
Abstraction and Modularity Mechanismsfor Concurrent ComputingGul Agha, Svend Fr�lund, WooYoung Kim,Rajendra Panwar, Anna Patterson, and Daniel SturmanDepartment of Computer Science1304 W. Spring�eld AvenueUniversity of Illinois at Urbana-ChampaignUrbana, IL 61801, USAEmail: <agha|frolund|wooyoung|raju|annap|sturman>@cs.uiuc.edu1 IntroductionThe transition from sequential to parallel and distributed computing has been widely ac-cepted as a major paradigm shift occurring in Computer Science. It has been observed thatthe sequential programming model is inadequate for parallel and distributed computing.At a conceptual level, one can compare the fundamental intuition between sequential andconcurrent computing as follows:� The sequential programming model essentially de�nes a computation as a sequence ofinstructions which manipulate a global store. The standard abstraction mechanism forsequential programs is procedures. Procedures glue a sequence of instructions; theyallow genericity by parameterization and reuse by substitution. While this provides agood building block for much of sequential programming, it is an unsatisfactory modelfor parallel and distributed computing because it does not provide a communicationmodel and it is not a meaningful abstraction of coordination between concurrentcomponents.� In a parallel computation some actions overlap in time; by implication these eventsmust be distributed in space. Concurrency refers to the potentially parallel executionof programs. In a concurrent computation, the execution of some parts of a programmay be sequential, or it may be parallel. Since concurrent programs specify a par-tial order of actions, it provides us with the 
exibility to interleave the execution ofcommands in a program, or to run them in parallel. Therefore, some of the details ofthe order of execution are left unspeci�ed. We can instead concentrate on conceptualissues without necessarily being concerned with the particular order of execution thatmay be the result of the quirks of a given system.1



Part of the complexity of reasoning about concurrent programs results from the factthat partial orders allow considerable indeterminacy in execution. In other words, thereare many potential execution paths. Furthermore, concurrent programs are complicated bythe fact that there are a number of di�erent kinds of design concerns, such as locality andsynchronization, that are transparent in sequential execution environments. To simplify theconstruction of concurrent systems, concurrent abstractions must support a separation ofdesign concerns by providing modularity.The complexity of concurrent systems requires new abstraction methods to be developed.There are four important requirements for concurrency abstractions. First, the abstractionmust allow speci�cation of the complex organizational and coordination structures that arecommon in concurrent computing. Second, they must provide genericity and reuse of thecoordination patterns, much as procedures do for sequential programming. Third, concur-rency abstractions must simplify the task of programming by separating design concerns.And �nally, the abstractions must allow e�cient execution on concurrent architectures.This paper describes a number of radical programming language concepts that supportabstraction and provide modularity in concurrent systems. Speci�cally, the constructs wepropose allow abstract and modular speci�cation of coordination patterns, temporal order-ing, resource management, and dependability protocols. In particular, speci�cations usingthese constructs are generic and reusable. The next four sections develop our methodologyand apply it to a number of problems as follows:Actors: we describe the Actor model of concurrent computation. The Actor model pro-vides the basic building blocks for concurrent programming which may be used tobuild a wide variety of computational structures.Communication abstractions : three communication abstractions are discussed. Theseare call/return communication, pattern-directed message passing, and constraints onreception. To provide a concrete representation, we show how call/return communi-cation is transformed to primitive actor message-passing.Object oriented design: we discuss the use of classes, inheritance, and incremental mod-i�cation of code.Modular decomposition: we describe a set of abstractions and discuss how they may beused to factor out multi-actor coordination patterns, resource management strategies,and protocols for dependability.2 ActorsThe universe we live in is inherently parallel and distributed. This suggests that the naturallanguage constructs we use to describe the world may also be useful for modeling compu-tational systems. It can be reasonably asserted that the most important concept we use tomodel the world is categorizing it in terms of objects. In fact, the �rst elements of naturallanguage children learn are names of objects.2



Computational objects encapsulate a state and an expected behavior. Furthermore,objects provide an interface de�ned in terms of the names of procedures that are visible.These procedures, called methods, manipulate the local state of the object when invoked.In particular, this implies that representations which support the same functionality maybe interchanged transparently. This is an important software engineering advantage whichhas proved its utility in sequential object-based programming.Traditional object-oriented programming is limited by a mind set which views program-ming as a sequence of actions. In particular, this mode confounds the natural autonomyand concurrency of objects: sequential object-oriented languages allow only one object tobe active at a time. An object's behavior is viewed as a sequence of actions, and this se-quence is blocked by invoking a method in another object. This is a rather contrived view:it is more natural to view objects as (virtual) computational agents which may computeconcurrently.The Actor model uni�es objects and concurrency. The model's building blocks can bedescribed and justi�ed in fairly intuitive terms. Actors are autonomous and concurrentlyexecuting objects which execute asynchronously (i.e., at their own rate). Actors may sendeach other messages. Since actors are conceptually distributed in space, communicationbetween them is asynchronous. Asynchronous communication preserves the available po-tential for parallel activity: an actor sending a message asynchronously need not block untilthe recipient is ready to receive (or process) a message. If a model requires a sender toblock, it reduces the concurrency which may be available.In response to receiving a message, an actor may take the following sorts of actions:send: asynchronously send a message to a speci�ed actor.create: create an actor with the speci�ed behavior.become: specify a new behavior (local state) to be used by the actor to respond to thenext message it processes.The message send primitive is the asynchronous analog of procedure invocation. Itis the basic communication primitive, causing a message to be put in an actor's mailbox(mail queue). To send a message, the identity (mail address) of the target of a communi-cation needs to be speci�ed. Finally, note that although the arrival order of messages isnondeterministic, every message sent to an actor is guaranteed to be eventually delivered.The become primitive gives actors a history-sensitive behavior necessary for shared, mu-table data objects. This is in contrast to a purely functional programming model. Thecreate primitive is to concurrent programming what procedure abstraction is to sequen-tial programming. Newly created actors are autonomous and have a unique mail address.Furthermore, create dynamically extends computational space, it thus subsumes the func-tionality of new in Pascal or malloc in C. Actor primitives form a simple but powerful setupon which to build a wide range of higher-level abstractions and concurrent programmingparadigms. 3



3 Communication AbstractionsAlthough point-to-point asynchronous message sending is the most e�cient form of com-munication in a distributed system, concurrent languages must provide a number of com-munication abstractions to simplify the task of programming. Programmers using parallelor distributed computing need to understand the advantages and limitations of di�erentcommunication abstractions. We describe three basic communication abstractions, namelycall/return communication, pattern-directed communication, and constrained reception.3.1 Call/Return CommunicationIn call/return communication, an object invokes a number of other objects and waits forthem to return a value before continuing execution. A standard mechanism for call/returncommunication in concurrent programming is remote procedure call : a procedure calls an-other procedure at a remote node and waits for the result. The result is returned to thepoint where the call is made. RPC extends the sequential procedure call model whereprocedure calls follow a stack discipline which can be e�ciently implemented on sequentialprocessors. In case of high-level actor languages, concurrent RPC-style calls allow a simpleexpression of functional parallelism. In actor languages, whether two actors are on the samenode or on di�erent nodes is transparent to the application code.Blocking a sender in a call/return communication is generally not desirable: if the actorinvoked is on a di�erent node, available concurrency may be unnecessarily lost. If the sender\holds" the processor while busy waiting for results, processor time is wasted. Otherwise,extra context switching is needed to change the executing actor from the sender to anotheractor.Whenever feasible, we allow the calling actor to continue computation as soon as it hasasynchronously sent a request. In order to support ease of programming without incurringan unnecessary performance penalty, we transform a program containing a call/return com-munication to a semantically equivalent one containing asynchronous message sends only.The transformations used preserve the maximal concurrency in a program. Optimizing thisform of communication by using a concurrent analog of continuation passing style programtransformation avoids incurring unnecessary costs (see inset).INSET: Program Transformations for Call/Return CommunicationWe use one of two transformations on call/return communication [9]. First, if theresponse of a sending actor to the next message is not dependent on the results froma call/return communication, the program is transformed by changing the calls to asyn-chronous sends and creating a join continuation actor [1]. The join continuation actorperforms a part of computation of the original sender actor that is dependent on the re-sults. Consider the following expression:send B (v, C.request1(), D.request2())4



send represents an asynchronous send. When executed, actor C and D receive messagesrequest1 and request2 , respectively. Then, actor B is sent a message with results fromactor C and D along with v . Figure 1 and 2 pictorially represent the execution of theprogram before and after the transformation, respectively.
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is lost. The use of pattern-directed communication allows an abstract speci�cation of agroup of potential recipients. Thus, the actual recipients may be transparently changed:none of clients needs to know the exact identities of potential receivers or to poll them todetermine if they satisfy some pattern.In the ActorSpace model, a communication model based on destination patterns isde�ned [2]. An actorSpace is a computationally passive container of actors which actsas a context for matching patterns. Note that actorSpaces may overlap; in particular,an actorSpace may be wholly contained in another. Patterns are matched against listedattributes of actors and actorSpaces that are visible in the actorSpace. Both visibility andattributes are dynamic. Messages may be sent to one or all members of a group de�nedby a pattern. An actor may send a message to a single (arbitrary) member of a group, orbroadcast it to the entire group. In particular, broadcasting can be used to disseminatecommon protocols to an entire group.ActorSpace provides a useful model for many distributed applications. For example, ifan actorSpace of servers is de�ned, none of the clients need to know the exact identitiesof the potential servers or explicitly poll them to determine if particular ones are suitable.This provides an abstraction that allows replication of services, for example to enhancereliability or increase performance.Linda [5] de�nes a communication abstraction similar to that of actorSpace; however, thesemantics of Linda, unlike ActorSpace, require explicit read operations by recipients. Thisresults in at least two signi�cant di�erences. First, race conditions may occur as a resultof concurrent access by di�erent processes to a common space. Second, communicationcannot be made secure against arbitrary readers { for example, there is no way for a senderto specify that a process with certain attributes may not consume a message ( called a tuplein Linda). By contrast, in ActorSpace, the attributes of a message's potential recipient aredetermined by the sender.3.3 Synchronization ConstraintsIn sequential programs, there is a single thread of control and the programmer must ex-plicitly �x a calling sequence for all objects { essentially by calling them one at a time andpassing the control to them. Generally a stack discipline is used and control returns to thecalling object once the called object has �nished executing. In fact, this calling disciplinecorresponds quite poorly to the nature of many computations. In concurrent systems, moredistributed forms of synchronization supporting partial orders are needed.Consider producer actors and consumer actors which communicate through a bu�eractor. Since actors are autonomous and asynchronous, they do not know if a particularmessage they send may be meaningfully processed in the current state of a receiving actor.Therefore, it is possible for a producer actor to send a put request to a full bu�er, or, for aconsumer actor to send a get request to an empty bu�er (Figure 3). Thus, it is necessary tospecify when di�erent computational objects may be invoked. Rather than reject messageswhich may not be processed in the current state we defer the request.6
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PRODUCER ACTOR CONSUMER ACTORFigure 3: Producers and Consumers. The producer actor deposits a data item into thebu�er by invoking put method de�ned in the bu�er actor. The consumer actor retrievesa data item from the bu�er by invoking get method of the bu�er actor. The produceractor may not invoke put method on a full bu�er. And the consumer actor may notinvoke get method on a empty bu�er.Our view is that constraints which limit invocations of a concurrent object { i.e., itssynchronization constraints { should be a part of the actor's interface. A programmer mayassociate such constraints with each method. The separation of synchronization constraintsfrees the programmer from explicitly specifying code to manage messages received by anactor which it is not in a state to process. A message not satisfying the constraint is bu�ereduntil such time when the actor's state satis�es the constraint. Essentially, synchronizationconstraints provide an abstract representation of the reactive behavior of an actor. Usingsynchronization constraints, it is possible to reason about the e�ect of composing actors.Actor programs, unlike iteration in sequential programming languages, do not use globalloops for sequencing actions; the usual semantics of such loops implies that an iterationshould be completed before the next one may be initiated. Instead, actors support messagedriven programming. Synchronization constraints may be used to locally ensure consistentsequencing of iterations. By not creating unnecessary data dependencies, message drivenprogramming maintains the maximal concurrency available in an algorithm (see inset).INSET: Overlapping Communication and ComputationActor programming naturally leads to e�cient parallel execution in a number cases. Weillustrate this by an iterative matrix algorithm for the Cholesky Decomposition (CD) of adense matrix ([4]). Speci�cally, the matrix is represented by a collection of actors whichexecute di�erent iterations in response to messages they receive. Since the arrival order7



of messages is indeterminate, local synchronization constraints are used to ensure that theiterations are executed in the correct order.Table 1 compares the results of an implementation of CD algorithm which pipelinesthe execution of iterations with an implementation which completes the execution of oneiteration before starting the next. Note that the pipelining naturally follows from the factthat control is distributed between actors.Matrix 32� 32 64� 64 128� 128 256� 256Nodes Seq Pipe Seq Pipe Seq Pipe Seq Pipe1 .131 .123 .873 .857 6.45 6.41 49.6 49.62 .127 .111 .788 .760 5.75 5.68 44.1 43.94 .103 .080 .581 .518 3.93 3.76 29.8 29.38 .101 .048 .445 .308 2.53 2.18 17.5 16.616 .133 .029 .451 .173 1.88 1.20 10.7 8.932 .222 .019 .645 .099 1.98 .93 8.0 5.6Table 1: Results from an implementation of the CD algorithm on an Intel iPSC/2. Thecolumns Seq represent the implementation which completes the execution of one iterationbefore starting the execution of the next iteration. The columns Pipe show the valuesobtained by pipelining the execution of iterations. The times shown are in seconds.4 Object-Oriented DesignA natural progression from naming individual objects is to name categories or classes ofobjects. Object-oriented design provides a hierarchical framework which naturally modelsthe world using classi�cation. Such classi�cation allows us to build categories which provideshared attributes and functionality. By providing a tool for parsimony of representation,classi�cation simpli�es our ability to model the world.In more concrete terms, a class may be thought of as a category of computational objectswhich can be specialized. A canonical example of a class is a vehicle which has certainattributes such as position, velocity, occupants, weight, etc., and allows certainmethod invocations to change some of its attributes. A member of this class is de�ned byspecifying its initial attributes (state). Some of these attributes may never change if theclass does not contain operations to change them.A subclass may further specialize the operations of a superclass. For example, a carmay have more speci�c attributes and functions as well as those of a vehicle . By allowinga car to inherit code from a vehicle , object-oriented languages support incrementalre�nement and code reuse. Depending on the object oriented language, a method may beextended or rede�ned in a subclass. 8



Actors, like any objects, may be organized into classes and include notions of inheritance.Note that because we specify synchronization constraints in a modular fashion, they maybe inherited and incrementally modi�ed. Speci�cally, a synchronization constraint may befurther strengthened, weakened or overwritten in a subclass independently of whether theconstrained methods are changed.Alternately, actors may use forms of inheritance only to support method code reuse.Speci�cally, delegation is a variant of inheritance which allows the code of a prototypeobject to be reused. For example, it may not be meaningful to think of a stack as a kindof an array, but a stack may be de�ned by using the representation and operations of anarray. A stack may delegate invocations of its methods to an array.A good survey of research in object-oriented programming can be found in [11]. Adescription of concurrent object-oriented programming can be found in [1].
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INSET: Incremental Modi�cations of Synchronization ConstraintsConsider the example of producers and consumers which communicate through a bu�er(see Figure 3). The bu�er defers requests from consumers if it is empty. The code for sucha bu�er may be speci�ed as follows:class Buffervar first, countrestrict get() with (count > 0)init ()count := 0...endmethod put(x)...method get()...endNow suppose we want to create a bu�er which takes in requests as long as the cumulativesize of the pending requests is smaller than its bu�ering capacity. If the bu�er representsa fast cache accessed by a number of printers, it could be de�ned as an instance of thesizedBuffer class which extends the bu�er class de�nitions as follows:class sizedBuffer inherits Buffervar usedCapacity, totalCapacityrestrict put(x) with (x.size + usedCapacity <= totalCapacity)init (bufferCapacity)usedCapacity := 0totalCapacity := bufferCapacityendmethod put(x)super.put(x);usedCapacity := usedCapacity + x.size;endmethod get()...end5 Separating Design ConcernsWe describe three mechanisms to develop modular and reusable components for concurrentsystems. These mechanisms allow: 10



� The use of abstractions to specify multi-actor coordination patterns. The coordinationpatterns include atomicity and temporal ordering.� Separation of functionality and resource management strategies. For example, poli-cies for actor placement may be speci�ed in terms of an actor group abstractionindependent of the representation and invocations of a particular group satisfying theabstraction.� The ability to develop generic, application independent code for protocols which in-crease dependability. In particular, the architecture we propose allows the dynamicinstallation or removal of protocols to change the fault-tolerance and security charac-teristics of a running system.5.1 SynchronizersSynchronization constraints provide modular expression of constraints which need to besatis�ed by a single actor before it may process a communication it has received. Althoughsynchronization constraints are often promoted as a way to describe coordination of con-current objects (e.g., [6]), they are unsatisfactory when describing multi-actor coordination:synchronization constraints depend only on the local state of a single actor.In distributed computing, a group of object invocations often must satisfy certain tem-poral ordering or atomicity constraints. Conventional programming languages do not allowmulti-object constraints to be speci�ed in a modular and reusable manner. This creates anumber of problems. Considerable programming e�ort is required to express multi-objectconstraints in terms of low level message passing. Moreover, expressing these constraintsby explicit message passing \hard wires" both the constraints and their implementationinto the application software. Thus, the same abstract multi-object constraints must be re-programmed for use with di�erent objects. Finally, the implementation of the multi-objectconstraints may not be transparently changed. These di�culties suggest that new high-levelcoordination language constructs are needed to simplify the task of programming.We have made some progress in this area. Speci�cally, we have developed high level lan-guage constructs which allowmulti-actor constraints to be directly expressed [7]. We de�netwo types of multi-actor constraints: temporal orderings on, and atomicity of, invocations ofshared distributed actors. Multi-actor constraints are described in terms of conditions thatmust be satis�ed for a group of method invocations to be accepted: if the conditions arenot met, the invocations are delayed. Thus multi-actor constraints coordinate concurrentobjects by restricting their activation. As the following examples suggest, a large class ofcoordination schemes can be e�ciently expressed using invocation constraints:� Consider a group of cooperating resource administrators who must share a limitedresource. The administrators must therefore adhere to a collective policy limitingthe total number of resources allocated at a given point in time. Enforcement ofa collective policy can be expressed as a multi-actor constraint on invocations thatrequest resources: an allocation request can only be serviced if there are resourcesavailable. 11



� A group of dining philosophers is organized so that each philosopher shares her twochopsticks with two others. The number of philosophers is equal to the number ofchopsticks and a philosopher needs the two chopsticks next to her in order to eat.Deadlocks may be avoided by enforcing a multi-actor constraint that requires atomicinvocation of the pick method in two chopstick actors by a single philosopher.We build on the observation that multi-actor constraints can be speci�ed independentof the representation of the actors being coordinated. Specifying multi-actor constraints interms of the interfaces enables better description, reasoning and modi�cation of multi-actorconstraints. Speci�cally, utilizing only knowledge about interfaces to describe multi-actorconstraints allows code for coordination to be separated from that for the actor's function-ality. This separation enables system design with a larger potential for reuse. Actors maybe reused independent of how they are coordinated; conversely, multi-actor coordinationpatterns may be reused on di�erent groups of actors. In particular, it is possible to abstractover coordination patterns and factor out generic coordination structures.
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We describe multi-actor constraints using synchronizers. Conceptually, a synchronizeris a special kind of actor that observes and limits the invocations accepted by a groupof actors. The functionality of synchronizers is illustrated in Figure 4. Operationally,synchronizers are implemented using primitive actor communication. The advantage ofsynchronizers is that the involved message-passing is transparent to the programmer whospeci�es multi-actor constraints in a high-level and abstract way. The implementationof synchronizers may either involve direct communication between the constrained actors,indirect communication with a central \coordinator," or a hybrid. Thus, by using a high-level speci�cation of multi-actor constraints, we provide the 
exibility to map the samemulti-actor constraint to di�erent implementations.A synchronizer can be de�ned and instantiated by a client actor when accessing sharedservers. Thus clients can use constraints to enforce customized access schemes. Alternately,a synchronizer can be permanently associated with a group of servers when the servers are�rst put into operation. In this case, the constraints can express the default interdependencebetween servers.Two other approaches to constraints are developed in the systems Kaleidoscope [6] andRapide [10]. Constraints in Kaleidoscope capture relations between instance variables ofmultiple objects. Thus, Kaleidoscope constraints are formulated in terms of the repre-sentation of the constrained entities rather than their abstract interfaces. The Rapideprototyping system developed by Luckham et al. [10] involves pattern-based triggering ofconcurrent objects. Thus, in Rapide, it is not possible to express constraints on the invo-cations accepted by the involved actors.INSET: Cooperating Resource AdministratorsConsider two cooperating resource administrators (spoolers) which manage a commonprinter pool. Suppose the pool has n printers. When an administrator receives a printrequest, it performs some bookkeeping computations and then sends the request through acommon bus so that one of the free printers can grab the request and start printing. The useof two spoolers allows greater concurrency and increases availability. We use a coordinationconstraint to ensure that requests are not relayed when there are no free printers. Theconstraint also ensures that the two spoolers cooperate to maintain the correct count ofavailable printers.Maintenance of common information about the number of free printers can be describedexternal to the spoolers as a synchronizer. Figure 5 contains a synchronizer which enforcesthe global allocation policy. The names spooler1 and spooler2 are references to the twoconstrained spoolers. The synchronizer prevents the processing of a request when there isno free printer in the pool.Synchronizers are general tools for describing interdependence between servers perform-ing a service. Using synchronizers, interdependence is expressed independent of the repre-sentation of the servers. The resulting modularity makes it possible to modify the coordi-nation scheme without changing the servers and vice versa. In particular, it is possible to13



AllocationPolicy(spooler1,spooler2,numPrinters) =f numUsed := 0;numUsed = numPrinters disables (spooler1.print and spooler2.print),(spooler1.print or spooler2.print) updates increment(numUsed)(spooler1.done or spooler2.done) updates decrement(numUsed)gFigure 5: A synchronizer which coordinates two print spoolers. A synchronizer has anencapsulated state that is updated through an updates operator. The state of the abovesynchronizer is held by the variable numUsed. The disables operator delays invocation ofthe constrained actors. Delays of invocations are expressed as conditions over the state ofthe synchronizer.dynamically add new printers to the printer pool or add new administrators to the systemwithout changing codes for already existing printers or administrators; new synchronizersmay simply be instantiated.5.2 Modular Speci�cation of Resource Management PoliciesExpressing a parallel algorithm in terms of primitive actors provides a logical speci�cationof the algorithm. Such a speci�cation may be called an ideal algorithm [8]. The time takenby the ideal algorithm, in the presence of unbounded resources and zero communicationcost, is determined by the sequential depth of the longest path in the partial order de�nedby the actor computation. However, neither of these assumptions is realistic.In particular, communication costs for an algorithm are a function of the latency andbandwidth of an architecture. Latency is the time taken to send a message from one nodeto another and bandwidth is the rate at which information may be transmitted betweentwo halves of an architecture. For example, if a problem, such as sorting, requires half thedata on a distributed computer to be moved, the performance of an algorithm solving theproblem will be bound by the bandwidth. In any physically realizable architecture, thebandwidth may grow by at most P 2=3, where P is the number of processors. This followsfrom the fact that space is three dimensional, therefore a given technology yields a constantbandwidth per unit area, and a bisecting plane may grow by at most P 2=3. There is asimilar theoretical bound on I/O. In case of sorting, this means that the speed up is boundby P 2=3 in general (and pP on a two dimensional network) [12].Since the performance of an algorithm is dependent on how many messages have tobe sent and to which nodes, the e�ciency of execution depends in part on the placementand scheduling of objects. In general, the problem of �nding an optimal placement policyis intractable. However, for a given algorithm, a user may be able to determine the moste�cient placement policy. 14



Speci�cations of resource management policies, such as placement, introduce a newlayer of complexity to programming concurrent architectures. In particular, the same idealalgorithm executed on the same architecture may yield a di�erent e�ciency depending onthe resource management policy used. Speci�cally, the e�ciency obtained may depend ona number of factors such as:� the problem or input size,� characteristics of the concurrent computer including its latency, bandwidth, size, andprocessor speeds,� the placement policy used to map objects to physical resources,� scheduling strategies used to manage the concurrency.Current programming methods for concurrent computers intermix speci�cation of re-source management policies with the code specifying the ideal algorithm. The resultingcon
ation of design goals complicates the code and reduces its reusability. We propose toseparate the speci�cation of an ideal algorithm from the strategies used to map it to a con-current architecture. Speci�cally, we describe a mapping policy in terms of ActorSpace Type(AST). An AST may be thought of as a group of actors together with both the abstractoperations and the concurrent access constraints on them.For example, consider an n� n array. The array can be mapped on a two-dimensionalmesh of p� p processors in a number of ways including:� Block placement policy: the (i; j)th element is assigned to the (i div k; j div k)th pro-cessor, where k = n=p.� Shu�e placement policy: the (i; j)th element is assigned to the (i mod p; j mod p)thprocessor.Although the abstract operations and concurrent access constraints of an array are thesame, di�erent ideal algorithms may be executed more e�ciently using di�erent mappingpolicies. Linear equation solution techniques, such as Gaussian Elimination or CholeskyDecomposition, are generally e�cient when the matrix is mapped using a shu�e placementpolicy. On the other hand, algorithms for low-level image processing applications, domaindecomposition techniques for solving Partial Di�erential Equations, perform e�ciently whentheir matrix representation is mapped using the block placement policy.Note that the correspondence between an algorithm and the optimal placement of itsAST is not one to one. Di�erent placement policies may be more e�cient for the same idealalgorithm on di�erent architectures, and, sometimes for the same algorithm and architec-ture but a di�erent input size. Organizing a computation in terms of its AST's providesmodularity and promotes reuse. The task of programming can be simpli�ed by composingand reusing modules from a repository of placement policies for a given AST.15
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global index(local row num) f return(local row num * P + me) g5.3 Customizing DependabilityCurrently, a protocol for dependability must either be built into the system architecture orbe re-implemented for each application. Moreover, development of dependable software isexpensive: the increased complexity caused by mixing the code for a set of dependabilityprotocols with that of the application code is itself a source of bugs. A signi�cant savingsin software development and maintenance costs may be realized if abstract, application-independent speci�cations of dependability protocols are possible.We have developed a methodology which allows the code for a dependability protocolto be speci�ed independently of the application speci�c code [3]. The methodology hasbeen implemented in an experimental kernel called Broadway. Our re
ective model allowscompositionality of dependability protocols. Compositionality means that we can specifyand reason about a complex dependability scheme in terms of its constituents. Thus, logi-cally distinct aspects of a dependability scheme may be described separately resulting in amethodology which allows dependability protocols to be implemented as generic, compos-able components.We employ re
ection as the enabling technology to allow modular speci�cation anddynamic installation of dependability protocols. Re
ection means that an application canaccess and manipulate a description of its own behavior and execution environment. Theactors representing such a description are called meta-level actors. For our purposes, themeta-level contains a description su�cient to model the dependability characteristics ofan executing application; re
ection thus allows dynamic changes in the execution of anapplication with respect to dependability.The most general form of re
ection leads to interpretation and is costly. For our pur-poses, we use a limited re
ective model in which each actor has three meta-actors: itsdispatcher, its mail queue and its acquaintance list. The acquaintances meta-actor repre-sents the current state (behavior) of the actor. The dispatcher and mail queue meta-actorsimplement the communication primitives of the runtime system so that the interaction be-tween actors can be modi�ed to change the dependability characteristics of an application.Speci�cally, a dispatcher meta-actor is a representation of the implementation of anactor's transmission behavior. When customized, messages sent by the corresponding baseactor are rerouted to the customized dispatcher. An actor's mail queue meta-actor repre-sents the mail bu�er holding messages received by the actor. If a customized mail queuemeta-actor is installed, all messages to the base actor are rerouted through it. A cus-tomized mail queue may alter the order of messages to the base actor, e.g., to enforce localsynchronization constraints.A number of protocols which increase dependability of a system can be expressed interms of a customized mail queue, dispatcher and acquaintance list. These protocols includetwo phase commit, three phase commit, primary back-up, full replication, check-pointing,17



and encryption. Composition of dependability protocols is achieved by transparently manip-ulating the meta-actors of the meta-actors. The resulting system allows not only dynamicinstallation of generically speci�ed protocols but their dynamic removal. The limited formof re
ection we use supports incremental compilation and increases execution time by onlya very small constant.INSET: A Replicated Server
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For the server and its replicated copy, customized meta-actors are installed to handle thetransmission and reception of messages. The dispatcher Tagger tags all outgoing messagesso that the clients (using the mail queue Eliminator) may eliminate duplicate responses.The mail queue Broadcaster copies to server S2 all messages sent to server S1. Therepetition of messages is necessary to keep the state of the two servers consistent. When amessage is sent to the service, the get method of the customized meta-mail queue is invokedinstead. When the service requires a new message to process, the Broadcaster mail queueis sent a put message. The code for the Broadcaster actor class is shown below. Noticethat the transparency of the protocol is preserved by the methods get and put. Thesemethods manipulate entire messages, never needing to inspect the message contents:class Broadcastervar S2, Base;/* Setup this actor */init(copy,orig)S2 := copy;Base := orig;end/* A new message is received */method get(msg)send S2 msg;myqueue.enqueue(msg);endend/* The base actor requests a message */restrict put() with (!myqueue.empty());method put()send Base myqueue.dequeue();endendIn Figure 7, the results of a sample message transaction are shown. Note that additionaldispatcher meta-actors are required to correctly handle messages that may be sent by theclient after the server crashed, but before that crash was detected. To keep this examplesimple, these additional actors were not shown.6 ConclusionsBecause of the costs of learning new programming languages and rewriting old code, theconversion to new programming paradigms has been slow. This has led some observers todownplay the importance of research in programming languages. At the same time, thereis a perception of a software crises as the cost of maintaining programs has escalated. Infact, what exasperates the software maintenance problem is the use of old languages and19



methodologies which are insu�ciently expressive and provide little support for softwaremaintenance.The acceptance of new programming paradigms is now likely to come more rapidly.There are two reasons for this. First, the cost of developing code in newer languages oftenoutstrips the cost of maintaining old code. For example, consider the increasingly deployedobject-oriented software technology. The technology enables programmers to reduce devel-opment time by providing support for design and to reduce software maintenance costs byallowing them to incrementally modify their code. Second, the increasing computationalpower available and, the ever lowering cost, of concurrent computers implies that at leastportions of the code need be rewritten to take advantage of concurrent computers.The need for new programming paradigms is by no means the dominant force in parallelor distributed computing research. For example, considerable e�ort has gone into thedevelopment of parallelizing compilers which attempt to extract parallelism from existingsequential code and then automatically determine the mapping to concurrent computerarchitectures. The parallelizing compilers approach su�ers from two limitations. First,code based on sequential algorithms cannot be generally translated to the best parallelalgorithms. Second, no general techniques can allow e�cient placement and schedulingstrategies for arbitrary algorithms on a concurrent computer.The development of new programming paradigms should allow more complex programsto be written with less e�ort. Furthermore, it should make the expression of potentialparallelism simpler. However, to be practical, new paradigms must not place unrealis-tic restrictions on expressiveness. For example, although purely functional, or state-lessprogramming, has some nice concurrency properties, shared mutable state is an essentialrequirement of distributed computing.Gains in programmer productivity can only be realized by the greater use of new ab-stractions and modularity mechanisms. Modularity is gained by separating design concerns:code for di�erent purposes should be independently speci�ed and composed. Abstractionallows increased genericity and reuse. Furthermore, it raises the granularity of programmingby allowing code to be expressed in terms of more intuitive structures.We have discussed a number of ways in which modular construction of multi-componentconcurrent systems can be supported. These include the use of constraints for expressingcoordination patterns for over distributed objects; ActorSpace Types for abstracting overresource management strategies for groups of actors; and meta-programming for depend-ability protocols. Although the resulting modularity allows concurrent programming to besimpli�ed, this is only a small part of the gain. More importantly, the application indepen-dence provides a basis for constructing software repositories:. for example, code stored inrepositories can include speci�cations and implementations of constraints, placement andscheduling policies, and dependability protocols. The executable speci�cations may thenbe dynamically linked with di�erent application code without the need for reimplementingany of them. The average application developer need not understand the details of therepresentation { rather she needs to know only the relevant properties of the abstraction(including properties such as the performance characteristics of certain access patterns).The concurrent programming language abstractions and modularity mechanismswe pro-20



pose are certainly not a complete set. They do, however, suggest ways of drastically reducingsoftware development and maintenance costs, scaling up software systems, and making itfeasible to use the power of parallel and distributed computing. We believe that the suc-cessful application of these methods will further stimulate research in the development of anew generation of realistic high-level programming languages.INSET: Furhter ReadingFollowing is a list of further readings.The Actor model was originally proposed by Hewitt (for example, see [1]), and laterdeveloped by Agha ([2]).[1] C. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Journal ofArti�cial Intelligence, 8(3):323{364, 1977.[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MITPress, 1986.A formal theory of actors, including proof techniques for establishing the equivalence ofactor systems, appears in [3].[3] G. Agha, I. Mason, S. Smith, and C. Talcott. Towards a Theory of Actor Computation.In Third International Conference on Concurrency Theory (CONCUR '92), pages 565{579.Springer-Verlag, August 1992. LNCS.Separation of representation and description of system and reasoning in terms of metaobjects are described in [4].[4] N. Venkatasubramanian and C. Talcott. A MetaArchitecture for Distributed ResourceManagement. In Proceedings of the Hawaii International Conference on System Sciences.IEEE Computer Society Press, January 1993.The use of actors for message driven programming of multicomputers is described in [5].[5] W. Athas and C. Seitz. Multicomputers: Message-Passing Concurrent Computers. IEEEComputer, pages 9{23, August 1988.A number of research e�orts in object-oriented programming are described in [6].[6] A. Yonezawa and M. Tokoro, editors. Object-Oriented Concurrent Programming. MITPress, Cambridge, Massachussets, 1987.AST's generalize and abstract over Concurrent Aggregates ([7]).[7] A. A. Chien. Concurrent Aggregates: Supporting Modularity in Massively Parallel Pro-grams. MIT Press, 1993.For actor-based computer architecture such as J-machine, see [8].[8] W. Dally. A VLSI Architecture for Concurrent Data Structures. Kluwer Academic Press,1986.[9] S. Matsuoka and A. Yonezawa. Analysis of Inheritance Anomaly in Object-OrientedConcurrent Programming Languages. In G. Agha, P. Wegner, and A. Yonezawa, editors,Research Directions in Object-Oriented Programming. MIT Press, 1993. (to be published).21
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