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Abstract

In this paper we present preliminary results of a rigorous development of the actor
model of computation. We present an actor language which is an extension of a simple
functional language, and provide a precise operational semantics for this extension. Our
actor systems are open distributed systems, meaning we explicitly take into account the
interface with external components in the specification of an actor system. We define and
study various notions of equivalence on actor expressions and systems. We show that the
usual tripartite family of testing equivalence relations collapses to two in the presence of
fairness. We define a notion of operational bisimulation as a tool for establishing equivalence
under fairness assumptions, and illustrate its use.

1. Introduction

The actor model of computation was originally proposed by Hewitt [5]. Actors
are self-contained, concurrently interacting entities of a computing system. They
communicate via message passing which is asynchronous and fair. Actors can be
dynamically created and the topology of actor systems can change dynamically. The
actor model is a primitive model of computation, but nonetheless easily expresses
a wide range of computation paradigms. It directly supports encapsulation and
sharing, and provides a natural extension of both functional programming and object
style data abstraction to concurrent open systems [1, 2].

The main features of an open distributed system are that new components
can be added, existing components can be replaced, and interconnections can be
changed, largely without disturbing the functioning of the system. Components
have no control over the components with which they might be connected. The
behavior of a component is locally determined by its initial state and the history
of its interactions with the environment through its interface. The internal state of
a component must only be accessible through operations provided by the interface.
Since the actor model has a built-in notion of local component and interface, it is a
natural model to use as a basis for a theory of open distributed computation.

The semantics we define combines the message passing features of the primitive
actor model with an applicative functional language for describing individual actor
behaviors. This provides a simple yet expressive language with a manageable formal
semantics. In our formalization we make explicit the notion of open system. An
actor system is a collection of individually named concurrently executing actors,



plus two collections of actor names that define the interface to the environment.
The receptionists p are names of actors within the system that external components
may freely interact with; all other actors in the system are local and thus inaccessible
from outside. The external actors x are names of actors that are outside this actor
system but to which messages may be directed. Fach system is a self-contained
entity, and we define operations for composing systems to form larger systems.

Most of the research in the area of parallel language design has either been
practical but with very limited formal basis, or has been formal and theoretical but
at the expense of realism. Our choices and approach are motivated by a desire to
bridge the gap between theory and practice. The theory we develop is intended to
be useful for justifying program transformations for real languages, and to formalize
intuitive arguments and properties used by programmers.

Following the tradition of [9, 7] we adopt an operational interpretation of ac-
tor systems. Actor behavior is defined by a transition relation on configurations.
Each configuration is a symbolic instantaneous representation of an actor system
with respect to some idealized observer [1], and a transition on configurations maps
configurations to possible future ones. Two actor expressions/systems are said to
be observationally equivalent if they give rise to the same observations, suitably
defined, inside all observing contexts. This notion is closely related to testing equiv-
alence [4]. Observational equivalence provides a semantic basis for developing sound
transformation rules.

Some highlights of this paper include the following. The operational semantics
extends that of the embedded functional language in such a way that the equational
theory of the functional language is preserved. We define a notion of open actor
configuration which makes explicit the interface to the environment. As a first
step towards an algebra of operations on open system components, we define a
composition operator on configurations. An important aspect of the actor model
is the fairness requirement: message delivery is guaranteed, and individual actor
computations are guaranteed to progress. This makes the computation model more
realistic: many intuitively correct equations fail in the absence of fairness. Although
fairness makes some aspects of reasoning more complicated, it simplifies others. We
prove that in the presence of fairness, the three standard notions of observational
equivalence collapse to two. Finally, we give a simple bisimulation principle that
allows equivalences to be established in the presence of fairness.

The remainder of this abstract is organized as follows. §2 gives the syntax and
operational semantics of our actor language. §3 define various notions of equivalence
and state their basic properties. §4 defines a notion of operational bisimulation as a
sound approximation to operational equivalence and illustrates its use. §5 contains
some concluding remarks.

Notation.
We use the usual notation for set membership and function application. Let
Y, Yy, Y1 be sets. We specify meta-variable conventions in the form: let y range over

Y, which should be read as: the meta-variable y and decorated variants such as y',
Yo, - - ., range over the set Y. Y™ is the set of sequences of elements of ¥ of length



n. Y* is the set of finite sequences of elements of Y. y = [y1, ..., yn] is the sequence
of length n with ¢th element y;. (Thus [] is the empty sequence.) u * v denotes
the concatenation of the sequences u and v. P,[Y] is the set of finite subsets of Y.
M, [Y] is the set of (finite) multi-sets with elements in Y. [Yy — Y] is the set of
total functions, f, with domain Yy and range contained in ¥;. We write Dom( f) for
the domain of a function and Rng(f) for its range. Fmap[Yy, Y1] is the set of finite
maps from Yy to Y.

2. A Simple Lambda Based Actor Language

Actors are self-contained, components of a computing system that communicate
by asynchronous message passing. Message delivery is guaranteed (fairness). In
response to a message an actor can send messages to actors that it knows about,
and create new actors. It can also change its state/behavior. This change will be in
effect when the next message is received by the actor, and the only time an actor’s
local state changes is when the actor changes it in response to a message. (Local
cause for local effect principle).

Our actor language is an extension of the call-by-value lambda calculus that
includes (in addition to arithmetic primitives and structure constructors, recogniz-
ers, and destructors) primitives for creating and manipulating actors. An actor’s
behavior 1s described by a closure which embodies the code to be executed when a
message is received, and the local store (values bound to free variables). The actor
primitives are: send (for sending messages); become (for changing behavior); and
newadr and initbeh (for actor creation). send(a,v) creates a new message with
receiver ¢ and contents v and puts the message into the message delivery system.
become(b) clones an anonymous actor to carry out the rest of the current compu-
tation, alters the behavior of the actor executing the become to b, and frees that
actor to accept another message. The cloned actor may send messages or create
new actors in the process of completing its computation, but will never receive any
messages as its address can never be known. newadr() creates a new (uninitialized)
actor and returns its address. initbeh(a, b) initializes the behavior of a newly cre-
ated actor with address a to be b. An uninitialized actor can only be initialized by
the actor which created it. Without this restriction composability of actor systems
is problematic, as it would permit an external actor to initialize an internally cre-
ated actor. The allocation of a new address and initialization of the actor’s behavior
have been separated in order to allow an an actor to know its own address. This is
a weak form of synchronization and would not be necessary if message sending were
synchronous. An alternative would be to have built into the semantics that every
actor knows its own name, as is done in many actor and object-oriented languages.
See [1] for intuitions behind these constructs.

2.1. Syntax

We take as given countable sets X (variables) and At (atoms). F,, is the set of

primitive operations of rank n and F = |J,,cnyFn. We assume At contains t,nil



for booleans, as well as integers. F contains arithmetic operations, branching br
(rank 3), pairing ispr, pr, 15% 2" (ranks 1, 2, 1, 1), and actor primitives newadr,
initbeh, send, and become (ranks 0, 2, 2, 1). The sets of expressions, E, value
expressions, V, and contexts (expressions with holes), C, are defined inductively as
follows.

Definition (E, V, C):
V=AtUXUAX.EUpr(V,V)
E=AtUXUIXEUapp(E,E) UF,(E")
C=AtUXUAX.CUapp(C,C)UF,(C")u{c}

We let z,y, z range over X, v range over V, e range over E, and C' range over C.
Az.e binds the variable z in the expression e. We write FV(e) for the set of free
variables of e. We write e{z := ¢’} to denote the expression obtained from e by
replacing all free occurrences of = by €', avoiding the capture of free variables in ¢’.
Contexts are expressions with holes. We use ¢ to denote a hole. Ce] denotes the
result of replacing any holes in C' by e. Free variables of e may become bound in
this process. let, if and seq are the usual syntactic sugar, seq being a sequencing
primitive.

A simple actor behavior b that expects its message to be an actor address, sends
the message 5 to that address, and becomes the same behavior, may be expressed
using a definable call-by-value fixed-point combinator rec (cf. [7]) as follows.

b = app(rec, A\y.Ax.seq(become(y), send(z, b)))

An expression that would create an actor with this behavior and send it some other
actor address a is

e = let{z := newadr()}seq(initbeh(x, b), send(z, a)).

The behavior of a sink, an actor that ignores its messages and becomes this same
behavior, 1s defined by

sink = rec(Ab.Am.become(h)).

2.2. Reduction Semantics for Open Configurations

We give the semantics of actor expressions by defining a transition on open
configurations. Open configurations describe actor systems in which addresses of
some (but not necessarily all) of the actors are known to the outside world. These
actors are called receptionists. An open configuration may also know addresses of
some actors in the outside world. These actors are called external actors. The
sets of receptionists and external actors are the interface of an actor system to its
environment. They specify what actors are visible and what actor connections must
be provided for the system to function. The set of receptionists may grow and the
set of required external connections may shrink as the system evolves. In addition,
an open configuration contains an actor map and a multi-set of pending messages.
An actor map is a finite map from actor addresses to actor states. An actor state is



either uninitialized (having been newly created by an actor, a) written (7,); ready
to accept a message, written (b) where b is its behavior, a lambda abstraction; or
busy executing e, written [e], here e represents the actor’s current (local) processing
state. A message contains the address of the actor to whom it is sent and the message
contents. The contents can be any value constructed from atoms and actor addresses
using constructors.

Lambda abstractions and constructions containing lambda abstractions are not
allowed to be communicated in messages. There are two reasons for this restriction.
Firstly, allowing lambda abstractions to be communicated in values violates the ac-
tor principle that only an actor can change its own behavior, because a become in a
lambda message may change the receiving actor behavior. Secondly, if lambda ab-
stractions are communicated to external actors, there is no reasonable way to control
what actor addresses are actually exported. This has unpleasant consequences in
reasoning about equivalence, amongst other things. This restriction is not a seri-
ous limitation since the address of an actor whose behavior is the desired lambda
abstraction can be passed in a message. Thirdly, if lambda abstractions can be
communicated in messages then syntactic extensions to the language that involve
transformations such as CPS can not be done on a per actor basis, since it would re-
quires transformation of code that might arrive in a message. We classify transitions
as internal or external. The internal transitions of a configuration are:

(1) an actor executing a step of its current computation;
(2) an actor initializing the behavior of a newly created actor; and
(3) acceptance of a message by an actor not currently busy computing.

The transitions of class (1) involve a single actor. They may be purely internal
(a A-transition), or messages may be sent, or a new actor may be created. The
transitions of class (2) involve two actors, and the initialized actor becomes ready
to accept a message. The transitions of class (3) involve an actor and a message.
The message 1s consumed and the actor becomes busy. In addition to the internal
transitions of a configuration, there are transitions that correspond to interactions
with external agents:

(4) arrival of a message to a receptionist from the outside; and
(5) passing a message out to an external actor.

We assume that we are given a countable set Ad of actor addresses. To simplify
notation, we identify Ad with X. This pun is useful for two reasons: it allows us
to use expressions to describe actor states and message contents; and 1t allows us
to avoid problems of choice of names for newly created actors by appealing to an
extended form of alpha conversion. (See [7] for use of this pun to represent reference

cells.)

Definition (cV, As, M):  The set of communicable values, ¢V, the set of actor
states, As, and the set of messages, M, are defined as follows.

cV =AtUXUpr(cV,cV) As = ("x) U (L) U [E] M= <X < cV>

We let cv range over c¢V.



Definition (Actor Configurations): An actor configuration with actor map,
a, multi-set of messages, p, receptionists, p, and external actors, y, 1s written

(oln)

where p, y € Py[X], @ € Fmap[X, As], and u € M, [M]. Further, it is required that,
letting A = Dom(«), the following constraints are satisfied:

(0) pCAand Anx =0,

(1) if a € A, then FV(a(a)) C AUy, and if a(a) = (74), then o’ € A,

(2) if<a < v> € p, then FV(v)U{a} C AU y.

We let x range over actor configurations. A configuration in which both the recep-
tionist and external actor sets are empty is said to be closed. For closed configu-
rations we may omit explicit mention of the empty sets. The actor map portion
of a configuration is presented as a list of actor states each subscripted by the ac-
tor address which is mapped to this state. «, (), denotes the map o’ such that
Dom(a') = Dom(a) U {a}, o'(a) = (b), and &'(a’) = a(a) if ¢’ # a. Similarly for
other states subscripted with addresses. We use _ to denote a fresh address whose
actual name we do not care about. Such addresses refer to actors not known to any
other actors (anonymous actors). In a configuration, there may be multiple occur-
rences of actor states with address represented by _. These are in fact distinct, and
simply reflect that the choice of address is irrelevant.

The set of possible computations of an actor configuration is defined in terms of
the transition relation — on configurations. To describe the internal transitions other
than message receipt, an expression is decomposed into a reduction context filled
with a redex. Reduction contexts are expressions with a unique hole, that play the
role of continuations in abstract machine models of sequential computation. We have
defined the decomposition to correspond to a left-most, outer-most, call-by-value
evaluation order, thus preserving the semantics of the embedded functional language.
Decomposition of non-value expressions is unique. Thus, locally computation is
deterministic.

Definition (E,4x,R):  The set of redexes; E,qx, and the set of reduction contexts,
R, are defined by

Erax = app(V, V) U (Fa (V") — pr(V,V))

R = {c} Uapp(R,E) Uapp(V,R) UF,1p41 (V" R,E™)

We let R range over R.

Redexes can be split into two classes: purely functional and actor redexes. Re-

. . . Y .
duction rules for the purely functional case are given by a relation + on expressions.
They correspond to the usual operational semantics for the purely functional frag-
ment of our actor language and we omit them from this abstract. The actor redexes
are: newadr(), initbeh(a, b), become(b), and send(a, v).

Definition (—):  The single-step transition relation +—, on actor configurations
is the least relation satisfying the following conditions.

f(a) e»ie/:><<a,[e]a|u>>:b—><<a,[e/]a|u>>:



a, [R[newadr()]1, | u>> — <<a, [R[a'T]a, Cadar | 1 >>p a’ fresh
X

o, [R[initbeh(a’, B)]1a, (?a)ar |u>> — <<a, [R[nil]la, (B) o |u>>p
X

ClClCU

o, [R[send(a’, cv)]1a | u>> — <<a, [R[nil]]l. | u,<a’ < cv>>>p
X

r(a, cv)

{
{
b(a) { o LRIDocome(b)]1. | u>> — (o LRI, (), | u>>:
»
{

@ | <o e ) — (o tapplbcolls | )
X

X

o(a, cv) <<a|<a<:cv>,u>>:'—><<a|u>>:/

where p' = pU (FV(cv) N Dom(a)) and a € x

e e
i(a, cv) <<a|u>> »—><<a|u,<a<:cv>>>
X XU(FV(cv)—Dom(a))

provided a € p and FV(cv) N Dom(a) C p

Note that in the last four rules the message contents are restricted to be communica-
ble values. +~ is the transitive reflexive closure of —. The configurations reachable
from a given configuration & are those configurations x’ such that x ¥ x’.

'lI‘he transitions are labelled to facilitate some technical definitions. We write
Ky — k1 1f kg — k1 according to the rule encoded by [. We say [ is enabled in

. . . l
configuration « if there is some ' such that x — «'.

Definition (Computation trees and paths): If « is a configuration, then we
define 7T (&) to be the set of all finite sequences of labeled transitions of the form

[K: Lﬂ-@; | i < n] for some n € N such that kg = x and k} = k;41 for i <n—1. We
call such sequences nodes and let v range over nodes. We order nodes of a tree by the
subtree relation: vy < v iff vy is below (properly extends) v1. A computation path
for x is a maximal linearly ordered set of nodes in 7(x). Note that a computation
path can also be regarded as a (possibly infinite) sequence of transitions. We let
7 range over computation paths and use 7°° (k) to denote the set of all such 7 for
T (k).

We now rule out those computations that are unfair, i.e. those that either
starve out a particular actor computation, or keep a message queued forever when
the receiving actor is either external or has infinitely often been ready to receive a
message.

Definition (Fair computation paths): A computation path = = [i; N Vi1 |
i € I] in the computation tree 7 (x) is fair if each enabled transition eventually
happens or becomes permanently disabled. That is, if [ is enabled in &; then &; LN
kj41 for some j > 4, or [ has the form r(qa, ¢v) and for some j > ¢ a is busy and
never again becomes ready to accept a message. For a configuration x we define

7:° (k) to be the subset of 7°°(x) that are fair.



Note that finite computation paths are fair, since all of the enabled transitions
must have happened.

Actor systems compose well, as indicated by the following definition and theo-
rem.

Definition (Composition of Open Configurations): Two open configura-
pi

tions x; = <<ozi | /JZ'>> , © < 2 are composable if Dom(ag) N Dom(ay) = §. The
Xi

composition kg U &1 1s defined by

(paUp1)—(SoUS1)

U :<< U U >>
roEm @oUa | o Um (xoUx1)—(SoUS1)

where Sy = xo N p1 and 51 = x1 N po.
Theorem (Composition of Open Configurations):  There exists a binary

operation M on computation trees such that if k; are composable configurations
then

T(Kio U K?l) = M(T(Kjo), T(Kil))
where Sy, S1, and ko U k1 are as above.

In brief, the operation M merges pairs of computations that have matching
i/o transitions for those external actors of one system that are (identified with)
receptionists of the other system. Note that this theorem fails if arbitrary actors are
allowed to initialize the behavior of newly created actors.

3. Notions of Equivalence for Actors

Two forms of equivalence are given, one for expressing the equivalence of actor
expressions, and another for expressing the equivalence of actor configurations. We
base our notion of equivalence on the now classic operational equivalence of [9]. For
the deterministic functional languages of the sort Plotkin studied, this equality is
defined as follows. Two program expressions are said to be equivalent if they behave
the same when placed in any observing context, where an observing context is some
complete program with a hole, such that all of the free variables in the expressions
being observed are captured when the expressions are placed in the hole. The
notion of “behave the same” is (for deterministic functional languages) typically
equi-termination, i.e. either both converge or both diverge.

3.1. Equivalence of actor expressions

We first define equivalence of actor expressions, the equivalence of actor config-
urations will be defined later. The first step is to find proper notions of “observing
context” and “behave the same” in an actor setting. For actor expressions, the ana-
logue of observing context is an observing actor configuration that contains an actor
with a hole in which the expression to be observed is placed. Since termination is
not particularly relevant for actor configurations, we instead introduce an observer



primitive, event and observe whether or not in a given computation, event is exe-
cuted. This approach is similar to that used in testing equivalence for CCS [4]. Since
the language is nondeterministic, three different observations may be made instead
of two: either event occurs for all possible executions, it occurs in some executions
but not others, or it never occurs.

Formally, the language of observing contexts is obtained by introducing a new
0-ary primitive operator, event. We extend the reduction relation — by adding the
following rule.

P P
e(a) <<a, [R[event()]]. | p>> — <<a, [R[ni1]1. | /1>>
X X
For an expression e, the observing configurations are configuration contexts of the

form << o, [C[ 114 | 1 >> over the extended language, such that filling the hole in C ]

with e results in a closed configuration. (Let KK be the set of configuration contexts
(configurations with holes), and let K range over K.

We observe event transitions in the fair computation paths. We say that a
computation path succeeds (s) if an event transition occurs in it, otherwise it fails
(f). obs(w) is the s/t observation of a single complete computation 7, and Obs(k)
is the set of observations possible for a closed actor configuration.

Definition (observations): Let x be a configuration of the extended language,

and let # = [x; LN Kiy1 | i € I] be a fair computation path, i.e. ¥ € 7;°°(x). Define

obs(m) = {s if (Iko, K1, a)(ko e(—az K1 €T)
f otherwise

s if (Ym € 7, (k))(obs(m)

Obs(k) = ¢ st if (Im € 71 (k))(obs(m)

fif (Vo e 717 (k))(obs(m)

)
s) and (37 € T,°°(k))(obs(7) =1)
f)

The natural notion of operational equivalence is that equal observations are
made in all closing configuration contexts. It may be desirable in some cases to
consider using a weaker equality, however. An sf observation may be considered
as good as an s observation, and a new equivalence arises if these observations are
equated. Similarly, an sf observation may be as bad as an f observation. We may
thus define the following three equivalences.

Definition (&12,3):
(1) eg =1 e1 (testing or convex or Plotkin or Egli-Milner) iff Obs(K[eo]) = Obs(K[e1])

for all closing configuration contexts K
(2) eg = e1 (must or upper or Smyth) iff Obs(K[eo]) =(st=t) Obs(K[e1]) for all closing

configuration contexts K
(3) eg 23 e1 (may or lower or Hoare) iff Obs(K[eo]) =(sf=s) Obs(K[e1]) for all closing
configuration contexts K

where & =(,=o) y iff £ =y or x,y € {0,0'}.

Note that may-equivalence (23) depends only on the computation trees, not on
the choice of paths admitted as computations, because all events are observed after



some finite amount of time. This means it is independent of whether or not fairness
is required. Since fairness sometimes makes proving equivalences more difficult, 1t is
useful that may-equivalence can always be proved ignoring the fairness assumption.
The other two equalities are sensitive to choice of paths admitted as computations,
in particular when fairness is required, as in our model, =5 is in fact the same as
~,. In models without the fairness requirement, they are distinct. In either case,
~3 1s distinct from = and =.

Theorem (partial collapse):

(1:2) € gz €1 iff € 51 €1

(1-3)  eg =4 ey implies eg =3 €3

(3-1) eq =3 €1 does not imply eg =4 €

Proof (partial collapse):

2-1 =5 implies =2, follows from the definitions. The key to showing that =, implies
=, is the observation that if Obs(K[eo]) = f and Obs(K[e1]) = sf it is always
possible to construct a K* such that Obs(K*[eg]) = s, and Obs(K*[e;1]) = sf.
To see this, suppose that K satisfies the hypothesis. Form K’ by replacing all
occurrences of event() in K by send(a,nil) for some fresh variable a. Let K* be
obtained by adding to K’ a message <a < t> and an actor a where a has the following
behavior: If a receives the message t, it executes event() and becomes a sink, and
if a receives the message nil, it just becomes a sink. Recall that a sink is an actor
that ignores its message and becomes a sink. We claim K™ is the desired observing
context. If K[eg] never executes event(), then in any fair complete computation,
the t message will be received by a, so K*[eg] will always execute event(). If K eq]
executes event() in some computation, then in the corresponding computations for
K*[e1], sometimes nil will be received by a before t is received and sometimes it
won’t, hence K*[e1] will execute event() in some computations, but not in all. Oz_1

1-3 from the definitions. O;_3

3-1 We construct expressions ep,e; such that ep =3 e1, but —(eg =5 e1). Let g
create an actor that sends a message (say nil) to an external actor a and becomes
a sink, and let e; create an actor that may or may not send a message nil to a
depending on a coin flip (there are numerous methods of constructing coin flipping
actors), and also then becomes a sink. Let K be an observing configuration context
that with an actor a that executes event just if nil is received. Then Obs(K[eg]) = s
but Obs(K[e1]) = sf, so —(eqg =2 e1). To show that ey =3 e1, show for arbitrary
K that some path in the computation of K[ep] contains an event iff some path in
the computation of K[e;] contains an event. This is easy, because when e;’s coin
flip indicates nil is sent, the computation proceeds identically to eg’s computation.
O3-1

0O

Hereafter, = (operational equivalence) will be used as shorthand for either 22
or 5. A possibly useful analogy is that =3 corresponds to partial correctness and
= corresponds to total correctness.



The fairness requirement is critical in the proof of (2-1). For example in CCS,
where fairness is not assumed, no such collapse of 2, to =y occurs. So, although
fairness complicates some aspects of the theory, it simplifies others. If we omitted
the fairness requirement we could make more =-distinctions between actors. For
example, let ap be a sink. Let a; be an actor that also ignores its messages and
becomes the same behavior, but it continues executing an infinite loop. The infinite
looping actor could starve out the rest of the configuration, but in the presence of
fairness no such starvation can occur, so the two are equal.

Since our reduction rules preserve the evaluation semantics of the embedded
functional language, many of the equational laws for this language (cf. [11]) con-
tinue to hold in the full actor language. For example, operational equivalence is a
congruence and the laws concerning lambda abstraction and application continue to

hold.

Theorem (lambda laws):

(cong) e = er = Cleg] = Cfed]

(betav) let{x:=v}le = (Az.e)(v) = e{x := v}
(app)  eo(e1) = (Af.f(e1))(e0) = Let{f := eo}f(e1)
(cmps)  f(g(e)) = (Az.f(g(x)))(e) = (fog)(e)

(id) let{r = e}r = (Av.z)(e) Z e

The proof of this theorem uses the notion of bisimulation (cf. the next section).

3.2. Equivalence of actor configurations

P
Equivalence is now defined for open actor configurations <<a | /1>> . As with
X

actor expressions, we wish to close the open configuration by adding observers. This
produces a notion of equivalence for actor configurations that is closely connected
with equivalence of actor expressions.

Definition (Closing an Actor Configuration): A closing of an actor config-
P X

uration k = <<a | /1>> is defined to be an actor configuration &' = <<o/ | /1’>> ,in
X p

the extended language, composable with &.

Definition (=%): ko = <<a0 | I >>i >~ <<a1 | 11 >>i = #1 iff Obs(ko UK') =

Obs(ro U k') for all actor configurations &’ closing «;, j < 2.

Theorem (= /=,): Ifeg = ey and e) = €}, then
<a¢ckﬂh,ux01%mw ﬂ>igs<aickﬂh,uxcq¢mw u>§

Note that while two closed configurations (configurations that have no receptionists
and no external actors) cannot be distinguished by any external observation, two
closed expressions can be distinguished by a behavior context that makes use of the
values returned.




4. Operational Bisimulations

Given two computation trees 7 (rg) and 7 (x1) of actor configurations kg and
k1, we define the notion of an operational bisimulation, R C 7 (xg) x 7 (%1), in such
a way as to ensure that if two computation trees, 7 (ky) and 7 (x1), are operationally
bisimilar, then xg =, x1. We view operational bisimulation as a proof technique,
not as an alternative notion of equivalence. To keep the notation somewhat under
control, we shall treat a simple case in this paper. A computation tree is non-
expansive iff the set of receptionists never increases. We say a configuration is
non-expansive iff its computation tree is. In what follows we restrict our attention
to non-expansive trees. Extending the results to expansive configurations poses
only notational complications (e.g identifying newly created actors), and the non-
expansive case suffices to prove operational equivalences.

The definition of an operational bisimulation requires a little notation. Firstly,
an R C T (xp) x T(k1), naturally extends to an R C 7 (ko) x T (k1) as follows.
For m; € T (k;) for i < 2

moRmy it (V) € mo)(Vvy € m)(Tvy € mo)(Tv) € m) (v < vl AvY < vi AV RYY)
(Recall that v < v/ is the subtree relation on nodes.) Secondly, for v = [&; LN K} |
i < n], the i/o restriction (v)io, is defined to be ({)io * (4 )io * - . . * (lh—1)io, Where
[o(a, cv)] ifl=o(a,cv)
(1o = [i(a, cv)] %f l=1i(a,cv)
EQ()] if (3a)(l = e(a))

otherwise

Definition (operational bisimulation):  Given two non-expansive actor con-
figurations, ko and k1, we say that a relation, R C 7 (ko) X 7 (K1), is an operational
bisimulation iff the following conditions hold:

(1) (Rl

(2) (Vvorr)(voRivy = (Vv < vo)(Av))(vy Ry A vi < 11))
(3) (Mvor)(voRvi = (Vi < n)(I)) (Wi Ry A vl < 1p))
(4)  (Vrp)(vpRry = (vg)io = (¥1)io)

(5) If mgRmy, then my is fair iff my is fair.

A few simple consequences of this definition should be made clear. Suppose that

pi
/fi=<<0éi|ﬂi>> i< 2
Xi

are operationally bisimilar. Then py = p;. The same can not quite be said for
xo and xi1. Since there may be members of these sets that never ever receive any
messages. Modulo this sort of garbage, these two sets must be the same.

Lemma (bisimilar composition): Suppose that x; are are operationally bisim-
ilar via R, and « is a composable configuration (i.e its actors are disjoint from those
in ;). Then there is a relation & C M(7 (kg),7(x)) x M(T(x1),7(x)) which
makes M(7 (ko), 7 (x)) operationally bisimilar to M(7 (k1),7 (k)).



The following is the most important consequence of bisimulation.

Theorem (opeq): If two non-expansive computation trees, 7 (xg) and 7 (x1),
are operationally bisimilar, then kg =, k1.

P
Proof (opeq): Suppose that x; = <<ozi | /JZ'>> , 1 < 2 are operationally bisimilar
X

via R and that « is a closing configuration. Then by the composition theorem we
have that 7(x; U k) = M(7T (x;),7 (k)), and by the bisimilar composition theorem
we have that 7 (ko U &) is operationally bisimilar to 7 (k1 U x) via R?. This is easily
seen to imply that Obs(kg U k) = Obs(k1 U &) Oopeq

4.1. Example: Removal of Message Indirection

To illustrate how bisimulations can be used to prove two open configurations
equivalent, we apply a transformation that removes indirection in message transmis-
sion. We begin with system 0, a two actor system with one receptionist r and one
reference to an external actor z. The receptionist r takes requests for transforming
data, applies some operation, f, and sends the result to the other internal actor a.
This actor applies a second operation ¢ and sends the result back to the receptionist,
who passes it on, unchanged, to the external actor. This system is transformed into
system 1, in which the second actor returns its results directly to the external actor.
Equivalence is proved by establishing an operational bisimulation between the two
systems, in which related nodes of the computation trees are constrained to be ‘in
step’. This approach also works for transformations such as fusion or splitting of
internal actors [12]. We outline the construction of the bisimulation informally. We
call the original system Sy and the transformed system S;. We let Ky, K7 be the
initial configurations of the Sy, Sp, respectively. The actors r and @ each have only
two “interesting” states:

e B, — the initial behavior of r,

e B,[m] — the state in which r is processing message m,

e Bl —the initial behavior of a, in S;,

e Bi[m] — the state in which @ is processing message m, in S;.

The difference between the behaviors of a in the two systems is the address for
sending replies (r in Sy and z in S1). When r receives a request or reply message m
it sends a message and returns to its initial state. The message sent is <a < f(v)> if
m 1s a request with data v, and <z <= m> if m is a reply. When «a receives a request

message m with data v it sends a reply message with data g(v) and returns to its
initial state. In Sy the reply is sent to r and in 57 the reply is sent to .

Now we describe when a Sy configuration is in step with aS; configuration. To
do this we define a redirection map X on messages. If m is a reply message with
receiver r then X (m) is a reply message with the same data as m and receiver x.
Configurations #; reachable from K; are said to be in step if a is in the same state
in both configurations and one of the following four cases holds.

(1) the state of r is the same in both configurations, and the pending messages of
x1 are the image under X of the pending messages of xg.



(2) r is processing a reply message m in kg and waiting in &1, and the pending
messages of k1 are the image under X of the pending messages of k¢ plus a
reply m to x.

(3) ris waiting in kg and is processing a request message m in &1, and the pending
messages of k1 are the image under X of the result of removing m from the
pending messages of «g.

(4) ris processing a reply message mg in £p and is processing a request message
my in k1, and the pending messages of k1 are the result of adding a reply myg to
z to the image under X of the result of removing m; from the pending messages
of kg.

The bisimulation R is now essentially determined by the clauses (1-4) of the
definition and the requirement that R related configurations must be in step.

5. Discussion

This extended abstract outlines a first step towards a general theory for speci-
fication, interconnection, and transformation of components of actor systems. The
full paper fills in details including a full set of transition rules and proofs of theo-
rems. Our next task is to develop a logic for specifying components of actor systems,
methods for verifying that programs implementing components meet their specifica-
tions, and methods for refining specifications into implementations. In addition, we
plan to develop methods for modularizing specifications and combining components
to build complex systems from simpler systems.

We contrast our work with three related efforts: CSP / Occam [6], the -
calculus [8], and Concurrent ML [3]. The CSP / Occam model is very restrictive.
Occam assumes a fixed interconnection topology of processes, supports only static
storage allocation, and disallows recursive procedures.

Many of the aims Milner and others had in developing the m-calculus are the
same as ours, namely to formulate a language for concurrent computation that
allows treatment of data channels as first-class objects, and furthermore for which
an algebraic theory may be developed. Equally important, however, are how our
aims differ. We aim for a model that can be regarded as a realistic model of a real
language, not just an abstract calculus.

We believe realistic models must incorporate fairness assumptions, otherwise the
model 1s impoverished by a collection of starving processes that have been enabled
and in any realistic implementation would not be starving. Realistic models also
must account for the inherently open nature of distributed systems, but the x-
calculus only partially accounts for this: it is impossible to extrude a local port name
to an external process. In addition, both CCS and the w-calculus treat senders and
receivers uniformly, meaning there can be multiple receivers. However, this means
a local receiving process can be corrupted by an external process that also receives
on the same port. Lack of locality in these model may cause problems similar to
those encountered in denotational models of reference/block structure in higher order
languages.



We also contrast our work with more practical development of w-calculus-style
communications primitives found in Berry, Milner, and Turner’s effort [3], and
Reppy’s CML [10]. For our purposes we equate these presentations. Even though
these theories are more realistic because the languages include other constructs such
as functions and atomic data, they still do not incorporate fairness, they still have
no theory of open systems, and they still suffer from the drawbacks of a unified
treatment of senders and receivers alluded to above. Furthermore, neither of these
presentations makes any attempt at developing an equational theory and reasoning
principles as we do here.
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