Abstraction and Modularity Mechanisms
for Concurrent Computing

Gul Agha, Svend Frglund, WooYoung Kim,

Rajendra Panwar, Anna Patterson, and Daniel Sturman

Department of Computer Science
1304 W. Springfield Avenue
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: <aghal|frolund|wooyoung|rajulannap|sturman>@cs.uiuc.edu

1 Introduction

The transition from sequential to parallel and distributed computing has been widely ac-
cepted as a major paradigm shift occurring in Computer Science. It has been observed that
the sequential programming model is inadequate for parallel and distributed computing.
At a conceptual level, one can compare the fundamental intuition between sequential and
concurrent computing as follows:

e The sequential programming model essentially defines a computation as a sequence of
instructions which manipulate a global store. The standard abstraction mechanism for
sequential programs is procedures. Procedures glue a sequence of instructions; they
allow genericity by parameterization and reuse by substitution. While this provides a
good building block for much of sequential programming, it is an unsatisfactory model
for parallel and distributed computing because it does not provide a communication
model and it is not a meaningful abstraction of coordination between concurrent
components.

e In a parallel computation some actions overlap in time; by implication these events
must be distributed in space. Concurrency refers to the potentially parallel execution
of programs. In a concurrent computation, the execution of some parts of a program
may be sequential, or it may be parallel. Since concurrent programs specify a par-
tial order of actions, it provides us with the flexibility to interleave the execution of
commands in a program, or to run them in parallel. Therefore, some of the details of
the order of execution are left unspecified. We can instead concentrate on conceptual
issues without necessarily being concerned with the particular order of execution that
may be the result of the quirks of a given system.

Part of the complexity of reasoning about concurrent programs results from the fact
that partial orders allow considerable indeterminacy in execution. In other words, there
are many potential execution paths. Furthermore, concurrent programs are complicated by
the fact that there are a number of different kinds of design concerns, such as locality and
synchronization, that are transparent in sequential execution environments. To simplify the
construction of concurrent systems, concurrent abstractions must support a separation of
design concerns by providing modularity.

The complexity of concurrent systems requires new abstraction methods to be developed.
There are four important requirements for concurrency abstractions. First, the abstraction
must allow specification of the complex organizational and coordination structures that are
common in concurrent computing. Second, they must provide genericity and reuse of the
coordination patterns, much as procedures do for sequential programming. Third, concur-
rency abstractions must simplify the task of programming by separating design concerns.
And finally, the abstractions must allow efficient execution on concurrent architectures.

This paper describes a number of radical programming language concepts that support
abstraction and provide modularity in concurrent systems. Specifically, the constructs we
propose allow abstract and modular specification of coordination patterns, temporal order-
ing, resource management, and dependability protocols. In particular, specifications using
these constructs are generic and reusable. The next four sections develop our methodology
and apply it to a number of problems as follows:

Actors: we describe the Actor model of concurrent computation. The Actor model pro-
vides the basic building blocks for concurrent programming which may be used to
build a wide variety of computational structures.

Communication abstractions : three communication abstractions are discussed. These
are call/return communication, pattern-directed message passing, and constraints on
reception. To provide a concrete representation, we show how call/return communi-
cation is transformed to primitive actor message-passing.

Object oriented design: we discuss the use of classes, inheritance, and incremental mod-
ification of code.

Modular decomposition: we describe a set of abstractions and discuss how they may be
used to factor out multi-actor coordination patterns, resource management strategies,
and protocols for dependability.

2 Actors

The universe we live in is inherently parallel and distributed. This suggests that the natural
language constructs we use to describe the world may also be useful for modeling compu-
tational systems. It can be reasonably asserted that the most important concept we use to
model the world is categorizing it in terms of objects. In fact, the first elements of natural
language children learn are names of objects.

Computational objects encapsulate a state and an expected behavior. Furthermore,
objects provide an interface defined in terms of the names of procedures that are visible.
These procedures, called methods, manipulate the local state of the object when invoked.
In particular, this implies that representations which support the same functionality may
be interchanged transparently. This is an important software engineering advantage which
has proved its utility in sequential object-based programming.

Traditional object-oriented programming is limited by a mind set which views program-
ming as a sequence of actions. In particular, this mode confounds the natural autonomy
and concurrency of objects: sequential object-oriented languages allow only one object to
be active at a time. An object’s behavior is viewed as a sequence of actions, and this se-
quence is blocked by invoking a method in another object. This is a rather contrived view:
it is more natural to view objects as (virtual) computational agents which may compute
concurrently.

The Actor model unifies objects and concurrency. The model’s building blocks can be
described and justified in fairly intuitive terms. Actors are autonomous and concurrently
executing objects which execute asynchronously (i.e., at their own rate). Actors may send
each other messages. Since actors are conceptually distributed in space, communication
between them is asynchronous. Asynchronous communication preserves the available po-
tential for parallel activity: an actor sending a message asynchronously need not block until
the recipient is ready to receive (or process) a message. If a model requires a sender to
block, it reduces the concurrency which may be available.

In response to receiving a message, an actor may take the following sorts of actions:

send: asynchronously send a message to a specified actor.
create: create an actor with the specified behavior.

become: specify a new behavior (local state) to be used by the actor to respond to the
next message it processes.

The message send primitive is the asynchronous analog of procedure invocation. It
is the basic communication primitive, causing a message to be put in an actor’s mailbox
(mail queue). To send a message, the identity (mail address) of the target of a communi-
cation needs to be specified. Finally, note that although the arrival order of messages is
nondeterministic, every message sent to an actor is guaranteed to be eventually delivered.

The become primitive gives actors a history-sensitive behavior necessary for shared, mu-
table data objects. This is in contrast to a purely functional programming model. The
create primitive is to concurrent programming what procedure abstraction is to sequen-
tial programming. Newly created actors are autonomous and have a unique mail address.
Furthermore, create dynamically extends computational space, it thus subsumes the func-
tionality of new in Pascal or malloc in C. Actor primitives form a simple but powerful set
upon which to build a wide range of higher-level abstractions and concurrent programming
paradigms.

3 Communication Abstractions

Although point-to-point asynchronous message sending is the most efficient form of com-
munication in a distributed system, concurrent languages must provide a number of com-
munication abstractions to simplify the task of programming. Programmers using parallel
or distributed computing need to understand the advantages and limitations of different
communication abstractions. We describe three basic communication abstractions, namely
call/return communication, pattern-directed communication, and constrained reception.

3.1 Call/Return Communication

In call/return communication, an object invokes a number of other objects and waits for
them to return a value before continuing execution. A standard mechanism for call/return
communication in concurrent programming is remote procedure call: a procedure calls an-
other procedure at a remote node and waits for the result. The result is returned to the
point where the call is made. RPC extends the sequential procedure call model where
procedure calls follow a stack discipline which can be efficiently implemented on sequential
processors. In case of high-level actor languages, concurrent RPC-style calls allow a simple
expression of functional parallelism. In actor languages, whether two actors are on the same
node or on different nodes is transparent to the application code.

Blocking a sender in a call/return communication is generally not desirable: if the actor
invoked is on a different node, available concurrency may be unnecessarily lost. If the sender
“holds” the processor while busy waiting for results, processor time is wasted. Otherwise,
extra context switching is needed to change the executing actor from the sender to another
actor.

Whenever feasible, we allow the calling actor to continue computation as soon as it has
asynchronously sent a request. In order to support ease of programming without incurring
an unnecessary performance penalty, we transform a program containing a call/return com-
munication to a semantically equivalent one containing asynchronous message sends only.
The transformations used preserve the maximal concurrency in a program. Optimizing this
form of communication by using a concurrent analog of continuation passing style program
transformation avoids incurring unnecessary costs (see inset).

INSET: Program Transformations for Call/Return Communication

We use one of two transformations on call/return communication [9]. First, if the
response of a sending actor to the next message is not dependent on the results from
a call/return communication, the program is transformed by changing the calls to asyn-
chronous sends and creating a join continuation actor [1]. The join continuation actor
performs a part of computation of the original sender actor that is dependent on the re-
sults. Consider the following expression:

send B (v, C.requesti(), D.request2())

send represents an asynchronous send. When executed, actor C and D receive messages
requestl and request2, respectively. Then, actor B is sent a message with results from
actor C and D along with v. Figure 1 and 2 pictorially represent the execution of the
program before and after the transformation, respectively.

Nestz
———= rpc style send
- — asynchronous send

requestl

Figure 2: After the transformation creating join continuation

Second, if the response of an actor to the next message is partly determined by the
results of the calls to other actors, we separate out the continuation as a method within
the original actor. Note that no purpose would be served by creating a join continuation
actor: the original sender cannot process other messages until a result is received. The
continuation method is triggered by the results of the remote actor invocations. In order to
guarantee consistency between state changes, the transformation creates a synchronization
constraint (see next section) for the continuation method. This new constraint prevents
other messages from being processed until the continuation method has been invoked.

3.2 Pattern-directed Communication

An advantage of point-to-point asynchronous communication mechanism is that it allows
locality to be directly expressed and optimized. However, in some cases, it is sufficient to
communicate with an arbitrary member of a group. If the recipient must name all potential
receivers, the book-keeping involved can be cumbersome. Furthermore, a level of abstraction

is lost. The use of pattern-directed communication allows an abstract specification of a
group of potential recipients. Thus, the actual recipients may be transparently changed:
none of clients needs to know the exact identities of potential receivers or to poll them to
determine if they satisfy some pattern.

In the ActorSpace model, a communication model based on destination patterns is
defined [2]. An actorSpace is a computationally passive container of actors which acts
as a context for matching patterns. Note that actorSpaces may overlap; in particular,
an actorSpace may be wholly contained in another. Patterns are matched against listed
attributes of actors and actorSpaces that are wvisible in the actorSpace. Both visibility and
attributes are dynamic. Messages may be sent to one or all members of a group defined
by a pattern. An actor may send a message to a single (arbitrary) member of a group, or
broadcast it to the entire group. In particular, broadcasting can be used to disseminate
common protocols to an entire group.

ActorSpace provides a useful model for many distributed applications. For example, if
an actorSpace of servers is defined, none of the clients need to know the exact identities
of the potential servers or explicitly poll them to determine if particular ones are suitable.
This provides an abstraction that allows replication of services, for example to enhance
reliability or increase performance.

Linda [5] defines a communication abstraction similar to that of actorSpace; however, the
semantics of Linda, unlike ActorSpace, require explicit read operations by recipients. This
results in at least two significant differences. First, race conditions may occur as a result
of concurrent access by different processes to a common space. Second, communication
cannot be made secure against arbitrary readers — for example, there is no way for a sender
to specify that a process with certain attributes may not consume a message (called a tuple
in Linda). By contrast, in ActorSpace, the attributes of a message’s potential recipient are
determined by the sender.

3.3 Synchronization Constraints

In sequential programs, there is a single thread of control and the programmer must ex-
plicitly fix a calling sequence for all objects — essentially by calling them one at a time and
passing the control to them. Generally a stack discipline is used and control returns to the
calling object once the called object has finished executing. In fact, this calling discipline
corresponds quite poorly to the nature of many computations. In concurrent systems, more
distributed forms of synchronization supporting partial orders are needed.

Consider producer actors and consumer actors which communicate through a buffer
actor. Since actors are autonomous and asynchronous, they do not know if a particular
message they send may be meaningfully processed in the current state of a receiving actor.
Therefore, it is possible for a producer actor to send a put request to a full buffer, or, for a
consumer actor to send a get request to an empty buffer (Figure 3). Thus, it is necessary to
specify when different computational objects may be invoked. Rather than reject messages
which may not be processed in the current state we defer the request.

BUFFER ACTOR

PUT GET

PRODUCER ACTOR CONSUMER ACTOR

Figure 3: Producers and Consumers. The producer actor deposits a data item into the
buffer by invoking put method defined in the buffer actor. The consumer actor retrieves
a data item from the buffer by invoking get method of the buffer actor. The producer
actor may not invoke put method on a full buffer. And the consumer actor may not

invoke get method on a empty buffer.

Our view is that constraints which limit invocations of a concurrent object — i.e., its
synchronization constraints — should be a part of the actor’s interface. A programmer may
associate such constraints with each method. The separation of synchronization constraints
frees the programmer from explicitly specifying code to manage messages received by an
actor which it is not in a state to process. A message not satisfying the constraint is buffered
until such time when the actor’s state satisfies the constraint. Essentially, synchronization
constraints provide an abstract representation of the reactive behavior of an actor. Using
synchronization constraints, it is possible to reason about the effect of composing actors.

Actor programs, unlike iteration in sequential programming languages, do not use global
loops for sequencing actions; the usual semantics of such loops implies that an iteration
should be completed before the next one may be initiated. Instead, actors support message
driven programming. Synchronization constraints may be used to locally ensure consistent
sequencing of iterations. By not creating unnecessary data dependencies, message driven
programming maintains the maximal concurrency available in an algorithm (see inset).

INSET: Overlapping Communication and Computation

Actor programming naturally leads to efficient parallel execution in a number cases. We
illustrate this by an iterative matrix algorithm for the Cholesky Decomposition (CD) of a
dense matrix ([4]). Specifically, the matrix is represented by a collection of actors which
execute different iterations in response to messages they receive. Since the arrival order

of messages is indeterminate, local synchronization constraints are used to ensure that the
iterations are executed in the correct order.

Table 1 compares the results of an implementation of CD algorithm which pipelines
the execution of iterations with an implementation which completes the execution of one
iteration before starting the next. Note that the pipelining naturally follows from the fact
that control is distributed between actors.

Matriz 32 x 32 64 x 64 128 x 128 | 256 x 256
Nodes Seq Pipe | Seq Pipe| Seq Pipe| Seq Pipe
1 131 123 | .873 .857 | 6.45 6.41 | 49.6 49.6
2 127 111 | 788 .760 | 5.75 5.68 | 44.1 43.9
4 .103 .080 | .581 .518 | 83.93 3.76 | 29.8 29.3
8 101 .048 | .445 .308 | 2.63 2.18 | 17.5 16.6
16 133 029 | 451 173 | 1.88 1.20 | 10.7 8.9
32 222 019 | .645 .099 | 198 93| 80 5.6

Table 1: Results from an implementation of the CD algorithm on an Intel iPSC/2. The
columns Seq represent the implementation which completes the execution of one iteration
before starting the execution of the next iteration. The columns Pipe show the values
obtained by pipelining the execution of iterations. The times shown are in seconds.

4 Object-Oriented Design

A natural progression from naming individual objects is to name categories or classes of
objects. Object-oriented design provides a hierarchical framework which naturally models
the world using classification. Such classification allows us to build categories which provide
shared attributes and functionality. By providing a tool for parsimony of representation,
classification simplifies our ability to model the world.

In more concrete terms, a class may be thought of as a category of computational objects
which can be specialized. A canonical example of a class is a vehicle which has certain
attributes such as position, velocity, occupants, weight, etc., and allows certain
method invocations to change some of its attributes. A member of this class is defined by
specifying its initial attributes (state). Some of these attributes may never change if the
class does not contain operations to change them.

A subclass may further specialize the operations of a superclass. For example, a car
may have more specific attributes and functions as well as those of a vehicle. By allowing
a car to inherit code from a vehicle, object-oriented languages support incremental
refinement and code reuse. Depending on the object oriented language, a method may be
extended or redefined in a subclass.

Actors, like any objects, may be organized into classes and include notions of inheritance.
Note that because we specify synchronization constraints in a modular fashion, they may
be inherited and incrementally modified. Specifically, a synchronization constraint may be
further strengthened, weakened or overwritten in a subclass independently of whether the
constrained methods are changed.

Alternately, actors may use forms of inheritance only to support method code reuse.
Specifically, delegation is a variant of inheritance which allows the code of a prototype
object to be reused. For example, it may not be meaningful to think of a stack as a kind
of an array, but a stack may be defined by using the representation and operations of an
array. A stack may delegate invocations of its methods to an array.

A good survey of research in object-oriented programming can be found in [11]. A
description of concurrent object-oriented programming can be found in [1].

INSET: Incremental Modifications of Synchronization Constraints

Consider the example of producers and consumers which communicate through a buffer
(see Figure 3). The buffer defers requests from consumers if it is empty. The code for such
a buffer may be specified as follows:

class Buffer
var first, count
restrict get() with (count > 0)
init ()
count := 0

end
method put(x)

method get()

end

Now suppose we want to create a buffer which takes in requests as long as the cumulative
size of the pending requests is smaller than its buffering capacity. If the buffer represents
a fast cache accessed by a number of printers, it could be defined as an instance of the
sizedBuffer class which extends the buffer class definitions as follows:

class sizedBuffer inherits Buffer
var usedCapacity, totalCapacity
restrict put(x) with (x.size + usedCapacity <= totalCapacity)
init (bufferCapacity)
usedCapacity := 0
totalCapacity := bufferCapacity
end
method put(x)
super.put(x);
usedCapacity := usedCapacity + x.size;
end
method get ()

end

5 Separating Design Concerns

We describe three mechanisms to develop modular and reusable components for concurrent

systems. These mechanisms allow:

10

e The use of abstractions to specify multi-actor coordination patterns. The coordination
patterns include atomicity and temporal ordering.

e Separation of functionality and resource management strategies. For example, poli-
cies for actor placement may be specified in terms of an actor group abstraction
independent of the representation and invocations of a particular group satisfying the
abstraction.

e The ability to develop generic, application independent code for protocols which in-
crease dependability. In particular, the architecture we propose allows the dynamic
installation or removal of protocols to change the fault-tolerance and security charac-
teristics of a running system.

5.1 Synchronizers

Synchronization constraints provide modular expression of constraints which need to be
satisfied by a single actor before it may process a communication it has received. Although
synchronization constraints are often promoted as a way to describe coordination of con-
current objects (e.g., [6]), they are unsatisfactory when describing multi-actor coordination:
synchronization constraints depend only on the local state of a single actor.

In distributed computing, a group of object invocations often must satisfy certain tem-
poral ordering or atomicity constraints. Conventional programming languages do not allow
multi-object constraints to be specified in a modular and reusable manner. This creates a
number of problems. Considerable programming effort is required to express multi-object
constraints in terms of low level message passing. Moreover, expressing these constraints
by explicit message passing “hard wires” both the constraints and their implementation
into the application software. Thus, the same abstract multi-object constraints must be re-
programmed for use with different objects. Finally, the implementation of the multi-object
constraints may not be transparently changed. These difficulties suggest that new high-level
coordination language constructs are needed to simplify the task of programming.

We have made some progress in this area. Specifically, we have developed high level lan-
guage constructs which allow multi-actor constraints to be directly expressed [7]. We define
two types of multi-actor constraints: temporal orderings on, and atomicity of, invocations of
shared distributed actors. Multi-actor constraints are described in terms of conditions that
must be satisfied for a group of method invocations to be accepted: if the conditions are
not met, the invocations are delayed. Thus multi-actor constraints coordinate concurrent
objects by restricting their activation. As the following examples suggest, a large class of
coordination schemes can be efficiently expressed using invocation constraints:

e Consider a group of cooperating resource administrators who must share a limited
resource. The administrators must therefore adhere to a collective policy limiting
the total number of resources allocated at a given point in time. Enforcement of
a collective policy can be expressed as a multi-actor constraint on invocations that
request resources: an allocation request can only be serviced if there are resources
available.

11

e A group of dining philosophers is organized so that each philosopher shares her two
chopsticks with two others. The number of philosophers is equal to the number of
chopsticks and a philosopher needs the two chopsticks next to her in order to eat.
Deadlocks may be avoided by enforcing a multi-actor constraint that requires atomic
invocation of the pick method in two chopstick actors by a single philosopher.

We build on the observation that multi-actor constraints can be specified independent
of the representation of the actors being coordinated. Specifying multi-actor constraints in
terms of the interfaces enables better description, reasoning and modification of multi-actor
constraints. Specifically, utilizing only knowledge about interfaces to describe multi-actor
constraints allows code for coordination to be separated from that for the actor’s function-
ality. This separation enables system design with a larger potential for reuse. Actors may
be reused independent of how they are coordinated; conversely, multi-actor coordination
patterns may be reused on different groups of actors. In particular, it is possible to abstract
over coordination patterns and factor out generic coordination structures.

Key:
O .
Constrained
' 9 object group
O Object
, Atomicity constraints

® Disabled pattern

= ,0,0,A Enabled patterns

©,8,2, 4,4 Messages

Figure 4: QOverlapping actor groups defined by two synchronizers. Messages sent to actors
in the two groups are placed outside the synchronizer boundaries. In this figure, pattern
matching is depicted as matching shapes between patterns and messages. Synchronizers
may disable certain patterns: disabled patterns are black and enabled patterns are white.
The messages at B are disabled whereas the message at C is enabled. The E message is
unconstrained. Patterns may be grouped together into atomicity constraints that ensure
that multiple invocations are scheduled as an atomic action (depicted by boxes around
the groups). The messages at A satisfy the atomicity constraint whereas the message at D
is blocked waiting for another message.

12

We describe multi-actor constraints using synchronizers. Conceptually, a synchronizer
is a special kind of actor that observes and limits the invocations accepted by a group
of actors. The functionality of synchronizers is illustrated in Figure 4. Operationally,
synchronizers are implemented using primitive actor communication. The advantage of
synchronizers is that the involved message-passing is transparent to the programmer who
specifies multi-actor constraints in a high-level and abstract way. The implementation
of synchronizers may either involve direct communication between the constrained actors,
indirect communication with a central “coordinator,” or a hybrid. Thus, by using a high-
level specification of multi-actor constraints, we provide the flexibility to map the same
multi-actor constraint to different implementations.

A synchronizer can be defined and instantiated by a client actor when accessing shared
servers. Thus clients can use constraints to enforce customized access schemes. Alternately,
a synchronizer can be permanently associated with a group of servers when the servers are
first put into operation. In this case, the constraints can express the default interdependence
between servers.

Two other approaches to constraints are developed in the systems Kaleidoscope [6] and
RAPIDE [10]. Constraints in Kaleidoscope capture relations between instance variables of
multiple objects. Thus, Kaleidoscope constraints are formulated in terms of the repre-
sentation of the constrained entities rather than their abstract interfaces. The RAPIDE
prototyping system developed by Luckham et al. [10] involves pattern-based triggering of
concurrent objects. Thus, in RAPIDE, it is not possible to express constraints on the invo-
cations accepted by the involved actors.

INSET: Cooperating Resource Administrators

Consider two cooperating resource administrators (spoolers) which manage a common
printer pool. Suppose the pool has n printers. When an administrator receives a print
request, it performs some bookkeeping computations and then sends the request through a
common bus so that one of the free printers can grab the request and start printing. The use
of two spoolers allows greater concurrency and increases availability. We use a coordination
constraint to ensure that requests are not relayed when there are no free printers. The
constraint also ensures that the two spoolers cooperate to maintain the correct count of
available printers.

Maintenance of common information about the number of free printers can be described
external to the spoolers as a synchronizer. Figure 5 contains a synchronizer which enforces
the global allocation policy. The names spoolerl and spooler?2 are references to the two
constrained spoolers. The synchronizer prevents the processing of a request when there is
no free printer in the pool.

Synchronizers are general tools for describing interdependence between servers perform-
ing a service. Using synchronizers, interdependence is expressed independent of the repre-
sentation of the servers. The resulting modularity makes it possible to modify the coordi-
nation scheme without changing the servers and vice versa. In particular, it is possible to

13

AllocationPolicy(spoolerl,spooler2,numPrinters) =
{ numUsed := 0;

numUsed = numPrinters disables (spoolerl.print and spooler2.print),
(spoolerl.print or spooler2.print) updates increment (numUsed)
(spoolerl.done or spooler2.done) updates decrement(numUsed)

Figure 5: A synchronizer which coordinates two print spoolers. A synchronizer has an
encapsulated state that is updated through an updates operator. The state of the above
synchronizer is held by the variable numUsed. The disables operator delays invocation of
the constrained actors. Delays of invocations are expressed as conditions over the state of
the synchronizer.

dynamically add new printers to the printer pool or add new administrators to the system
without changing codes for already existing printers or administrators; new synchronizers
may simply be instantiated.

5.2 Modular Specification of Resource Management Policies

Expressing a parallel algorithm in terms of primitive actors provides a logical specification
of the algorithm. Such a specification may be called an ideal algorithm [8]. The time taken
by the ideal algorithm, in the presence of unbounded resources and zero communication
cost, is determined by the sequential depth of the longest path in the partial order defined
by the actor computation. However, neither of these assumptions is realistic.

In particular, communication costs for an algorithm are a function of the latency and
bandwidth of an architecture. Latency is the time taken to send a message from one node
to another and bandwidth is the rate at which information may be transmitted between
two halves of an architecture. For example, if a problem, such as sorting, requires half the
data on a distributed computer to be moved, the performance of an algorithm solving the
problem will be bound by the bandwidth. In any physically realizable architecture, the
bandwidth may grow by at most P2?/3 where P is the number of processors. This follows
from the fact that space is three dimensional, therefore a given technology yields a constant
bandwidth per unit area, and a bisecting plane may grow by at most P2?/3 There is a
similar theoretical bound on I/O. In case of sorting, this means that the speed up is bound
by P?/3 in general (and /P on a two dimensional network) [12].

Since the performance of an algorithm is dependent on how many messages have to
be sent and to which nodes, the efficiency of execution depends in part on the placement
and scheduling of objects. In general, the problem of finding an optimal placement policy
is intractable. However, for a given algorithm, a user may be able to determine the most
efficient placement policy.

14

Specifications of resource management policies, such as placement, introduce a new
layer of complexity to programming concurrent architectures. In particular, the same ideal
algorithm executed on the same architecture may yield a different efficiency depending on
the resource management policy used. Specifically, the efficiency obtained may depend on
a number of factors such as:

e the problem or input size,

e characteristics of the concurrent computer including its latency, bandwidth, size, and
processor speeds,

e the placement policy used to map objects to physical resources,

e scheduling strategies used to manage the concurrency.

Current programming methods for concurrent computers intermix specification of re-
source management policies with the code specifying the ideal algorithm. The resulting
conflation of design goals complicates the code and reduces its reusability. We propose to
separate the specification of an ideal algorithm from the strategies used to map it to a con-
current architecture. Specifically, we describe a mapping policy in terms of ActorSpace Type
(AST). An AST may be thought of as a group of actors together with both the abstract
operations and the concurrent access constraints on them.

For example, consider an n X n array. The array can be mapped on a two-dimensional
mesh of p X p processors in a number of ways including:

e Block placement policy: the (i,7)*" element is assigned to the (i div k, j div k)** pro-
cessor, where k = n/p.

o Shuffle placement policy: the (i, j)** element is assigned to the (i mod p, j mod p)t*
Processor.

Although the abstract operations and concurrent access constraints of an array are the
same, different ideal algorithms may be executed more efficiently using different mapping
policies. Linear equation solution techniques, such as Gaussian Elimination or Cholesky
Decomposition, are generally efficient when the matrix is mapped using a shuffle placement
policy. On the other hand, algorithms for low-level image processing applications, domain
decomposition techniques for solving Partial Differential Equations, perform efficiently when
their matrix representation is mapped using the block placement policy.

Note that the correspondence between an algorithm and the optimal placement of its
AST is not one to one. Different placement policies may be more efficient for the same ideal
algorithm on different architectures, and, sometimes for the same algorithm and architec-
ture but a different input size. Organizing a computation in terms of its AST’s provides
modularity and promotes reuse. The task of programming can be simplified by composing
and reusing modules from a repository of placement policies for a given AST.

15

Al

> .
Placement Repositories 7/

Linking Al

=)

A3

: Architecture Specific
|deal Algorithms Efficient Exectable

Code

Figure 6: Combining ideal algorithm specification with a placement policy to obtain archi-
tecture specific, efficient executable code.

INSET: Reuse of Resource Management Strategies

Although we are developing better language support for resource management functions
in terms of ASTs, the functionality we will provide may, in some cases, be mimicked using
current tools. For example, consider a dense matrix representation. A simple set of functions
may be used to specify a placement of matrix elements which may be simply used to execute,
for example, a Gaussian elimination code or a matrix multiplication code, on a distributed
memory machine. Changing the definitions of these functions changes the placement policy
and can affect the performance drastically.

The following C-like code specifies the block placement policy (N is the number of rows
and P is the number of processors):

row mapping(global row num) { return(global rownum / N) }
local_index(global row num) { return(global rownum % N) }
global_ index(local rownum) { return(local rownum + me * N) }

The above functions may be easily redefined to implement a different placement policy,
such as the shuffle placement policy, without changing the code for an ideal algorithm using
the mapping policy.

row mapping(global row num) { return(global rownum % P) }
local_index(global row num) { return(global rownum / P) }

16

global_ index(local rownum) { return(local rownum * P + me) }

5.3 Customizing Dependability

Currently, a protocol for dependability must either be built into the system architecture or
be re-implemented for each application. Moreover, development of dependable software is
expensive: the increased complexity caused by mixing the code for a set of dependability
protocols with that of the application code is itself a source of bugs. A significant savings
in software development and maintenance costs may be realized if abstract, application-
independent specifications of dependability protocols are possible.

We have developed a methodology which allows the code for a dependability protocol
to be specified independently of the application specific code [3]. The methodology has
been implemented in an experimental kernel called Broadway. Our reflective model allows
compositionality of dependability protocols. Compositionality means that we can specify
and reason about a complex dependability scheme in terms of its constituents. Thus, logi-
cally distinct aspects of a dependability scheme may be described separately resulting in a
methodology which allows dependability protocols to be implemented as generic, compos-
able components.

We employ reflection as the enabling technology to allow modular specification and
dynamic installation of dependability protocols. Reflection means that an application can
access and manipulate a description of its own behavior and execution environment. The
actors representing such a description are called meta-level actors. For our purposes, the
meta-level contains a description sufficient to model the dependability characteristics of
an executing application; reflection thus allows dynamic changes in the execution of an
application with respect to dependability.

The most general form of reflection leads to interpretation and is costly. For our pur-
poses, we use a limited reflective model in which each actor has three meta-actors: its
dispatcher, its mail queue and its acquaintance list. The acquaintances meta-actor repre-
sents the current state (behavior) of the actor. The dispatcher and mail queue meta-actors
implement the communication primitives of the runtime system so that the interaction be-
tween actors can be modified to change the dependability characteristics of an application.

Specifically, a dispatcher meta-actor is a representation of the implementation of an
actor’s transmission behavior. When customized, messages sent by the corresponding base
actor are rerouted to the customized dispatcher. An actor’s mail queue meta-actor repre-
sents the mail buffer holding messages received by the actor. If a customized mail queue
meta-actor is installed, all messages to the base actor are rerouted through it. A cus-
tomized mail queue may alter the order of messages to the base actor, e.g., to enforce local
synchronization constraints.

A number of protocols which increase dependability of a system can be expressed in
terms of a customized mail queue, dispatcher and acquaintance list. These protocols include
two phase commit, three phase commit, primary back-up, full replication, check-pointing,

17

and encryption. Composition of dependability protocols is achieved by transparently manip-
ulating the meta-actors of the meta-actors. The resulting system allows not only dynamic
installation of generically specified protocols but their dynamic removal. The limited form
of reflection we use supports incremental compilation and increases execution time by only
a very small constant.

INSET: A Replicated Server

Key:
™ Dispatcher
omr MailQueue
} ~_ \ _ _» Messagesend
| TR —» Causal Connection
\

Figure 7: A replicated service protocol. Client A initially sends a message to Server Sj.
The message is routed to the mail queue Broadcaster. Broadcaster passes a copy of the
message off to S; and sends a copy to Ss. Both servers eventually reply and their replies
are tagged by the two Tagger dispatchers. The Eliminator mail queue then passes only
one copy of the two messages onto A.

To illustrate how Broadway’s reflective architecture may be used to support depend-
ability protocols, we describe the meta-level implementation of a replication protocol. The
protocol involves replicating a server to resist crash failures.

Our original system is a service with two clients. Figure 7 shows the result of installing
the meta-actors for this protocol in the system. A clone is made of the service and the
appropriate meta-actors are installed at the service and at the clients. The meta-actors
are designed to manipulate generic messages. As a result, in combination with the sys-
tem’s ability to clone actors, this protocol is implemented transparently of the base actors.
Furthermore, since the protocol is generic, it may be reused with any application.

For each client, a meta-actor — a customized mail queue (Eliminator) — is installed
at its node. This mail queue will eliminate duplicate messages from the copies of the server.

18

For the server and its replicated copy, customized meta-actors are installed to handle the
transmission and reception of messages. The dispatcher Tagger tags all outgoing messages
so that the clients (using the mail queue Eliminator) may eliminate duplicate responses.
The mail queue Broadcaster copies to server S, all messages sent to server S;. The
repetition of messages is necessary to keep the state of the two servers consistent. When a
message is sent to the service, the get method of the customized meta-mail queue is invoked
instead. When the service requires a new message to process, the Broadcaster mail queue
is sent a put message. The code for the Broadcaster actor class is shown below. Notice
that the transparency of the protocol is preserved by the methods get and put. These
methods manipulate entire messages, never needing to inspect the message contents:

class Broadcaster
var S2, Base;
/* Setup this actor */
init(copy,orig)
S2 := copy;
Base := orig;
end
/* A new message is received */
method get(msg)
send S2 msg;
myqueue.enqueue(msg);
end
end
/* The base actor requests a message */
restrict put() with (myqueue.empty());
method put()
send Base myqueue.dequeue();
end
end

In Figure 7, the results of a sample message transaction are shown. Note that additional
dispatcher meta-actors are required to correctly handle messages that may be sent by the
client after the server crashed, but before that crash was detected. To keep this example
simple, these additional actors were not shown.

6 Conclusions

Because of the costs of learning new programming languages and rewriting old code, the
conversion to new programming paradigms has been slow. This has led some observers to
downplay the importance of research in programming languages. At the same time, there
is a perception of a software crises as the cost of maintaining programs has escalated. In
fact, what exasperates the software maintenance problem is the use of old languages and

19

methodologies which are insufficiently expressive and provide little support for software
maintenance.

The acceptance of new programming paradigms is now likely to come more rapidly.
There are two reasons for this. First, the cost of developing code in newer languages often
outstrips the cost of maintaining old code. For example, consider the increasingly deployed
object-oriented software technology. The technology enables programmers to reduce devel-
opment time by providing support for design and to reduce software maintenance costs by
allowing them to incrementally modify their code. Second, the increasing computational
power available and, the ever lowering cost, of concurrent computers implies that at least
portions of the code need be rewritten to take advantage of concurrent computers.

The need for new programming paradigms is by no means the dominant force in parallel
or distributed computing research. For example, considerable effort has gone into the
development of parallelizing compilers which attempt to extract parallelism from existing
sequential code and then automatically determine the mapping to concurrent computer
architectures. The parallelizing compilers approach suffers from two limitations. First,
code based on sequential algorithms cannot be generally translated to the best parallel
algorithms. Second, no general techniques can allow efficient placement and scheduling
strategies for arbitrary algorithms on a concurrent computer.

The development of new programming paradigms should allow more complex programs
to be written with less effort. Furthermore, it should make the expression of potential
parallelism simpler. However, to be practical, new paradigms must not place unrealis-
tic restrictions on expressiveness. For example, although purely functional, or state-less
programming, has some nice concurrency properties, shared mutable state is an essential
requirement of distributed computing.

Gains in programmer productivity can only be realized by the greater use of new ab-
stractions and modularity mechanisms. Modularity is gained by separating design concerns:
code for different purposes should be independently specified and composed. Abstraction
allows increased genericity and reuse. Furthermore, it raises the granularity of programming
by allowing code to be expressed in terms of more intuitive structures.

We have discussed a number of ways in which modular construction of multi-component
concurrent systems can be supported. These include the use of constraints for expressing
coordination patterns for over distributed objects; ActorSpace Types for abstracting over
resource management strategies for groups of actors; and meta-programming for depend-
ability protocols. Although the resulting modularity allows concurrent programming to be
simplified, this is only a small part of the gain. More importantly, the application indepen-
dence provides a basis for constructing software repositories:. for example, code stored in
repositories can include specifications and implementations of constraints, placement and
scheduling policies, and dependability protocols. The executable specifications may then
be dynamically linked with different application code without the need for reimplementing
any of them. The average application developer need not understand the details of the
representation — rather she needs to know only the relevant properties of the abstraction
(including properties such as the performance characteristics of certain access patterns).

The concurrent programming language abstractions and modularity mechanisms we pro-

20

pose are certainly not a complete set. They do, however, suggest ways of drastically reducing
software development and maintenance costs, scaling up software systems, and making it
feasible to use the power of parallel and distributed computing. We believe that the suc-
cessful application of these methods will further stimulate research in the development of a
new generation of realistic high-level programming languages.

INSET: Furhter Reading
Following is a list of further readings.

The Actor model was originally proposed by Hewitt (for example, see [1]), and later
developed by Agha ([2]).

[1] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Journal of

Artificial Intelligence, 8(3):323-364, 1977.

[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

A formal theory of actors, including proof techniques for establishing the equivalence of
actor systems, appears in [3].

[3] G. Agha, I. Mason, S. Smith, and C. Talcott. Towards a Theory of Actor Computation.
In Third International Conference on Concurrency Theory (CONCUR ’92), pages 565-579.
Springer-Verlag, August 1992. LNCS.

Separation of representation and description of system and reasoning in terms of meta
objects are described in [4].

[4] N. Venkatasubramanian and C. Talcott. A MetaArchitecture for Distributed Resource
Management. In Proceedings of the Hawaii International Conference on System Sciences.
IEEE Computer Society Press, January 1993.

The use of actors for message driven programming of multicomputers is described in [5].

[6] W. Athas and C. Seitz. Multicomputers: Message-Passing Concurrent Computers. [EEE
Computer, pages 9-23, August 1988.

A number of research efforts in object-oriented programming are described in [6].

[6] A. Yonezawa and M. Tokoro, editors. Object-Oriented Concurrent Programming. MIT
Press, Cambridge, Massachussets, 1987.

AST’s generalize and abstract over Concurrent Aggregates ([7]).

[7] A. A. Chien. Concurrent Aggregates: Supporting Modularity in Massively Parallel Pro-
grams. MIT Press, 1993.

For actor-based computer architecture such as J-machine, see [8].

[8] W. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Academic Press,
1986.

[9] S. Matsuoka and A. Yonezawa. Analysis of Inheritance Anomaly in Object-Oriented
Concurrent Programming Languages. In G. Agha, P. Wegner, and A. Yonezawa, editors,
Research Directions in Object-Oriented Programming. MIT Press, 1993. (to be published).

21

Acknowledgments

The authors’ work is supported by the Office of Naval Research (ONR contract number
N00014-90-J-1899), by the Digital Equipment Corporation, and by joint support from the
Defense Advanced Research Projects Agency and the National Science Foundation (NSF
CCR 90-07195). The authors would like to thank contributors to the Open Systems Labora-
tory including Christian Callsen, Shingo Fukui, Chris Houck, Shakuntala Miriyala, Shangpin
Ren, R.K. Shyamasundar, Nalini Venkatasubramanian and Takuo Watanabe. contributions
to the laboratory. The research described in here has strongly benefited from the first au-
thor’s discussions with Carl Hewitt and Carolyn Talcott, among others.

References

[1] G. Agha. Concurrent Object-Oriented Programming. Communications of the ACM,
33(9):125-141, September 1990.

[2] G. Agha and C.J. Callsen. ActorSpace: An Open Distributed Programming Paradigm.
In Principles and Practice of Parallel Programming 93, 1993. Sigplan Notices (To be
published).

[3] G. Agha, S. Frglund, R. Panwar, and D. Sturman. A Linguistic Framework for Dy-
namic Composition of Dependability Protocols. In Dependable Computing for Critical
Applications I1I, IFIP Transactions. Elsevier Science Publisher, 1993.

[4] G. Agha, C. Houck, and R. Panwar. Distributed Execution of Actor Systems. In
D. Gelernter, T. Gross, A. Nicolau, and D. Padua, editors, Languages and Compilers
for Parallel Computing, pages 1-17. Springer-Verlag, 1992. LNCS 589.

[65] N. Carriero and D. Gelernter. How to Write Parallel Programs: A Guide to the
Perplexed. ACM Computing Surveys, 21(3):323-357, September 1989.

[6] Bjorn N. Freeman-Benson and Alan Borning. Integrating Constraints with an Object-
Oriented Language. In O. Lehrmann Madsen, editor, Proceedings ECOOP 92, LNCS
615, pages 268-286, Utrecht, The Netherlands, July 1992. Springer-Verlag.

[7] S. Frglund and G. Agha. A Language Framework for Multi-Object Coordination. In
Proceedings of ECOOP 1993. Springer Verlag, 1993. To appear in LNCS.

[8] L. H. Jamieson. Characterizing Parallel Algorithms. In R. J. Douglass L.H. Jamieson,
D.B. Gannon, editor, The Characteristics of Parallel Algorithms, pages 65-100. MIT
Press, 1987.

[9] W. Kim and G. Agha. Compilation of a Highly Parallel Actor-Based Language. In
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of the Work-
shop on Languages and Compilers for Parallel Computing. Yale University TR DCS
RR-915, 1992. to appear in LNCS, Springer-Verlag.

22

[10] D. C. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz. Partial Orderings of Event
Sets and Their Application to Prototyping Concurrent Timed Systems. In Proceedings
of the 1992 DARPA software Technology Conference, April 1992.

[11] B. Shriver and P. Wegner (Eds.), editors. Research Directions in Object-Oriented
Programming. MIT Press, Cambridge, Mass., 1987.

[12] V. Singh, V. Kumar, G. Agha, and C. Tomlinson. Scalability of Parallel Sorting on
Mesh Multicomputers. International Journal of Parallel Programming, 20(2), April
1991.

23

Contents

1 Introduction

2 Actors

3 Communication Abstractions

3.1 Call/Return Communication

3.2 Pattern-directed Communication

3.3 Synchronization Constraints

4 Object-Oriented Design

5 Separating Design Concerns

5.1 Synchronizers
5.2 Modular Specification of Resource Management Policies

5.3 Customizing Dependability 0L

6 Conclusions

24

S Ot b

10
11
14
17

19

