsemantics. In our formalization we make explicit the notion of open system. Anactor system is a collection of individually named concurrently executing actors,

plus two collections of actor names that de�ne the interface to the environment.The receptionists � are names of actors within the system that external componentsmay freely interact with; all other actors in the system are local and thus inaccessiblefrom outside. The external actors � are names of actors that are outside this actorsystem but to which messages may be directed. Each system is a self-containedentity, and we de�ne operations for composing systems to form larger systems.Most of the research in the area of parallel language design has either beenpractical but with very limited formal basis, or has been formal and theoretical butat the expense of realism. Our choices and approach are motivated by a desire tobridge the gap between theory and practice. The theory we develop is intended tobe useful for justifying program transformations for real languages, and to formalizeintuitive arguments and properties used by programmers.Following the tradition of [9, 7] we adopt an operational interpretation of ac-tor systems. Actor behavior is de�ned by a transition relation on con�gurations.Each con�guration is a symbolic instantaneous representation of an actor systemwith respect to some idealized observer [1], and a transition on con�gurations mapscon�gurations to possible future ones. Two actor expressions/systems are said tobe observationally equivalent if they give rise to the same observations, suitablyde�ned, inside all observing contexts. This notion is closely related to testing equiv-alence [4]. Observational equivalence provides a semantic basis for developing soundtransformation rules.Some highlights of this paper include the following. The operational semanticsextends that of the embedded functional language in such a way that the equationaltheory of the functional language is preserved. We de�ne a notion of open actorcon�guration which makes explicit the interface to the environment. As a �rststep towards an algebra of operations on open system components, we de�ne acomposition operator on con�gurations. An important aspect of the actor modelis the fairness requirement: message delivery is guaranteed, and individual actorcomputations are guaranteed to progress. This makes the computation model morerealistic: many intuitively correct equations fail in the absence of fairness. Althoughfairness makes some aspects of reasoning more complicated, it simpli�es others. Weprove that in the presence of fairness, the three standard notions of observationalequivalence collapse to two. Finally, we give a simple bisimulation principle thatallows equivalences to be established in the presence of fairness.The remainder of this abstract is organized as follows. x2 gives the syntax andoperational semantics of our actor language. x3 de�ne various notions of equivalenceand state their basic properties. x4 de�nes a notion of operational bisimulation as asound approximation to operational equivalence and illustrates its use. x5 containssome concluding remarks.Notation.We use the usual notation for set membership and function application. LetY; Y0; Y1 be sets. We specify meta-variable conventions in the form: let y range overY , which should be read as: the meta-variable y and decorated variants such as y0,y0, : : : , range over the set Y . Y n is the set of sequences of elements of Y of length

n. Y � is the set of �nite sequences of elements of Y . �y = [y1; : : : ; yn] is the sequenceof length n with ith element yi. (Thus [] is the empty sequence.) u � v denotesthe concatenation of the sequences u and v. P![Y] is the set of �nite subsets of Y .M! [Y] is the set of (�nite) multi-sets with elements in Y . [Y0 ! Y1] is the set oftotal functions, f , with domain Y0 and range contained in Y1. We write Dom(f) forthe domain of a function and Rng(f) for its range. Fmap[Y0; Y1] is the set of �nitemaps from Y0 to Y1.2. A Simple Lambda Based Actor LanguageActors are self-contained, components of a computing system that communicateby asynchronous message passing. Message delivery is guaranteed (fairness). Inresponse to a message an actor can send messages to actors that it knows about,and create new actors. It can also change its state/behavior. This change will be ine�ect when the next message is received by the actor, and the only time an actor'slocal state changes is when the actor changes it in response to a message. (Localcause for local e�ect principle).Our actor language is an extension of the call-by-value lambda calculus thatincludes (in addition to arithmetic primitives and structure constructors, recogniz-ers, and destructors) primitives for creating and manipulating actors. An actor'sbehavior is described by a closure which embodies the code to be executed when amessage is received, and the local store (values bound to free variables). The actorprimitives are: send (for sending messages); become (for changing behavior); andnewadr and initbeh (for actor creation). send(a; v) creates a new message withreceiver a and contents v and puts the message into the message delivery system.become(b) clones an anonymous actor to carry out the rest of the current compu-tation, alters the behavior of the actor executing the become to b, and frees thatactor to accept another message. The cloned actor may send messages or createnew actors in the process of completing its computation, but will never receive anymessages as its address can never be known. newadr() creates a new (uninitialized)actor and returns its address. initbeh(a; b) initializes the behavior of a newly cre-ated actor with address a to be b. An uninitialized actor can only be initialized bythe actor which created it. Without this restriction composability of actor systemsis problematic, as it would permit an external actor to initialize an internally cre-ated actor. The allocation of a new address and initialization of the actor's behaviorhave been separated in order to allow an an actor to know its own address. This isa weak form of synchronization and would not be necessary if message sending weresynchronous. An alternative would be to have built into the semantics that everyactor knows its own name, as is done in many actor and object-oriented languages.See [1] for intuitions behind these constructs.2.1. SyntaxWe take as given countable sets X (variables) and At (atoms). Fn is the set ofprimitive operations of rank n and F = Sn2NFn. We assume At contains t; nil

for booleans, as well as integers. F contains arithmetic operations, branching br(rank 3), pairing ispr; pr; 1st; 2nd (ranks 1, 2, 1, 1), and actor primitives newadr,initbeh, send, and become (ranks 0, 2, 2, 1). The sets of expressions, E, valueexpressions, V, and contexts (expressions with holes), C, are de�ned inductively asfollows.De�nition (E, V, C):V = At [X [�X:E[pr(V;V)E = At [X [�X:E [app(E;E) [Fn(En)C = At [X [�X:C [app(C;C) [Fn(Cn) [f"gWe let x; y; z range over X, v range over V, e range over E, and C range over C.�x:e binds the variable x in the expression e. We write FV(e) for the set of freevariables of e. We write efx := e0g to denote the expression obtained from e byreplacing all free occurrences of x by e0, avoiding the capture of free variables in e0.Contexts are expressions with holes. We use " to denote a hole. C[[e]] denotes theresult of replacing any holes in C by e. Free variables of e may become bound inthis process. let, if and seq are the usual syntactic sugar, seq being a sequencingprimitive.A simple actor behavior b that expects its message to be an actor address, sendsthe message 5 to that address, and becomes the same behavior, may be expressedusing a de�nable call-by-value �xed-point combinator rec (cf. [7]) as follows.b = app(rec; �y:�x:seq(become(y); send(x; 5)))An expression that would create an actor with this behavior and send it some otheractor address a ise = letfx := newadr()gseq(initbeh(x; b); send(x; a)):The behavior of a sink, an actor that ignores its messages and becomes this samebehavior, is de�ned bysink = rec(�b:�m:become(b)):2.2. Reduction Semantics for Open Con�gurationsWe give the semantics of actor expressions by de�ning a transition on opencon�gurations. Open con�gurations describe actor systems in which addresses ofsome (but not necessarily all) of the actors are known to the outside world. Theseactors are called receptionists. An open con�guration may also know addresses ofsome actors in the outside world. These actors are called external actors. Thesets of receptionists and external actors are the interface of an actor system to itsenvironment. They specify what actors are visible and what actor connections mustbe provided for the system to function. The set of receptionists may grow and theset of required external connections may shrink as the system evolves. In addition,an open con�guration contains an actor map and a multi-set of pending messages.An actor map is a �nite map from actor addresses to actor states. An actor state is

either uninitialized (having been newly created by an actor, a) written (?a); readyto accept a message, written (b) where b is its behavior, a lambda abstraction; orbusy executing e, written [e], here e represents the actor's current (local) processingstate. A message contains the address of the actor to whom it is sent and the messagecontents. The contents can be any value constructed from atoms and actor addressesusing constructors.Lambda abstractions and constructions containing lambda abstractions are notallowed to be communicated in messages. There are two reasons for this restriction.Firstly, allowing lambda abstractions to be communicated in values violates the ac-tor principle that only an actor can change its own behavior, because a become in alambda message may change the receiving actor behavior. Secondly, if lambda ab-stractions are communicated to external actors, there is no reasonable way to controlwhat actor addresses are actually exported. This has unpleasant consequences inreasoning about equivalence, amongst other things. This restriction is not a seri-ous limitation since the address of an actor whose behavior is the desired lambdaabstraction can be passed in a message. Thirdly, if lambda abstractions can becommunicated in messages then syntactic extensions to the language that involvetransformations such as CPS can not be done on a per actor basis, since it would re-quires transformation of code that might arrive in a message. We classify transitionsas internal or external. The internal transitions of a con�guration are:(1) an actor executing a step of its current computation;(2) an actor initializing the behavior of a newly created actor; and(3) acceptance of a message by an actor not currently busy computing.The transitions of class (1) involve a single actor. They may be purely internal(a �-transition), or messages may be sent, or a new actor may be created. Thetransitions of class (2) involve two actors, and the initialized actor becomes readyto accept a message. The transitions of class (3) involve an actor and a message.The message is consumed and the actor becomes busy. In addition to the internaltransitions of a con�guration, there are transitions that correspond to interactionswith external agents:(4) arrival of a message to a receptionist from the outside; and(5) passing a message out to an external actor.We assume that we are given a countable set Ad of actor addresses. To simplifynotation, we identify Ad with X. This pun is useful for two reasons: it allows usto use expressions to describe actor states and message contents; and it allows usto avoid problems of choice of names for newly created actors by appealing to anextended form of alpha conversion. (See [7] for use of this pun to represent referencecells.)De�nition (cV, As, M): The set of communicable values, cV, the set of actorstates, As, and the set of messages, M, are de�ned as follows.cV = At [X [pr(cV; cV) As = (?X) [(L) [[E] M = <X(cV>We let cv range over cV.

De�nition (Actor Con�gurations): An actor con�guration with actor map,�, multi-set of messages, �, receptionists, �, and external actors, �, is writtenDD� �EE��where �; � 2 P![X], � 2 Fmap[X;As], and � 2M! [M]. Further, it is required that,letting A = Dom(�), the following constraints are satis�ed:(0) � � A and A \ � = ;,(1) if a 2 A, then FV(�(a)) � A [� , and if �(a) = (?a 0), then a0 2 A,(2) if <a (v> 2 �, then FV(v) [fag � A [�.We let � range over actor con�gurations. A con�guration in which both the recep-tionist and external actor sets are empty is said to be closed. For closed con�gu-rations we may omit explicit mention of the empty sets. The actor map portionof a con�guration is presented as a list of actor states each subscripted by the ac-tor address which is mapped to this state. �; (b)a denotes the map �0 such thatDom(�0) = Dom(�) [fag, �0(a) = (b), and �0(a 0) = �(a) if a0 6= a. Similarly forother states subscripted with addresses. We use _ to denote a fresh address whoseactual name we do not care about. Such addresses refer to actors not known to anyother actors (anonymous actors). In a con�guration, there may be multiple occur-rences of actor states with address represented by _. These are in fact distinct, andsimply re
ect that the choice of address is irrelevant.The set of possible computations of an actor con�guration is de�ned in terms ofthe transition relation 7! on con�gurations. To describe the internal transitions otherthan message receipt, an expression is decomposed into a reduction context �lledwith a redex. Reduction contexts are expressions with a unique hole, that play therole of continuations in abstract machinemodels of sequential computation. We havede�ned the decomposition to correspond to a left-most, outer-most, call-by-valueevaluation order, thus preserving the semantics of the embedded functional language.Decomposition of non-value expressions is unique. Thus, locally computation isdeterministic.De�nition (Erdx,R): The set of redexes, Erdx, and the set of reduction contexts,R, are de�ned byErdx = app(V;V) [(Fn(Vn)� pr(V;V))R = f"g [app(R;E) [app(V;R) [Fn+m+1(Vn;R;Em)We let R range over R.Redexes can be split into two classes: purely functional and actor redexes. Re-duction rules for the purely functional case are given by a relation �7! on expressions.They correspond to the usual operational semantics for the purely functional frag-ment of our actor language and we omit them from this abstract. The actor redexesare: newadr(), initbeh(a; b), become(b), and send(a; v).De�nition (7!): The single-step transition relation 7!, on actor con�gurationsis the least relation satisfying the following conditions.f(a) e �7! e0) DD�; [e]a �EE�� 7! DD�;[e0]a �EE��

n(a,a) DD�;[R[[newadr()]]]a �EE�� 7! DD�; [R[[a 0]]]a; (?a)a0 �EE�� a 0 freshc(a) DD�;[R[[initbeh(a 0; b)]]]a; (?a)a0 �EE�� 7! DD�; [R[[nil]]]a; (b)a0 �EE��b(a) DD�;[R[[become(b)]]]a �EE�� 7! DD�; [R[[nil]]]_; (b)a �EE��s(a; a 0; cv) DD�;[R[[send(a 0; cv)]]]a �EE�� 7! DD�; [R[[nil]]]a �;<a 0 (cv>EE��r(a; cv) DD�;(b)a <a (cv>; �EE�� 7! DD�; [app(b; cv)]a �EE��o(a; cv) DD� <a (cv>; �EE�� 7! DD� �EE�0�where �0 = � [(FV(cv) \Dom(�)) and a 2 �i(a;cv) DD� �EE�� 7! DD� �;<a (cv>EE��[(FV(cv)�Dom(�))provided a 2 � and FV(cv) \Dom(�) � �Note that in the last four rules the message contents are restricted to be communica-ble values. �7! is the transitive re
exive closure of 7!. The con�gurations reachablefrom a given con�guration � are those con�gurations �0 such that � �7! �0:The transitions are labelled to facilitate some technical de�nitions. We write�0 l�! �1 if �0 7! �1 according to the rule encoded by l . We say l is enabled incon�guration � if there is some �0 such that � l�! �0.De�nition (Computation trees and paths): If � is a con�guration, then wede�ne T (�) to be the set of all �nite sequences of labeled transitions of the form[�i li�! �0i i < n] for some n 2 N such that �0 = � and �0i = �i+1 for i < n� 1. Wecall such sequences nodes and let � range over nodes. We order nodes of a tree by thesubtree relation: �0 < �1 i� �0 is below (properly extends) �1. A computation pathfor � is a maximal linearly ordered set of nodes in T (�). Note that a computationpath can also be regarded as a (possibly in�nite) sequence of transitions. We let� range over computation paths and use T 1(�) to denote the set of all such � forT (�).We now rule out those computations that are unfair, i.e. those that eitherstarve out a particular actor computation, or keep a message queued forever whenthe receiving actor is either external or has in�nitely often been ready to receive amessage.De�nition (Fair computation paths): A computation path � = [�i li�! �i+1i 2 I] in the computation tree T (�) is fair if each enabled transition eventuallyhappens or becomes permanently disabled. That is, if l is enabled in �i then �j l�!�j+1 for some j � i, or l has the form r(a; cv) and for some j � i a is busy andnever again becomes ready to accept a message. For a con�guration � we de�neT 1f (�) to be the subset of T 1(�) that are fair.

Note that �nite computation paths are fair, since all of the enabled transitionsmust have happened.Actor systems compose well, as indicated by the following de�nition and theo-rem.De�nition (Composition of Open Con�gurations): Two open con�gura-tions �i = DD�i �i EE�i�i , i < 2 are composable if Dom(�0) \ Dom(�1) = ;. Thecomposition �0 [�1 is de�ned by�0 [�1 = DD�0 [�1 �0 [�1 EE(�0[�1)�(S0[S1)(�0[�1)�(S0[S1)where S0 = �0 \ �1 and S1 = �1 \ �0.Theorem (Composition of Open Con�gurations): There exists a binaryoperation M on computation trees such that if �i are composable con�gurationsthenT (�0 [�1) =M(T (�0); T (�1))where S0, S1, and �0 [�1 are as above.In brief, the operation M merges pairs of computations that have matchingi/o transitions for those external actors of one system that are (identi�ed with)receptionists of the other system. Note that this theorem fails if arbitrary actors areallowed to initialize the behavior of newly created actors.3. Notions of Equivalence for ActorsTwo forms of equivalence are given, one for expressing the equivalence of actorexpressions, and another for expressing the equivalence of actor con�gurations. Webase our notion of equivalence on the now classic operational equivalence of [9]. Forthe deterministic functional languages of the sort Plotkin studied, this equality isde�ned as follows. Two program expressions are said to be equivalent if they behavethe same when placed in any observing context, where an observing context is somecomplete program with a hole, such that all of the free variables in the expressionsbeing observed are captured when the expressions are placed in the hole. Thenotion of \behave the same" is (for deterministic functional languages) typicallyequi-termination, i.e. either both converge or both diverge.3.1. Equivalence of actor expressionsWe �rst de�ne equivalence of actor expressions, the equivalence of actor con�g-urations will be de�ned later. The �rst step is to �nd proper notions of \observingcontext" and \behave the same" in an actor setting. For actor expressions, the ana-logue of observing context is an observing actor con�guration that contains an actorwith a hole in which the expression to be observed is placed. Since termination isnot particularly relevant for actor con�gurations, we instead introduce an observer

primitive, event and observe whether or not in a given computation, event is exe-cuted. This approach is similar to that used in testing equivalence for CCS [4]. Sincethe language is nondeterministic, three di�erent observations may be made insteadof two: either event occurs for all possible executions, it occurs in some executionsbut not others, or it never occurs.Formally, the language of observing contexts is obtained by introducing a new0-ary primitive operator, event. We extend the reduction relation 7! by adding thefollowing rule.e(a) DD�; [R[[event()]]]a �EE�� 7! DD�; [R[[nil]]]a �EE��For an expression e, the observing con�gurations are con�guration contexts of theform DD�; [C[[]]]a �EE over the extended language, such that �lling the hole in C[[]]with e results in a closed con�guration. (Let K be the set of con�guration contexts(con�gurations with holes), and let K range over K.We observe event transitions in the fair computation paths. We say that acomputation path succeeds (s) if an event transition occurs in it, otherwise it fails(f). obs(�) is the s=f observation of a single complete computation �, and Obs(�)is the set of observations possible for a closed actor con�guration.De�nition (observations): Let � be a con�guration of the extended language,and let � = [�i li�! �i+1 i 2 I] be a fair computation path, i.e. � 2 T 1f (�). De�neobs(�) = � s if (9�0; �1; a)(�0 e(a)�! �1 2 �)f otherwiseObs(�) = 8<: s if (8� 2 T 1f (�))(obs(�) = s)sf if (9� 2 T 1f (�))(obs(�) = s) and (9� 2 T 1f (�))(obs (�) = f)f if (8� 2 T 1f (�))(obs(�) = f)The natural notion of operational equivalence is that equal observations aremade in all closing con�guration contexts. It may be desirable in some cases toconsider using a weaker equality, however. An sf observation may be consideredas good as an s observation, and a new equivalence arises if these observations areequated. Similarly, an sf observation may be as bad as an f observation. We maythus de�ne the following three equivalences.De�nition (�=1;2;3):(1) e0 �=1 e1 (testing or convex or Plotkin or Egli-Milner) i� Obs(K [[e0]]) = Obs(K [[e1]])for all closing con�guration contexts K(2) e0 �=2 e1 (must or upper or Smyth) i� Obs(K [[e0]]) =(sf=f) Obs(K [[e1]]) for all closingcon�guration contexts K(3) e0 �=3 e1 (may or lower or Hoare) i� Obs(K [[e0]]) =(sf=s) Obs(K [[e1]]) for all closingcon�guration contexts Kwhere x =(o=o0) y i� x = y or x; y 2 fo; o0g.Note that may-equivalence (�=3) depends only on the computation trees, not onthe choice of paths admitted as computations, because all events are observed after

some �nite amount of time. This means it is independent of whether or not fairnessis required. Since fairness sometimes makes proving equivalences more di�cult, it isuseful that may-equivalence can always be proved ignoring the fairness assumption.The other two equalities are sensitive to choice of paths admitted as computations,in particular when fairness is required, as in our model, �=2 is in fact the same as�=1. In models without the fairness requirement, they are distinct. In either case,�=3 is distinct from �=1 and �=2.Theorem (partial collapse):(1=2) e0 �=2 e1 i� e0 �=1 e1(1-3) e0 �=1 e1 implies e0 �=3 e1(3-1) e0 �=3 e1 does not imply e0 �=1 e1Proof (partial collapse):2-1 �=1 implies�=2 follows from the de�nitions. The key to showing that �=2 implies�=1 is the observation that if Obs(K [[e0]]) = f and Obs(K [[e1]]) = sf it is alwayspossible to construct a K � such that Obs(K �[[e0]]) = s, and Obs(K �[[e1]]) = sf .To see this, suppose that K satis�es the hypothesis. Form K 0 by replacing alloccurrences of event() in K by send(a; nil) for some fresh variable a. Let K � beobtained by adding toK 0 a message <a(t> and an actor a where a has the followingbehavior: If a receives the message t, it executes event() and becomes a sink, andif a receives the message nil, it just becomes a sink. Recall that a sink is an actorthat ignores its message and becomes a sink. We claim K � is the desired observingcontext. If K [[e0]] never executes event(), then in any fair complete computation,the t message will be received by a, so K �[[e0]] will always execute event(). If K [[e1]]executes event() in some computation, then in the corresponding computations forK �[[e1]], sometimes nil will be received by a before t is received and sometimes itwon't, hence K �[[e1]] will execute event() in some computations, but not in all. 2�11-3 from the de�nitions. 1�33-1 We construct expressions e0; e1 such that e0 �=3 e1, but :(e0 �=2 e1). Let e0create an actor that sends a message (say nil) to an external actor a and becomesa sink, and let e1 create an actor that may or may not send a message nil to adepending on a coin
ip (there are numerous methods of constructing coin
ippingactors), and also then becomes a sink. Let K be an observing con�guration contextthat with an actor a that executes event just if nil is received. Then Obs(K [[e0]]) = sbut Obs(K [[e1]]) = sf , so :(e0 �=2 e1). To show that e0 �=3 e1, show for arbitraryK that some path in the computation of K [[e0]] contains an event i� some path inthe computation of K [[e1]] contains an event. This is easy, because when e1's coin
ip indicates nil is sent, the computation proceeds identically to e0's computation.3�1Hereafter, �= (operational equivalence) will be used as shorthand for either �=1or �=2. A possibly useful analogy is that �=3 corresponds to partial correctness and�= corresponds to total correctness.

The fairness requirement is critical in the proof of (2-1). For example in CCS,where fairness is not assumed, no such collapse of �=2 to �=1 occurs. So, althoughfairness complicates some aspects of the theory, it simpli�es others. If we omittedthe fairness requirement we could make more �=-distinctions between actors. Forexample, let a0 be a sink. Let a1 be an actor that also ignores its messages andbecomes the same behavior, but it continues executing an in�nite loop. The in�nitelooping actor could starve out the rest of the con�guration, but in the presence offairness no such starvation can occur, so the two are equal.Since our reduction rules preserve the evaluation semantics of the embeddedfunctional language, many of the equational laws for this language (cf. [11]) con-tinue to hold in the full actor language. For example, operational equivalence is acongruence and the laws concerning lambda abstraction and application continue tohold.Theorem (lambda laws):(cong) e0 �= e1) C[[e0]] �= C[[e1]](betav) letfx := vge = (�x:e)(v) �= efx := vg(app) e0(e1) �= (�f:f(e1))(e0) = letff := e0gf(e1)(cmps) f(g(e)) �= (�x:f(g(x)))(e) = (f � g)(e)(id) letfx := egx = (�x:x)(e) �= eThe proof of this theorem uses the notion of bisimulation (cf. the next section).3.2. Equivalence of actor con�gurationsEquivalence is now de�ned for open actor con�gurations DD� �EE��. As withactor expressions, we wish to close the open con�guration by adding observers. Thisproduces a notion of equivalence for actor con�gurations that is closely connectedwith equivalence of actor expressions.De�nition (Closing an Actor Con�guration): A closing of an actor con�g-uration � = DD� �EE�� is de�ned to be an actor con�guration �0 = DD�0 �0 EE�� , inthe extended language, composable with �.De�nition (�=s): �0 = DD�0 �0 EE�� �=s DD�1 �1 EE�� = �1 i� Obs(�0 [�0) =Obs(�0 [�0) for all actor con�gurations �0 closing �j, j < 2.Theorem (�= = �=s): If e0 �= e1 and e00 �= e01, thenDD�; [C[[e0]]]a ; (�x:C0[[e00]])a 0 �EE�� �=s DD�; [C[[e1]]]a ; (�x:C0[[e01]])a 0 �EE��:Note that while two closed con�gurations (con�gurations that have no receptionistsand no external actors) cannot be distinguished by any external observation, twoclosed expressions can be distinguished by a behavior context that makes use of thevalues returned.

4. Operational BisimulationsGiven two computation trees T (�0) and T (�1) of actor con�gurations �0 and�1, we de�ne the notion of an operational bisimulation,R � T (�0)�T (�1), in sucha way as to ensure that if two computation trees, T (�0) and T (�1), are operationallybisimilar, then �0 �=s �1. We view operational bisimulation as a proof technique,not as an alternative notion of equivalence. To keep the notation somewhat undercontrol, we shall treat a simple case in this paper. A computation tree is non-expansive i� the set of receptionists never increases. We say a con�guration isnon-expansive i� its computation tree is. In what follows we restrict our attentionto non-expansive trees. Extending the results to expansive con�gurations posesonly notational complications (e.g identifying newly created actors), and the non-expansive case su�ces to prove operational equivalences.The de�nition of an operational bisimulation requires a little notation. Firstly,an R � T (�0) � T (�1), naturally extends to an R � T 1(�0) � T 1(�1) as follows.For �i 2 T 1(�i) for i < 2�0R�1 i� (8� 00 2 �0)(8� 01 2 �1)(9� 000 2 �0)(9� 001 2 �1)(�000 < �00 ^ � 001 < �01^ � 000R�001)(Recall that � < �0 is the subtree relation on nodes.) Secondly, for � = [�i li�! �0ii < n], the i/o restriction (�)io, is de�ned to be (l0)io � (l1)io � : : : � (ln�1)io, where(l)io = 8><>: [o(a; cv)] if l = o(a; cv)[i(a; cv)] if l = i(a; cv)[e()] if (9a)(l = e(a))[] otherwiseDe�nition (operational bisimulation): Given two non-expansive actor con-�gurations, �0 and �1, we say that a relation, R � T (�0)�T (�1), is an operationalbisimulation i� the following conditions hold:(1) []R[](2) (8�0�1)(�0R�1) (8� 00 < �0)(9� 01)(�00R� 01 ^ �01 � �1))(3) (8�0�1)(�0R�1) (8� 01 < �1)(9� 00)(�00R� 01 ^ �00 � �0))(4) (8� 00�01)(� 00R� 01) (� 00)io = (� 01)io)(5) If �0R�1, then �0 is fair i� �1 is fair.A few simple consequences of this de�nition should be made clear. Suppose that�i = DD�i �i EE�i�i i < 2are operationally bisimilar. Then �0 = �1. The same can not quite be said for�0 and �1. Since there may be members of these sets that never ever receive anymessages. Modulo this sort of garbage, these two sets must be the same.Lemma (bisimilar composition): Suppose that �i are are operationally bisim-ilar via R, and � is a composable con�guration (i.e its actors are disjoint from thosein �i). Then there is a relation R| � M(T (�0); T (�)) � M(T (�1); T (�)) whichmakes M(T (�0); T (�)) operationally bisimilar to M(T (�1); T (�)).

The following is the most important consequence of bisimulation.Theorem (opeq): If two non-expansive computation trees, T (�0) and T (�1),are operationally bisimilar, then �0 �=s �1.Proof (opeq): Suppose that �i = DD�i �i EE��, i < 2 are operationally bisimilarvia R and that � is a closing con�guration. Then by the composition theorem wehave that T (�i [�) = M(T (�i); T (�)), and by the bisimilar composition theoremwe have that T (�0 [�) is operationally bisimilar to T (�1 [�) via R|. This is easilyseen to imply that Obs(�0 [�) = Obs(�1 [�) opeq4.1. Example: Removal of Message IndirectionTo illustrate how bisimulations can be used to prove two open con�gurationsequivalent, we apply a transformation that removes indirection in message transmis-sion. We begin with system 0, a two actor system with one receptionist r and onereference to an external actor x. The receptionist r takes requests for transformingdata, applies some operation, f , and sends the result to the other internal actor a.This actor applies a second operation g and sends the result back to the receptionist,who passes it on, unchanged, to the external actor. This system is transformed intosystem 1, in which the second actor returns its results directly to the external actor.Equivalence is proved by establishing an operational bisimulation between the twosystems, in which related nodes of the computation trees are constrained to be `instep'. This approach also works for transformations such as fusion or splitting ofinternal actors [12]. We outline the construction of the bisimulation informally. Wecall the original system S0 and the transformed system S1. We let K0, K1 be theinitial con�gurations of the S0, S1, respectively. The actors r and a each have onlytwo \interesting" states:� Br { the initial behavior of r,� Br [m] { the state in which r is processing message m,� Bia { the initial behavior of a, in Si,� Bia[m] { the state in which a is processing message m, in Si.The di�erence between the behaviors of a in the two systems is the address forsending replies (r in S0 and x in S1). When r receives a request or reply message mit sends a message and returns to its initial state. The message sent is <a(f(v)> ifm is a request with data v, and <x(m> if m is a reply. When a receives a requestmessage m with data v it sends a reply message with data g(v) and returns to itsinitial state. In S0 the reply is sent to r and in S1 the reply is sent to x.Now we describe when a S0 con�guration is in step with aS1 con�guration. Todo this we de�ne a redirection map X on messages. If m is a reply message withreceiver r then X(m) is a reply message with the same data as m and receiver x.Con�gurations �j reachable from Kj are said to be in step if a is in the same statein both con�gurations and one of the following four cases holds.(1) the state of r is the same in both con�gurations, and the pending messages of�1 are the image under X of the pending messages of �0.

(2) r is processing a reply message m in �0 and waiting in �1, and the pendingmessages of �1 are the image under X of the pending messages of �0 plus areply m to x.(3) r is waiting in �0 and is processing a request message m in �1, and the pendingmessages of �1 are the image under X of the result of removing m from thepending messages of �0.(4) r is processing a reply message m0 in �0 and is processing a request messagem1 in �1, and the pending messages of �1 are the result of adding a reply m0 tox to the image under X of the result of removingm1 from the pending messagesof �0.The bisimulation R is now essentially determined by the clauses (1{4) of thede�nition and the requirement that R related con�gurations must be in step.5. DiscussionThis extended abstract outlines a �rst step towards a general theory for speci-�cation, interconnection, and transformation of components of actor systems. Thefull paper �lls in details including a full set of transition rules and proofs of theo-rems. Our next task is to develop a logic for specifying components of actor systems,methods for verifying that programs implementing components meet their speci�ca-tions, and methods for re�ning speci�cations into implementations. In addition, weplan to develop methods for modularizing speci�cations and combining componentsto build complex systems from simpler systems.We contrast our work with three related e�orts: CSP / Occam [6], the �-calculus [8], and Concurrent ML [3]. The CSP / Occam model is very restrictive.Occam assumes a �xed interconnection topology of processes, supports only staticstorage allocation, and disallows recursive procedures.Many of the aims Milner and others had in developing the �-calculus are thesame as ours, namely to formulate a language for concurrent computation thatallows treatment of data channels as �rst-class objects, and furthermore for whichan algebraic theory may be developed. Equally important, however, are how ouraims di�er. We aim for a model that can be regarded as a realistic model of a reallanguage, not just an abstract calculus.We believe realistic models must incorporate fairness assumptions, otherwise themodel is impoverished by a collection of starving processes that have been enabledand in any realistic implementation would not be starving. Realistic models alsomust account for the inherently open nature of distributed systems, but the �-calculus only partially accounts for this: it is impossible to extrude a local port nameto an external process. In addition, both CCS and the �-calculus treat senders andreceivers uniformly, meaning there can be multiple receivers. However, this meansa local receiving process can be corrupted by an external process that also receiveson the same port. Lack of locality in these model may cause problems similar tothose encountered in denotational models of reference/block structure in higher orderlanguages.

We also contrast our work with more practical development of �-calculus-stylecommunications primitives found in Berry, Milner, and Turner's e�ort [3], andReppy's CML [10]. For our purposes we equate these presentations. Even thoughthese theories are more realistic because the languages include other constructs suchas functions and atomic data, they still do not incorporate fairness, they still haveno theory of open systems, and they still su�er from the drawbacks of a uni�edtreatment of senders and receivers alluded to above. Furthermore, neither of thesepresentations makes any attempt at developing an equational theory and reasoningprinciples as we do here.AknowledgementsThis research was partially supported by DARPA contracts N00039-84-C-0211 andNAG2-703, and NSF grants CCR-8917606, CCR-8915663, and CCR-91-090070 by DARPAand NSF joint contract CCR 90-07195, by ONR contract N00014-90-J-1899, and by theDigital Equipment Corporation.6. References[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MITPress, Cambridge, Mass., 1986.[2] Gul Agha. Concurrent object-oriented programming. Communications of the ACM,33(9):125{141, September 1990.[3] D. Berry, R. Milner, and D.N. Turner. A semantics for ML concurrency primitives. InConference record of the 19th annual ACM symposium on principles of programminglanguages, pages 105{129, 1992.[4] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes. TheoreticalComputer Science, 34:83{133, 1984.[5] C. Hewitt. Viewing control structures as patterns of passing messages. Journal ofArti�cial Intelligence, 8(3), 1977.[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.[7] I. A. Mason and C. L. Talcott. Equivalence in functional languages with e�ects.Journal of Functional Programming, 1:287{327, 1991.[8] R. Milner, J. G. Parrow, and D. J. Walker. A calculus of mobile processes, parts i andii. Technical Report ECS-LFCS-89-85, -86, Edinburgh University, 1989.[9] G. Plotkin. Call-by-name, call-by-value and the lambda-v-calculus. Theoretical Com-puter Science, 1:125{159, 1975.[10] J. H. Reppy. An operational semantics of �rst-class synchronous operations. TechnicalReport TR 91-1232, Cornell University, 1991.[11] C. L. Talcott. A theory for program and data speci�cation. In Design and Implemen-tation of Symbolic Computation Systems, DISCO'90, volume 429 of Lecture Notes inComputer Science. Springer-Verlag, 1990. full version to appear in TCS special issue.[12] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press, CambridgeMass., 1990.

