
Edited by

8Actors: A Model for Reasoning about OpenDistributed SystemsGul A. Agha, Prasannaa Thati, Reza ZiaeiOpen Systems LaboratoryDepartment of Computer Science,University of Illinois at Urbana-Champaign,Urbana, Illinois, USAEmail: fagha,thati,ziaeig@cs.uiuc.edu, Web: http://www-osl.cs.uiuc.edu8.1 IntroductionOpen distributed systems are often subject to dynamic change of hardwareor software components, for example, in response to changing requirements,hardware faults, software failures, or the need to upgrade some component.In other words, open systems are recon�gurable and extensible: they mayallow components to be dynamically replaced or be connected with newcomponents while they are still executing. The Actor theory we describein this paper abstracts some fundamental aspects of open systems. Actorsprovide a natural generalization for objects { encapsulating both data andprocedures. However, actors di�er from sequential objects in that they arealso units of concurrency: each actor executes asynchronously and its op-eration may overlap with other actors. This uni�cation of data abstractionand concurrency is in contrast to language models, such as Java, where anexplicit and independent notion of thread is used to provide concurrency.By integrating objects and concurrency, actors free the programmer fromhaving to write explicit synchronization code to prevent harmful concurrentaccess to data within an object.There are several fundamental di�erences between actors and other for-mal models of concurrency. First, an actor has a unique and persistentidentity, although its behavior may change over time. Second, communica-tion between actors is asynchronous and fair (messages sent are eventuallyreceived). Third, an actor's name may be freely given out { without, forexample, enabling other actors to adopt the same name. Finally, new actorsmay be created with their own unique and persistent names. These char-acteristics provide reasonable abstraction for open distributed systems. Infact, actors provide a realistic model for a number of practical implementa-tions, including those of software agents [AJ99].1

2 G. Agha, et al.The outline of the paper is as follows. The next section relates actors toother models of concurrency. Section 3 presents an introduction to actors.Section 4 presents the syntax and semantics of a simple actor language. Sec-tion 5 completes the discussion of the language semantics, along with a briefdescription of a notion of equivalence. Section 6 describes an example whichshows how actor theory can be used to reason about open systems. The�nal section outlines current research directions and provides some perspec-tive. The treatment in this paper is of necessity rather high-level. Interestedreaders should refer to the citations for technical details of the work as wellas secondary references to the literature.8.2 Related WorkA number of formal models have been proposed to formalize fundamentalconcepts of concurrent computation involving interaction and mobility. Werelate actors to the most prominent of these: namely, the �-calculus [Mil93,Mil99] and its variants [HT91, Bou92].The �-calculus evolved out of an earlier formal model of concurrency calledthe Calculus of Communicating Systems (CCS) [Mil89]. Processes in CCSare interconnected by a static topology. In order to overcome the limitationsof CCS which did not model actor-like systems with their dynamic inter-connection topology, the �-calculus was developed. The �-calculus enablesdynamic interconnection by allowing channel names to be communicated.The Actor model and �-calculus are similar in the sense that both modelconcurrent and asynchronous processes, communication of values, and syn-chronization. However, the two formalisms make di�erent ontological com-mitments. We examine the most signi�cant of these di�erences.� The central di�erence between the �-calculus and the Actor model isthat names in the former identify stateless communication channels, whilenames in the latter identify persistent agents. Representation of the objectparadigm in �-calculus requires imposing a type system [San98, Wal95].However, the usage of actor names embodies additional semantic prop-erties not captured by these type systems. For instance, an actor hasa unique name, and it may not create new actors with names receivedin a message. A typed �-calculus which also enforces these additionalconstraints is presented in [Tha00].� Actors provide bu�ered, asynchronous communication as a primitive whilecommunication in the �-calculus is synchronous. It is possible to simu-late one in terms of the other, but such simulations insert a degree of

Actors 3complication in reasoning, while at the same time such simulations onlyapproximate the abstractions. Although synchronous communication canbe useful for inferring pair-wise group knowledge { a necessary condi-tion for joint action, it should be observed that process actions in bothmodels are asynchronous, thus the synchronous communication in the �-calculus is not useful for any notion of joint action. The Actor modelis closer to real distributed systems; one consequence of this proximity ofasynchronous communication and distributed systems is that synchronouscommunication is not as e�cient as a default communication mechanismin distributed systems (see [Agh86, Kim97, VA98]).� Message delivery in the Actor model is fair, which allows greater modular-ity in reasoning (see Section 8.4.2). It is possible to add di�erent notionsof fairness in �-calculus and its variants, but there is no standard notionof fairness in these models.Programming languages that have been developed based on �-calculus,such as the Nomadic �-calculus [SWP99], generally adopt key aspects ofthe Actor model. The Nomadic �-calculus was conceived primarily to studycommunication primitives for interaction between mobile agents. An agentin a Nomadic �-calculus is essentially a process with a unique name whichcommunicates with other agents via asynchronous messages. The readermay note the similarity with the Actor model.The Nomadic �-calculus model does have other aspects which are notshared with the Actor model. The model extends the basic ideas in �-calculus with notions of sites andmigrating agents. Every agent is associatedwith a current host site, and agents may migrate between sites during theirexecution. The calculus identi�es two kinds of communication primitives:location dependent primitives which require the knowledge of the currentlocation of the target agent, and location independent primitives which donot.In contrast, actors are not associated with a host. Moreover, to use theterminology in [Nee89] actor names are pure: they do not contain any infor-mation about the creation or location of an actor. However, variants of theActor model exist in which actor names contain both creation and currentlocation information. The agent de�nition based on actors explicitly modelslocation [AJ99], and location information have been added to actor namesto provide universal naming for the World Wide Computer model [Var00].

4 G. Agha, et al.
Interface

Thread

Thread

State

State

Procedure

Interface

Thread

Procedure

State

Procedure

Interface

Messages

Fig. 8.1. Actors encapsulate a thread and state. The interface is comprised ofpublic methods which operate on the state.8.3 ActorsThe Actor model provides an e�ective method for representing computationin real-world systems. Actors extend the concept of objects to concurrentcomputation [Agh86]. Recall that objects encapsulate a state and a set ofprocedures that manipulate the state; actors extend this by also encapsu-lating a thread of control (see Figure 8.1). Each actor potentially executesin parallel with other actors. It may know the addresses of other actors andcan send messages to such actors. Actor addresses may be communicatedin messages, allowing dynamic recon�guration and name mobility. Finally,new actors may be created; such actors have their own unique addresses.A concrete way to think of actors is that they represent an abstractionover concurrent architectures. An actor runtime system provides an abstractprogram interface (API) for services such as global addressing, memory man-agement, fair scheduling, and communication. It turns out that the actorAPI can be e�ciently implemented, thus raising the level of abstractionwhile reducing the size and complexity of code on concurrent architectures[KA95].Note that the Actor model is, like the �-calculus, general and inherentlyparallel. Asynchronous communication in actors directly preserves the avail-able potential for parallel activity: an actor sending a message does not have

Actors 5to necessarily wait for the recipient to be ready to receive (or process) amessage. Of course, it is possible to de�ne actor-like bu�ered, asynchronouscommunication in terms of synchronous communication, provided dynamicactor (or process) creation is allowed. On the other hand, more complexcommunication patterns, such as remote procedure calls, can also be ex-pressed as a sequence of asynchronous messages [Agh90]. Higher level actorlanguages often provide a number of communication abstractions.8.4 A Simple Actor LanguageIt is possible to extend any sequential language with actor constructs. Weuse the call-by-value �-calculus for this purpose. Here we will present avariant of the language presented in [AMST96] together with its formalsyntax and semantics. 8.4.1 SyntaxWe assume countably in�nite sets X(variables) and A t (atoms). A t containst and nil for booleans, as well as constants for natural numbers, N. Weassume a countably in�nite set of actor addresses. To simplify notation weidentify this set with X, and call the variables used in this way, i.e. the freevariables in an actor con�guration (see Section 8.4.2) as actor names. Wealso assume a set of (possibly empty) sets of n-ary operations, Fn on A t foreach n 2 N, and F = Sn2N Fn . F contains arithmetic operations, recognizersisatom for atoms, isnat for numbers, ispair for pairs, branching br, pair-ing pr, 1st, 2nd, and the following actor primitives: actor primitives send,newactor, and ready.send(a; v) creates a new message:� with receiver a, and� contents vnewactor(b) creates a new actor:� with behavior b, and� returns its addressready(b) captures local state change:� replaces the behavior of the executing actor with b� frees the actor to accept another message.The sets of value expressions V, and expressions E are de�ned inductivelyas follows:

6 G. Agha, et al.De�nition 1V = A t [X [�X:E [pr(V;V)E = A t [X [�X:E [app(E ; E) [Fn(En)We let x; y; z range over X, v range over V, and e range over E . To simplifythe presentation of examples we use several abbreviations. The function bris a strict conditional, and the usual conditional construct if can be de�nedas the following abbreviation:if(e0; e1; e2) abbreviates app(br(e0; �z:e1; �z:e2); nil) for z freshSimilarly, let, seq, and rec are the usual syntactic sugar: let is usedfor creating local bindings, seq is used as a sequencing primitive, and recis the Y combinator used for recursion in call-by-value �-calculus. Finally,letactor is a convenient abbreviation used for actor creations.letactorfx := ege0 abbreviates letfx := newactor(e)ge0Actor behaviors are represented as lambda abstractions. Delivery of amessage m is simply the application of actor's behavior b to m, denotedby app(b;m). The motivation behind the actor constructs is to provide theminimal extension that is necessary to lift a sequential language to a con-current one supporting object-style encapsulation (of state and procedures)and coordination.In Section 8.3.2, we provide an operational semantics for our language interms of a transition relation on actor con�gurations.ExampleWe provide a few examples to illustrate the Actor model. Since we are notconcerned with the structure of messages, we represent messages abstractlyby assuming functions to create messages, and to test or extract their con-tents. For example, we assume that mkget(c) creates a `get' message withcontent c and get?(m) returns true if m is a `get' message.Sink. The �rst example is the behavior of an actor that ignores everymessage that it receives and becomes itself:Bsink = rec(�b:�m:ready(b))Cell. The second example is an actor that models the behavior of a variablestore as used in imperative programming. We call this actor a cell and itresponds to two sorts of messages. A get message contains the address ofan actor requesting the value of the cell, and a set message which contains

Actors 7a new value to replace cell's old value. The following code speci�es thebehavior of a cell actor.Bcell = rec(�b:�c:�m:if(get?(m);seq(send(cust(m); c); ready(b(c)))if(set?(m);ready(b(contents(m)));ready(b(c)))))Evaluatingletactorfa := Bcell(0)gseq(send(a; mkset(3)); send(a; mkset(4)); send(a; mkget(b)))will result in the actor b receiving a message containing either 0, 3, or 4,depending on the arrival order of messages sent to cell a.Tree Product. Our third example is a divide and conquer problem whichillustrates how synchronization primitives can be modeled using actors. Sup-pose we want to determine the product of the leaves of a tree. We assumethat every internal node of the tree has exactly two children, and that theleaves are integers. A divide and conquer strategy is to calculate the productof the leaves of each subtrees and then multiply the results. The sequen-tial implementation of this algorithm can be represented by the followingrecursive function:treeprod = rec(�f:�tree:if(isnat(tree);tree;f(left(tree)) � f(right(tree)))However, the same strategy can be used to obtain a parallel algorithm thatconcurrently evaluates products of subtrees. To synchronize the calculationof subtree products, we use join continuation actors which guarantee thatseveral concurrent sub-computations are complete before beginning a com-putation that depends on the results of the sub-computations. The behaviorBtreeprod below implements a concurrent evaluation of tree products.Btreeprod =rec(�b:�self :�m:if(notvalidtree(tree(m));seq(send(cust(m); error);ready(b(self)));

8 G. Agha, et al.if(isnat(tree(m));seq(send(cust(m); tree(m));ready(b(self))),letactorfjc := Bjoincont(cust(m); 0; nil)gseq(send(self ; mkprd(left(tree(m)); jc));seq(send(self ; mkprd(right(tree(m)); jc))ready(b(self)))))))The behavior of the join continuation actor is speci�ed as:Bjoincont =rec(�b:�cust :�nargs :��rstnum :�numif(eq(nargs ; 0);ready(b(cust ; 1;num));seq(send(cust ;�rstnum � num);ready(Bsink))))Note that an actor with behavior Btreeprod can evaluate multiple treeproduct requests concurrently. Speci�cally, the evaluation of a new treeproduct request can begin even before the evaluation of any previous re-quests is complete. The structure of many parallel computations, such asparallel search, is very similar.8.4.2 Reduction Semantics for Actor Con�gurationsInstantaneous snapshots of actor systems are called con�gurations. The op-erational semantics of our language is de�ned by a transition relation oncon�gurations. The notion of open systems is captured by de�ning a dy-namic interface to a con�guration, i.e. by explicitly representing a set ofreceptionists which may receive messages from actors outside the con�gu-ration and a set of actors external to the con�guration which may receivemessages from the actors within.An actor con�guration with actor map �, multi-set of messages �, recep-tionists �, and external actors �, is writtenh� � i��where � and � are �nite sets of actor addresses, � maps a �nite set ofaddresses to their behavior, � is a �nite multi-set of (pending) messages. Amessagem contains the address of the actor it is targeted to and the messagecontents, a / v. We restrict the contents to be any values constructed from

Actors 9(beta-v) R[[app(�x:e; v)]] �7! R[[e[x := v]]](delta) R[[�(v1; : : : ; vn)]] �7! R[[v0]]where � 2 Fn, v1; : : : ; vn 2 Atn, and �(v1; : : : ; vn) = v0.(eq) R[[eq(v0; v1)]] �7! � R[[t]] if v0 = v1 2 AtR[[nil]] if v0; v1 2 At and v0 6= v1Fig. 8.2. Relation �7! on � expressions.atoms and actor addresses using the pairing constructor pr. We call thesevalues as communicable values and let cv range over them.Let h� � i�� be a con�guration, and if A = Dom(�) (domain of �) thenthe following properties must hold:(0) � � A and A \ � = ;,(1) if a 2 A, then FV(�(a)) � A [�, where FV(�(a)) represents the freevariables of �(a); and if v0 / v1 is a message with content v1 to actoraddress v0, then FV(vi) � A [� for i < 2.To describe local transitions at an actor, we decompose uniquely a non-value expression into a reduction context �lled with a redex. A redex identi-�es the next sub-expression that is to be evaluated according to the reductionstrategy (which in our case is left-�rst, call-by-value) [FF86]. Redexes areof two kinds: purely functional and actor redexes. The actor redexes aresend(a; v), newactor(b) and ready(b). Reduction rules for the functionalcase are de�ned by a relation �7! on E as shown in Figure 8.2.The transition relation i.e. 7! on actor con�gurations is de�ned by therules shown in Figure 8.3. The rules are all labeled to indicate the kindof reduction and any additional parameters. The notation [e]a denotes the(singleton) actor map which maps the name a to expression e.The <fun:a> rule simply says that an actor's internal computation isde�ned by the semantics of the sequential language its behavior is writtenin. The <new:a; a0> rule says that a new actor with fresh name a0 (noexternal actor or an actor already in the con�guration can have the samename) is created and ready to receive messages. The new actor's name, a0 isreturned to the creating actor as the result of the newactor operation. The<send:a;m> rule de�nes the asynchronous semantics of message send. Thenew message is put in the message pool and the sending actor can continue

10 G. Agha, et al.<fun:a>e �7! e0) h�; [e]a � i�� 7! h�; [e0]a � i��<new:a; a0>h�; [R[[newactor(v)]]]a � i�� 7! h�; [R[[a0]]]a; [ready(v)]a0 � i�� a0 fresh<send:a;m>h�; [R[[send(v0; v1)]]]a � i�� 7! h�; [R[[nil]]]a �;m i�� m = v0 / v1<rcv:a; cv>h�; [R[[ready(v)]]]a a / cv; � i�� 7! h�; [app(v; cv)]a � i��<out:m>h� �;m i�� 7! h� � i�0�if m = a / cv, a 2 �, and �0 = � [(FV(cv) \ Dom(�))<in:m>h� � i�� 7! h� �;m i��[(FV(cv)�Dom(�))if m = a / cv, a 2 � and FV(cv) \Dom(�) � �Fig. 8.3. Actor transitions.
its execution. The <rcv:a; cv> rule says that an actor can receive a messageonly when it is ready. In fact, execution of the ready operation blocks theactor's thread until the delivery of a message. The delivery is performed byapplying the new behavior to the message. The last two rules, <out:m> and<in:m>, capture the openness of the con�gurations by allowing exchange ofmessages between the con�guration and its environment. Note the dynamicnature of the interface and that the exchange of messages is restricted bythe interface.Because our language is untyped, creation of actors with ill-formed behav-iors (i.e. behaviors that are not � abstractions), and creation of messageswith ill-formed contents (i.e. contents that are not communicable values) ispossible. But the reduction system will prevent such ill-formed behaviorsand messages from being used.

Actors 11ExampleConsider the following actor behavior that creates new cell actors uponrequest:Bc-maker =rec(�b:�self :�m:letactorfnewcell := Bcell(0)gseq(send(cust(m);newcell));ready(b(self))))An initial actor con�guration containing a cell maker actor is given below:h [ready(Bc-maker(cm))]cm ifcmg;Let's say this actor con�guration makes an input transition with the label<in:cm / mkcell(a)>. The resulting con�guration will be:h [ready(Bc-maker(cm))]cm cm / mkcell(a) ifcmgfagAnd after a <rcv:cm; cm / mkcell(a)>, a series of fun transitions, and a<send:a; a / a0> transition, we reach the following con�guration:h [ready(Bc-maker(cm))]cm; [ready(Bcell(0))]a0 a / a0 ifcmgfagAnd with a �nal <out:a / a0>, the following con�guration will result:h [ready(Bc-maker(cm))]cm; [ready(Bcell(0))]a0 ifcm;a0gfagFollowing this transition, the actor name a0 will be known to the outsideworld and further calls to cm will result in new cells being created.8.4.3 Local Synchronization ConstraintsDi�erent actors carry out their operations asynchronously. This means thatthe sender of a message may not know what the state of a recipient is at thetime it sends the message. Moreover, an actor may not be able to processparticular types of messages while in certain states. For example, a lockthat is currently owned by a process cannot accept any further requests toacquire the lock until it is released by the current owner. In models relying onsynchronous messages, this is handled by guards on ports: di�erent types of

12 G. Agha, et al.
Mail

Queue Controller

Pending Queue

Synchronization
Constraints

ACTOR

State
Dependence

Data
and

MethodScheduleEvaluate

Incoming
Messages

Fig. 8.4. An actor with local synchronization constraints.messages are received at di�erent ports, and ports may be disabled/enableddepending on the local process state and message contents, thereby blockinga communication.In actors, message send is asynchronous and non-blocking. Di�erent ap-proaches to selectively process external communications may be taken toaddress the problem. One solution is to let an actor explicitly bu�er the in-coming communications that it is not ready to process (cf. insensitive actors[Agh86]). In the Rosette actor language, Tomlinson and Singh [TKS+89]proposed a mechanism which associates with each potential state of actoran enabled set specifying the particular methods the recipient actor is will-ing to invoke. The actor then processes the earliest received message in itsqueue which invokes a method in its current enabled set. The e�ect is todelay the processing of a message until such time that an actor is in a statewhere it is able to process it.In this paper, we use a variation of this concept called local synchronizationconstraints. Local synchronization constraints are so called because theirscope of in
uence is a single actor [Fro96]. A local synchronization constraintis a predicate that constrains the delivery of messages. Delivery of a messageto a constrained actor is delayed until the message satis�es the constraint(see Figure 8.4). An actor's synchronization constraint re
ects the state ofthe actor and therefore is updated every time an actor moves into its nextstate by executing a ready operation.To account for synchronization constraints we slightly modify the standard

Actors 13<rcv: a; cv>h�; [R[[ready(v; c)]])a a / cv; � i�� 7! h�; [app(v; cv)]a � i��if app(c; cv) = tFig. 8.5. Transitions for Actor Con�gurations with Local Synchronization Con-straints.language of actors as in Figure 8.3. In the new language, the ready primitiveis modi�ed by adding a second argument: a synchronization constraint whichis a predicate over messages. Consequently, the rule rcv must be modi�edto capture the intended semantics of synchronization constraints.The new semantic rule is shown in Figure 8.5. All the other rules re-main the same. Note that according to the side condition of the rule, if thecomputation of app(c; a / cv) does not terminate, the condition will neverhold and therefore the delivery will not take place { which is what we intu-itively expect. However, the operational semantics as given is loose { sinceevaluating the constraint has no side-e�ects, an implementation could con-currently test the constraint against several messages, but then accept onlyone of the messages for which the constraint is satis�ed (this is similar to thesemantics of Dijkstra's guarded command). It should be noted that mostactor languages ensure termination of testing synchronization constraints bydisallowing recursion in constraints.Finally, note that it is possible to translate the actors with local synchro-nization constraints into actors obeying the primitive semantics ([AKP95]).A proof that this translation is semantics preserving can be found in [MT99].ExampleThe example in this section demonstrates how synchronization constraintscan modularly control delivery of messages.Consider the cell actor example again. Now, suppose we want to modifythe cell to turn it into a single element bu�er. In other words, we wantto add the restriction that a put message be delivered only when the cell isempty and a get message delivered only when the cell is not empty. Assumethe following abstract functions on messages: put?(m), get?(m).The local synchronization constraints over a cell cell can be representedas predicate functions over messages as follows.

14 G. Agha, et al.Cfull = �m:get?(m)Cempty = �m:put?(m)These constraints must be set by the actor when a ready operation isperformed. Now, a single element bu�er can be implemented as follows.Bsingle-bu�er = rec(�b:�(v; sc):�m:if(get?(m);seq(send(cust(m); v);ready(b(v; Cempty); Cempty));if(set?(m);ready(b(contents(m); Cfull); Cfull));ready(b(c; sc); sc))) ; bad messageIn the rest of this paper we assume that ready(b) abbreviatesready(b,�m:true). 8.5 TheoryIn this section we describe a theory of Actor computation. The basis ofthis theory was introduced in [AMST96]. Here we summarize the mainelements of the theory and then introduce a proof technique based on i/o-path correspondence developed in [MT99].8.5.1 Computation Trees and PathsThe behavior of an actor system will be represented by computation treesand paths. We write �0 l�! �1 if �0 7! �1 according to the rule labeled byl in Figure 8.3.De�nition 2 The computation tree for a con�guration �, written asT (�), is de�ned to be the set of all �nite sequences of labeled transitions ofthe form [�i li�! �i+1 j i < n] for some n 2 N , with � = �0. We call suchsequences computation sequences and let � range over them.De�nition 3 The sequences of a computation tree are partially ordered bythe initial segment relation. A computation path from a con�guration �is a maximal linearly ordered set of computation sequences in T (�). Notethat a path can also be regarded as a (possibly in�nite) sequence of labeledtransitions.

Actors 15We use T 1(�) to denote the set of all paths from �, and let � range overcomputation paths. When thinking of a path as a possibly in�nite sequencewe write [�i li�! �i+1 j i < ./] where ./ 2 N [! is the length of the sequence.Since the result of a transition is uniquely determined by the starting con-�guration and the transition label, computation sequences and paths canalso be represented by their initial con�guration and the sequence of tran-sition labels. The sequence of con�gurations can be computed by inductionon the index of occurrence. We assume this representation of computationpaths in the rest of this paper.8.5.2 FairnessThe model we have developed provides fairness, namely that any enabledtransition eventually �res. Under this assumption, not all paths are consid-ered to be admissible. Fairness is an important requirement for reasoningabout eventuality properties. It is particularly relevant in supporting mod-ular reasoning.There are two important consequences of fairness which illustrate its use-fulness. The �rst of these is that each actor makes progress independentof how busy other actors are. Therefore, if we compose one con�gurationwith another which has an actor with a nonterminating computation, com-putation in the �rst con�guration may nevertheless proceed as before, forexample, if actors in the two con�gurations do not interact. A second con-sequence is that messages are eventually delivered. This allows reasoningbased on composition with some contexts to be carried forward: thus, ifupon composition with a richer context, other requests may be sent to aparticular server actor, previous requests sent to that server will still bereceived (provided the server itself does not \fail").We now formally de�ne fairness in our model. We say a label l is enabledin con�guration � if there is some �0 such that � l�! �0.De�nition 4 A path � = [�i li�! �i+1 j i < ./] in T 1(�) is fair if eachenabled transition eventually happens or becomes permanently disabled. Thatis, if l is enabled in �i and is not of the form <in:m>, then �j l�! �j+1 forsome j � i, or l has the form <rcv: a,cv> and for some j � i, a is busyand never again becomes ready to accept a message. For a con�guration �we de�ne F(�) to be the subset of T 1(�) that contains only fair paths.Note that every �nite computation path is fair since, by maximality, allof the enabled transitions must have happened.

16 G. Agha, et al.8.5.3 Interaction Paths and Path CorrespondenceIn this section, we introduce a notion of equivalence based on the idea ofinteraction paths [Tal96].De�nition 5 An interaction-path ip is a subsequence of a computationpath �, containing all and only the transitions labels in � that are of form:<out:m> and <in:m>. We say that ip is the observable projection (or justthe projection) of �.In other words, an interaction-path is a computation path with all internaltransitions removed. From now on, we will follow the convention of using �to range over interaction paths, and �0; �1; : : : to range over their transitionlabels. We also use the list notation [�0; �1; : : :] to represent (both �nite andin�nite) interaction paths.The notion of fairness on computation paths naturally induces a similarnotion on interaction paths.De�nition 6 An interaction path is observably fair if it is the projection ofa fair computation path.Note that an observably fair (just fair from now on) interaction path couldbe the projection of both fair and an unfair computation paths, hence thename observational fairness.A strong motivation for a semantics based on interaction paths is to focuson the observable behavior of systems as the only criteria for investigatingtheir equivalence and de�ning their meaning. Any method that makes somepart of internal behavior explicit in the model, will undesirably distinguishsystems which are otherwise equivalent from an external observer's view.Now we de�ne our notion of equivalence on con�gurations based on theirset of interaction-paths.De�nition 7 For a con�guration �, its set of interaction paths I(�) is theset of observable projections of each computation path in F(�).De�nition 8 We say two actor con�gurations C1 and C2 are equivalentunder path correspondence, if they have the same set of recipients andexternal actors (same \interface") and their set of interaction paths areequal.Alternately, we can de�ne the set of all �nite pre�xes of paths in I(�)as the meaning of con�guration �. In [AMST96] equivalence relations wereintroduced based on the notion of testing. An observable 0-ary event was

Actors 17added to the transitions, and con�gurations were tested by composing themwith observation contexts (con�gurations). Two actor con�gurations wereequivalent if their behaviors were the \same" in all observation contexts.Three notions of equivalences were de�ned. Two con�gurations are mustequivalent provided some computation paths in one of them do not exhibitthe observable event i� some computation paths in the other do not. Twocon�gurations aremay equivalent provided some paths in one of them exhibitthe observable event i� some paths in the other do. Finally, two con�gura-tions are convex equivalent if they are both may and must equivalent. It wasshown that under the fairness assumption the three equivalences collapse tojust two, with the convex and must equivalences being identical. It is knownthat the notion of equivalence based on sets of �nite pre�xes of interactionpaths is identical to the may equivalence, and the equivalence in De�nition7 is at least as strong as the must equivalence.8.6 An Example Proof of Path CorrespondenceIn this section we show by an example how the theory of actors can help usverify, in a rather rigorous way, the correctness of systems modeled as actorcon�gurations. We will use the tree product example from Section 8.4.1and we will show the equivalence of two actor con�gurations: one basedon the sequential implementation and the other based on the concurrentimplementation of tree product.We �rst need to de�ne an actor behavior based on the sequential de�nitionof treeprod given in Section 8.4.1:Bseqtp =rec(�b:�self :�m:if(notvalidtree(tree(m));seq(send(cust(m); error);ready(b(self)));seq(send(cust(m); treeprod(tree(m)));ready(b(self))))The following con�guration contains an actor with behavior Bseqtp and iscalled Cseq: Cseq = h [ready(Bseqtp)]tp iftpg;We will verify the correctness of the following con�guration by showingits path correspondence to Cseq:

18 G. Agha, et al.Cconc = h [ready(Btreeprod)]tp iftpg;The proof idea is to show that the sets of interaction paths of both con�gu-rations are the same. Although we can prove that the two con�gurations areequivalent in any environment, to simplify matters, we assume that all mes-sages targeted to tp are well-formed, that is, they consist of a pair of an actorname and a �nite binary tree with leaves containing integers. Moreover, theexternal customers always send external actors as the customer name. Thisway we don't have to worry about requests with tp in the customer �eld.We also assume that the function treeprod is correct in the sense that itterminates and returns the product of the numbers at the leaves of the tree.These can be proved by simple induction.De�nition 9 Let c be an actor name and t be a binary tree with integers atits leaves. We say an input transition label �in = <in:tp / mkprd(c; t)> hasa matching output transition label �out = <out:c / p> if p is the product ofthe leaves of t.De�nition 10 We say a (possibly �nite) path � = [�1; �2; : : :] is a tree-product path if it satis�es the following properties:P1 : Every input transition label �i has the form <in:tp/mkprd(cust; tree)>where cust is an actor name di�erent from tp, and tree is a �nitebinary tree with integers as its leaves. And every output transitionlabel �j has the form <out:cust / p>, where cust is an actor namedi�erent from tp and p is an integer.P2 : Let I = fi j �i is an input transition labelgJ = fj j �j is an output transition labelgThere exists a bijection f� : I ! J such that for all i 2 N f�(i) > iand that �f�(i) is a matching output for �i.Lemma 1 Every path � of Cseq is a tree-product path.Proof: We need to prove that any path � = [�1; �2; : : :] of Cseq has prop-erties P1 and P2.According to the <in: > rule, only messages targeted to actors in thereception set can enter a con�guration. Therefore, only messages sent to tpcan enter Cseq. We also assumed that all messages are pairs of a customer

Actors 19actor and a tree. It is also immediate from the code that the only kind ofmessage sent out of the con�guration is of the form cust / p for some actorname cust, which is never tp, and some integer p. Therefore, property P1holds.To prove P2, let �i = <in:tp/mkprd(cust; tree)> be some input transitionwhich will put the message mkprd(cust; tree) in the con�guration. Fairnessassumption implies that this message will eventually be delivered to tp.From fairness assumption again, we know that tp's computation can alwaysproceed. And as the behavior of tp is terminating, a message of the formcust / p, with p being the tree product of tree, will �nally be sent out. Thismessage in turn triggers a transition of the form �j = <out:cust / p> withj > i. We can form a map f by mapping all such i's to their correspondingj's. This map will be a bijection as tp's behavior can not generate more thanone message per each request and there is no pending outgoing messages inthe original con�guration.De�nition 11 For con�gurations C;C 0, we say C =) C 0 if C = C 0 or forsome sequence of con�gurations C1, : : : , Cn, and transition labels l1; : : : ; lnthat are neither input nor output labels, n > 0, we have Cseq l1�! C1seq l2�!: : : ln�! C 0seq. Further, for an input or output transition label � we say C �=)C 0 if for some con�gurations C1; C2, we have C =) C1 ��! C2 =) C 0.Thus, if C =) C 0 then con�guration C can evolve into C 0 without inter-acting with its environment, and if C �=) C 0 then C can evolve into C 0 byperforming a single (input or output) interaction with its environment.Lemma 2 Let � = [�1; �2; : : :] be a (possibly �nite) interaction path thatsatis�es properties P1 and P2. Let's pick f� to be some bijection as re-ferred to in P2. There exists a sequence of con�gurations C0seq; C1seq; : : : withC0seq = Cseq, such that for every n > 0, Cnseq has the following properties:S1 The actor tp is in ready state in Cnseq.S2 For every input transition �i = <in:tp / mkprd(cust; tree)>, the mes-sage instance tp / mkprd(cust; tree) corresponding to transition �i isundelivered in Cnseq if and only if f�(i) > n.S3 Cn�1seq �n=) CnseqProof: We prove this by constructing a recursive function g that mapsan interaction path � to a sequence of con�gurations satisfying the threeproperties stated in the lemma.

20 G. Agha, et al.Since f� is a bijection we have �1 = <in:tp /mkprd(cust; tree)> for somecust and tree. Let g(�1) = C1seq whereC1seq = h [ready(Bseqtp)]tp tp / mkprd(cust; tree) iftpg;From the transition rules in Figure 8.3 we can conclude that C0seq �1=)C1seq. It is easy to verify that C1seq satis�es properties S1, S2, and S3.Next we de�ne g(�n) for n > 1. We distinguish two cases:� �n = <in:tp / mkprd(cust; tree)> (for some cust and tree): Let g(�n) =Cnseq be the con�guration obtained by adding the message tp / (cust; tree)to the messages in Cn�1seq . Then Cn�1seq �n�! Cnseq. It is easy to verify thatCnseq satis�es properties S1, S2 and S3.� �n = <out:cust / p> (for some cust and p): Let i = f�1� (n). Therefore,�i = <in:tp / mkprd(cust; tree)> for some tree with p = treeprod(tree).Assuming that Cn�1seq = g(n� 1), we can state the rest of the proof in thefollowing steps:(i) We know that in Cn�1seq , the message corresponding to �i has notbeen delivered. This follows from S2 and the fact that f�(i) > n�1.(ii) From S1 we know that tp is ready in Cn�1seq .(iii) Cn�1seq can perform a <rcv:tp; tp / mkprd(cust; tree)>, followed by anumber of <fun:tp>, and �nally a <send:tp,cust/p>. This followsfrom fairness and the assumption that tp's behavior terminates andreturns the tree product of tree.(iv) The resulting con�guration after the send transition contains anoutgoing message of the form cust / p. So an output transitionwith label �n can be performed. Hence, Cn�1seq �n=) Cnseq.(v) It remains to show that Cnseq satis�es S1, S2, and S3. From thecode it follows that tp becomes ready to receive next message aftersending the message. So S1 holds. S2 holds as the only messagedelivered in this step was the one corresponding to �i. And f�(i) =n. S3 follows from the previous step of the proof. So we can letg(n) = Cnseq.The construction described above forces a certain scheduling order ontransitions. This order is fair since no enabled transition remains enabledforever.Lemma 3 Every tree-product path � can be observed from an execution ofCseq.

Actors 21Proof: The lemma follows from lemma 2 and the observation that the com-putation path constructed in the proof of lemma 2 is fair. The interactionpath � is just the observable projection of the computation path constructedin lemma 2.Lemma 4 (correctness of Btreeprod) Applying Btreeprod to a message ofthe form tp/(cust; tree) will eventually result in sending exactly one messageof the form cust / p where p is the tree product of tree.Proof: Proof is by induction on the height of the tree. From Btreeprod wecan easily see that when the tree is just a leaf, its value is returned to thecustomer, hence validating the truth of the lemma for trees of height zero.For n > 0, assuming that the lemma is true for trees of height smallerthan n, we prove that the lemma is true for trees of height n. Recall thatby our assumption every internal node, and hence the root, of the tree hastwo children. Following the fairness assumption, The rest of the proof willuse the fact that actors' internal computation can always make progress.The code creates a join-continuation actor, initialized with the customer'sname. From the code we can infer the following facts:� Only one join-continuation actor is created per input message.� Customer's name is not used by Btreeprod in any other part of the code.� A continuation actor sends exactly one message to its customer i� it re-ceives two messages containing integers.The actor tp sends two messages to itself with two parameters: the join-continuation actor's name as the customer, and the left (or right) subtree.Both subtrees have a smaller height than the original tree, therefore accord-ing to the induction hypothesis, the product of their leaves will eventuallybe sent to the join-continuation actor.As no one else is aware of the join-continuation actor's name, these twomessages will be the only messages delivered to it. This conclusion plus thethree facts above imply that the join-continuation actor will eventually sendexactly one message to the original customer (from the fairness requirement,this message will be delivered). The content of the message is the productof the two numbers sent to the join-continuation actor, which in turn arethe tree-products of the left and right subtrees.Lemma 5 Every path � of Cconc is a tree-product path.Proof: The proof is the same as that for Cseq except that in the argumentfor P2, we use lemma 4 instead of correctness of treeprod. Note that in

22 G. Agha, et al.the argument for P1 it is essential to show that tp is the only receptionistat any time. This follows from the observation that every message sent bytp and its join continuations to other than self contain just an integer. Thisimplies that names of internal actors are never sent to external actors.Lemma 6 Every tree-product path � can be observed from an execution ofCconc.Proof: The same proof as for Cseq, except that lemma 4 is used instead ofcorrectness of treeprod.Theorem 1 Cseq and Cconc are equivalent under path correspondence.Proof: Immediate from the lemmas 1, 3, 5 and 6, and the de�nition ofequivalence under path correspondence.8.7 DiscussionWe de�ned an equivalence notion based on interaction paths. Althoughequivalence based on interaction paths appears to be intuitive, in fact itdistinguishes between more con�gurations than is reasonable. Consider acon�guration whose behavior is represented by a tree consisting of an in-�nite path and another con�guration whose behavior is represented by atree consisting of all �nite approximations to the path. These two treescannot be distinguished in any actor context but do not have the same in-teraction paths. As brie
y discussed earlier, an equivalence notion based onobservations in arbitrary contexts was introduced in [AMST96].We also described a proof technique for establishing equivalence betweencon�gurations based on interaction path correspondence. In earlier work, aproof technique was developed for establishing equivalence in more concreteterms, namely by establishing correspondence of the actual paths. A num-ber of results were obtained in that work to show how reasoning could besimpli�ed. These results rely on the ability to exploit asynchrony to shuf-
e transitions in a way that localizes di�erences in computations, and touse the concept of holes to formalize the aspects of computations that areindependent of the local di�erences.When compared to many other models of concurrency, the Actor model isvery powerful: it supports local procedural and data abstraction, and pro-vides a simple interface which abstracts the underlying name space manage-ment, scheduling, network, etc. The assumption of asynchrony often allows

Actors 23only canonical message orders to be considered. The concept has been use-ful in diverse areas such as building animation languages, simulations, andenterprise integration systems.On the other hand, the model is too low-level to allow us to easily reasonabout complex distributed software systems. For the same reason, suchsystems also remain very hard to specify and the software is often error-prone. We have argued that part of the reason for this di�culty is the factthat models of concurrency lack abstractions which represent the interactionpatterns in a modular fashion. For example, we described the notion of localsynchronization constraints which used to control the scheduling of messagesat an actor based on the actor's state. More generally, such scheduling mayhave to constrained based on the history of a computation in a number ofactors.We have developed a number of such abstractions for specifying temporalcoordination between actors [FA93, Fro96], real-time systems [Ren97], dis-tributed interactions [Stu96], and dynamic communication groups [AC93,Cal94]. Such abstractions rely on a meta-architecture which allows dynamiccustomization of schedulers, name servers, and communication interfaces[AA98]. We believe that such architectures can promote more developmentof distributed systems as well as simplify the task of reasoning about sys-tems by making both more modular. Some preliminary work in this areauses a two-level semantics [VT95]. However, the development of composi-tional methods for reasoning, as well as new speci�cation techniques (forexample, see [Smi98], remains an active area of research.AcknowledgementsThe authors would like to thank Carolyn Talcott for her extensive and veryuseful comments on a previous version of this paper. Of course, the authorsare solely responsible for any remaining errors. The research described herehas been supported in part by the National Science Foundation (NSF CCR96-19522), and the Air Force O�ce of Scienti�c Research (AFOSR contractnumber F49620-97-1-03821). Bibliography[AA98] Mark Astley and Gul Agha. Customization and composition of distributedobjects: Middleware abstractions for policy management. Sixth InternationalSymposium on the Foundations of Software Engineering ACM SIGSOFT,23(6):1{9, November 1998.

24 G. Agha, et al.[AC93] G. Agha and C.J. Callsen. ActorSpace: An open distributed programmingparadigm. In Principles and Practice of Parallel Programming '93, 1993.[Agh86] G. Agha. Actors: A Model of Concurrent Computation in DistributedSystems. MIT Press, Cambridge, Mass., 1986.[Agh90] Gul Agha. Concurrent Object-Oriented Programming. Communicationsof the ACM, 33(9):125{141, September 1990.[AJ99] G. Agha and N. Jamali. Concurrent programming for distributed arti�cialintelligence. In Gerhard Weiss, editor, Multiagent Systems: A ModernApproach to DAI. MIT Press, 1999.[AKP95] G. Agha, W. Kim, and R. Panwar. Actor languages for speci�cation ofparallel computations. In DIMACS Series in Discrete Mathematics andComputer Science, volume 18, pages 239{258. American MathematicalSociety, 1995.[AMST96] G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation foractor computation. Journal of Functional Programming, 1996. to appear.[Bou92] G. Boudol. Asynchrony and the pi-calculus. Technical Report 1702,Department of Computer Science, Inria Univeristy, May 1992.[Cal94] Christian J. Callsen. Open Heterogeneous Distributed Computing. PhDthesis, Aalborg University, August 1994.[FA93] Svend Fr�lund and Gul Agha. A language framework for multi-objectcoordination. In Proceedings of ECOOP 1993. Springer Verlag, 1993. LNCS707.[FF86] M. Felleisen and D. Friedman. Control operators, the SECD-machine, andthe �-calculus. In M. Wirsing, editor, Formal Description of ProgrammingConcepts III, pages 193{217. North-Holland, 1986.[Fro96] S. Frolund. Coordinating Distributed Objects: An Actor-Based Approachfor Synchronization. MIT Press, November 1996.[HT91] K. Honda and M. Tokoro. An object calculus for asynchronouscommunication. In ECOOP'91, volume 512 of Lecture Notes in ComputerScience, pages 133{147. Springer-Verlag, 1991.[KA95] W. Kim and G. Agha. E�cient Support of Location Transparency inConcurrent Object-Oriented Programming Languages. In Supercomputing'95. IEEE, 1995.[Kim97] W. Kim. THAL: An Actor System for E�cient and Scalable ConcurrentComputing. PhD thesis, University of Illinois at Urbana-Champaign, May1997. http://www-osl.cs.uiuc.edu/.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.[Mil93] R. Milner. Elements of interaction turing award lecture. Communicationsof the ACM, 36(1):78{89, January 1993. Turing Award Lecture.[Mil99] R. Milner. Communicating and Mobile Systems: the �-calculus. CambridgeUniversity Press, 1999.[MT99] I. A. Mason and C. L. Talcott. Actor languages their syntax, semantics,translation, and equivalence, 1999. to appear.[Nee89] R.M. Needham. Names. In S. Mullender, editor, Distributed Systems,pages 89{101. Addison-Wesley, 1989.[Ren97] Shangping Ren. An Actor-Based Framework for Real-Time Coordination.PhD thesis, Department Computer Science. University of Illinois atUrbana-Champaign, 1997.[San98] D. Sangiorgi. An Interpretation of Typed Objects into Typed Pi-Calculus.Information and Computation, 143(1), 1998.

Actors 25[Smi98] Scott Smith. On speci�cation diagrams for actor systems. In C. Talcott,editor, Proceedings of the Second Workshop on Higher-Order Techniques inSemantics, Electronic Notes in Theoretical Computer Science. Elsevier, 1998.[Stu96] Daniel C. Sturman. Modular Speci�cation of Interaction Policies inDistributed Computing. PhD thesis, University of Illinois atUrbana-Champaign, May 1996.[SWP99] Peter Sewell, Pawel T. Wojciechowski, and Benjamin C. Pierce. LocationIndependent Communication for Mobile Agents: A Two Level Architecture.Technical Report 462, Computer Laboratory, University of Cambridge, 1999.[Tal96] C. Talcott. Interaction Semantics for Components of Distributed Systems.In E.Najm and J.B. Stefani, editors, Formal Methods for Open Object BasedDistributed Systems. Chapman & Hall, 1996.[Tha00] Prasannaa Thati. Towards an Algebraic Formulation of Actors. Master'sthesis, University of Illinois at Urbana-Champaign, 2000.[TKS+89] C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha.Rosette: An Object-Oriented Concurrent System Architecture. SigplanNotices, 24(4):91{93, 1989.[VA98] C. Varela and G. Agha. What after java? Computer Networks and ISDNSystems: The International J. of Computer Telecommunications andNetworking, 1998.[Var00] C. Varela. World Wide Computing with Universal Actors: LinguisticSupport for Coordination, Naming and Migration. PhD thesis, University ofIllinois at Urbana-Champaign, August 2000.[VT95] N. Venkatasubramanian and C. L. Talcott. Reasoning about Meta-LevelActivities in Open Distributed Systems. In Principles of DistributedComputing, 1995.[Wal95] D. Walker. Objects in the Pi-Calculus. Information and Computation,116(2):253{271, 1995.

