
SECTION 1.2A Methodology for Adapting to Patterns of Faults�To appear in: G. Koob (ed.), Foundations of Ultradependability, Vol. 1, Kluwer Academic 1994Gul Agha and Daniel C. Sturman yAbstractIn this paper, we present a language framework for describing dependable systems. Ourframework emphasizes modularity and composition. The dependability and functionality as-pects of an application may be described independently, providing separation of design concerns.Furthermore, the dependability protocols of an application may be constructed bottom-up assimple protocols that are composed into more complex protocols. Composition makes it easierto reason about the behavior of complex protocols and supports the construction of genericreusable dependability schemes. A signi�cant aspect of our language framework is that depend-ability protocols may be loaded into a running application and installed dynamically. Dynamicinstallation makes it possible to impose additional dependability protocols on a server as clientswith new dependability demands are integrated into a system. Similarly, if a given dependabilityprotocol is only necessary during some particular phase of execution it may be installed duringthat period only.1.2.1 IntroductionA number of systems have been developed to support the development of dependable computingapplications. Such support is given in terms of failure semantics which specify legal ways in whicha component can fail [11]. Failure semantics are enforced through the use of dependability protocolswhich guarantee that the probability of a failure of a type not speci�ed in the semantics is acceptablysmall. However, existing systems assume that the failure semantics of a service are static and,therefore, the dependability protocols used may be �xed.In many computer systems, it is either unsatisfactory to adhere to a static failure semantics orimpossible to adequately enforce the semantics with a �xed group of dependability protocols. Weillustrate this concept with two example systems:� Consider an embedded system which is required to function over a long duration, yet is fault-prone due to the uncertain environment in which it operates. If this system is physicallyisolated, such as in the control system of a satellite, physical modi�cation of system components�The research described has been made possible by support from the O�ce of Naval Research (ONR contractnumbersN00014-90-J-1899and N00014-93-1-0273), by an Incentives for ExcellenceAward from the Digital EquipmentCorporation Faculty Program, and by joint support from the Department of Defense Advanced Research ProjectsAgency and the National Science Foundation (NSF CCR 90-07195). The research described in here has bene�tted fromfruitful discussions with, and critical comments from, Christian Callsen, Svend Fr�olund, WooYoung Kim, RajendraPanwar, Anna Patterson, Shangping Ren, Carolyn Talcott, Nalini Venkatasubramaniam, Takuo Watanabe amongothers.yAuthors address: Department of Computer Science, University of Illinois at Urbana-Champaign, 1304 W. Spring-�eld Avenue, Urbana, Illinois 61801, USA. Email: f agha j sturman g@cs.uiuc.edu

2 A Methodology for Adapting to Patterns of Faultsis often infeasible. In such a system, a change in the physical environment may result inprotocols designed for the old environment failing to uphold the failure semantics in the newenvironment. A di�erent group of dependability protocols may then be required to enforce thedesired failure semantics of the system.� Consider an open system. Open systems allow interactions with the external environment; inparticular, new services may be added or deleted dynamically from the system in responseto external events. Consequently, it may not be possible to statically determine the systemcon�guration. Without knowing the system con�guration, it may not be possible to determinewhat failure semantics a process must have, or what protocols are necessary to enforce thesesemantics, until after the process actually joins the system. Furthermore, the addition of newservices may require a change in the failure semantics of existing components. For example,a �le server may initially address safety only by check-pointing the �les to stable storage.New clients that are added to the system, however, may require the server to also providepersistence and a protocol to support replication may need to be added.In this paper, we describe a methodology for the modular speci�cation of systems that adaptto patterns of faults. We call the resulting systems adaptively dependable. We present a methodol-ogy which allows the transparent installation and reuse of dependability protocols as well as theirdynamic installation in a system. Our methodology, when combined with a suitably structuredexception handling mechanism and fault detection, allows for the development of fault handlerswhich can maintain consistent failure semantics within a changing environment and can alter failuresemantics as system needs change. We have provided programmer support for our methodology inthe language Screed which is implemented on our run-time system Broadway.We employ re
ection as the enabling technology for dynamic installation of dependability pro-tocols. Re
ection means that an application can reason about and manipulate a representation ofits own behavior. This representation is called the application's meta-level. The components of anobject that may be customized at the meta-level are referred to as the meta-architecture. In ourcase, the meta-level contains a description which implements the failure semantics of an executingapplication; re
ection thus allows dynamic changes in the execution of an application with respectto dependability.Besides supporting dynamic installation, our meta-architecture supports transparency and reuseof dependability protocols. For example, the meta-architecture allows protocols to be expressedas abstract operations on messages. Since the individual �elds of a particular message are neverexamined, the same protocol may be used with di�erent applications.Given this technique for dynamic modi�cation of the dependability protocols used in a system,we describe how fault-detection and exception handling may be used in conjunction with our meta-architecture to support adaptive dependability. We model both failures and exceptions as objects.Each type of fault which may be detected is described as a speci�c system exception.We construct managers | exception handlers with meta-level capabilities | to address systemexceptions. Managers serve three purposes:� A manager may correct for recoverable faults. The corrections allow the system to continue tofunction despite a fault. This role is generally referred to as performing forward error recovery.� Managers provide failure prevention. When a manager discovers a pattern of componentfailures, it dynamically installs protocols which mask future failures or facilitate future fault-correction by expanding the set of recoverable faults. In this manner, we have taken forwarderror recovery one step further: rather than simply adjusting the system state, the actualdependability characteristics of the system may be modi�ed.

Gul Agha and Daniel C. Sturman 3� Managers support recon�guration of the dependability protocols in a system. This may bedone either to alter the system's failure semantics or to correctly enforce these semantics oncethe environment changes. Thus, we can develop dependable long duration systems whose faultpatterns are not known at start-up time.A prototype implementation of a run-time system which tests these ideas is described: the systemBroadway supports our meta-architecture as well as failure detection and a set of system exceptions.On top of Broadway, we have implemented the language Screed. Screed is a prototype concurrentactor language which provides complementary constructs for both fault-detection through exceptionhandling and dynamic installation of protocols through a meta-architecture. Screed is presented asa demonstration of how such constructs may be added to existing languages.This paper is organized as follows. Section 1.2.2, discusses related research in the areas ofre
ection, exception handling, and languages for fault-tolerance. Section 1.2.3 provides a briefdescription of the concepts of re
ection, the Actor model, and object-orientation. Section 1.2.4provides a guide to the syntax of Screed to assist in understanding our examples. Section 1.2.5discusses our meta-level architecture and how it may be used to construct dependability protocols.We also discuss the e�ect of our meta-level architecture on protocol performance. Section 1.2.6describes exception handling in Screed and how exception handling may be used in conjunction withour meta-level architecture to implement adaptively dependable systems. We then illustrate thistechnique with an example of a system adapting to a change in environment. In1.2.2 Related WorkA number of languages and systems o�er support for constructing fault tolerant systems. InArgus [23], Avalon [15] and Arjuna [31], the concept of nested transactions is used to structuredistributed systems. Consistency and resilience is ensured by atomic actions whose e�ects arecheck-pointed at commit time. The focus in [27], [9] and [7] is to provide a set of protocols thatrepresent common communication patterns found in fault tolerant systems. None of the abovesystems support the factorization of fault tolerance characteristics from the application speci�ccode. In [38] and [28], replication can be described separate from the service being replicated. Ourapproach is more
exible: fault tolerance schemes may not only be described separately, they may beattached and detached dynamically. Another unique aspect of our approach is that di�erent faulttolerance schemes may be composed in a modular fashion. For example, check-pointing may becomposed with replication without requiring that the representation of either protocol know aboutthe other.Non-re
ective systems which support customization do so only in a system-wide basis. For ex-ample, customization in a micro-kernel based system [1] a�ects all the objects collectively. In anobject-oriented system such as Choices [8], frameworks may be customized for a particular applica-tion. However, once customized, the characteristics may not change dynamically. Re
ection in anobject based system allows customization of the underlying system independently for each object.Because di�erent protocols are generally required for very speci�c subsets of the objects in a system,this
exibility is required for implementing dependability protocols.Re
ection has been used to address a number of issues in concurrent systems. For example, thescheduling problem of the Time Warp algorithm for parallel discrete event simulation is modeledby means of re
ection in [40]. A re
ective implementation of object migration is reported in [37].Re
ection has been used in the Muse Operating System [39] for dynamically modifying the systembehavior. Re
ective frameworks for the Actor languages MERING IV and Rosette have been pro-posed in [16] and [35], respectively. In MERING IV, programs may access meta-instances to modifyan object or meta-classes to change a class de�nition. In Rosette, the meta-level is described in

4 A Methodology for Adapting to Patterns of Faultsterms of three components: a container, which represents the acquaintances and script; a processor,which acts as the scheduler for the actor; and a mailbox, which handles message receptionThe concept of unifying exception handling and fault detection was originally proposed in [30]and then re�ned in [29]. In these papers, detected failures are considered asynchronous events muchas exceptional conditions are treated in distributed programming languages. Therefore, exceptionhandling construct provide a natural way to incorporate failure-response code into an application.Goodenough introduced the idea of exceptions and exception handling in [19]. Since then,many di�erent exception handling mechanisms have been proposed. Exception handling constructshave been developed for object-based languages such as Clu [24] and Ada [12]. Dony [13] describesan approach for object-oriented languages and its implementation in Smalltalk. In this approach,exceptions are implemented as objects much as we do. Exception handling for C++ is discussed in[33]. A good overview of techniques proposed for other object-oriented languages can be found in[14].A critical di�erence between object-oriented approaches to exception handling and non-object-oriented approaches such as CLU [24] or Ada [12] is that, in the latter, the exception object isrepresented by a set of parameters to a function. Therefore, on generating the signal, a parameterlist must provide all possible information used by the handler.For concurrent systems, another technique has been proposed for languages which use RPCcommunication [10]: the technique is based on synchronized components which allows the exceptionhandling constructions to be closer to that of a sequential system than an asynchronous system.Exception handling mechanisms have been proposed for other Actor languages. An exceptionhandling mechanismwas proposed for ABCL/1 and for Acore [21, 26]: the mechanismuses complaintaddresses to support exception handling. A complaint address is a speci�c location, speci�ed witheach message, to which all signals are dispatched.1.2.3 BackgroundBefore discussing our meta-architecture and how we use it to support adaptive dependability, we�rst discuss in greater detail some concepts that are important in our framework. The organizationof this section is as follows. First, we brie
y discuss some of the advantages of object-orientedprogramming and how they are useful with our methodology. Secondly, we describe the Actormodel of concurrent computation. We chose the Actor model as the basis of our work due to theease with which it may be extended, Finally, we give a more in-depth discussion of re
ection andhow it relates to a programming language.Object OrientationIn an object-oriented language, a program is organized as a collection of objects. Each object isan encapsulated entity, representing an instance of an abstract data type. The local data comprisingeach object may only be accessed through an interface speci�ed as a set of methods. The operationscarried out by a method are not visible outside the object. Objects communicate with messageswhich invoke a method in the receiving object. The local data of another object cannot otherwisebe accessed or modi�ed.Objects are instantiated from classes. A class is a user-de�ned abstraction. Classes may bethought of as types and objects as elements of that type. Instantiation is the creation of an object ofa particular class. Classes contain the description (code) of the methods and of the instance variablesfor objects instantiated from that class. Classes may inherit from other classes. Inheritance providesthe inheriting class with the properties { the methods and instances { of the ancestor class. The

Gul Agha and Daniel C. Sturman 5inheriting class can then utilize these properties as well as augment them with new instances variablesor methods. Methods may be inherited directly or rede�ned, facilitating code reuse.Object-oriented languages allow for modular development of systems. The implementation ofeach component is hidden from other components: only the interface is known. In this way, acomponent's implementation may change without a�ecting other components. Code may also bereused e�ciently since components may share code by inheriting from a common ancestor class.Note that our use of classes and inheritance di�ers from that in sequential object-oriented languagesin that we do not support class variables.The Actor ModelWe illustrate our approach using the Actor model [2, 3]. Actors can be thought of as an abstractrepresentation for multicomputer architectures. An actor is an encapsulated object that communi-cates with other actors through asynchronous point-to-point message passing. Speci�cally, an actorlanguage supports three primitive operators:send Actors communicate through asynchronous, point-to-point message passing. The send opera-tor is used to communicate a message asynchronously to another actor. Each message invokesa method (or procedure) at the destination. Upon reception of the message at the destination,the message will be bu�ered in a mail queue. Each actor has a unique mail address which isused to specify a target for communication. Mail addresses may also be communicated in amessage, allowing for a dynamic communication topology.new Actors may dynamically create other actors. The new operator takes an actor behavior (classname) as a parameter, creates a new actor with the correct behavior and returns its mailaddress. The mail address is initially known only by the creating actor. However, the creatorsubsequently include this new mail address in future messages.become The become operator marks the end of state modi�cations in the execution of a method.Once a become has executed in a method, the actor may continue to modify state local to themethod. However, such state changes do not e�ect the way in which the actor may processthe next message. Therefore, once this operator is executed, the actor may begin processingits next pending message. Judicious use of the become operator may improve performanceby allowing internal concurrency: i.e., multiple threads of execution within a single actor.It is important to note that the idea of using re
ection to describe dependability is not tied toany speci�c programming language. Our methodology assumes only that these three operators arein some way incorporated into the language; we require that new actors may be created dynamicallyand that the communication topology of a system is recon�gurable.In fact, the actor operators may be used to extend almost any standard sequential languageto provide coordination and communication in a distributed environment: local computations maystill be expressed in terms of the sequential language. The level at which the sequential and actorconstructs are integrated determines the amount of concurrency available in the system.An actor language may be used to \wrap" existing sequential programs, serving as an intercon-nection language. With this approach, each method in an actor class invokes a subroutine, or setof routines, written in a sequential language and dispatches messages based on the values returned.Such an approach was taken by the Carnot project at MCC [34]. In Carnot, the actor languageRosette \glues" sequential components together to facilitate heterogeneous distributed computing.A complementary approach is to actually integrate the actor operators into an existing language.Broadway, the run-time platform we use to implement the ideas in this paper, supports C++ calls for

6 A Methodology for Adapting to Patterns of Faultsboth send and new; the become operator is implicit at the end of each method. Using Broadway,developers of distributed programs may use a well known language | C++| to develop distributedprograms.Actor operators have also been combined with functional languages. Speci�cally, actor operatorshave been added to the call-by-value �-calculus [5]. In this case, the local computation is modeled asa sequential functional computation. An operation semantics is developed for the resulting language.The semantics supports operational reasoning. In [36], the semantics is extended to support formalreasoning about meta-architectures such as the one we describe here.If necessary, the actor operators may also be extended to support more complex functionality.In particular, communication model may be modi�ed to support more complex message passingconstructs. The asynchronous point-to-point communication model for actors has been extended toinclude pattern-based multicasts using ActorSpaces [6]. Furthermore, remote procedure calls maybe transformed into a set of asynchronous messages using a concurrent analog of the continuationpassing style [22].Synchronization constraints [17] and multi-object constraints [18] are two other extensions of theactor operators which greatly simplify distributed programming. Constraints allow the programmerto specify \when" asynchronous events may occur based on the state of a single object or the occur-rence of other events in the system. Using these techniques, the non-determinism of asynchronouscommunicationmay be constrained to maintain a consistent system state without requiring an overlyrestrictive communication model.Re
ection
Application

System

Describe

ModifyFigure 1.2.1: Through re
ection, an application may modify the system by modifying its meta-objects. Meta-objects are a system level description of the base-level application objects.Re
ection means that a system can manipulate a causally connected description of itself [32, 25].Causal connection implies that changes to the description have an immediate e�ect on the describedobject. In a re
ective system, a change in these descriptions or meta-objects results in a change inhow objects are implemented. The object for which a meta-object represents certain aspects of theimplementation is called the base object. This relationship is shown in Figure 1.2.1.Meta-objects may be thought of as objects which logically belong in the underlying run-timesystem. For examples, a meta-object might control the message lookup scheme that maps incoming

Gul Agha and Daniel C. Sturman 7messages to operations in the base object. Another meta-object may modify how values are readfrom memory. Using re
ection, such implementation level objects can be accessed and examined,and user de�ned meta-objects may be installed, yielding a potentially customizable run-time systemwithin a single language framework.The re
ective capabilities which are provided by a language are referred to as the meta-levelarchitecture of the language. The meta-level architecture may provide variable levels of sophistica-tion, depending on the desirable level of customization. The most general meta-level architectureis comprised of complete interpreters, thus allowing customization of all aspects of the implementa-tion of objects. In practice, this generality is not always needed and, furthermore, de�ning a morerestrictive meta-level architecture may allow re
ection to be realized in a compiled language. Thechoice of a meta-level architecture is part of the language design. Customizability of a languageimplementation must be anticipated when designing the run-time structure. Although a restrictivemeta-level architecture limits
exibility, it provides greater safety and structure. If all aspects ofthe implementation were mutable, an entirely new semantics for the language could be de�ned atrun-time; in this case, reasoning about the behavior of a program would be di�cult.We limit our meta-level to contain only the aspects that are relevant to dependability. Applica-tion speci�c functionality is described in the form of base objects and dependability protocols aredescribed in terms of meta-objects. Thus, dependability is modeled as a special way of implementingthe application in question. Our methodology gives modularity since functionality and dependabilityare described in separate objects. Since meta-objects can be de�ned and installed dynamically, theobjects in a system can dynamically change the protocols enforcing their failure semantics as systemneeds change. Furthermore, new dependability protocols may be de�ned while a system is runningand put into e�ect without stopping and recompiling the system. For example, if a communicationline within a system shows potential for unacceptable error rates, more dependable communicationprotocols may be installed without stopping and recompiling the entire system.Since meta-objects are themselves objects, they can also have meta-objects associated with them,giving customizable implementation of meta-objects. In this way, meta-objects realizing a given de-pendability protocol may again be subject to another dependability protocol. This scenario impliesa hierarchy of meta-objects where each meta-object contributes a part of the dependability charac-teristics for the application in question. Each meta-object may be de�ned separately and composedwith other meta-objects in a layered structure supporting reuse and incremental construction ofdependability protocols.Because installation of a malfunctioning meta-level may compromise the dependability of a sys-tem, precautions must be taken to protect against erroneous or malicious meta-objects. To providethe needed protection of the meta-level, we introduce the concept of privileged objects called man-agers. Only managers may install meta-objects. Using operating system terminology, a managershould be thought of as a privileged process which can dynamically load new modules (meta-objects)into the kernel (meta-level). It should be observed that, because of the close resemblance to theoperating system world, many of the operating system protection strategies can be reused in ourdesign. We will not discuss particular mechanisms for enforcing the protection provided by the man-agers in greater detail here. Because only managers may install meta-objects, special requirementscan be enforced by the managers on the structure of objects which may be installed as meta-objects.For example, managers may only allow installation of meta-objects instantiated from special veri�edand trusted libraries. Greater or fewer restrictions may be imposed on the meta-level, depending onthe dependability and security requirements that a given application must meet.

8 A Methodology for Adapting to Patterns of Faults1.2.4 ScreedScreed is an object-oriented actor language that compiles applications for Broadway. Screed willbe used to illustrate examples in this paper, Screed is an object-oriented language: programs arewritten in terms of class de�nitions. Each class de�nes a single actor behavior and consists of a setof variable declarations and a set of method de�nitions. Screed supports inheritance. A class forwhich a parent class is not speci�ed will, by default, inherit from the system de�ned Object class.At any point, a parent method may be referenced by sending a message to the \object" parent.Inheritance is speci�ed when the class is de�ned:class MyMailQueue : MailQueue f: : : instance variables : : :get() f: : : method body: : :gput() f: : : method body: : :ggIn this example, the class MyMailQueue with the methods get and put is de�ned. It inherits fromthe class MailQueue.Classes may be instantiated using the new command which returns a new actor address. Forexample: foo = new MyMailQueue;This statement creates a new actor with the behavior MyMailQueue and returns the address of thisactor, which is assigned to foo.There are �ve primitive types in Screed. The types int, real, and string are self-explanatory.The type actor holds the address of any actor, regardless of class. The type method can have thevalue of any legal method name. In addition, one-dimentional arrays of any of these types may bespeci�ed. Arrays are de�ned and used as in C++:actor myReplicas[5];...myReplicas[2] = new : : :;Actors communicate through asynchronous message passing. In the current implementation ofBroadway message ordering (from a given source to the same destination) is guaranteed, althoughactor semantics enforce no such requirement. Messages are sent by specifying a method and an actoraddress with the appropriate parameters:foo.get();In this case, the method get is invoked on the actor foo without any parameters. Since methodsare �rst-class values, it would be possible to specify a variable instead of the name of a particularmethod. Parameters are dynamically type-checked upon reception at the message destination. Notethat since we are using asynchronous message passing, this method invocation does not block.Although asynchronous message passing provides improved performance and concurrency, adrawback is the di�culty in providing return values: since the method does not block upon sendinga message, it is necessary to specify a return address and method in the message itself. Therefore,method invocations may return a value, thereby acting as an remote procedure call (rpc). Forexample:

Gul Agha and Daniel C. Sturman 9Ax = foo.get();BWith rpc-communication, the current method invocation will block. The instructions in A willexecute, followed by a message send to foo. B will not execute until a return value arrives and thevalue is assigned to x.In a asynchronous system, the programmer may want to prevent certain methods from executingbased on an actor's state. Therefore, we support synchronization constraints [17] in Screed. Usingsynchronization constraints, the programmer will be able to specify exactly which methods may notbe invoked. Maximal concurrency is then preserved since only the minimal synchronization | asspeci�ed by the programmer not the language { will be enforced.The other constructs which comprise expressions in Screed (if, while, etc.) are similar to thosein C; we do not describe them further.1.2.5 Meta-level Architecture for Ultra-dependabilityIn this section we introduce maud (Meta-level Architecture for UltraDependability) [4]. maudsupports the development of reusable dependability protocols. These protocols may then be installedduring the execution of an application. maud has been implemented on Broadway, our run-timeenvironment for actors.We begin with a discussion of maud's structure. We then discuss how transparency and reusabil-ity of protocols are supported by maudand provide an example to illustrate the concepts. We �nishthis section by demonstrating how maud also allows the composition of protocols and give an ex-ample of composition.A Meta-Level ArchitectureAs previously mentioned, maud is designed to support the structures that are necessary toimplement dependability. In maud, there are three meta-objects for each actor: dispatcher, mailqueue and acquaintances. In the next three paragraphs we describe the structure of meta-objects inmaud. Note that maud is a particular system developed for use with actors. It may be possible,however, to develop similar systems for other models.The dispatcher and mail queue meta-objects customize the communication primitives of objectsso that their interaction can be modi�ed for a variety of dependability characteristics. The dispatchermeta-object is a representation of the implementation of the message-send action. Whenever thebase object issues a message send, the run-time system calls the transmit method on the installeddispatcher. The dispatcher performs whatever actions are needed to send the given message. In-stalling dispatchers to modify the send behavior makes it possible to implement customized messagedelivery patterns.A mail queue meta-object represents the mail queue holding the incoming messages sent to anactor. A mail queue is an object with get and put operations. After installation of a mail queuemeta-object, its get operation is called by the run-time system whenever the base object is readyto process a message. The put operation on a mail queue is called by the run-time system whenevera message for the base object arrives. By installing a mail queue at the meta-level, it is possible tocustomize the way messages
ow into the base object.The acquaintances meta-object is a list representing the acquaintances of a base object. Inan actor system, all entities are actors. Although they may be implemented as local state, even

10 A Methodology for Adapting to Patterns of Faultsprimitive data objects, such as integers or strings, are considered acquaintances in an actor system.Therefore, in an actor language the acquaintances and the mail queue comprise the complete stateof an actor. The acquaintances meta-object allows for check-pointing of actors.Meta-objects are examined and installed by means of meta-operations. Meta-operations arede�ned in the class called Object which is the root of the inheritance hierarchy. All classes inthe system inherit from Object implying that meta-operations can be called on each actor in thesystem. The meta-operations change mailQueue and change dispatcher install mail queues anddispatchers for the object on which they are called. Similarly, the meta-operations get mailQueue ,get dispatcher and get acquaintances return the meta-objects of a given actor. If no meta-objects have been previously installed, an object representing the built-in, default, implementation isreturned. Such default meta-objects are created in a lazy fashion when a meta-operation is actuallycalled.Transparency and ReuseBy describing our dependability protocols in terms of meta-level dispatchers and mail queues,we are able to construct protocols in terms of operations on messages where we treat each messageas an integral entity. There are several advantages to developing dependability protocols in thismanner.The �rst advantage is the natural way in which protocols may now be expressed. When depend-ability protocols are described in the literature, they are described in terms of abstract operationson messages, i.e. the contents of the messages are not used in determine the nature of manipulationto be performed. Therefore, it is logical to code protocols in a manner more closely resembling theirnatural language description.Secondly, because the protocols are expressed in terms of abstract messages and because everyobject may have a meta-level mail queue and dispatcher, a library of protocols may be developedwhich may be used with any object in the system. Such a library would consist of protocols expressedin terms of a mail queue and dispatcher pair. The meta-objects may then be installed on any objectin the system. Since the protocols deal only with entire messages, the actual data of such messagesis irrelevant to the operation of the protocol. Only �elds common to every message, such as source,destination, time sent, etc., need be inspected.The libraries could also be used with other systems, allowing the reuse of dependability protocols.One set of developers could be responsible for the dependability of multiple software systems anddevelop a protocol library for use with all of them. Since protocols implemented with maud aretransparent to the application, other development teams, who are responsible for development of theapplication programs, need not be concerned with dependability. In the �nal system, protocols fromthe library may be installed on objects in the application, providing dependability in the composedsystem.Example 1: A Replicated ServerIn this section, we provide an example of how a protocol may be described using maud. In adistributed system, an important service may be replicated to maintain availability despite processorfaults. In this section, we will give an example of how maud can be used in an actor domain todevelop a modular and application-independent implementation of a protocol which uses replicationto protect against crash failures.The protocol we describe is quite simple: each message sent to the server is forwarded to abackup copy of the server. In this manner, there is an alternate copy of the server in case of a crash.Reply messages from both the original and backup servers are then tagged and the client eliminatesduplicate messages.

Gul Agha and Daniel C. Sturman 11
MailQueue

Dispatcher

Key:

Message send

Causal Connection

Eliminator

Server
 S1

Tagger

Server
 S

Tagger

Client
 A

Eliminator

Client
 B

2

ForwarderFigure 1.2.2: When a message is sent by the clients A or B to the replicated service S1, the messageis received by the Forwarder and a copy is forwarded to the backup S2. When the servers reply,the Tagger dispatchers tag each message so that the Eliminator mail queues may remove duplicateresults. If S1 crashes, manager actors will install S2 as the new server.Figure 1.2.2 shows the resulting actions occurring when a message is sent to the replicatedservice. The original server is actor S1. When a message is received by the Forwarder, the messageis forwarded to the backup S2. S2 is initialized with the same behavior and state of S1. Since theywill receive the same messages in the same order, their state will remain consistent. Therefore, anyreplies will be identical and in the same order. The replies are tagged by the dispatchers of classTagger and only the �rst copy of each message is passed on to the client by Eliminator.Forwarding messages to the backup server is implemented using a meta-level mail queue. TheScreed code for this mail queue is presented in Figure 1.2.3. Using a dispatcher, each reply messageof the server is tagged to allow the elimination of duplicate replies by the client. A mail queue atthe client performs this duplicate elimination. The code for this mail queue is shown in Figure 1.2.4.class Forwarder : MailQueue factor backup;actor server;put(msg m) fm.base send();m.set dest(backup);m.send();ggFigure 1.2.3: Code for the server-end mail queue which implements replication. The mail queueForwarder sends a copy of each message to a backup copy of the server.

12 A Methodology for Adapting to Patterns of Faults
class Eliminator : Mailq fint tag;actor members[NUMREP];actor client;/* No get method is required since we use* the default behavior inherited from Mailq */put(msg m) fint i;for (i=0; i < NUMREP; i = i + 1)if (m.get src() == members[i])/* Since the message was from a replica,* we know that the first argument is a tag and* the second is the original message. */if (m.arg[0] < tag)/* Discard message */return;else if (m[0] == tag) fself.enqueue(m[1]);tag = tag + 1;gggFigure 1.2.4: Code for the server-end mail queue which implements replication. The mail queueEliminator removes tags (which have been added to all server replies by some other dispatcher)and takes the �rst message labeled by a new tag.

Gul Agha and Daniel C. Sturman 13We assume that managers themselves install appropriate meta-objects realizing a given depend-ability protocol. Therefore, we specify the relevant dependability protocols by describing the be-havior of the initiating manager as well as the installed mail queues and dispatchers. A manager incharge of replicating a service takes the following actions to achieve the state shown in Figure 1.2.2:1. The speci�ed server is replicated by a manager by creating an actor with the same behaviorand state.2. A mail queue is installed for the original server to make it act as the Forwarder describedabove.3. The mail queues of the original clients are modi�ed to act as the Eliminator described above.4. The dispatchers of the servers are changed to tag all messages so that the Eliminator mayremove copies of the same message.5. Upon detection of a crash of S1, the manager takes appropriate action to ensure all furtherrequests to the server are directed to S2. The manager may also create another backup at thistime.Although this example is simple, it does illustrate some of the bene�ts of our approach. Themanager initiating the replication protocol needs no advance knowledge of the service to be replicatednor does the replicated service need to know that it is being replicated. Because the clients using thereplicated service are not modi�ed in any way, this gives us the
exibility to dynamically replicateand unreplicate services while the system is running.Composition of Dependability CharacteristicsIn some cases, dependability can only be guaranteed by using several di�erent protocols. For ex-ample, a system employing replication to avoid possible processor faults may also need to guaranteeconsensus on multi-party transactions through the use of three-phase commit or some similar mecha-nism. Unfortunately, writing one protocol which has the functionality of multiple protocols can leadto very complex code. In addition, the number of possible permutations of protocols grows expo-nentially | making it necessary to predict all possibly needed combinations in a system. Therefore,it is desirable to be able to compose two protocols written independently. In some cases this maynot be possible due to a con
ict in the semantics of the two protocols. In other cases, performancemay depend greatly on the way in which two protocols are composed. For many common protocolssuch as replication, checksum error detection, message encryption, or check-pointing, composition ispossible.Because the meta-components of an object are themselves objects in a re
ective system, there isa general solution for composing two protocols using maud. A simple change to the meta-operationsinherited from the Object class, along with a few restrictions on the construction of mail queuesand dispatchers, allows us to layer protocols in a general way. Figure 1.2.5 shows how an add-mailqmethod could be expressed in terms of the other meta-operations to allow layering.Because the mail queue and the dispatcher are objects, we can send a message to install meta-objects customizing their mail queue or dispatcher. By adding protocols in the above manner, theouter mail queue functionality will be performed on incoming messages before they are passed onto the \inner" mail queues. For the send behaviors, the process is reversed with the innermost sendbehavior being performed �rst and the outermost behavior last, thereby creating an onion-like modelwith the newest layer closest to the outside world.

14 A Methodology for Adapting to Patterns of Faultsadd mailq (actor aMailq) fif (mailq == nil) fself.change mailq(aMailq);else mailq.add mailq(aMailq);gadd dispatcher (actor aDispatcher) fif (dispatcher == nil) fself.change dispatcher(aDispatcher);else dispatcher.add dispatcher(aDispatcher);gFigure 1.2.5: The additional methods which must be inherited to allow for protocol composition.
B

A

C

D EFigure 1.2.6: Partners and Owner relationships. A is the owner of all other actors in the �gure.Dispatcher B and mail queue C are partners as well as dispatcher D and mail queue E.To preserve the model, however, several restrictions must be applied to the behavior of dispatchersand mail queues. We de�ne the partner of a mail queue as being the dispatcher which handles theoutput of a protocol and the partner of a dispatcher as being the mail queue which receives inputfor the protocol. In Figure 1.2.6, B and C are partners as well as E and D. Each pair implementsone protocol. It is possible for a meta-object to have a null partner.The owner application of a meta-object is inductively de�ned as either its base object, if its baseobject is not a meta-object, or the owner application of its base object. For example, in �gure 1.2.6,A is the owner application of meta-objects B, C, D, and E. With the above de�nition we canrestrict the communication behavior of the actors so that:� A mail queue or dispatcher may send or receive messages from its partner or an object createdby itself or its partner.� A dispatcher may send messages to the outside world, i.e. to an object which is not a mailqueue or dispatcher of the owner application (although the message might be sent through thedispatcher's dispatcher). A dispatcher may receive transmit messages from its base objectand otherwise may only receive messages from its mail queue partner. Therefore, a dispatcher

Gul Agha and Daniel C. Sturman 15with a null mail queue partner may only receive transmit messages from its base object orcommunicate with actors it created.� A mail queue may receive messages from the outside world (through its own mail queue) andsend put messages when responding to get messages from its base object. Mail queuesmay otherwise only send messages to its dispatcher partner or actors it created. Therefore, amailq queue with a null dispatcher partner may only send put messages to its base object orcommunicate with actors it created.� Objects created by a mail queue or dispatcher may communicate with each other, their creator,or their creator's partner.Because of the above restrictions, regardless of the number of protocols added to an object thereis exactly one path which incoming messages follow | starting with the outermost mail queue |and exactly one path for outgoing messages in each object | ending with the outermost dispatcher.Therefore, when a new dispatcher is added to an object, all outgoing messages from the object mustpass through the new dispatcher. When a new mail queue is installed, it will handle all incomingmessages before passing them down to the next layer.Thus, a model of objects resembling the layers of an onion is created; each addition of a protocoladds a new layer in the same way regardless of how many layers currently exist. With the aboverules, protocols can be composed without any previous knowledge that the composition was goingto occur and protocols can now be added and removed as needed without regard not just to theactor itself, but also without regard to existing protocols. In Figure 1.2.6, actors B and C areinitially installed as one \layer." Messages come into the layer only through C and leave throughB. Therefore, D and E may be installed with the add-mailq and add-dispatcher messages as ifthey were being added to a single actor. Now messages coming into the composite object throughE are then received by C. Messages sent are �rst processed by B and then by D.Example 2: Composing Two ProtocolsFigure 1.2.7 shows the result of imposing the protocol described in Example 1 on a set of actorsalready using a checksum routine to guarantee message correctness. Originally, each actor had acorresponding Check-In mail queue and a Check-Out dispatcher. When server S1 is replicated, itsmeta-level objects are also replicated. The Forwarder mail queue is installed as the meta-level mailqueue of S1's mail queue. It will forward all messages to S2. A Tagger dispatcher is installed foreach of the two servers and the Eliminator mail queue removes duplicate messages at the client.Although this protocol would be di�cult to write as one entity, composition allows their modular,and therefore simpler, development.In terms of our onion-layer model, each Check-In/Check-Out pair forms a layer. For example,the innermost layer for server S1 consists of a Check-Out dispatcher and a Check-In mail queue. Theoutermost layer at S1 is comprised of a Tagger dispatcher and a Forwarder mail queue. The clientA also has two layers. However, its outer layer consists solely of the Eliminator: this mail queuehas a null dispatcher partner. Similarly, at server S2, the outermost layer consists only of a Taggerdispatcher with a null mail queue partner.As can be seen in the above example, the onion-layer model only provides consistency for mailqueue and dispatcher installation at a single node: a manager that follows the above rules may stillinstall protocols incorrectly. Such an error may occur if the protocols are installed in one order at onenode and in a di�erent order at another node. For example, if the manager installed the Eliminatormail queue at client A as the innermost layer rather than the outermost, the system would notoperate correctly. An area of current research is developing methods for specifying managers whichsimplify protocol installation and guarantee global consistency.

16 A Methodology for Adapting to Patterns of Faults
Check−Out

MailQueue

Dispatcher

Key:

Message send

Causal Connection

Client
 A

Server
 S1

Server
 S2

Tagger Forwarder Tagger

Check−In Check−OutCheck−Out

(1)

(2)

(3)

(4)

(5)

(6)
(3)

(4) (5)

(6)

(7)

(8)

(7)

(9)

Eliminator

Check−In

Check−In

Figure 1.2.7: System resulting from the composition of a replication protocol and message checksumprotocol. When a message is sent by the client A (1), the Check-Out dispatcher adds the checksuminformation to the message. The message is then forwarded to the replica as describe in Example 1(2{3). The checksum information is removed by the Check-In mail queue(4) and the messages areprocessed, resulting in a reply (5). The reply messages both have the checksum (6) informationadded before they are tagged and sent to the client (7). At the client, duplicate messages areremoved, the checksum information is checked, and the message is delivered.

Gul Agha and Daniel C. Sturman 17PerformanceIn implementing maud in Broadway, we have found that, in most cases, the additional messageoverhead caused by re
ection is small compared to the actual cost in messages accrued by theprotocols themselves. Using maud, there is an additional 3n messages upon message reception,where n is the number of protocols composed together to provide dependability for a single object.Upon reception of a message, the message is routed up the chain of meta-level mail queues (nmessages) and then worked its way down through a series of get and put messages. For messagetransmission, there are n additional transmit messages.Since each object is usually protected by only a small (1 or 2) number of protocols, this cost isnot great. Since meta-level objects are most likely to be local to the base actor, most messages tometa-objects will be local and inexpensive. Furthermore, we use caching of the highest level mailqueue to eliminate n of the messages: the system records the address of the top level mail queue anddirects all messages intended for the base object to this mail queue. To preserve correctness withcaching, meta-object installation is made atomic. Once a protocol installation begins, no messagesare processed until the protocol is installed.This optimization is especially critical if some meta-objects need to be on a separate node.Placement of meta-objects on a di�erent node from the base object is only done when physicalseparation is necessary for dependability: in this case, the inter-node communication from meta-mail queue to base-object or base-object to meta-dispatcher would normally be required by theprotocol, regardless of implementation technique. On the other hand, the communication cost frombase-object to meta-mail queue is only due to the nature of using re
ection. Therefore, cachingeliminates this additional expense.1.2.6 Exception HandlingGiven a meta-level such as maud, it is still necessary for a programming language to provide
exible constructs supporting adaptive dependability. In particular, it is important to convey infor-mation to the correct entities when system failures occur. We have chosen exception handling as themedium through which managers are informed of problems in the system. This technique has beenused extensively with forward error recovery: we simply extend the notion by having our managersprevent future failures through dynamic protocol installation.In this section, we describe the exception handling mechanism in Screed, our prototype actorlanguage. To support adaptive dependability, faults and exceptions have been uni�ed as one con-cept and exception handlers may be shared between objects. Broadway provides a set of systemexceptions, some of which are noti�cations of failures. For example, when an actor attempts tocommunicate with an unreachable node, a crash exception is generated.We begin with a discussion of the general structure of exception handling in Screed followed bya speci�c illustration of the syntax used. We then show how this structure may be used with themeta-architecture to design adaptively dependable systems.Exception Handling ComponentsExceptions are signaled whenever an unexpected condition is encountered. An exception may besignaled either by the run-time system or by the application. The former are referred to as systemexceptions and the latter as user-de�ned exceptions.Exceptions in Screed are represented as objects, as proposed in [13] for sequential object-orientedlanguages. Although none of the other concurrent languages discussed above have taken this ap-proach, we feel representing exceptions as objects allows for more
exible and e�cient exception

18 A Methodology for Adapting to Patterns of Faultshandling: all the information needed by a handler is contained in one object. All system exceptionsare derived, through inheritance, from the class exception. User-de�ned exceptions may inheritfrom the exception class or from any other node on the system exception inheritance tree. Below,we discuss the parties involved in the generation of an exception and then the structure of systemexceptions.There are four roles involved in handling any exceptional condition: invoker, signaler, exception,and handler (see Figure 1.2.8). Each role is represented as an object in the system. The invokerinitiates the method of the signaler which results in an exception. The occurrence of an exceptiongenerates a signal. When a signal occurs, a new exception object is created. The signaler noti�esthe appropriate handler object of the exception's mail address. The handler must then diagnose theexception and perform any appropriate actions for handling the exception.Exception handlers are constructed by the programmer as Screed actor-classes. For each ex-ception a handler accepts, a method must exist with the same name as the exception and whichtakes an instance of the exception class as a parameter. In all other ways, handlers are identical toother actor classes: they may have a set of instance variables, inherit from other classes, and maycommunicate with any of their acquaintances. They may also have other, non-exception methods.
invoker

exceptionhandler

Actor creation
Message sent

Message may be sent

signalerFigure 1.2.8: The four roles involved with an exceptional condition. The invoker initiated themethod in the signaler which caused the exception. An object of the appropriate exception class iscreated and the handler is noti�ed of the exception's mail address. The handler may then interactwith the invoker and/or the signaler as well as the exception object to resolve the exception.All exceptions must inherit from the class exception. When an exception is signaled, an objectof the appropriate exception class is instantiated and initialized with any information needed bythe handler to process the exception. Some of the initialization �elds are supplied by the run-timesystem. These �elds are contained in the exception class from which all exception objects inherit,and are utilized through the methods inherited from the exception class.Additional arguments for the initialization of an exception may be speci�ed by the objects raisinga signal. For example, an arithmetic exception which is initiated by an application could beinitialized when signaled with the values of the operands in the arithmetic operation. This exceptionobject would still have default values speci�ed by the system.Methods de�ned in the exception class make use of the system-supplied values. These methodsare:name returns the name of the exception as a method value. Since method names are �rst-classvalues in Screed, this method enables the automatic calling of the correct method to handleit.invoker returns the mail address of the actor which invoked the method resulting in the generationof the signal.

Gul Agha and Daniel C. Sturman 19signaler returns the mail address of the signal generator.source returns the name of the method in which the signal was generated.arguments returns a list of the arguments that were passed to the method in which the signal wasgenerated.request returns TRUE if the invoker is waiting on a reply, FALSE otherwise.reply allows a handler to reply to a request that was interrupted by the signal. The reply methodcan be used to supply an acceptable value to the invoker, thereby allowing the continuation ofthe computation.Each exception handler may utilize only a few of these �elds. However, since our environmentis asynchronous, we want to preserve all available information. There are no guarantees that thisinformation will be retained by either the invoker or the signaler. Use of exception objects providesus with the
exibility to include a large amount of informationwithout creating complicated functioncalls or messages: all the information is packed into an object and is referenced through a standardinterface. In a procedural approach, long parameters lists would be necessary to achieve the samee�ect.Broadway currently supports three di�erent system exceptions. All three inherit directly fromthe class exception. A bad-method exception is instantiated when an actor receives a message itcannot processes. The bad-method exception class provides the behavior of the destination actor. Ingeneral, there is very little the run-time system can do to correct such an error, but this informationallows a handler to provide meaningful error messages to the user.An arithmetic exception is generated whenever Broadway traps an arithmetic error. Currently,this exception provides the state under which the exception occurred. We plan to expand thisexception to include a string representing the expression being evaluated.Broadway also provides some failure detection capabilities. Each node on Broadway has a failuredetector which uses a watch-dog timer approach to detect the failure of, or inability to communicatewith, other nodes. A crash exception is generated whenever an actor attempts to communicate withan actor on a non-existent or unreachable node. A crash exception consists of the original messageand the identity of the node which cannot be reached. Notice that, although Broadway has detecteda component failure, it is treated similar to any other system exception. It is also possible for anobject to subscribe to a failure detector. In this case, the subscriber's handler will automaticallyreceive an exception whenever a failure is detected, even if the object did not try to communicatewith the failed node.Besides detecting node crashes, Broadway will also handle the failure of individual actors. If anactor crashes due to an error that is trapped by Broadway, that actor address will be marked as acrash. Currently, only arithmetic errors are trapped by Broadway and, therefore, this is the onlymanner in which a single actor may crash. If the defunct actor receives a message, a dead-actorexception will be generated. The dead-actor exception inherits from the crash exception. It alsocontains a reference to the exception generated when the actor crashed. (Currently, this is alwaysan arithmetic exception.)Exception Handling in ScreedIn this section, we describe our two syntactic additions to Screed which enable exception handling:the handle statement which associates exceptions with handlers, and the signal statement whichgenerates an exception.

20 A Methodology for Adapting to Patterns of Faultshandle (exception1, exception2 with handler1,exception3 with handler2,...)f /* Any block of code goes here */gFigure 1.2.9: The structure of a handle block in Screed. exception1, exception2 are actor classnames. handler is the name of an object.In Screed, handlers can be associated with exceptions for either entire actor classes or for arbitrarycode segments within a method. Figure 1.2.9 gives the syntax for a handle statement. The statementde�nes a scope over which speci�c exceptions are associated with a particular handler. If any methodinvocation contained within the code block of the handle statement results in an exception, the signalis routed to the correct handler as speci�ed by the with bindings. As explained above, the exceptionsare speci�ed as class names and the handlers are addresses of objects.Handler statements may be nested. In this case, when an exception is generated, the innermostscope is searched �rst for an appropriate handler. If a handler for the exception does not exist thenhigher level scopes are checked.handle (arithmetic with arithhandler,bad-method with aborthandler) factor A;actor B;actor E;A = new complex(2,3);B = A.divide(C);handle (arithmetic with myhandler)E = B.divide(D);myNum = res;ggFigure 1.2.10: An example of handler scopes and their e�ect. The outermost handle statementprovides handlers for arithmetic and bad-method exceptions. The inner statement overrides theouter scope in that all arithmetic exceptions will be handled by myhandler.Figure 1.2.10 demonstrates the scoping rules. In the scope of the outer handle statement, ifin computing B (by dividing A by C), an arithmetic exception is generated (possibly by dividingby zero), the signal will be passed to arithhandler. The computation of E through the divisionof B by D, however, is in the scope of the second handle statement. Therefore, any arithmeticsignals generated by this action are sent to myhandler . Conversely, if our complex objects donot have a divide method, our actions will generate a bad-method signal which will be handled byaborthandler.Unlike the complaint address based schemes[21, 26], our syntactic mechanisms do not require ex-plicit speci�cation of a handler's address with each message. For any given scope, including a singlemessage send, handlers | our equivalent of complaint addresses | may be speci�ed for each indi-

Gul Agha and Daniel C. Sturman 21vidual exception or for any group of exceptions. One handler need not be speci�ed for all exceptions.Additionally, our method takes greater advantage of the available inheritance mechanisms as wellas the general structure of object-oriented languages: both exceptions and handlers are expressedas objects in our system.The above constructs work well within methods. However, there are two levels of scoping abovethe method level in Screed: the global and class levels. Exception handling at the class level isspeci�ed through the use of a handler statement which encloses several method de�nitions. In thismanner, exception handling may be speci�ed for an entire class by enclosing all methods in onehandler statement. Such a construction does not prohibit handler statements inside the methods.A handle statement may not be de�ned across class boundaries as that would require the useof shared variables between class instances. However, to provide exception handling at the globallevel, Screed supports the system-de�ned handler class Default-Handler. An instance of this classhandles all signals which are not caught by another handler. Default system behavior is for a signalto be simply reported to the terminal. Default-Handler may be overwritten by a programmerde�ning a custom class of the same name. In this way, a �nal level of exception handling may bede�ned by the programmer. This type of facility is especially useful for writing debuggers. Anyexception not de�ned in a custom Default-Handler class is handled by the system-default. Notethat the system creates only one instance of the Default-Handler class: all otherwise unhandledsignals are delivered to this instance.As mentioned previously, exceptions may be generated as user-de�ned signals. A signal is gen-erated by a signal statement.signal exception-class-name(args : : :);The signal statement generates a message to the appropriate exception handler. The argumentsare used for initialization of the exception as de�ned by the interface of the particular exceptionclass. The signal does not interrupt the
ow of control in the code, although a Screed returnstatement could follow the signal to end the method.In many cases, it is necessary for the signaler of the exception to await a response from thehandler before proceeding. signal statements are treated, syntactically, as message sends to ahandler. Therefore, signal statements may act as an remote procedure call in the same manner asScreed message-sends. Thus, the handler may return a value to be used by the signaler. Such a casewould be: res = signal div-zero();For this example, the exception handler would return an actor address as the value res. Then, therest of the signalling method may compute.In other systems, a special construct exists for generating signals within the current context, i.e.generate a signal which is caught by the handle statement in whose scope the statement occurs. Anexample of such a construct would be the exit statement in Clu [24]. In Screed, such a constructin not necessary: the actor can explicitly send a message to the appropriate exception handler.1.2.7 Supporting Adaptive DependabilityA signi�cant di�erence between exception handling in Screed and other languages is the use ofthird-party exception handlers. In languages such as CLU [24], SR [20], and Ada [12], exceptionhandling routines are de�ned within the scope of the invoking objects. We refer to this approachas two-party exception handling (the invoker and the signaler) and our approach as three-party

22 A Methodology for Adapting to Patterns of Faults
Backup Node

Application

Failure Detector

ManagerFigure 1.2.11: A prototypical adaptively dependable system. In this case, the managerM receivesinput in the form of exceptions from application objects and notices from the failure detector.Upon determination that the Primary Node is unstable, M allocates the Backup Node and createsthe appropriate objects to replace the Primary Node. Note that, in actuality, M is probably areplicated entity to ensure its resilience and availability.exception handling (the invoker, the signaler and an independent handler). We have found that two-party exception handling is unsatisfactory for modeling the complex relationships between objectssuch as those required for adaptively dependable systems.The key di�erence between two- and three-party systems is in the potential knowledge of a givenobject. With two-party exception handling, the exception handler, which is also the invoker, mayknow only of exceptions its invocations generated. Therefore, in such a system it is very di�cult todevelop a global picture of the fault pattern in the system. In a three-party system, such monitoringmay be naturally expressed in terms of the exception handler since it may handle exceptions for alarge group of objects or even the entire system. Furthermore, an autonomous exception handlermay subscribe to any available failure detectors, thereby augmenting the knowledge received throughexception signals.A third-party exception handler may also be designated as an object with special rights. Inthis manner the system may be safely modi�ed in response to exceptions and failures. Since itis dangerous to allow the arbitrary modi�cation of one actor by another, most two-party systemscan express recon�guration of the system only by mimicking a three-party system, i.e. they mustnotify a third object with special rights of the exceptions they encounter and this object may thenrecon�gure the system.Thus in adaptively dependable systems, the resulting system architectures will look quite similarto Figure 1.2.11. Such a system may allow the dynamic installation of dependability protocols ormay simply support the recon�guration of several objects in response to exceptions. In either case,the system will have a manager with special rights to modify other objects. The manager will act asthe exception handler for some group of objects being monitored. Furthermore, the manager mayalso subscribe to failure-detection services. Upon receiving enough input to determine that someunacceptable condition exists, the manager recon�gures the group over which it has authority.

Gul Agha and Daniel C. Sturman 23Example 3: Recon�guration to Preserve Failure Semantics
Memory Memory Memory

M M MFigure 1.2.12: This �gure shows the topology of the network on a satellite. The shaded circlesrepresent actors and the manager for memory errors is denoted by the replicated actor M. Thememory uses checksums to avoid returning incorrect values. Instead, if an incorrect value is found,a special exception value is returned which may then trigger an exception in the application. Themanager is replicated to guarantee a high level of fault-tolerance.To illustrate the concepts we described above, consider a distributed system which is operatingin a hostile environment. A good example of such a system is a satellite with multiple processors,each with its own memory. Assume that the memory of these processors was developed to neverreturn incorrect data to a read. Instead, the memory will detect the error through some checksumalgorithm and return an error condition value. This reserved value can then be used to signal anexception and initiate forward error recovery. The speci�cations for this system state that suchmemory errors should occur with probability 10�8. Such a system is shown in Figure 1.2.12. Noticethat the manager is itself replicated to ensure fault-tolerance in this vital system component.
Memory Memory Memory

M M MFigure 1.2.13: The applications on each node have now been replicated using the meta-level protocoldescribed in Example 1. Since we are protecting only against the corruption of individual memorylocations, the replica may reside on the same node as the original actor, thereby improving theperformance of the protocol.Once the system is launched, these memory components seem to operate correctly and themanager responsible for memory errors occasionally performs forward error recovery on the objects.However, the rate at which these memory errors are occurring is unacceptably high (10�5 faults/read)and system performance degrades signi�cantly due to repeated memory faults and subsequent errorrecovery. Therefore, the manager installs the replication protocol described in Example 1. Theresulting system is shown in Figure 1.2.13. Since both the original actor and the replica will bereading values from di�erent memory locations, the probability that a memory error will be noticedis now 10�10, well within the speci�ed tolerance. When an exception occurs, the manager will stillhave to perform some corrections, but the system can keep computing during this time and the errorrecovery will be simpli�ed due to the existence of the replica. Considering the nature of the faults,the replica may be placed on the same node as the original actor. However, if instead of signalling

24 A Methodology for Adapting to Patterns of Faultsan exception, nodes crashed when they could not read memory, the replicas would have been placedon di�erent nodes.1.2.8 ConclusionIn this paper, we have described a methodology for the development of adaptively dependablesystems. Adaptively dependable systems may function over a long duration despite a changingexecution environment. Whether the changes are due to a variance in the components comprisingthe system or to a change in the physical environment in which the component operates, the useof dynamic protocol installation combined with exception handling allows fault tolerance to beguaranteed by the system.Dynamic protocol installation is enabled through the use of a meta-level architecture. Our meta-level, maud, allows the customization of an object's communication behavior on a per-object basis.By describing protocols in terms of modi�cations to the communication behavior, protocols may bedynamically installed on objects as necessary. Furthermore, if a protocol is no longer required, itmay be removed. Through the use of caching and atomic protocol installation, meta-level descriptionof protocols may be implemented with a minimal cost in performance.We also support composition of protocols. Provided there are no inherent semantic con
ictsbetween two protocols and both protocols are implemented using maud, these two protocols maythen be composed without foreknowledge that a composition may occur. In this manner, protocolsmay be constructed in a modular fashion and later combined to provide the desired level of fault-tolerance.To provide adaptive dependability, we combine dynamic protocol installation with exceptionhandling. We make extensive use of third-party exception handlers which are shared between multipleobjects. Since these handlers have privileges to modifymeta-level objects, they are termedmanagers.A single manager will be informed of all exceptions related to a particular problem. The knowledgemay be augmented through subscription to failure-detection services. In this manner, the managerwill have all information necessary for a correct diagnosis of fault patterns.The concepts described in this chapter have been implemented on Broadway | our actor run-time system | and are accessed through the language Screed. Screed provides exception handlingconstructs which support managers and provides access to the meta-level architecture implementedin Broadway.One problem not solved by our framework is guaranteeing the consistent installation of protocolson multiple actors. We are currently developing a Protocol Description Language which will allowa protocol to be expressed as a single entity. A protocol compiler can convert these protocols intomaud mail queues and dispatchers. To address the installation problem, the compiler creates objectsthat guarantee correct installation of the protocol. Managers use these objects to install protocolson all actors involved in the protocol.AcknowledgmentsThe research described in this paper has bene�tted from earlier collaboration with Svend Fr�lundand Rajendra Panwar. The authors would also like to acknowledge helpful comments from Chris-tian Callsen, Svend Fr�lund, WooYoung Kim, Rajendra Panwar, Anna Patterson, Shangping Ren,Carolyn Talcott, Nalini Venkatasubramaniam, and Takuo Watanabe, among others.

Gul Agha and Daniel C. Sturman 25References[1] M. Acceta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach:A New Kernel Foundation for UNIX Developement. In USENIX 1986 Summer ConferenceProceedings, June 1986.[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,1986.[3] G. Agha. Concurrent Object-Oriented Programming. Communications of the ACM, 33(9):125{141, September 1990.[4] G. Agha, S. Fr�lund, R. Panwar, and D. Sturman. A Linguistic Framework for the DynamicComposition of Dependability Protocols. In C.E. Landwehr, B. Randell, and L. Simoncini, edi-tors, Dependable Computing for Critical Applications 3, volume VIII of Dependable Computingand Fault-Tolerant Systems, pages 345{363. IFIP Transactions, Springer-Verlag, 1993.[5] G. Agha, I. Mason, S. Smith, and C. Talcott. Towards a Theory of Actor Computation. InR. Cleaveland, editor, The Third International Conference on Concurrency Theory (CONCUR'92). Springer{Verlag, 1992. LNCS (forthcoming).[6] Gul Agha and Christian Callsen. ActorSpace: An Open Distributed Programming Paradigm.In Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,San Diego, California, May 1993. Also published as a Special Issue of SIGPLAN Notices vol.28, No. 7, pages 23{32, July 1993.[7] Kenneth P. Birman. The Process Group Approach to Reliable Distributed Computing. Com-munications of the ACM, 36(12):37{53, December 1993.[8] Roy Campbell, Nayeem Islam, David Raila, and Peter Madany. Designing and ImplementingChoices: An Object-Oriented System in C++. Communications of the ACM, pages 117{126,September 1993.[9] E. Cooper. Programming Language Support for Multicast Communication in Distributed Sys-tems. In Tenth International Conference on Distributed Computer Systems, 1990.[10] Antonio Corradi, Paola Mello, and Antonio Natali. Error Recovery Mechanisms for RemoteProcedure Call-Based Systems. In 8th Annual International Phoenix Conference on Computersand Communicaton Conference Proceedings, pages 502{507, Phoenix, Arizona, March 1989.IEEE Computer Society Press.[11] Flaviu Cristian. Understanding Fault-tolerant Distributed Systems. Communications of theACM, 34(2):56{78, 1991.[12] Quian Cui and John Gannon. Data-Oriented Exception Handling in Ada. IEEE Transactionson Software Engineering, 18:98{106, May 1992.[13] Christophe Dony. Improving Exception Handling with Object-Oriented Programming. In Pro-ceedings of the 14th Annual International Computer Software and Applications Conference,pages 36{42, Chicago, 1990. IEEE Computer Society, IEEE.[14] Christophe Dony, Jan Purchase, and Russel Winder. Exception Handling in Object-OrientedSystems. OOPS Messanger, 3(2):17{29, April 1992.[15] Je�rey L. Eppinger, Lily B. Mummert, and Alfred Z. Spector, editors. CAMELOT ANDAVALON: A Distributed Transaction Facility. Morgan Kaufmann Publishers, Inc., 1991.

26 A Methodology for Adapting to Patterns of Faults[16] Jacques Ferber and Jean-Pierre Briot. Design of a Concurrent Language for Distributed Arti�-cial Intelligence. In Proceedings of the International Conference on Fifth Generation ComputerSystems, volume 2, pages 755{762. Institute for New Generation Computer Technology, 1988.[17] S. Fr�lund. Inheritance of Synchronization Constraints in Concurrent Object-Oriented Pro-gramming Languages. In Proceedings of ECOOP 1992. Springer Verlag, 1992. LNCS 615.[18] S. Fr�lund and G. Agha. A Language Framework for Multi-Object Coordination. In Proceedingsof ECOOP 1993. Springer Verlag, 1993. LNCS 707.[19] John B. Goodenough. Exception Handling: Issues and a Proposed Notation. Communicationsof the ACM, 18(12):683{696, December 1975.[20] Daniel T. Huang and Ronald A. Olsson. An Exception Handling Mechanism for SR. ComputerLanguages, 15(3):163{176, 1990.[21] Yuuji Ichisugi and Akinori Yonezawa. Exception Handling and Real Time Features in anObject-Oriented Concurrent Language. In A. Yonezawa and T. Ito, editors, Concurrency:Theory, Language, and Architecture, pages 92{109. Springer-Verlag, Oxford, UK, September1989. LNCS 491.[22] Wooyoung Kim and Gul Agha. Compilation of a Highly Parallel Actor-Based Language. InU. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of the 5th Interna-tional Workshop on Languages and Compilers for Parallel Computing, volume 757 of LectureNotes in Computer Science, pages 1{15. Springer-Verlag, 1992.[23] Barbara Liskov. Distributed Programming in Argus. Communications of the ACM, 31(3):300{312, March 1988.[24] Barbara Liskov and Alan Snyder. Exception Handling in Clu. IEEE Transactions on SoftwareEngineering, 5(6):546{558, November 1979.[25] P. Maes. Computational Re
ection. Technical Report 87-2, Arti�cial Intelligence Laboratory,Vrije University, 1987.[26] Carl Manning. ACORE: The Design of a Core Actor Language and its Compiler. Master'sthesis, MIT, Arti�cial Intelligence Laboratory, August 1987.[27] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication Substrate for Fault-Tolerant Distributed Programs. Technical Report TR91-32, University of Arizona, Tucson,1991.[28] M. H. Olsen, E. Oskiewicz, and J. P. Warne. A Model for Interface Groups. In Tenth Symposiumon Reliable Distributed Systems, Pisa, Italy, 1991.[29] Richard D. Schlichting, Flaviu Christian, and Titus D. M. Purdin. A Linguistic Approach toFailure Handling in Distributed Systems. In A. Avi�zienis and J.C. Laprie, editors, DependableComputing for Critical Applications, pages 387{409. IFIP, Springer-Verlag, 1991.[30] Richard D. Schlichting and Titus D. M. Purdin. Failure Handling in Distributed ProgrammingLanguages. In Proceedings: Fifth Symposium on Reliability in Distributed Software and DatabaseSystems, pages 59{66, Los Angeles, CA, January 1986. IEEE Computer Society Press.[31] Santosh Shrivastava, Graeme Dixon, and Graham Parrington. An Overview of the ArjunaDistributed Programming System. IEEE Software, pages 66{73, January 1991.

Gul Agha and Daniel C. Sturman 27[32] B. C. Smith. Re
ection and Semantics in a Procedural Language. Technical Report 272,Massachusetts Institute of Technology. Laboratory for Computer Science, 1982.[33] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, second edition, 1991.[34] C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk. The Extensible Services Switch inCarnot. IEEE Parallel and Distributed Technology: Systems and Applications, 1(2), May 1993.[35] C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. In OOPSLAProceedings, 1989.[36] Nalini Venkatasubramanian and Carolyn Talcott. A MetaArchitecture for Distributed ResourceManagement. In Proceedings of the Hawaii International Conference on System Sciences. IEEEComputer Society Press, January 1993.[37] T. Watanabe and A. Yonezawa. A Actor-Based Metalevel Architecture for Group-Wide Re-
ection. In J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Foundations ofObject-Oriented Languages, pages 405{425. Springer-Verlag, 1990. LNCS 489.[38] C. T. Wilkes and R. J. LeBlanc. Distributed Locking: A Mechanism for Constructing HighlyAvailable Objects. In Seventh Symposium on Reliable Distributed Systems, Ohio State Univer-sity, Columbus, Ohio, 1988.[39] Y. Yokote, A. Mitsuzawa, N. Fujinami, and M. Tokoro. The Muse Object Architecture: A NewOperating System Structuring Concept. Technical Report SCSL-TR-91-002, Sony ComputerScience Laboratory Inc., February 1991.[40] A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System, chapter Re
ection in anObject-Oriented Concurrent Language, pages 45{70. MIT Press, Cambridge, Mass., 1990.

