
A distributed system consists of a collection of
autonomous computing elements that interact
through a shared network. The asynchronous nature
of distributed systems significantly complicates
application development. In particular, software exe-
cuting on distributed systems represents a unique
synthesis of application code and code for managing
requirements such as heterogeneity, scalability,
security, and availability.

As an example, consider a distributed video-on-
demand service: such an application requires policies
for opening new connections to the service, ensuring
that service providers are compensated (that is,
charging for service), and managing the delivery of
media to clients. While such policies express basic
requirements for the service, the protocols that
implement these policies are determined by orthog-
onal factors such as the presence of faulty hardware
or insecure networks. These factors are orthogonal in
the sense that they only affect the implementation of
the protocol and do not alter the basic implementa-
tion of the service. As a result, changing require-
ments and the rapid pace at which new hardware is
introduced lead to protocols that are constantly
evolving. Application code and protocol code are
often intermixed and this lack of modularity signifi-

cantly reduces the flexibility, maintainability, and
portability of distributed code.

We describe a system architecture and program-
ming techniques that enable the clean separation of
protocols from application code. In particular, we pro-
vide modularity via two mechanisms (see Figure 1):

• Separation of Policies and Protocols: Policies,
which define the rules by which components
interact (that is, client/server, transactions, pub-
lish/subscribe), are specified separately from pro-
tocols, which define the mechanisms by which
policies are implemented.

• Protocol Composition: In cases in which a single
component must adhere to multiple policies, a
framework for protocol composition allows multi-
ple policy implementations to safely coexist.

Separating policies and protocols provides an
abstraction boundary in the spirit of abstract data
types. Similar to the manner in which object-
oriented programming realizes abstract data types by
enabling the publication of a component’s interface
while hiding its implementation, the protocol
abstraction presents an interface representing an
interaction policy while hiding the details of the

COMMUNICATIONS OF THE ACM May 2001/Vol. 44, No. 5 99

Customizable
Middleware

for Modular
Distributed Software

Mark Astley, Daniel C. Sturman, and Gul A. Agha

Simplifying the development and maintenance of
complex distributed software.

coordination mechanisms used to implement the
policy. In particular, the protocols required for inter-
actions need not be hard-coded in application code.
This allows objects and protocols to be indepen-
dently developed and later composed into runnable
systems. For example, atomicity among a collection
of objects may initially be implemented using a two-

phase commit. If architectural constraints later
change, for example requiring stricter reliability
properties, modular design allows us to replace a
two-phase commit with a three-phase commit with-
out modifying client code.

Orthogonal design constraints may also force
components to adhere to multiple policies. A frame-
work for protocol composition preserves the modu-
larity of such policies so that their implementations
may be safely composed. For example, an existing
encryption protocol may be safely composed with an
existing primary backup protocol in order to satisfy
both secrecy and fault-tolerance policies.

To illustrate our approach, we describe the Dis-
tributed Interaction Language (DIL). A DIL proto-
col is a linguistic abstraction that encapsulates
protocol behavior: each protocol describes a cus-
tomized response to events within the system. Dis-
tributed interaction policies are implemented by
customizing system events defining component
interactions (such as the sending and receiving of
messages). DIL protocols dynamically modify sys-
tem behavior: for example, in response to commu-
nication events, a protocol may add or remove
messages, record or replace state, or halt the execu-
tion of a component. Events may also be program-
mer-defined. A combination of system and
programmer-defined events together defines an
interaction policy; the protocol provides an imple-
mentation for these events and, therefore, an imple-
mentation for the policy. The protocol
(implementation) may be modified without affect-
ing the events comprising the policy (interface).

A Distributed Application
Consider a distributed video-on-demand system
(Figure 2). A client requests to view a movie from an
online media library. The media library, in turn,
communicates with the bank to validate the finan-
cial transaction paying for the client’s request and
delegates the multimedia server to transmit the
movie. The multimedia server is itself comprised of
multiple components and is replicated for fault-tol-
erance. However, replication is transparent to both
the client and media library components.

This distributed application consists of four
application components and many different interac-
tion policies. We identify three policies that are rep-
resentative of a broad class of distributed
interactions. We observe that each policy may be
implemented by multiple protocols, depending on
the underlying hardware and operating system, and
the requirements of the participating application
components:

100 May 2001/Vol. 44, No. 5 COMMUNICATIONS OF THE ACM

Figure 1. Modularity is exploited at two levels.
Interaction policies are specified from the
protocols used for their implementation.

 Protocol composition allows components to
participate in multiple policies.

Protocol
Composition

Interaction
Policy

Protocols Implement
Policies

Components

Client

Media
Library

Audio Coord

Video

Audio Coord

Video

Audio Coord

Video

Bank

Atomicity

Synchronization

Replication

Figure 2. Video-on-demand is supported
by multiple interaction policies

including synchronization,
atomicity, and replication (availability).

Multimedia

Multimedia
Multimedia

• Atomicity: Concurrency control to enforce dis-
tributed atomicity is necessary to ensure that
financial transactions between clients, the media
library, and the bank are atomic. Possible proto-

cols for implementing this policy are two-phase
commit or three-phase commit. A three-phase
commit protocol survives crashes by the media
library but requires additional message overhead.

COMMUNICATIONS OF THE ACM May 2001/Vol. 44, No. 5 101

The term “middleware” refers
to software technology that

enables the modular connection
of distributed software. Specifi-
cally, coordination in distributed
applications is defined in terms
of policies, which represent the
rules component interactions
must adhere to. The role of mid-
dleware is to abstract over the
low-level protocols required to
implement these policies. Typi-
cally, middleware applications
are specified as if all
interactions were local.
The system itself is
responsible for handling
low-level details such as
sending messages over
the network, providing
for synchronization, and
guaranteeing reliability.
This allows software
developers to design
applications that are
“network transparent.”
That is, the application
need not be explicitly
aware of the composition and
distribution of hardware.

Object-based middleware
extends object-oriented program-
ming to networked environments.
Objects interact by invoking meth-
ods on other (possibly non-local)
objects. In many implementa-
tions, middleware provides the
illusion of local interactions by
using remote procedure call (RPC)
to intercept local method calls
and translate them into invoca-
tions on the remote target (see
the figure appearing in this side-
bar). Typically, each object is
given a stub, which is an interface

describing the services exported
by a remote object. A skeleton
receives messages from remote
stubs and translates them into
invocations on a local object.
Together, stubs and skeletons
implement the appropriate set of
protocols for carrying out a
remote method invocation. Stubs
are responsible for converting
method arguments into a network
transmittable form (called mar-
shaling), sending the invocation

request, and delivering any result
to the calling object. Similarly,
skeletons are responsible for
decoding incoming requests,
invoking the appropriate method
on a local object, and transmitting
a reply to the calling stub. Both
CORBA and Java’s Remote Method
Invocation (RMI) implement the
distributed object model (see
www.omg.org/corba and ftp.java-
soft.com/docs/jdk1.1.)

The current version of RMI only
supports RPC semantics for
method invocations. The most
recent version of CORBA includes
traditional RPC support as well as

higher-level “services” that allow
software developers to specify
other policies for interactions.
For example, publish/subscribe
applications may be specified
using CORBA’s Event Notification
Service. JavaBeans is a more
ambitious approach, also based
on RPC, in which applications are
built by connecting “plug-in”
objects through event-based
interfaces. In terms of middle-
ware, Beans are meant to be

rather general distrib-
uted objects that may
be placed and reconfig-
ured in a wide variety of
settings. While policies
used at the application
level remain fairly
standard, the selection
of protocols used to
implement these poli-
cies depends heavily on
the execution environ-
ment. For example,
middleware designed
for lossy networks will

require reliability protocols in
addition to any other mecha-
nisms used to implement policies.
Approaches such as CORBA and
RMI provide little or no support
for modularity at the level of pro-
tocol selection. As a result, soft-
ware developers are often forced
into ad hoc solutions in order to
satisfy application requirements.
A key challenge for future middle-
ware developers is to provide for
modular specification and cus-
tomization of protocols as well as
policies. Research is now begin-
ning to address such concerns (for
example, see [12]). c

Object-based Middleware

Client

Middleware Layer

Protocols for RPC
and other Policies

Server

An example of middleware support
for RPC. The protocols that implement RPC

as well as those that satisfy other requirements
(for example, security) are hidden

from clients and servers.

S
t
u
b

s
k
e
l
e
t
o
n

• Availability: The multimedia server is replicated
to provide fault tolerance. Many replication pro-
tocols exist that vary the failures they protect
against, recovery time after a failure, and their
cost in resources. For example, if the multimedia
servers exhibited fail-silent semantics, a primary-
backup protocol would provide fault-tolerance
without excessive cost in computational
resources. If recovery time is critical, an active
replication protocol consuming additional
resources would be used.

• Synchronization: Audio and video received by

the client from the multimedia
server must be synchronized
(lip-synched) so that audio and
video frames are paired cor-
rectly. This requirement suggests
the use of a real-time synchro-
nization protocol. By sacrificing
some accuracy, the two data
streams are kept synchronized
while satisfying the real-time
requirements of the viewer. In a
system without such stringent
real-time requirements, a proto-
col with stronger correctness
guarantees may be substituted.

Each component is governed by a set of interac-
tion policies. For example, interactions with the
multimedia server involve a replication protocol.
Also note that the same component may have dif-
ferent policies governing interaction with different
components. For example, the media library has dif-
ferent policies governing its interactions with the
multimedia server, the client, and the bank. Thus
mechanisms supporting protocol implementation
must allow customization on a per-component or
per-interaction basis. By examining the protocols
implementing the interaction policies in this exam-

102 May 2001/Vol. 44, No. 5 COMMUNICATIONS OF THE ACM

AB

Backup

Server

Primary-Backup

State File

Server
Periodic

Checkpoint

Communication
Events

Backup
for B

Name
Metalevel StackMessage

Role

Figure 3. Two protocol instances whose set of participants overlap. In
the primary-backup protocol, component A is in the role of client.

In the periodic checkpoint protocol, component A is in the role
of server. Protocol instances are organized into a metalevel stack.

File
for A

A

Server
Role

Client
Role

Client

Conventional objects encapsu-
late a state and a set of pro-

cedures to manipulate the state.
Objects provide an interface
defined in terms of the names of
procedures that are visible. These
procedures, called methods,
manipulate the local state of the
object when invoked. In particu-
lar, this implies that representa-
tions supporting the same
functionality may be inter-
changed transparently.

We model components of a dis-
tributed system as collections of
concurrent objects based on the
Actor model [2]. Actors extend the
object model by encapsulating a
thread of control together with the
state and set of procedures.
Actors are a powerful modeling

device: memory chips, control
devices, actuators, programs, and
entire computers can be uniformly
represented as actors. Moreover,
the Actor model provides a mathe-
matical foundation for reasoning
about dynamic creation and
reconfiguration in open distributed
systems. The use of actors does
not require a commitment to a
particular programming language
or syntax: because a distributed
system can be naturally decom-
posed into several autonomous
entities that communicate with
each other, the Actor model pro-
vides a formalism for representing
arbitrary distributed systems.
Communication between actors is
asynchronous. Asynchronous com-
munication preserves the available

potential for parallel activity: an
actor sending a message asyn-
chronously need not block until the
recipient is ready to receive (or
process) the message. Further-
more, more complex communica-
tion patterns such as RPC or
real-time data delivery, the latter
being particularly important for
the multimedia example described
in this article, are readily
expressed within the Actor model
[2, 9]. Actors may also create new
actors. Actor creation returns a
new mail address, which serves as
an end point for actor communica-
tion. The programming model used
in mobile agents and intelligent
agents, two currently active areas
of research, also satisfies Actor
semantics (see [8]). c

Actors

ple, we identify the facilities necessary to allow sepa-
rate development of protocols and applications.

Mechanism to Enforce Protocols
In order to better reason about distributed commu-
nication, we adopt a uniform programming model
for distributed components. Components are lim-
ited to interaction solely through (asynchronous)
message passing; we view components as encapsu-
lated entities that do not share state. Communica-
tion is point-to-point and components may only
communicate with known acquaintances. This view
of a distributed system is formalized by the Actor
model of computation.

We exploit the concept of reflection to isolate the
communication behavior of a component. Reflec-
tion provides an explicit representation of system
behavior in the form of metaobjects. Applications
may be customized by replacing system metaobjects
with user-defined metaobjects. In particular, a pro-
tocol may be expressed as a collection of metaobjects
customizing communication over a group of appli-
cation components. Each metaobject customizes
communication for a single component. A protocol
specified over a group of components is imple-
mented collectively by the metaobjects customizing
each component.

Moreover, by viewing metaobjects themselves as
application components we allow further customiza-
tion by way of meta-metaobjects. That is, metaob-

jects that customize other metaob-
jects. We use this mechanism to
implement protocol composition.
Specifically, multiple protocols
may be applied to a single compo-
nent by “stacking” the metaob-
jects that implement each
protocol. Thus, a metaobject cus-
tomizes the metaobject or compo-
nent immediately below itself in
the stack.

Interactions between applica-
tion components and metaobjects
are modeled in terms of events.
Events define the interface
between an application and a pro-
tocol. Both applications and
metaobjects generate events to
request specific services (for exam-
ple, communication). Metaobjects
define a default behavior for com-
munication events:

• transmit: A component sends
a message asynchronously. The event is parame-
terized by one argument: a structure representing
the message being sent. The message structure
may be copied, stored, destroyed, modified or
examined in any way. By default, this event is
processed by sending the message to its destina-
tion.

• deliver: A component receives a message. The
event is parameterized by one argument: a struc-
ture representing the message being delivered. A
metaobject may maintain a mail queue to store
delivered messages until they may be dispatched.
By default, this event is processed by queuing
incoming messages and dispatching them in the
order of their arrival.

• dispatch: A component is ready to process a
message. Normally, a metaobject selects the next
message to be processed and delivers it to the base
object. The base object may be delayed if no mes-
sage is available for delivery. By default, this event
is processed by returning the next message on the
queue constructed by deliver.

Metaobjects may provide an alternative behavior
for these events in order to customize communica-
tion. Additional events may be defined by the pro-
grammer for explicit invocation in an application.
For example, beginAction and endAction are
metaobject events that allow an application to start
and end a transaction.

COMMUNICATIONS OF THE ACM May 2001/Vol. 44, No. 5 103

Figure 4. Code for the two-phase commit protocol: the component
coordinating transactions will have the role of initiator;

components voting on transactions will have the role of server.

protocol Two-Phase {
 initialize(actor init)
 init actor assumes initiator role.
 addServer(actor svr)
 Add another actor in the server role.
 role initiator {
 MsgList currentAction;

 event beginAction()
 Begin construction of message list.
 event endAction()
 Close message list. }
 Send “prepare” to servers. }
 event transmit(Msg m)
 Add message to list (if being built).
 votePrepared(actor resp)
 Record prepared response.
 If complete, commit transaction.
 voteAbort()

 Abort transaction at all servers.
 committed(actor resp)

 Record commission.
 If complete, discard transaction.
 }

 role server {
 MsgList currentAction;

 prepare(MsgList ml)
 Record message list and invoke query
 event to check acceptance.
 Reply with prepared or abort message.
 commit()
 Commit transaction and deliver message list.
 doAbort()

 Abort transaction by invoking abort event.

Similarly, application components define a
default behavior for state manipulation events:

• reifyState: Generated by a metaobject to
request an encapsulated representation of compo-
nent state. The internals of this representation
may not be accessed or modified.

• reflectState: Generated by a metaobject to
replace the state of a component with a new state
(for example, with one returned from a previous
call to reifyState).

These events are used by metaobjects in order to
query or modify the state of a component. As in the
case previously described, additional events may be
defined by the programmer to support specific poli-
cies. For example, query and abort are application
events that allow a metaobject to determine the
commit status of an application.

Protocol Description
Using reflection as the mechanism, we have devel-
oped DIL: a language for high-level specification of
protocols. A protocol is a single linguistic abstrac-
tion detailing an implementation of a distributed
interaction policy. In DIL, a protocol is defined in
three parts: parameters, role definitions, and proto-
col operations.

Protocol parameters are a set of global values that
are shared by all participants in the protocol. Since
sharing of distributed memory is nontrivial, para-
meters may only be assigned when the protocol is
initialized.1 Parameters enable further customization
of protocols. For example, a replication protocol
may use a parameter to specify the number of repli-
cas in the protocol. A protocol using failure detec-
tion may have a parameter representing the time-out
value between liveness checks.

Roles define the customized behaviors assumed
by participants in the protocol. To implement a pro-
tocol, a metaobject is created to customize each par-
ticipant. The behavior of the metaobject is
determined by the role assumed by a component.
When a role is assumed, the assuming participant’s
communication behavior is modified using a
metaobject. The modified behavior applies only to
interactions with other participants in the protocol
(that is, those components that have assumed a role
in the protocol).

Protocol operations govern installation of roles
and other global actions on the protocol itself (not
the individual participants). For example, initializa-
tion of a protocol is an operation invoked when the

104 May 2001/Vol. 44, No. 5 COMMUNICATIONS OF THE ACM

T raditionally software has
been organized into two lev-

els: application and system.
Applications interact with the
system through system calls,
thereby invoking a predefined
function at the system level. To
extend this model to support cus-
tomization, micro-kernels move
much of the functionality
reserved for the system into the
application domain [1]. Object-
oriented operating systems also
support customization through
the use of frameworks: sets of
classes customizing the operating
system for a particular execution
environment [5]. These
approaches, however, result in
coarse-grained customization of
a system. In many cases, opti-

mization of an application
requires customization on a per-
object basis. Reflection provides
this ability: it allows application
objects to customize the system
behavior that describes their own
behavior [10].

Reflection is realized through
manipulation of system (or
meta-) level objects that imple-
ment some functionality in an
object’s behavior. For example,
metalevel objects may customize
memory allocation on a per-object
basis. Traditionally, an object allo-
cates memory by making a system
call. In a reflective system, an
object may allocate memory by
invoking a customized metalevel
memory object. Possible cus-
tomizations include improving

continuity of memory values or
supporting automatic garbage col-
lection. Invocation of the metaob-
ject is completely transparent to
the application: code for the
reflective and nonreflective sys-
tems is identical. Architectures for
reflective customization may be
quite general. For example, an
interpreter-based approach may
be used where application code is
reinterpreted each time a met-
alevel operation is invoked. In con-
trast, our approach is restricted to
customizing distributed interac-
tions. Thus, our metaarchitecture
may be implemented using com-
piled rather than interpreted
objects. This approach leads to
lower overhead imposed on the
underlying application. c

Reflection

1Consistency in distributed shared memory is an example of a distributed interaction
policy. Hard-wiring a particular implementation of the policy into DIL would be
counterproductive to the generality we are trying to provide.

protocol is first installed. Other operations check the
validity of role assumption and execute the binding
of roles to participants.

To install a protocol, a protocol instance is cre-
ated; the instance operates independently of all other
protocol instances. Protocol operations may be
invoked on the protocol instance to assign roles to
components in the system. Roles in a protocol are
relative to a particular protocol instance. Consider
the example in Figure 3: in the primary-backup pro-
tocol, component B is in the role of server and A is
in the role of client; in the periodic checkpoint pro-
tocol, A is in the role of server. The independence of
each protocol instance is essential to keep protocol
design modular: protocols may be written indepen-
dently and then composed at runtime. A metalevel
stack is used to separate the roles assumed by a par-
ticular component (see the previous section and Fig-
ure 3). The order in which roles are assumed
determines the ordering of the metalevel stack. Roles
may attach “tags” to messages so that protocol-spe-
cific state may be passed to roles assigned to other
components.

Example
To implement the video-on-demand system, the
media library must ensure that payment for the
movie as well as issuance of a receipt to the client is
atomic. The interaction policy enforcing atomic
transactions is realized through an interface between
the protocol implementing the policy and the appli-
cation. The interface to the protocol is simple: the
beginAction and endAction events delineate the
beginning and end of the transaction. The protocol
ensures all messages sent between the invocation of
these events by the application are invoked as a sin-
gle atomic action. The interface to the application
from the protocol is more involved. The application
must handle the following events:

query: The application checks an action to see if it
may be performed.

abort: The action could not be performed atomi-
cally. The application must be able to handle such
cases.

To implement this interaction policy, a two-phase
commit protocol is used. Two-phase commit guar-
antees atomicity in spite of possible crash failures or
the inability to accept an action by one of the par-
ticipants in the protocol. For example, if the bank
server cannot cash the check due to insufficient
funds or an unauthorized signature, then the ticket
will never be issued to the client.

Figure 4 gives the DIL specification of a two-phase
commit protocol. The protocol is divided into two
roles. The initiator role is assigned to the component,
which initiates an atomic interaction (for example, by
issuing beginAction). The server role is assigned to
all other components participating in the interaction.
In the video-on-demand system the media library
assumes the role of initiator, while the client and bank
assume the role of servers.

The initiator role supports three events: it cus-
tomizes the default transmission behavior (that is,
the transmit event), and handles the application-
invoked events beginAction and endAction.
The latter two events delineate the beginning and
end of a transaction. The transmit event is invoked
by the system whenever the application component
sends a message. If a transaction is being con-
structed, the message is added to the transaction,
otherwise it is transmitted immediately.

Once the endAction event has been received,
the initiator and servers exchange messages in two
phases in order to determine whether or not the
transaction may be committed. In the first phase, the
initiator sends a prepare message to each server ask-
ing it to vote on the current transaction. In response,
a server invokes a query event on the application.
Depending on the result of the query, the server
either sends a voteAbort or votePrepared mes-
sage to the initiator. If the initiator receives any abort
messages, then the entire transaction is aborted: each
server receives a doAbort message and invokes an
abort event on the application. Otherwise, once all
servers have replied, the initiator sends a commit
message to each server, which causes it to deliver the
messages in the transaction to the application.

When a new instance of the two-phase protocol is
created, it is initialized with the communication
address of the component initiating transactions.
This component assumes the role of initiator. Other
components are added to the protocol by the
addServer operator, thereby assuming the server
role. Note that multiple components may assume
the server role within one instance of the protocol.
For example, we might install the two-phase proto-
col using the syntax:

ProtocolInstance *pb =
newProtocol Two-Phase(MediaLi-

brary);
pb -> addServer(Client);
pb -> addServer(Bank);

Implementation
We have implemented our approach on the actor

COMMUNICATIONS OF THE ACM May 2001/Vol. 44, No. 5 105

platform Broadway. Broadway provides C++ sup-
port for distributed actor programs including asyn-
chronous communication, dynamic actor creation,
and scheduling of actors. Basic actor functionality is
augmented with support for migration, exception
handling, and synchronization constraints [6].
These additional features greatly simplify the devel-
opment of distributed programs. The platform cur-
rently runs on Ultrix for DEC MIPS workstations,
on Solaris for Sun Sparcstations, and IRIX for SGI
workstations. Each actor is implemented as a C++
object: the state and methods of an actor are the
state and methods of a C++ object.

Each actor also maintains a mail queue to buffer
incoming messages. When an actor is ready to
process its next message, the scheduler invokes the
correct method in the C++ object as a new thread.
Only one method may be active for a single actor:

there is no internal concurrency.
Broadway supports customization of actor com-

munication through reflection, thereby providing an
implementation platform for DIL. All actors may be
customized including metalevel actors. As with regu-
lar actors, metaactors are represented as C++ objects.
By supporting the customization of metalevel actors,
we enable the composition of protocols. Broadway
supports the five system-level events required by
application and meta-actors: dispatch, deliver,
transmit, reifyState, and reflectState.

To implement DIL, each protocol is converted
into multiple C++ classes that implement metalevel
actors. One class is created for each role in the pro-
tocol as well as a manager class that controls proto-
col operators. Role assumption must be atomic
across all participants in the protocol and support
for this assumption is provided by Broadway. To
avoid dependence on a single atomicity protocol,
Broadway loads a user specified atomicity protocol
upon initialization.

Broadway implements DIL with minimal over-
head. The table appearing here shows performance
measurements taken on a primary-backup protocol
installed on a small database application. Each mea-
surement represents the time required to perform
1000 interactions, where an interaction consists of

receiving a message, modifying the message in mem-
ory, and sending a copy to the backup. Two versions
of the application were developed: the first involving
a custom-made hand-coded version of the protocol
embedded into the application code and the second
using DIL. Timing results were taken to compare
the cost of using reflective objects to hand-coding.
The results suggest that our approach may be used
without excessive overhead. Note that a more com-
putationally intensive application would lead to
reduced overhead as message passing cost would
play a less significant role in the performance of the
application.

Discussion
Modularity and customizability are important tech-
niques for software development. Modularity is one
attraction of toolkits for distributed programming.
Toolkits support a small set of protocols for inter-
connecting application components. Toolkits,
although lacking generality, are well suited to appli-
cations requiring only the protocols they provide.
For example, transaction systems are ideal for dis-
tributed database applications, but unsuitable for
applications involving real-time synchronization.

Customization of component interactions has
been explored in the x-Kernel [7], Maud [3], and
more recently in Horus [11]. The x-Kernel and
Horus utilize protocol stacks to support customiza-
tion. Each layer in the stack supports a static inter-
face for interaction with the layers above and below
it. The interface in these systems is fairly elaborate.
Maud supports metalevel customization of proto-
cols for fault-tolerance. In comparison to the proto-
col stack approach, reflection enables Maud to use a
simple but flexible interface. DIL builds on Maud;
by treating protocols as single entities, it increases
the granularity of abstraction at which we may
develop and modify distributed systems. More
recently, this work has been extended and applied to
resource management policies for collections of
application components [4], including Java-based
support for actors and metaarchitectures (see
osl.cs.uiuc.edu/foundry).

Although both the computational power of indi-
vidual processors and their interconnectivity have
increased by orders of magnitude, methods for devel-
oping and maintaining distributed software have
not. The increasing complexity of distributed soft-
ware systems in the absence of corresponding
advances in software technology fuel a perennial cri-
sis in software. Advances in sequential programming
have historically come from the development of
abstractions to supportreuse and separate compo-

106 May 2001/Vol. 44, No. 5 COMMUNICATIONS OF THE ACM

Results from experiments on
SparcStation IPX workstations.

Experiment Custom DIL % Overhead

Single Node

Distributed

2.50 s

50.70 s

2.60 s

50.94 s

4.0%

1.7%

nents. We believe that methods that separate interac-
tions from application behavior provide the corre-
sponding ability to simplify the development and
maintenance of complex distributed software.

References
1. Acceta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian,

A., and Young, M. Mach: A new kernel foundation for unix develop-
ment. In USENIX 1986 Summer Conference Proceedings, (June 1986).

2. Agha, G. Concurrent object-oriented programming. Commun. ACM
33, 9 (Sept. 1990), 125–141.

3. Agha, G., Frolund, S., Panwar, R. and Sturman, D.C. A linguistic
framework for dynamic composition of dependability protocols. In
Volume VIII of Dependable Computing and Fault-Tolerant Systems.
Elsevier, 1993.

4. Astley, M. and Agha, G. Customization and composition of distributed
objects: Middleware abstractions for policy management. In Proceedings
of Sixth International Symposium on the Foundations of Software Engi-
neering (SIGSOFT ‘98), November 1998.

5. Campbell, R., Islam, N., Raila, D., and Madany, P. Designing and
implementing choices: An object-oriented system in C++. Commun.
ACM 36, 9 (Sept. 1993), 117–126.

6. Frolund, S. Coordinating Distributed Objects: An Actor-Based Approach
to Synchronization. MIT Press, 1996.

7. Hutchinson, N.C. and Peterson, L.L. The x-kernel: An architecture for
implementing network protocols. IEEE Transactions on Software Engi-
neering 17, 1 (Jan. 1991), 64–75.

8. Jamali, Thati, P., and Agha, G. An Actor-based architecture for cus-
tomizing and controlling agent ensembles. IEEE Intelligent Systems 14,

2 (Apr. 1999), 38–44.
9. Ren, S., Agha, G.A. and Saito, M. A modular approach for program-

ming distributed real-time systems. Journal of Parallel and Distributed
Computing, 36 (1996), 4–12.

10. Smith, B.C. Reflection and Semantics in a Procedural Language. Techni-
cal Report 272, Massachusetts Institute of Technology. Laboratory for
Computer Science, 1982.

11. van Renesse, R., Birman, K.P., Friedman, R., Hayden, M. and Karr,
D.A. A framework for protocol composition in horus. In Proceedings of
the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, August 1995.

12. Zarros, A. and Issarni, V. A framework for systematic synthesis of trans-
actional middleware. In Proceedings of Middleware’98 (Sept. 1998),
257–272.

Mark Astley (mastley@us.ibm.com) is a research staff member
at IBM T.J. Watson Research Center.
Daniel Sturman (sturman@watson.ibm.com) is Manager of
Distributed Messaging Systems at IBM T.J. Watson Research
Center.
Gul Agha (agha@cs.uiuc.edu) is Director of the Open Systems
Laboratory and Professor in the Department of Computer Science at
the University of Illinois at Urbana-Champaign.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

c

COMMUNICATIONS OF THE ACM May 2001/Vol. 44, No. 5 107

DEPARTMENT OF COMPUTING AND INFORMATION SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CANADA RESEARCH CHAIR

IN BIOCOMPUTING, BIOMATHEMATICS OR BIOSTATISTICS

The University of Guelph seeks applications or nominations to fill a Tier
I or Tier II Canada Research Chair (CRC) position in an area of
biocomputing, biomathematics or biostatistics. The appointment may
be in the Department of Mathematics and Statistics or in the Department
of Computing and Information Science; a joint appointment is also
possible. The Departments together have 41 faculty, offering strong
teaching and research programs to the Ph.D. degree. Research programs
are enhanced by SHARC-Net, a 500 node Beowulf supercomputer cluster.
Further information concerning the departments is available at
http://www.mathstat.uoguelph.ca and http://www.cis.uoguelph.ca.
The candidate’s research should complement the University of
Guelph Strategic Research Plan, which can be found at
www.uoguelph.ca/Research/programs/crc/3a.html. Further information
on the CRC Program may be found at the program website at
http://www.chairs.gc.ca.

The successful candidate will be expected to maintain a vigorous research
program, develop a strong graduate program and teach at both the graduate
and undergraduate levels. Applications or nominations should include
a curriculum vitae, a five-year research plan and four references, at least
one of which addresses teaching. Forward applications to: Dr. O.B. Allen,
Department of Mathematics and Statistics, University of Guelph, Guelph, ON
Canada N1G 2W1 (fax: 519-837-0221); or to Dr. W. Dobosiewicz, Department
of Computing and Information Science (fax: 519-837-0323). Applications
should be received by September 1, 2001. All CRC appointments are
subject to review and final approval by the CRC Secretariat in Ottawa.

The University of Guelph is committed to an employment equity program
that includes special measures to achieve
diversity among its faculty and staff. We
therefore particularly encourage applications
from qualified aboriginal Canadians,
persons with disabilities, members of visible
minorities and women.

GOVERNORS STATE UNIVERSITY

AA/EOE

COMPUTER SCIENCE FACULTY
Governors State University (GSU) seeks applica-
tions and nominations for a full-time tenure-track
faculty position in computer science to contribute
to established B.S. and M.S. degree programs in
Computer Science. We are seeking candidates with
a strong commitment to teaching and with research
potential. While the focus of this position will be on
the practical aspects of computer programming,
applicants from all areas of computer science will
be considered. Duties will include teaching,
research, and service. Qualifications: Earned Ph.D.
in Computer Science or closely related area is
preferred; a strong interest and background in
programming and teaching programming
languages (C, C++, VB, and Java) is required;
technical experience in applications development
(e.g., Windows programming and Internet
programming) is required; experience working with
students from diverse populations and back-
grounds. The position is available September 1,
2001. The review of applications will begin
immediately and will continue until the position is
filled. To apply, interested candidates should send
a letter of application addressing qualifications, a
curriculum vitae which includes identification of the
teaching/research specialties, a copy of transcripts;
and the names, addresses and appropriate contact
information of three personal references to:
Computer Science Search Committee, c/o
Division of Science; Governors State University;
University Park, IL 60466.

