Table of Contents

1. Agent Naming and Coordination

Gul Agha, Nadeem Jamali, and Carlos Varela 1

1.1 Introduction, 1

1.2 Actors and Agents.t 3
1.2.1 Programming Languages for Concurrent and Distributed

SYSEEIMS .« . v vt 4

1.2.2 Supporting Actor Programming 6

1.3 Naming in Open Systems........... ..., 6

1.3.1 Universal Actor Names..............ooiiiiennn. .. 7

1.3.2 ActorSpacesc.ooiiiii i 8

1.4 World Wide Computer Prototype......................... 10

1.4.1 Universal Theaters oo, 10

1.4.2 Remote Communication............ ..ot 11

RMSP in SALSA . ..ottt et 13

1.4.3 Migrationcoiuiiiiinin i 13

Actor Migration in SALSA 14

1.5 Multiagent Coordinationo oo, 14

1.5.1 Multiagent Systems......... ... i 15

Modeling . .. covoiiii 16

152 Cyborgs.oouiiniiii i e 16

1.6 DisCuSSIONcvut i 21

Referenceso e 23

Author Index i e 24

Subject Indexi i e 26

1. Agent Naming and Coordination:
Actor Based Models and Infrastructures

Gul Agha, Nadeem Jamali, and Carlos Varela

Open Systems Lab, Department of Computer Science
University of Illinois at Urbana Champaign,

1304 W. Springfield Ave., IL 61801, USA
http://osl.cs.uiuc.edu/

Abstract

Flexible and efficient naming, migration and coordination schemes are critical
components of concurrent and distributed systems. This chapter describes
actor naming and coordination models and infrastructures, which enable the
development of mobile agent systems. A travel agent example is used to
motivate the requirements and proposed solutions for naming, migration and
coordination.

Universal Actor Names provide location and migration transparency,
while ActorSpaces enable the unanticipated connection of users, agents and
services in the open, dynamic nature of today’s networks. An actor-based ar-
chitecture, the World Wide Computer, is presented as a basis for implement-
ing higher-level naming and coordination models for Internet-based agent
systems. Finally, multiagent coordination is accomplished with cyborgs, an
abstraction which provides a unit for group migration and resource consump-
tion through the use of e-cash.

1.1 Introduction

The World Wide Web is an open distributed system where information and
services are heterogeneous, distributed and dynamically evolving. The Web
operates over the Internet which is characterized by the availability of enor-
mous computational power and information resources but relatively small
communication bandwidth. An efficient mechanism for resource discovery
and service utilization on the Web is through use of (software) agents. We
characterize agents as autonomous, persistent, mobile, and resource bound
computational entities. The obvious advantage of agents is that they can act
on behalf of users at remote locations, thus reducing the need for communi-
cation.

A large number of specialized agents navigating and computing over the
Web allows considerable parallelism. Effectively using this parallelism re-
quires dynamically dividing problems into sub-problems and integrating par-
tial solutions as they are concurrently computed and communicated. Thus,

2 Gul Agha et al.

scaling up the problem solving potential of agents requires effective solutions
for coordinating their concurrent activities. We envision a World Wide Com-
puter using the present Internet and Web infrastructures to provide seamless
coordinated agent-based services to geographically distributed and mobile
users.

A Motivating Scenario

Consider an agent that makes travel reservations on behalf of its owner. In
the simplest case, reservations requests specify a starting point, a destination,
and departure and arrival dates. A certain amount of “money” is allocated for
searching for good rates as well as making the actual purchases. To perform
its search, the travel agent creates additional agents to search for best airline
ticket prices, hotel accommodations and car rental possibilities. These spe-
cialized agents themselves create other agents to perform additional searches
in parallel, all bound by the shared goals and available resources.

Travel plans can be specified in the form of constraints. These constraints
lay out specific requirements, but allow significant flexibility beyond those re-
quirements. For example, a client interested in traveling from Paris to Cham-
paign, specifies desired departure and arrival dates for all or parts of the
journey, preferences for means of travel, financial constraints, etc. These con-
straints are absolute, relative, or a combination of the two. Airline ticketing
agents look for airline fares, car rental agents look for rental deals, hotel
reservation agents search for hotel rates, and so on.

Although different agents search independently, the constraints that guide
them need not be static: this requires the agents to coordinate dynamically.
For example, if hotel, car rental, and airline reservations need to be synchro-
nized, they would need to be committed together. Not only does this require
enabling synchronization protocols between agents and service providers, the
agents must also coordinate their actions. For example, if the flight is to ar-
rive in Chicago from Paris later than when the last flight leaves Chicago for
Champaign, alternate plans would need to be considered: a train, bus, or a
rental car is used, or alternatively, a hotel room is reserved for the night and
further travel is postponed to the following day. Alternative flights from Paris
to Chicago are also considered as an option that results in earlier arrival in
Chicago. This entire activity may also be in interaction with the client.

From the perspective of the user, it is important to ensure that certain
properties hold. For example, it is imperative to guarantee that the user’s
credit card will not be charged more than once to buy the same itinerary with
different airline companies. More complex properties would enable the user
to establish the probabilities of modifying the original travel plan, so as to
minimize the total traveling cost, considering penalties incurred in changing
departure or arrival dates.

1. Agent Naming and Coordination 3
What is Coordination?

Coordination is what fills the gap between autonomously acting agents and
the problems they are collectively solving. In a multi-agent system, agent-to-
agent messages offer the simplest form of coordination, using which complex
coordination requirements can be satisfied. However, if implementation of
coordination requirements is to be practical, where the language must support
appropriate mechanisms for coordination, it must also provide abstractions
that satisfy software engineering concerns such as modularity and reuse. For
example, incentives engineering builds incentives into the system to drive
interaction patterns of autonomous agents, but implemented without due
attention to software engineering concerns, the code for functional behavior
and that for coordination between agents will be mixed together.

Because coordination abstractions build on communication facilities pro-
vided by the underlying computation model, they are defined with respect
to the model. Blackboard models (e.g., Linda) offer support for coordina-
tion through placement of content in a shared space. In the case of agents
(actors), because communication is typically by asynchronous message pass-
ing, coordination can exploit the message ordering flexibility of the model,
without disturbing the model’s semantics. Specifically, separately specified
synchronization constraints are enforced by ordering message deliveries, as
shown in Frglund [10]. Because this is achieved without interfering with the
functional behaviors of individual agents, modularity and reusability proper-
ties are achieved. Ren [24] extends this idea further to enable (soft) real-time
constraint satisfaction.

Outline

This chapter introduces the Actor formalism as a natural model for agents,
describes Universal Actor Names as an Internet-based naming scheme with
location and migration transparency, and ActorSpaces as abstractions for de-
coupled publish-and-subscribe pattern-based communication. Following, we
present the World Wide Computer infrastructure as a testbed for experi-
menting with high level agent naming and coordination mechanisms. One
such mechanism, Cyborgs, is presented as a model for resource-bound multi-
agent systems, with an example illustrating its use of local synchronization
constraints and synchronizers. We conclude with some remarks and potential
future research directions.

1.2 Actors and Agents

Agents are naturally modelled by the Actor formalism. In fact, implemen-
tations of agents are typically just implementations of actor systems. An
actor is autonomous and persistent. The Actor model of computation has a

4 Gul Agha et al.

built-in notion of local component and interface which provides a basis for
reasoning about and building agent-based applications in open distributed
systems. Actors are inherently concurrent and autonomous enabling efficiency
in parallel execution [19] and facilitating mobility [3]. The actor model and
languages provide a useful framework for understanding and developing open
distributed systems. For example, actor systems have been used for enterprise
integration [27], fault-tolerance [2], and distributed artificial intelligence [9].

Actors [1, 14] extend sequential objects by encapsulating a thread of con-
trol along with procedures and data in the same entity; thus actors provide a
unit of abstraction and distribution in concurrency. Actors communicate by
asynchronous message passing (see Figure 1.1). Moreover, message delivery
is weakly fair — message delivery time is not bounded but messages are guar-
anteed to be eventually delivered. Unless specific synchronization constraints
are enforced, messages are received in some arbitrary order which may differ
from the sending order. An implementation normally provides for messages
to be buffered in a local mailbox and there is no guarantee that the messages
will be processed in the same order as the order in which they are received.
Actor names (also called mail addresses in the actor literature) are bound to
identifiers. Similar to cons cells in Scheme [25] or Java object references, and
unlike pointers in C, the representation or binding of names is not visible.
Thus, it is not possible to “guess” actor names (or corresponding locations);
a name must be communicated before it can be used.

To define agents, the Actor model is extended with mobility and bounded
resource use [3]. Mobility requires explicitly mapping actor names to loca-
tions. By bounded resource use, we model the fact that an agent is not able
to consume an arbitrary amount of physical resources (e.g. processor time,
memory, or network bandwidth) or logical resources (e.g. threads). We have
used a uniform cybercurrency to express limitations on the use of resources.
The term “energy” for a similar notion has been coined by Queinnec [21].

1.2.1 Programming Languages for Concurrent and Distributed
Systems

Early programming languages for concurrent and distributed systems include
Occam [15] and Ada [29]. A more recent and popular language for implement-
ing concurrent systems is Java, which among other things, provides platform
compatibility through the use of a virtual machine, support for multithread-
ing, a clean object model and automatic garbage collection [13].

However, Java suffers from a number of deficiencies as a language for
concurrent and distributed programming. We describe these below:

Java uses a passive object model in which threads and objects are separate
entities. As a result, Java objects serve as surrogates for thread coordination
and do not abstract over a unit of concurrency. We view this relationship
between Java objects and threads to be a serious limiting factor in the util-
ity of Java for building concurrent systems [30]. Specifically, while multiple

1. Agent Naming and Coordination 5

Mailbox

Fig. 1.1. In response to a message, an actor can: (1) modify its local state, or (2)
&reate new actors, or (3) send messages to acquaintances. /

threads may be active in a Java object, Java only provides the low-level syn-
chronized keyword for protecting against multiple threads manipulating an
object’s state simultaneously, and lacks higher-level linguistic mechanisms
for more carefully characterizing the conditions under which object methods
may be invoked. Java programmers often overuse synchronized and resulting
deadlocks are a common bug in multi-threaded Java programs.

Java’s passive object model also limits mechanisms for thread inter-
action. In particular, threads exchange data through objects using either
polling or wait/notify pairs to coordinate the exchange. In decoupled envi-
ronments, where asynchronous or event-based communication yields better
performance, Java programmers must build their own libraries which im-
plement asynchronous message passing in terms of these primitive thread
interaction mechanisms. Although actors can greatly simplify such coordina-
tion and are a natural atomic unit for system building, they’re not directly
supported in Java.

6 Gul Agha et al.

1.2.2 Supporting Actor Programming

It is possible to create a library in Java which enables actor programming.
The Actor Foundry [22] is a framework developed in Java to provide concur-
rent object oriented programmers with a discipline for actor programming
and a set of core services to facilitate this task. This is similar to earlier work
on Actalk which supported actors in Smalltalk [7], and Act++ and Broadway
which supported actors in C++ [17, 26]. However, there are several advan-
tages to using a language over defining a library:

— Certain semantic properties can be guaranteed at the language level. For
example, an important property is to provide complete encapsulation of
data and processing within an actor. Ensuring there is no shared mem-
ory or multiple active threads, within an otherwise passive object, is very
important to guarantee safety and efficient actor migration.

— By generating code from an actor language, we can ensure that proper
interfaces are always used to create and communicate with actors. In other
words, programmers can not incorrectly use the host language that has
been used to build an actor framework.

— An actor language improves the readability of programs. Often writing
actor programs using a framework involves using language level features
(e.g. method invocation) to simulate common actor operations (e.g. ac-
tor creation, message sending, etc.). The need for a permanent semantic
translation, unnatural for programmers, is a common source of errors.

A number of actor languages have been developed (e.g. [28, 16, 18]). More
recently, we have developed SALSA (Simple Actor Language, System and Ap-
plications) [23] for enabling the development of Internet-based agent systems.
The syntax of SALSA is a variant of Java. SALSA supports primitive actor
operations, token-passing and join continuations, universal naming, remote
asynchronous communication and migration. In the following sections, we will
use SALSA pseudo-code to illustrate our travel agent sample application.

1.3 Naming in Open Systems

Software agents acting over the World Wide Computer require a scalable and
global naming mechanism. Such naming mechanism must also enable trans-
parent agent location and migration, i.e. the agent name should completely
encapsulate the current location for such agent and migration should not
break inverse acquaintance references.

Because of the heterogeneous nature of devices connected to the Internet,
an agent naming mechanism should also be platform independent. Further-
more, because agents are different in nature and use different protocols for
communication, the name should provide openness by including a protocol
(or a set of protocols) to communicate with such agent.

1. Agent Naming and Coordination 7

Two additional critical characteristics of naming in Internet-based agent
systems include safety and human readability. Safety includes the inability
to “steal” messages by creating an agent with an existing name. Human
readability of actor names implies that it is possible to “make” and “guess”
actor names, very much like we make up and guess Web document URLs
today. However, because names encapsulate addresses, unlike Actors, it is
not possible to enforce at the language level that an agent name is valid (i.e.
that it corresponds to a valid actor address or location.)

We describe two complementary proposed solutions for agent naming in
open systems: Universal Actor Names (UAN), which abstract over particu-
lar Internet locations and ActorSpaces which address openness by detaching
services from particular agents providing such a service.

1.3.1 Universal Actor Names

Universal Actor Names (UAN) are identifiers used in the World Wide Com-
puter prototype infrastructure for naming universally accesible actors.

The Universal Actor naming strategy, based on Uniform Resource Iden-
tifiers (URI) [6], allows transparent migration and interconnection of dis-
tributed objects. Such transparency is accomplished by separating names
from locations. Universal Actor Names (UAN) persist over the life-time of an
actor, while Universal Actor Locators (UAL) uniformly represent the current
location for a given actor.

A major motivation behind our work is the potential of the World Wide
Web [5]. Much of the Web’s fast growth is due to its strategy for uniformly
identifying multiple resources. Berners-Lee envisioned location-independent
Uniform Resource Names (URN), Uniform Resource Locators (URL) and
Uniform Resource Citations (URC) for metadata. However, only URLs are
currently widely deployed, hindering the transparent mobility of Web re-
sources.

An important characteristic of the Web’s addressing scheme from a prac-
tical perspective is the ability to “write the URL of a Web page in a business
card.” This characteristic not only enables, but also encourages the unan-
ticipated connection of network resources worldwide. Therefore, we follow a
scheme for actor naming and location in an open worldwide context, based
on Uniform Resource Identifiers.

We define Universal Actor Names (UAN) as globally unique identifiers,
which persist over the life-time of an actor and provide an authoritative
answer regarding the actor’s current locator. Universal Actor Locators (UAL)
uniformly represent the current Internet location of an actor, as well as the
communication protocol to use with such actor.

When an actor migrates from one host to another, its UAN remains the
same, but its UAL is updated in its corresponding Naming Server to reflect
the new locator. Notice that migration is transparent to client actors, which
still hold a valid UAN reference.

8 Gul Agha et al.

Internet Host A

UAN
Server

Actor Reference /O Internet Host B

Actor

wwcC
Theater

Fig. 1.2. By providing a persistent name to an actor (UAN), the actor can migrate
from a host to another without breaking existing references. /

A sample UAN for an actor handling air travel reservations is:
uan://wwc.travel.com/reservations/air/agent

A sample UAL for such actor is:
rmsp://wwc.aa.com/international/reservations/agent

The protocol specified in the UAL determines the communication proto-
col supported by such actor. In this case, the travel agent uses the Remote
Message Sending Protocol (RMSP), which enables the delivery of messages
among universal actors in the WWC.

SALSA provides support for binding actors to UANs and UALs. The
pseudocode for a sample travel agent program in Salsa is presented in fig-
ure 1.3.

This program creates an agent and binds it to a particular UAN and
UAL. After the program terminates, the Universal Actor Naming Server has
been updated with the new (UAN, UAL) pair and the actor can be remotely
accessible either by its name or by its locator.

1.3.2 ActorSpaces

ActorSpaces [8] is a communication model that compromises the efficiency
of point-to-point communication in favor of an abstract pattern-based de-
scription of groups of message recipients. ActorSpaces are computationally
passive containers of actors. Messages may be sent to one or all members of a
group defined by a destination pattern. The model decouples actors in space
and time, and introduces three new concepts:

— patterns — which allow the specification of groups of message receivers
according to their attributes
— actorspaces —which provide a scoping mechanism for pattern matching

1. Agent Naming and Coordination 9

@havior TravelAgent { \

void printItinerary(){...}

public void act(String[] args){
TravelAgent a = new TravelAgent();
try {
a<-bind("uan://wwc.travel.com/reservations/air/agent",
"rmsp://wwc.aa.com/international/reservations/agent") ;
} catch (Exception e){
standardQutput<-println(e);
}
}

L /

Fig. 1.3. A TravelAgent implementation in SALSA: Support for universal naming.

— capabilities — which give control over certain operations of an actor or
actorspace

ActorSpaces provide the opportunity for actors to communicate with
other actors by using their attributes. The model subsumes the function-
ality of a Yellow Pages service, where actors may publish (in ActorSpace
terminology, “make visible”) their attributes to become accessible. Berners-
Lee, in his original conception of Uniform Resource Citations, intended to use
this metadata to facilitate semiautomated access to resources. Actorspaces
bridge this gap between actors searching for a particular service and actors
providing it.

Following our travel agent application, one could think of three ac-
torspaces, one for air travel, one for car rental, and one for hotel reservations.
Requests could be sent to these three actorspaces and different agents that
match the proper request patterns could bid with the deals they find. An
additional actorspace could be used for placing the bids and coordinating
different schedules and combined travel constraints.

ActorSpaces enable unanticipated communication of actors. That is to
say, an actor cannot only send messages to its acquaintances, but also to
actors for which it does not have direct references. In actor semantics, an
actor can only send messages to its acquaintances, an important property
which allows local reasoning about the safety property of actor systems [4].
Furthermore, communication in actors is secure; in other words, it is not
possible to “steal” messages by creating an actor with the same name as an
existing actor. Both Universal Actor Names and ActorSpaces preserve this
latter property.

Actorspaces’ management of messages, which involves redirection rather
than preprocessing, enables different strategies for load balancing (or repli-

10 Gul Agha et al.

cation) to be incorporated at the actorspace level, without affecting the se-
mantics of particular applications. Such message management transparency
anticipated the current use of name resolution algorithms for Web portals
scalability.

1.4 World Wide Computer Prototype

The World Wide Computer (WWC) architecture provides a basis for devel-
oping Internet-based agent systems.

The WWC consists of a set of virtual machines for universal actors, which
we name Theaters. Actors can freely move between theaters, in a transparent
way, i.e. their names are preserved under migration. Naming servers provide
the mapping from Universal Actor Names to Universal Actor Locators. The
Remote Message Sending Protocol (RMSP) enables delivering messages to
actors on remote theaters. A universal actor can be moved to a new the-
ater by simply sending a migrate(UAL) message to such actor. The SALSA
programming language enables high-level programming for actor creation,
message sending, remote communication and migration. ActorSpaces can be
implemented on top of the WWC architecture to enable resource discovery
(through patterns) in large-scale systems.

Following, we will describe universal theaters, remote communication, and
migration using the WWC architecture.

1.4.1 Universal Theaters

A WWC Theater is a virtual machine that provides runtime support to Uni-
versal Actors. A Theater (see figure 1.4) contains:

— an RMSP server with a hashtable mapping relative UALs to actual
SALSA /Java actor references
— a runtime system for universal and environment actors.

Since references to Universal Actors can be created from their names
(UAN) or even directly from their locators (UAL), universal actors cannot
be garbage collected.

A Theater provides access to its host environment (for example, standard
output, input, and error streams) through static, non-mobile system actors.
In the prototype WWC implementation, all incoming actors get references to
environment actors upon arrival. Future security policies may enable resource
ownership rights to be used to control access to the Theater environment.

Theaters may run on applets and in such case, the RMSP server in charge
of communication with actors in such applet theater must reside in the same
server as the HT'TP server which hosts the applet. This is due to security
restrictions prohibiting arbitrary Internet communications by untrusted Java

1. Agent Naming and Coordination 11

4 N

RMSP Server

relative UAL SALSA Reference
Listener Hashtable \

Universal Actor Run-Time System

O¢\

Universal

oG

O
O O Q

World Wide Computing Theater ¢ ‘ ¢

System
Resources

Fig. 1.4. A WWC Theater provides runtime support to Universal Actors. A The-
ater contains: (1) a RMSP server with a hashtable mapping relative UALS to actual
Salsa actor references, and (2) a runtime system for universal and environment ac-

e /

applets. Applet theaters executing in a Web browser can safely host univer-
sal actors providing WWC applications with access to local computational
resources.

Environment
Actors

1.4.2 Remote Communication

The Remote Message Sending Protocol (RMSP) is an object-based protocol
on top of TCP/IP for remote actor communication and migration.

When the target of a message is found to be remote, the SALSA run-
time system connects to the appropriate RMSP server listener and sends the
message using a specialized version of Java object serialization. A message is
a Java object containing the source and target actor references, the method to
invoke at the target actor, the argument values, and an optional token-passing
continuation [32] (which is represented as another message object). All actors
in a serialized message are passed by reference. These actor references are
updated in the serialization process to speed up local computation.

When an incoming message is received at a theater, all its actor references
are updated in the following manner (see figures 1.5a, b). If the UAL for the
actor reference points to the current theater, we update it with the actual
Java reference for that actor found in the internal RMSP server hashtable
and we set its local bit to true. If the UAL for the actor reference points to
another theater, we leave such reference unchanged (it remains remote).

12 Gul Agha et al.

Actor m Actor a Actor b Actor ¢

Theater 1 Theater 2 Theater 3

@ Local actor reference.

. Remote actor reference.

Fig. 1.5a. Before migration of actor m from Theater 1 to Theater 2, its references
Qactors b and c are remote, while its reference to actor a is local.

/
a)
./:\ -

Actor m

Actor a Actor b Actor ¢
Actorm

Theater 1 Theater 2 Theater 3

@ Local actor reference.

. Remote actor reference.

Fig. 1.5b. After migration of actor m, its reference to actor a becomes remote and
its reference to actor b becomes local. Its reference to actor ¢ remains unchanged.
&temporary forwarder for actor m is left in Theater 1. /

After updating all actor references, the target actor reference in the mes-
sage object has a valid internal Java reference pointing to the target actor
in the current Theater. We can then proceed to put the message object in
such local actor’s mailbox. If the target actor has moved in the mean time,
it leaves behind a forwarder actor (the same reference with the local bit set
to false.) In such case, the RMSP server at the new location (the forwarder’s
UAL) is contacted and the message sending process gets started again.

However, these forwarder actors are not guaranteed to remain in a theater
forever. Thus, if the RMSP server hashtable doesn’t contain an entry for
the target actor’s relative UAL, the UAN service for the target actor needs
to be contacted again to get the actor’s new location. Once a location has

1. Agent Naming and Coordination 13

been received, the message sending process gets started again and a “hops”
counter gets incremented in the message object. If such counter reaches a
predetermined maximum (by default set at 20 hops) the message is returned
to the sender actor as undeliverable.

RMSP in SALSA. SALSA provides support for sending remote messages to ac-
tors using the RMSP. For example, the code for sending a printItinerary()
message to the travel agent created above, is given if figure 1.6.

1 N

// Getting a remote actor reference by name

// and sending a message:

//

TravelAgent a = new TravelAgent();

a<-getReferenceByName
("uan://wwc.travel.com/reservations/air/agent") @
a<-printItinerary();

//

// Getting the reference by location:

//

TravelAgent a = new TravelAgent();

a<-getReferenceByLocation
("rmsp://wwc.aa.com/international/reservations/agent") @

Q(—printltinerary O3 J

Fig. 1.6. A TravelAgent implementation in SALSA: Support for remote messaging.

The SALSA syntax a<-m1() @ b<-m2(); is a simple case of a token-
passing continuation, used to guarantee that message m2() is sent to actor
b, only after actor a has finished processing message m1().

In the current prototype implementation, the behavior for a remote actor
(e.g. the TravelAgent code) needs to be locally accessible in order to get
a remote reference successfully. We intend to extend our prototype to allow
remote code downloading, once a theater security policy is in place.

1.4.3 Migration

Migrating a passive object (such as a Java object with potentially several
threads accessing it concurrently) requires a guarantee that the execution
context and synchronization locks of all these threads will remain consistent
after the passive object’s migration. On the other hand, migration of an actor
can be accomplished in a relatively easy and safe manner. This is because an
actor encapsulates a thread of execution and is processing at most a single
message. Migrating an actor involves waiting until the current message has

14 Gul Agha et al.

been processed, serializing the actor’s state (along with its mailbox), and
restarting the thread of control in the new actor’s location.

Universal actors migrate in response to an asynchronous message request-
ing migration to a specific UAL. This ensures that the actor is not busy pro-
cessing any other messages: when migration takes place, the actor must be
processing the migrate message. We describe in greater detail the algorithm
we use for actor migration, from the perspective of the departure and arrival
theaters.

Arrival Theater The RMSP server described in section 1.4.2 is also used
for incoming actor migration. The server provides a generic input gate for
SALSA-generated Java objects and the actions associated with receiving an
incoming object depend upon the received object’s run-time type.

When the incoming object is an instance of the salsa.language.Message
class, the algorithm for message sending described in the previous section is
used. If the object is an instance of the salsa.language.UniversalActor
class, the internal RMSP deemon hashtable gets updated with an entry map-
ping the new actor’s relative UAL to its recently created internal Java refer-
ence. Then, all actor references in the incoming actor get validated in the same
way as in messages. At this point, the actor is restarted locally. Lastly, if the
object is an instance of the salsa.language.Messenger class, the Theater’s
run-time system automatically sends a deliver () message to such actor.
The default implementation of a messenger contains a single message as an
instance variable and upon receiving the deliver () message, the message
instance is delivered with the same algorithm as a passive message.

Departure Theater When an actor is migrating away from a Theater,
the actor state is serialized and moved to the new Theater. The current
actor’s internal reference is updated to reflect the new UAL and its local
bit is set to false. Thus, this internal reference becomes a forwarder actor.
The forwarder actor ensures that messages en-route will be delivered using
the Remote Message Sending Protocol. Lastly, the UAN server containing
the migrating actor’s universal name gets updated to reflect the new actor
location.

Actor Migration in SALSA. SALSA provides support for migrating an actor
to a given WWC Theater. For example, the code for migrating the travel
agent is given in figure 1.7.

1.5 Multiagent Coordination
The World Wide Computer infrastructure does not directly support coor-

dination beyond asynchronous message passing, and simple delegation and
value synchronization mechanisms such as token-passing continuations and

1. Agent Naming and Coordination 15

//

// Migrating a travel agent to a remote WWC Theater:

//

TravelAgent a = new TravelAgent();

a<-getReferenceByName
("uan://wwc.travel.com/reservations/airline/agent") @
a<-migrate("rmsp://wwc.nwa.com/usa/reservations/agent");

Fig. 1.7. A TravelAgent implementation in SALSA: Support for migration.

join continuations.! In this section, we discuss a model for supporting more
complex types of coordination.

The travel agent we introduced earlier can be seen as a problem to be
solved while incurring bounded costs, requiring coordination between activi-
ties. At the application level, two types of cost may apply. First, there is the
financial cost of the airline ticket, the car rental, etc. The second type of cost
is that of the inconvenience of a chosen solution. For example, there may be
an inconvenience cost of late night travel. The application also has constraints
that must be satisfied. For example, there are consistency constraints such
as the requirement that a flight in the later part of journey depart after the
earlier flight arrives, that a hotel is reserved for the day the flight arrives,
etc. We will present a model of coordination that is useful in satisfying these
constraints.

1.5.1 Multiagent Systems

Multiagent systems are systems of autonomous mobile agents pursuing shared
goals. Goals of multiagent systems typically have spatial, temporal and func-
tional requirements. Agents navigate their way through distributed systems,
searching for environments suited for their execution.

Protection against a set of agents and/or hosts collectively causing un-
desirable behavior is a particularly challenging problem. Emergent behaviors
may be controlled by using preventive mechanisms. These mechanisms may
rely on linguistic support for precluding undesirable patterns of behavior, or
they may be reactive, i.e., attempt to detect an imminent threat and take
steps to prevent it. Either approach has its problems: while protection for all
conceivable types of threats cannot be incorporated into a language, detect-
ing threat or imminent threat in a dynamic complex system is also difficult.
How group functionality emerges from behaviors of constituent entities is not
well understood [12]. Even passive messages can flood a network [20]. How-
ever, certain group behaviors may be amenable to analysis at higher levels of

! Token-passing continuations and join continuations are described in [32]

16 Gul Agha et al.

abstraction, if one focuses on observable properties which can be measured
for entities as well as systems of entities.

Modeling. We treat a large multi-owned network of computers such as the
Internet as a set of resources with rights of ownership assigned to them. Once
we have introduced ownership rights and means for transferring these rights,
it turns out that a distributed computation using mobile agents begins to re-
semble the activity of organisms in the “real world.” The entities executing in
this space can solve problems similar to those solved by mobile living organ-
isms, and they face similar challenges. Specifically, while they may navigate
in space in search of solutions, they are also constrained by the resources they
have available to them.

A biological organism is typically a collection of co-located organs encap-
sulated inside a wrapper, collectively bound by the set of resources available
to them. Each organ has the biological analog of a thread of control, and
these organs interact under tighter constraints, as opposed to the type of
looser constraints which determine how one organism interacts with another.
For example, even though the legs of an ant can move simultaneously and
independently of each other, the goal of self-preservation or preservation of
the colony is hard-wired in the ant through evolution. The resources needed
for this pursuit are also secured at the level of an ant. The way in which
individual legs act is determined by how the resources available to the ant
are distributed among its organs, including the legs, and the ways in which
the legs are constrained to behave with respect to the rest of the organism. A
significant implication of co-location is that the organs share, and are known
to share, a common external environment in which they operate. This allows
enforcement of interaction constraints that can be fine-tuned to very precise
details.

In the following section, we introduce Cyborgs (cyber organisms) as an
actor-based model for complex distributed computation inspired by organ-
isms in the real world.

1.5.2 Cyborgs

Actors do not directly model multi-agent systems. Specifically, actors are sin-
gle threaded, and the model does not represent locations and resources. We
define cyborgs (cyber organisms) as a model for complex resource-bounded
mobile agents. A cyborg encapsulates a set of tightly constrained actors
bounded by shared resources, responsibility,? and goals (see figure 1.8)

Couplings between actors within a cyborg may be spatial, temporal or
functional. For example, actors may require to be co-located, they may need
to be synchronized to follow a protocol, and they may be attempting to solve
parts of the same problem.

2 in terms of penalties for improper behavior

1. Agent Naming and Coordination 17

/ Requirements o Task Manager \
Specification \\ ./

/ Application
Facilitator e Actor

{ig. 1.8. A cyborg encapsulates a set of tightly constrained actors J

A cyborg defines the smallest granularity for assignment of goals, allo-
cation of resources, and for migration from one ROD (resource ownership
domain) to another (see figure 1.9). An ROD defines the boundaries of re-
source ownership. Each ROD has an ROD Manager with which a potential
client cyborg or an existing client may negotiate terms of arrival and sub-
sequent execution. A contract reached between a cyborg and an ROD may
be static or it may be amendable. In either case, there can be penalties for
violation of the terms of a contract.

A cyborg is sustained by the allowance it receives. Allowance is in the form
of units of one of a set of accepted currencies, and is held in a bank account
for the cyborg. A cyborg may receive its allowance from its creator or from
another cyborg, typically as part of a message. Using its allowance, a cyborg
may purchase computational resources in its current ROD, and redistribute
them among its actors, as needed.

In the degenerate case, a cyborg may be viewed as an actor with mobility
and bounded resources as discussed in [3]. We now describe a typical cyborg
architecture.

Example Cyborg Let us consider a cyborg containing two special purpose
actors: facilitator and task-manager. A facilitator actor constantly monitors®
the execution environment(s) of the host ROD and explores the possibil-
ity of migrating to another ROD. Migration may be prompted by availabil-
ity of a better execution environment (better suited hardware and software
or special services), more affordable resources, or application requirements.
Because RODs do not necessarily represent physical boundaries, migration
across them may be logical rather than physical. Cyborg migration may be
implemented by a synchronized migration of all the contained actors using
mechanisms provided for actor migration. The task-manager actor serves as
a default receptionist for messages intended for the cyborg. When there are

3 Diagnostic information must be made available to facilitators by the system

18 Gul Agha et al.

ROD1 ROD2 ROD3

Task Manager - i
@ Adtor 9 Moify

— Monitor

. Facilitator

Actor —— Negotiate

T ,f'/ Application = Accessto
TeeeT @ Alor Resource

H Agent Status
Requirements Node —
Spegcification = Manager aVode

Fig. 1.9. Cyborg System Architecture: Cyborg carries dynamic specification of its
requirements from one resource ownership domain to another. /

no other application actors, the task-manager acts as the default application
actor and services received messages itself. More typically, the task-manager
will organize application actors to solve problems. Furthermore, the task-
manager redistributes available computational resources among the cyborg’s
actors according to a resource utilization strategy. It also updates environ-
mental requirements specification of the cyborg as and when they change.
|

The behavior of a cyborg is constituted by behaviors of the actors con-
tained in it, and the way they are constrained with respect to each other.
Hence, a cyborg’s behavior may be modified by the individual actors chang-
ing their personal behaviors or by the task-manager modifying the constraints
defined on them.

Communication in a system of cyborgs is multi-layered. Cyborg commu-
nication is resource oriented; cyborgs communicate with other cyborgs by
exchanging asynchronous messages (similarly to actors), but messages may
now contain some representation of remuneration for the requested service.

1. Agent Naming and Coordination 19

Actors inside cyborgs are encapsulated from directly receiving cyborg-
level messages/requests, but they may still receive messages from other actors
who know their addresses. The message syntax is identical to that of actor
messages. An example of the usefulness of allowing such messages is motivated
by considering the organism analogy described earlier. Many organs within
an organism depend on external stimuli for survival. Even though these may
be thought of as incoming messages, it will be incorrect to treat them as
service requests; these stimuli are for the organism’s own benefit, making
them qualitatively different from explicit messages. Similarly, a cyborg may
subscribe some of its actors to such stimulus messages from outside.

Example: Coordinating Travel Agents

In our example, we assume that a TravelAgent is created for a particular
travel plan. As a result of searching for feasible travel possibilities, multi-
ple air, hotel and car subagents are created. These agents search their own
space of possibilities, sending messages back to the travel agent, who keeps
track of all entries and consolidates (AirReservation, CarReservatiom,
HotelReservation) entries to be sent back to the Traveller. When the
traveller makes a decision regarding a travel plan, the original subagents get
contacted to actually buy their particular reservations. The TravelAgent
corresponds to a cyborg’s task-manager, and all subagents are the cyborg’s
application actors. Even though functionally autonomous, all actors inside
the cyborg share common bounded resources and goals, requiring coordina-
tion.

We consider examples of functional and temporal coordination in this
travel agent application. Functional coordination includes data consistency
in the selected travel plans, and temporal coordination involves atomic travel
commitment by different agents involved in different subparts of a travel plan.
Spatial coordination constraints could enable more efficient travel plan gener-
ation, by for example colocating the air, hotel and car reservation agents after
a fixed period of time, to locally coordinate valid travel plans, as an alterna-
tive to message passing. We leave the description of such spatial constraints
in this example as an exercise to the reader.

We will use local synchronization constraints and synchronizers [10, 11]
to specify functional and temporal coordination constraints respectively.

Local synchronization constraints allow to specify when certain messages
can be received by a particular actor. Synchronizers are linguistic constructs
that allow declarative control of coordination activity between multiple ac-
tors. Synchronizers allow two kinds of specifications: messages received by
an actor may be disabled and, messages sent to different actors in a group
may be atomically dispatched. These restrictions are specified using message
patterns and may depend on the synchronizer’s current state.

Local synchronization constraints in our Traveller example describe
valid (AirReservation, CarReservation, HotelReservation) triplets. That

20 Gul Agha et al.

is to say, triplets which do not go over the given budget and have consis-
tent dates. The example is illustrated in figure 1.10 (the notation is taken
from [10]):

éass Traveller { \

disable
plan(airReservation, carReservation, hotelReservation)
if
((airReservation.price + carReservation.price +
hotelReservation.price) > budget |
airReservation.arrivalDate != hotelReservation.arrivalDate |

o Y,

Fig. 1.10. Local synchronization constraints disable invalid travel plans.

Messages containing all possible combinations of travel are sent by the
TravelAgent to the Traveller but only those satisfying the synchronization
constraints are accepted by such agent and presented to the user. Once the
user selects his/her preferred travel plan, the subagents in charge of special-
ized reservations get notified to purchase them.

A synchronizer ensures atomic commitment to a travel plan by an airline
agent, a car agent and a hotel agent. The synchronizer is instantiated after
the user decides the best travel itinerary. Such synchronizer makes sure that
the combined state of the multiagent application is consistent. The example
is illustrated in figure 1.11 (the notation is taken from [10]):

Atomicity constraints in synchronizers enforce the atomic dispatching of
messages satisfying the given constraints. In other words, the “buy” message
for one of the agents above will be dispatched atomically with the “buy”
message for the other two agents. That is to say, no partial travel plans will
be purchased. Furthermore, once a plan has been purchased, no additional
purchases are allowed.

Synchronizer implementation

Two issues deserve further research regarding synchronizers as declarative
constructs for specifying multiagent coordination. First, exception handling
and failure considerations, and second, more active synchronizer implemen-
tation strategies.

While synchronizers provide a semantically clean and modular way to
describe desired coordination properties in distributed systems, there is a
need for enabling applications to take action in case failures happen. An

1. Agent Naming and Coordination 21

//;;;chronizer TravelCommit (airAgent, carAgent, hotelAgent, \\\\
airReservation, carReservation,
hotelReservation) {

bought := false;

atomic
(airAgent.buy(airReservation),
carAgent .buy (carReservation),
hotelAgent.buy(hotelReservation));

disable
airAgent.buy, carAgent.buy, hotelAgent.buy if bought;

trigger

airAgent.buy(airReservation)
-> { bought := true; };

N /

Fig. 1.11. A synchronizer enforces a single atomic travel purchase.

exception-handling mechanism attached to synchronizers would for example,
enable source actors to be notified when a message has been delayed for longer
than an acceptable time limit.

Secondly, certain coordination requirements may be inconvenient to spec-
ify using synchronizers, given their passive nature: synchronizers can not
receive or send messages, nor be “coordinated” by other synchronizers. A
starting point for a more “active” implementation of synchronizers, is to use
a hierarchy of directors to coordinate groups of actors [31].

1.6 Discussion

Building large complex systems is difficult without appropriate abstractions
that impose some type of discipline on the software development process.
The abstractions in wide use today, such as those offered by object ori-
ented programming, result in significant benefits in terms of reusability of
code, modularity and extensibility. Actors (agents) take object orientation
one step forward into the realm of distributed systems, resulting in signifi-
cantly simplifying a developer’s task. Actors and the abstractions developed
in the authors’ research group have resulted in at least an order of magni-
tude reduction in the size and complexity of code over implementations using
traditional object-oriented platforms.

The programming language abstractions we have developed provide uni-
versal naming, remote communication, migration and coordination. These

22 Gul Agha et al.

abstractions not only streamline the distributed software development pro-
cess, but also provide an opportunity for systematic code optimization (e.g.
through compilation techniques [19].) Furthermore, the worldwide comput-
ing infrastructure we developed enables the execution of programs using these
abstractions. In particular, this infrastructure offers support for building mul-
tiagent systems over the Internet. Cyborgs are an example of a multiagent
system.

Although these abstractions represent important steps in filling the gap
between what is offered by the traditional agent paradigm and what is re-
quired of a platform to implement complex problems, there are still many
open research questions.

Higher-level coordination abstractions and their efficient run-time sup-
port are needed. To eliminate redundant searches by agents working cooper-
atively, dynamic constraint propagation algorithms must be available. Eco-
nomic models are required for studying resource consumption behaviors of
cyborgs and groups of cyborgs. Reasoning mechanisms and logics must also
be developed for constraint validation and resource redistribution, for exam-
ple, algorithms for automatically deciding when and where to migrate agents
or groups of agents. Different granularities for migration should therefore be
supported by the underlying system.

Acknowledgements

We'd like to thank past and present members of the Open Systems Lab,
specially Po-Hao Chang, for many discussions and readings of initial versions
of this chapter. We’re also grateful to Grégory Haik for part of the design
and implementation of universal naming and remote messaging in the World
Wide Computer prototype. Jean-Pierre Briot at LIP6, provided insightful
discussions and feedback. This research was made possible by support from
the National Science Foundation (NSF CCR 96-19522) and the Air Force
Office of Scientific Research (AFOSR contract number F49620-97-1-03821).
The second author was also partially supported by a graduate fellowship
from Eastman Kodak Corporation. Any opinions, findings, and conclusions
are those of the authors and do not necessarily reflect the views of these
agencies.

References

10.

11.

12.

13.

14.

15.

. G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

G. Agha, S. Frglund, R. Panwar, and D. Sturman. A linguistic framework
for dynamic composition of dependability protocols. In Dependable Comput-
ing for Critical Applications III, pages 345-363. International Federation of
Information Processing Societies (IFIP), Elsevier Science Publisher, 1993.

G. Agha and N. Jamali. Concurrent programming for distributed artificial
intelligence. In G. Weiss, editor, Multiagent Systems: A Modern Approach to
DAL, chapter 12. MIT Press, 1999.

G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. Journal of Functional Programming, 7:1-72, 1997.

T. Berners-Lee, R. Cailliau, A. Luotenen, H. F. Nielsen, and A. Secret. The
World-Wide Web. Communications of the ACM., 37(8), Aug 1994.

T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers
(URI): Generic Syntax. IETF Internet Draft Standard RFC 2396, August
1998. http://www.ietf.org/rfc/rfc2396.txt.

J.-P. Briot. Actalk: a testbed for classifying and designing actor languages in
the Smalltalk-80 environment. In Proceedings of the European Conference on
Object Oriented Programming (ECOOP’89), pages 109-129. Cambridge Uni-
versity Press, 1989.

C. Callsen and G. Agha. Open Heterogeneous Computing in ActorSpace.
Journal of Parallel and Distributed Computing, pages 289-300, 1994.

J. Ferber and J. Briot. Design of a concurrent language for distributed ar-
tificial intelligence. In Proceedings of the International Conference on Fifth
Generation Computer Systems, volume 2, pages 755-762. Institute for New
Generation Computer Technology, 1988.

S. Frglund. Coordinating Distributed Objects: An Actor-Based Approach to
Synchronization. MIT Press, 1996.

S. Frglund and G. Agha. A language framework for multi-object coordination.
In Proceedings of ECOOP 1993. Springer Verlag, 1993. LNCS 707.

Les Gasser and Jean-Pierre Briot. Object-based concurrent programming and
distributed artificial intelligence. In Nicholas M. Avouris and Les Gasser,
editors, Distributed Artificial Intelligence: Theory and Prazis, pages 81-107.
Kluwer Academic, 1992.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, 1996.

C. Hewitt. Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence, 8-3:323-364, June 1977.

M. G. Hinchey and S. A. Jarvis. Concurrent Systems: Formal Development in
CSP. McGraw-Hill, 1995.

24

16

17.

18.

19.

20.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Author Index

. C. Houck and G. Agha. HAL: A high-level actor language and its distributed
implementation. In Proceedings of the 21st International Conference on Par-
allel Processing (ICPP ’92), volume 11, pages 158-165, St. Charles, IL, August
1992.

D. Kafura, M. Mukherji, and G. Lavender. "act++: A class library for con-
current programming in c++ using actors.”. Journal of Object Oriented Pro-
grammaing, pages 47-55, 1993.

W. Kim. THAL: An Actor System for Efficient and Scalable Concurrent Com-
puting. PhD thesis, University of Illinois at Urbana-Champaign, May 1997.
W. Kim and G. Agha. Efficient Support of Location Transparency in Concur-
rent Object-Oriented Programming Languages. In Proceedings of Supercom-
puting’95, 1995.

U. Manber. Chain Reactions in Networks. IEEE Computer, October 1990.

. Luc Moreau and Christian Queinnec. Design and semantics of quantum: a
language to control resource consumption in distributed computing. In Useniz
Conference on Domain Specific Language, DSL’97, pages 183-197, Santa-
Barbara (California, USA), October 1997.

Open Systems Lab. The Actor Foundry: A Java-based Actor Programming
Environment, 1998. Work in Progress. http://osl.cs.uiuc.edu/foundry/.

Open Systems Lab. SALSA: Simple Actor Language, System and Applications,
2000. Work in Progress. http://osl.cs.uiuc.edu/salsa/.

S. Ren, G. A. Agha, and M. Saito. A modular approach for programming
distributed real-time systems. Journal of Parallel and Distributed Computing,
36:4-12, 1996.

G. L. Steele and G. J. Sussman. Scheme, an interpreter for extended lambda
calculus. Technical Report Technical Report 349, Massachusetts Institute of
Technology, Artificial Intelligence Laboratory, 1975.

D. Sturman. Fault-Adaptation for Systems in Unpredictable Environments.
M.S. Thesis, May 1994.

C. Tomlinson, P. Cannata, G. Meredith, and D. Woelk. The extensible services
switch in carnot. IEEE Parallel and Distributed Technology, 1(2):16-20, May
1993.

C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha. Rosette:
An object oriented concurrent system architecture. Sigplan Notices, 24(4):91—
93, 1989.

United States Department of Defense. Reference Manual for the Ada Language,
draft, revised mil-std 1815 edition, july 1982.

C. Varela and G. Agha. What after Java? From Objects to Ac-
tors. Computer Networks and ISDN Systems: The International J. of
Computer Telecommunications and Networking, 30:573-577, April 1998.
http://osl.cs.uiuc.edu/Papers/www7/.

C. Varela and G. Agha. A Hierarchical Model for Coordination of Con-
current Activities. In P. Ciancarini and A. Wolf, editors, Third Inter-
national Conference on Coordination Languages and Models (COORDINA-
TION ’99), LNCS 1594, pages 166-182, Berlin, April 1999. Springer-Verlag,.
http://osl.cs.uiuc.edu/Papers/Coordination99.ps.

C. Varela and G. Agha. Linguistic Support for Actors, First-Class Token-
Passing Continuations and Join Continuations. Proceedings of the Midwest
Society for Programming Languages and Systems Workshop, October 1999.
http://osl.cs.uiuc.edu/~cvarela/mspls99/.

