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Abstract—The semantics of Markov Decision Processes
(MDPs), when viewed as transformers of probability distribu-
tions, can described as a labeled transition system over the
probability distributions over the states of the MDP. The MDP
can be seen as defining a set of executions, where each execution
is a sequence of probability distributions. Reasoning about
sequences of distributions allows one to express properties not
expressible in logics like PCTL; examples include expressing
bounds on transient rewards and expected values of random
variables, as well as comparing the probability of being in one
set of states at a given time with another set of states. With
respect to such a semantics, the problem of checking that the
MDP never reaches a bad distribution is undecidable [1]. In this
paper, we identify a special class of MDPs called semi-regular
MDPs that have a unique non-empty, compact, invariant set of
distributions, for which we show that checking any ω-regular
property is decidable. Our decidability result also implies that
for semi-regular probabilistic finite automata with isolated cut-
points, the emptiness problem is decidable.

Index Terms—Markov Decision Processes; Probability Distri-
butions; Semantics; Model Checking;

I. INTRODUCTION

Discrete Time Markov Chains (DTMCs) are a convenient
model to describe systems with probabilistic transitions [2]. A
DTMC has finitely many states, and a transition from a state
is probabilistic. Traditionally, DTMCs are viewed as defining
a probability space on sequences of states, and logics that
can reason about the measure of executions satisfying some
modal property can be used to verify such systems [2]–[4].
When considering systems with both probabilistic and nonde-
terministic behavior, Markov Decision Processes (MDPs) are
used [2], [3], [5]–[7]. The difference from a DTMC is that
in an MDP, each state has a set of probabilistic transitions
enabled. The semantics of such an MDP is then defined with
respect to a scheduler that resolves the nondeterminism by
picking an enabled transition for a state based on the execution
thus far. Thus, with respect to a scheduler, an MDP can be
seen as a potentially infinite state DTMC which defines a
measure on sequences of states. Logics for MDPs allow one
to reason about schedulers and measures of certain sequences
of states [2].

In this paper we view the semantics of DTMCs and MDPs
differently — instead of viewing them as defining measures on

executions, we view them as transformers of probability distri-
butions. In this approach, a DTMC defines a single execution,
which is a sequence of probability distributions on states; start-
ing from the initial distribution, each subsequent distribution
is applied by multiplying the transition matrix of the DTMC
with the current distribution. Thus, the ith distribution in the
sequence represents the probability distribution over the state
space at step i. This is the approach taken in [8], where a
logic for reasoning about sequences of probability distributions
was also presented. This approach can be easily generalized to
MDPs. The semantics of an MDP from this viewpoint is then
defined using a labeled transition system, where the states are
probability distributions on the states of the MDP. Labeling
the states of such a transition system by propositions (defined
over distributions), one can define properties about sequences
of distributions using standard modal logics. Reasoning about
MDPs as transformers of distributions allows one to express
properties that cannot be expressed by typical specification
logics that reason about the probability space of sequences of
DTMC/MDP states. The propositions over distributions allow
one to express bounds on transient rewards, expected values
of random variables over the state space (like expected queue
length or energy consumed), software performability [9] as
well as compare the probability of being in one set of states
after a given number of steps with that of another set of states
after the same number of steps.

Model checking MDPs with respect to such a semantics is
in general undecidable [1]. This is observed by reducing the
emptiness problem of Probabilistic Finite Automata (PFA),
which is known to be undecidable [10], to the problem of
checking whether a set of distributions is reachable from the
initial distribution of an MDP. Thus, one needs to restrict
attention to special MDPs. This program was initiated in [1],
where it was shown that certain classes of MDPs can be
verified with respect to ω-regular properties, when considering
special Markovian schedulers. In this paper, we consider a
different class of MDPs and prove the decidability of checking
certain properties; for a detailed comparison with [1] see the
related work section.

An MDP M is a tuple (S, µ0,P), where S is a finite set
of states, µ0 is the initial distribution and P is a finite set



of stochastic matrices {P1, P2, . . . Pk}; each matrix Pi corre-
sponds to a particular resolution of nondeterminism from each
state.M defines a function from sets of distributions to sets of
distributions as follows: M(C) = {µPi | µ ∈ C, 1 ≤ i ≤ k}.
An invariant set of distributions ofM is a set of distributions
U such that M(U) = U . We identify a special class of
MDPs, which we call semi-regular. A semi-regular has a
unique nonempty, compact, invariant set of distributions: any
two nonempty invariant sets of MDP which are also compact
must be identical. Semi-regular MDPs define a contracting
function in a complete metric space, and the uniqueness of
the invariant set follows from Banach’s theorem.

Our decidability results pertain to what we call robust, semi-
regular MDPs. Observe that a function λ labeling distributions
by propositions defines an equivalence relation, namely one
that equates all distributions that get the same label. A semi-
regular MDP M is said to be robust with respect to λ if
every distribution in the unique compact invariant set U of
M, lies in the interior of an equivalence class defined by λ.
Our main result shows that given an ω-regular specification
A, and a semi-regular MDP M that is robust, the problem of
verifyingM against A is decidable. Our proof proceeds in two
steps. First, we show that the language of labeled executions
generated by any semi-regular, robust MDP is regular. The
ideas used in establishing this result crucially exploit the fact
that U is compact and invariant, and that the matrices of a
semi-regular MDP define contracting maps. Then we show that
if we make some natural assumptions about the effectiveness
of the labeling function λ, an automaton recognizing this
language can be constructed. These, together with classical
results about Büchi automata, give us our desired decidability
result.

One important consequence of our observations applies to
the decidability of the emptiness problem for probabilistic
finite automata (PFAs). Recall that PFAs are finite state
machines that process finite words by tossing coins at each
transition. The language of such a machine is defined with
respect to a threshold θ. It is the collection of all words whose
probability of reaching a final state (called the acceptance
probability) is above θ. As mentioned before, the emptiness
problem for such machines is known to be undecidable. Our
results imply that the emptiness problem is decidable for semi-
regular PFAs with isolated thresholds — a threshold θ is
isolated if there is an ε such that the acceptance probability of
any word is bounded away from θ by ε.

We motivate our work on verifying MDPs by describing a
general model in drug administration, called the compartment
model. We model the absorption of insulin as an MDP, seman-
tically viewed as a transformer of distributions, and show how
our decidability results can be used in drug administration.

The rest of the paper is organized as follows. We begin by
comparing our work with previous literature. In Section III,
we introduce our motivating example of the drug absorption
of insulin. We then (in Section IV) recall basic concepts and
introduce the notation that we will use in the paper. Next, in
Section V, we recall Markov decision processes and give its
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Fig. 1. MDP shown is contracting (as defined in [1]) but not semi-regular.
There are two transitions from each state: a transitions are shown as solid
edges, while b transitions are shown as dashed edges.

semantics as a transformer of distributions. Our special class
of MDPs with a unique invariant set of distributions, namely
semi-regular MDPs, are introduced in Section VI. The main
decidability results are presented in Section VII. We revisit the
insulin example in Section VIII, and present our conclusions
in Section IX.

II. RELATED WORK

Most of the work on model checking MDPs [2], [11]–[13]
has focussed on properties specified in logics such as PCTL
and PCTL∗ that reason about the probability measure (on
runs) induced by the MDP under some scheduler. Properties
specified in logics like PCTL and PCTL∗ are incomparable to
the kinds of properties considered here. On the one hand there
is no way in PCTL or PCTL∗ to compare the probability of
being in different states after the same number of steps, and
on the other hand, in this paper we consider only linear time
properties that do not take the branching structure of the MDP
into account. For a detailed comparison see [1].

A predicate logic of probability, introduced by Beauquier
et. al. [14], allows one to compare the probability of being
in different states after the same number of steps. However,
this logic of probability is also incomparable to the properties
considered in this paper; for a detailed comparison see [1]. For
this predicate logic of probability, the model checking problem
has only been considered for DTMCs.

Kwon and Agha [8], [15] initiated the study of verifying
sequences of probability distributions. They proposed a logic
called iLTL, to express temporal properties of sequences of
distributions, and presented an algorithm to model check
DTMCs with respect to iLTL properties. In a companion pa-
per [1], we began the study of model checking MDPs viewed
as transformers of distributions. We showed that checking
safety properties of general MDPs is undecidable, and we
considered a special class of MDPs, called contracting MDPs,
and proved the decidability of checking ω-regular properties
with respect to special Markovian schedulers, called almost
acyclic. The decidability results presented in this paper are
incomparable to those in [1]. The MDPs we consider here,
namely semi-regular MDPs, are more restricted than the class
we considered in [1], namely contracting MDPs. To see that



semi-regular MDPs are contracting, consider a semi-regular
MDP M. Then, by definition, there is a k such that for any
P ∈ P , there is an inevitable state q such that P k(q′, q) > 0
for every q′. This means that P has only one closed class
(namely the one containing q) and that this class is aperiodic,
implying that P is contracting. Contracting MDPs, however,
are a strict super-class; this is illustrated by the example shown
in Figure 1 (that is, in fact, a deterministic transition system)
which is contracting but not semi-regular, as on any sequence
of alternating a’s and b’s of odd or even length, the states B
and C end up in different states. On the other hand, in this
paper we consider all schedulers as opposed to only certain
Markovian schedulers. It is easy to see that any almost acyclic
set of schedulers will not accept at least one scheduler. Recall
that an almost acyclic set of scheduler is a set of schedulers
(infinite sequence of matrices) accepted by a Büchi automaton
A such that there is a total order > on the states of A such that
(a) if q1

P−→ q2 with q1 6= q2 then q2 < q1, and (b) if for any
q, q P1−→ q and q P2−→ q then P1 = P2. Suppose the MDP has
at least two choices from each state; let us call these choices A
and B. It can be easily shown that the sequence (AB)ω is not
accepted by any almost acyclic set of schedulers by induction
on the total order < on the states of the automaton. Thus,
the collection of all schedulers is not almost acyclic. Apart
from the decidability results being incomparable, the proof
techniques used in the two papers are also very different. In
particular, our extensive reliance on topological properties to
prove decidability, is unique.

The semantics of MDPs considered here, is closely related
to the model of probabilistic finite automata [16], [17]. How-
ever, there are a couple of differences between this work
and PFAs — we consider labels on distributions, and infinite
executions, rather than finite words over the transition labels.
The undecidability of the emptiness problem of PFAs [10]
implies that the verification problem for arbitrary MDPs under
our semantics is undecidable (see [1]). The decidability results
described in this paper imply that the emptiness problem
for semi-regular PFAs with isolated cut-points is decidable.
Finally, Probabilistic Büchi automata (PBA) is an extension of
the PFA model to infinite words [18]. However, because of the
way acceptance is defined for infinite words, their semantics
is closer to the traditional semantics of MDPs, than ours.

Finally, our definition of semi-regular MDPs is inspired by
the definition of regular interval Markov Chains in [19]. The
model checking problem is however not considered in that
paper.

III. MOTIVATION

We recall a pharmacokinetic model first presented in [1]. In
Pharmacokinetics, compartment models have been commonly
used as a mathematical model to describe the drug disposition
changes in our body, where a compartment is a group of tissues
with similar blood flow and drug affinity. The drug Absorption,
Distribution, Metabolism, and Elimination (ADME) processes
are explained in the compartment models as the drug concen-
tration level changes [20].
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Fig. 2. A three compartment model. The unit of the rate constants is 1/min.

In the compartment model, the amount of drug leaving
from a compartment is proportional to the amount of drug
in the compartment, and thus has the memoryless property.
Thus, we can model them as Markov chains: the states are the
compartments and the transition probability rates are the drug
transition rates between the compartments.

Figure 2 shows a state transition diagram embedding a three
compartment model of Insulin−131I [21], [22] 1. This dia-
gram represents a Continuous Time Markov Decision Process,
where the boxes are the states and the labels at the directed
edges are the transition rate constants. The states Pl, IF, and
Ut are the three compartments, representing plasma, interstitial
fluid, and the site of utilization and degradation. Dr and Cl are
the states representing the unabsorbed and the cleared drug
respectively. Re state is introduced to use physical units in the
specification: if α (g) of drug is initially taken, then we can
put α in Dr state and 1 − α in Re state so that the elements
of the initial probability distribution adds up to one. Observe
that the differential equations describing the drug disposition
changes are identical to the equations for the transitions of
probability distributions (Kolmogrov forward equation). Hence
we can interchange the amount in probability and the amount
of drug in a physical unit. Note also that, we can always make
0 ≤ α ≤ 1 by choosing a large unit. The interpretation of the
rate from Re to Cl being infinite is that the remaining drug in
this state is instantly cleared without interacting with the rest
of the system. In the corresponding MDP model this transition
probability is set to 1.

In the pharmaceutical analysis, one needs to account for
the presence of multimodal behavior. For example, if there are
more drugs than the enzymes can process, the drug elimination
process shows a saturated behavior. In the saturated mode,
the drug elimination rate becomes slow, and thus the drug
concentration level can reach its toxic limit if this mode is not
considered. The saturated mode has often been modeled as a
nonlinear kinetics called Michaelie-Menten kinetics. However,
this model can be simplified to a linear model when the
drug concentration level is large compared to the Michaelie
constant [20]. Thus, this multimodal behavior can be described
by an MDP. In Figure 2, the rates from Ut state to Cl state

1Although we explain this three compartment model of Insulin in this paper,
our technique can generically be applied to other models as well.



N =



0.94 0.02434 0.02567 0.00798 0.00024 0

0.00 0.20724 0.48298 0.29624 0.01353 0

0.00 0.15531 0.42549 0.39520 0.02400 0

0.00 0.02598 0.10778 0.77854 0.08770 0

0.00 0.00000 0.00000 0.00000 1.00000 0

0.00 0.00000 0.00000 0.00000 1.00000 0



S =



0.94 0.02435 0.02568 0.00809 0.00012 0

0.00 0.20728 0.48329 0.30257 0.00686 0

0.00 0.15540 0.42612 0.40626 0.01221 0

0.00 0.02653 0.11080 0.81776 0.04491 0

0.00 0.00000 0.00000 0.00000 1.00000 0

0.00 0.00000 0.00000 0.00000 1.00000 0


Fig. 3. Stochastic matrices for the normal mode (N = e10·Rn ) and the
saturated mode (S = e10·Rs ), when the states are ordered as Dr, Pl, IF, Ut,
Cl, and Re and Rn and Rs are the infinitesimal generator matrices of the
compartment model described in Figure 2.

show the drug elimination rates in the normal mode and in the
saturated mode.

Now, we build an MDP model from the state transition
diagram of Figure 2 by setting the sampling time to 10 (min).
Let Rn and Rs be the infinitesimal generator matrices for the
normal mode and the saturated mode respectively. Then, their
corresponding probability transition matrices N = e10·Rn and
S = e10·Rs are shown in Figure 3.

The amount of the drug in the compartments satisfies the
following difference equation:

µt+1 = µt · Pt+1,

where µt is a probability distribution at time t and Pt is either
N or S. Given an initial dose µ0, the distribution of the drug
in the compartments at time t is:

µt = µ0 · P1 · P2 · · ·Pt.
Observe that given an initial dose the drug disposition changes
depend on the choices of the stochastic matrices.

There are several conditions that must be considered when
administering a drug. These conditions include:

1) The drug concentration level should never exceed its
Minimum Toxic Concentration (MTC).

2) To be effective, the drug concentration level should even-
tually be above its Minimum Effective Concentration
(MEC).

3) All the administered drug should be cleared from the
body eventually.

Specifically, if we assume that the MTC is 2.1 (µg/ml), the
MEC is 1.4 (µg/ml), the body weight is 60 (kg), and the
volume of Ut compartment is 15.8% of the body weight, then
the amount of drug in the Ut compartment at MTC and MEC
are mtc = 0.020 and mec = 0.013(g) respectively.

To describe these conditions, we begin by defining propo-
sitions effective, nontoxic, and cleared over the space of
probability distributions. A probability distribution µ is labeled

effective if µ(Ut) > mec or labeled nontoxic if µ(Ut) < mtc
or labeled cleared if µ(Ut) < ε, where ε is a small value.

Using 2 operator (always) the first condition can be simply
written as 2nontoxic. Regarding the second condition, let the
required active duration be at least two sampling periods which
can be expressed as (effective ∧ X effective ∧ XX effective).
Since this condition is only required to occur eventually
and not immediately, we can write the second condition as
3 (effective ∧ X effective ∧ XX effective), where 3 stands for
“eventually”. Finally, the third condition can be expressed as
32cleared.

Combining these three conditions together, the entire spec-
ification can be written as:

ψ = 2(nontoxic) ∧ 32(cleared)

∧3(effective ∧ X effective ∧ XX effective)).

IV. PRELIMINARIES

We introduce the basic notations and definitions that we will
use in this paper.

A. Languages

Sequences and Words. Let Σ be a finite set. |Σ| will denote
the cardinality of Σ. Let η = s0, s1, . . . be a possibly infinite
sequence/word over Σ. The length of η, denoted as |η|, is
defined to be the number of elements in η, if η is finite, and
ω otherwise. Σ∗ denotes the set of finite sequences/words,
Σ+ the set of finite sequences/words of length ≥ 1 and Σω

denotes the set of infinite sequences/words. If β is a finite
sequence, and η is either a finite or an infinite sequence then
βη denotes the concatenation of the two sequences in that
order. For integers i and j such that 0 ≤ i ≤ j < |η|, η[i, j]
denotes the (finite) sequence/word si, . . . , sj and the element
η[i] denotes the element si. A finite prefix of η is any η[0, j]
for j < |η|.

Languages and Automata. A Büchi automaton over Σ is
A = (Q, δ, q0, F ), where Q is a finite set of states, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final states, and δ ⊆
Q×Σ×Q is the transition relation. A run of A on an infinite
input string β is a sequence ρ = r0, r1, . . . over Q such that
r0 = q0 and for each i, (ri, β[i], ri+1) ∈ δ. We say a run ρ is
accepting if there is some q ∈ F that appears infinitely often
in ρ. A word β is accepted by A if β has an accepting run,
and L(A) is the collection of all infinite words over Σ that are
accepted by M . We say that a language L ⊆ Σω is ω-regular
if there is a Büchi automaton A such that L = L(A).

B. Distributions and Stochastic Matrices

Distributions. A probability distribution over S is µ : S →
[0, 1] such that

∑
q∈S µ(q) = 1. We will denote Dist(S) to be

the set of all distributions over S.
Stochastic Matrices. A stochastic matrix over a set of

states S is a matrix P : S × S → [0, 1] such that ∀s ∈
S.
∑
s′∈S P (s, s′) = 1. Mat=1(S) will denote the set of

all stochastic matrices over the set S. For P ∈ stocmatS
and µ ∈ Dist(S), µP denotes the distribution, given by
µP (q) =

∑
q′∈S µ(q′)P (q′, q).



C. Metric Spaces

We recall some standard definitions from topology [23].
Recall that a metric space M = (M,d) is a nonempty set
M equipped with a distance metric d : M ×M → R≥0 with
the following properties: for every x, y, z ∈ M , d(x, y) = 0
iff x = y; d(x, y) = d(y, x); and d(x, z) ≤ d(x, y) + d(y, z).

Open and Closed Sets. An open ball of radius ε > 0 around
an element x in M is defined as the set B(x; ε) = {y ∈
M |d(x, y) < ε}. Similarly, an open ball of radius ε > 0 around
a set U ⊆M is defined as the set B(U ; ε) = ∪x∈UB(x; ε). A
subset O of M is called open if for every x ∈ O there exists
an ε > 0 such that B(x; ε) is contained in O. The complement
of an open set is said to be closed. The interior of a set U ,
int(U) is the largest open set contained in U ; the existence
of such a set follows from the fact that open sets are closed
under arbitrary unions. An infinite sequence σ = x1, x2, . . . of
elements from M converges to x if for every ε, there is a Nε
such that for every n ≥ Nε, d(xn, x) < ε; x is said to be the
limit of the sequence σ. A function f : M →M is said to be
continuous if for every open set O, f−1(O) = {x |f(x) ∈ O}
is open. Given a function f : M →M , fn : M →M denotes
the n-fold composition of f with itself.

Cauchy Sequences, limit points, complete metric spaces.
Given a metric space M = (M,d), an infinite sequence
x1, x2, . . . of elements from M is said to be Cauchy if for
every ε > 0 there is an Nε such that for all m,n > Nε,
d(xm, xn) < ε. An element x is said to be the limit of the
Cauchy sequence x1, x2, . . . ... if for every ε > 0 there is an
Nε such that for all m > Nε, d(xm, x) < ε. A metric space
M = (M,d) is said to be complete if every Cauchy sequence
has a limit in M .

Compact Sets. An open cover of U ⊆ M is a collection
of open sets O = {Oi | i ∈ I} such that U ⊆ ∪i∈IOi. A
set C ⊆ M is said to be compact if every open cover O =
{Oi | i ∈ I} of C has a finite sub-cover, i.e., there is a finite
subset J ⊆ I such that C ⊆ ∪i∈JOi. Observe that every finite
set is compact trivially. The collection of nonempty compact
spaces of M will be denoted by C(M).

We recall the following properties of compact sets. Given a
continuous function f and a compact set C, the set f(C) =
{f(x)|x ∈ C} is also compact. The collection of compact sets
is closed under finite union and intersection with closed sets.
The intersection of a nonempty collection of compact sets is
also compact. A collection X = {Xi | i ∈ I,Xi ⊂ S} of sets
(non necessarily compact) is said to have the finite intersection
property if every finite sub-collection {X1, X2, . . . , Xn} of X
has a nonempty intersection. A set C is compact iff every
nonempty collection of closed subsets of C having the finite
intersection property has an nonempty intersection. Every
sequence of elements of a compact set C has a Cauchy
subsequence which converges to an element in C. Thus,
every compact metric space is complete. Finally, we have the
following property.

Lemma IV.1. If C is a compact set that is contained in an
open set O then there is an ε > 0 such that B(C; ε) ⊆ O.

Proof: We first show that if C is compact and A is a
closed set such that C ∩ A = ∅, then there is a ε > 0 such
that d(x, y) > ε for each x ∈ C, y ∈ A.

Suppose (for contradiction) that for each ε > 0 there are
xε ∈ C and yε ∈ A such that d(xε, yε) ≤ ε. Then, there are
{cn}n∈N in C and {an}n∈N in A such that d(cn, an) < 1/n.
Now since C is compact, there is a convergent subsequence
cnk

that converges to c ∈ C. It is easy to show that the
subsequence ank

also converges to c. As A is a closed set,
this implies that c ∈ A. Therefore, c ∈ C ∩ A contradicting
the emptiness of C ∩A.

Now, the result follows by taking A to be the complement
of the set O.

Metric Space on Compact Sets. Given nonempty sets
X,Y ⊆ M the Hausdorff distance between X and Y is
defined as follows

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
.

Let C(M) be the collection of all nonempty compact sets
in the metric space M = (M,d). Then (C(M), dH) forms
a metric space, i.e., the Hausdorff distance defines a metric
space over the nonempty compact sets.

Contracting maps and fixpoints. A mapping f : M → M
is said to contracting if there is an α, with 0 ≤ α < 1, such
that for all x, y ∈ M , d(f(x), f(y)) < αd(x, y). The fixed
point of a function f : M → M is an element x such that
f(x) = x. Banach’s fixed point theorem is an important result
on the existence of unique fixed points.

Theorem IV.2 (Banach’s fixed point theorem). Let (M,d)
be a nonempty, complete metric space. Let f : M → M and
natural number k > 0 be such that fk a contracting map. Then
f has a unique fixed point x∗ ∈ M . Furthermore, x∗ is the
limit of the (Cauchy) sequence {xn}n∈N where xi+1 = f(xi)
and x0 is an arbitrary element of M .

Metric space on Distributions. We will consider the standard
L1 metric on distributions. For a finite set S, let D(S) =
(Dist(S), d) where

d(µ, ν) =
1

2

∑
x∈S
|µ(x)− ν(x)| = maxA⊆S |µ(A)− ν(A)|.

In this space, the set Dist(S) is a compact set. Furthermore
every stochastic matrix defines a nonexpanding map.

Proposition IV.3. Every stochastic matrix P ∈ Mat=1(S) is
nonexpanding, i.e., for all µ, ν ∈ S, d(µP, νP ) ≤ d(µ, ν).

We will also consider the space C(S) = (C(D(S)), dH),
the Hausdorff metric space on the nonempty compact sets of
D(S). Since C(S) is also compact, it is a complete metric
space.

Proposition IV.4. The space C(S) is a complete metric space.



V. MDPS AS TRANSFORMERS OF DISTRIBUTIONS

Markov decision processes (MDPs) are a natural repre-
sentation for modeling and analysis of systems with both
probabilistic and nondeterministic behavior.

Definition An Markov decision process (MDP) is a tuple
M = (S, µ0,P), where S is a (finite) set of states, µ0 ∈
Dist(S) is the initial distribution, P ⊆ Mat=1(S) is a
finite nonempty set of stochastic matrices (also call transition
matrices).M is said to be a Markov chain (MC) is P contains
exactly one element.

Remark Our definition of an MDP differs from the more
commonly used definition of an MDP. An MDPM is defined
as a tuple (S, µ0, Steps), where S and µ0 have the same
interpretation as ours and Steps maps each state in S to a
finite subset of Dist(S). In this definition, a transition from
state s involves (nondeterministically) picking a distribution
µ ∈ Steps(s) and then transitions to state s′ with probability
µ(s′). It is easy to see that our definition of MDP is more
general when compared to the standard definition.

We will define the semantics of an MDP as a transition
system. This semantics differs from the traditional semantics
of an MDP. Traditionally, the informal semantics of an MDP
is taken as follows. The semantics is defined using schedulers
which resolve nondeterminism: given a sequence of states
(the history of the state sequence visited) ending in s, a
scheduler picks a matrix P ∈ P , and then transitions to state
s′ with probability P (s, s′). This yields a probability measure
on executions, once the nondeterministic choices are resolved
through an adversary.

Semantics. Instead of the usual semantics of an MDP as a
probability measure on distributions once the nondeterminism
is resolved, we consider MDPs as transformers of probability
distributions. We give this semantics by defining a labeled
transition system. Given M = (S, µ0,P), the transition
system associated with M is T (M) = (Q,→, µ0), where
Q = Dist(S), and→⊆ Q×P×Q is defined as (µ, P, ν) ∈→
iff ν = µP . From now on, we will say µ

P→ ν instead of
(µ, P, ν) ∈→.

An execution of M starting from a distribution µ is a
sequence ν0, ν1, . . . such that ν0 = µ and for all i, νi

P→ νi+1,
for some P ∈ P . The collection of all executions starting
from µ will be denoted by E(M, µ). An execution of M is
an execution starting from the initial distribution µ0, and the
set of executions of M is denoted as E(M).

Labeling. Given a finite set of labels Σ, a Σ-labeling
function for distributions over S is λ : Dist(S) → 2Σ. A
labeling function λ defines a partition πλ = {UK | K ⊆ Σ}
on Dist(S), where µ ∈ UK iff λ(µ) = K. The interior of
partition πλ is int(πλ) = ∪K⊆Σint(UK).

The labeling function λ can be extended to an execution
as follows. Given ρ = ν0, ν1, . . . ∈ Dist(S)ω , λ(ρ) =
λ(ν0), λ(ν1), . . . ∈ (2Σ)ω . The language Lλ(M, µ) of labeled
sequences of MDP M starting from µ with respect to λ, is

defined as

Lλ(M, µ) = {λ(ρ) | ρ ∈ E(M, µ)}.

Finally the language of M with respect to λ is given by
Lλ(M) = Lλ(M, µ0).

Model Checking Problem. The verification question that we
will consider in this paper is as follows. Given an MDP M,
a Σ-labeling function λ and a language L ⊆ (2Σ)ω , decide
if Lλ(M) ⊆ L. This problem is undecidable for general
MDPs [1]. In this paper we identify sufficient conditions on
the MDP and the labeling function for which this question
becomes decidable for any ω-regular language L.

VI. MDPS WITH A UNIQUE COMPACT INVARIANT SET OF
DISTRIBUTIONS

As mentioned in the previous section, the problem of veri-
fying MDPs (viewed as transformers of distributions) against
regular specifications was shown to be undecidable in [1]. In
this section, we will identify a special subclass of MDPs,
called semi-regular MDPs, for which the model checking
problem is shown to be decidable in the next section.

We start by defining some notations. Given a set P ⊆
Mat=1(S), we can define an operator P : 2Dist(S) → 2Dist(S)

where P(W ) = {µP | µ ∈ W and P ∈ P}. 2 We will often
write WP to mean P(W ).

Given a natural number n > 0, the n-th power of P is
given by Pn = {P1P2 · · ·Pn | Pi ∈ P}. Thus, Pn contains
all matrices obtained by taking the product of n matrices
(possibly same) from P . Observe that the resulting operator
Pn : 2Dist(S) → 2Dist(S) is the n-fold composition of the
operator P.

We begin by defining what we mean by an invariant set of
distributions, before defining semi-regular MDPs.

A. Invariant Set of Distributions

One of the most important concepts in the study of Markov
chains is the notion of an invariant/stationary distribution.
Given a Markov chain with transition matrix P , an invari-
ant/stationary distribution is a probability distribution µ such
that µ = µP . When considering MDPs, since we have a set
of transition matrices, we need to consider the notion of a set
of invariant distributions.

Formally, a set U ⊆ Dist(S) is an invariant set of MDP
M = (S, µ0,P) iff U is a fixed point of the operator P , i.e., iff
UP = U. Thus an invariant set is closed under multiplication
with the set of possible transition matrices. Note, it is not
the case that each distribution in an invariant set is invariant
for some matrix in P . Please observe that the emptyset is
trivially an invariant set. Tarski’s fixed point theorem implies
that the set of fixpoints of P ordered by set inclusion forms
a complete lattice [24]. We show that the greatest fixed point
of the operator P is a nonempty compact set.

2The overloading of P as both a set of stochastic matrices and as an
operator on powerset of distributions is deliberate.



Proposition VI.1. Given an MDP M = (S, µ0,P) , there
is a nonempty compact set C∞ such that C∞P = C∞.
Furthermore, for every set U such that UP = U , U ⊆ C∞.

Proof: Let C∞ = ∩i∈N(Dist(S)Pi). We have:

1) If U is such that UP = U, then U ⊆ C∞.
2) For each i, Dist(S)Pi+1 = ∪P∈PP (Dist(S)Pi). Since

compact sets are closed under finite union, images of
continuous maps and arbitrary nonempty intersection,
C∞ is compact.

3) The sequence Dist(S)Pi is a sequence monotonically
decreasing of nonempty closed sets. By the finite inter-
section property, we have that C∞ is nonempty.

4) C∞P ⊆ C∞.
Hence, we will be done if we can show that C∞ ⊆ C∞P.

Pick x ∈ C∞ and fix it. Consider the sequence of
sets Wi = (Dist(S)Pi) ∩ P−1({x}) where P−1({x}) =
∪P∈PP−1({x}). Observe that Wi is a monotonically decreas-
ing sequence of closed sets. As x ∈ C∞, Wi is nonempty
for every i, and so satisfies the finite intersection property.
Since the metric space D(S) is compact, we get ∩i∈NWi

is nonempty. Pick y ∈ ∩i∈NWi. The proposition follows by
observing that y ∈ ∩i∈NWi implies that y ∈ P−1({x}) and
y ∈ C∞.

The number of different compact invariant sets, and their
structure, plays an important role in solving the model check-
ing problem.

B. Semi-regular MDPs

We will define and study the properties of a class of MDPs
which will have a unique (nonempty) compact invariant set of
distributions.

Definition Given an MDP M = (S, µ0,P), a set of states
Inevt ⊆ S is set to be inevitable inM if there exists a natural
number ` > 0 such that for each P ∈ P` there is a sP ∈ Inevt
such that P (s, sp) > 0 for all s ∈ Q.

An MDPM = (S, µ0,P) is said to be semi-regular if there
is a set Inevt ⊆ S inevitable in M.

Semi-regular MDPs generalize the notion of regular Markov
Chains [25]. An important property of regular Markov Chains
is that they have unique stationary distributions. One method
of proving this fact is to show that Markov chains define
contracting maps on the set of distributions under the L1

metric. We extend this observation to semi-regular MDPs. In
particular, by using a proof similar to the one used for regular
Markov Chains, we show that there is a number k such that
each matrix P ∈ Pk is a contracting map on the space of
distributions.

Proposition VI.2. Let M = (S, µ0,P) be a semi-regular
MDP. There is an 0 ≤ α < 1 and a natural number k > 0
such that for all P ∈ Pk,

∀µ, ν ∈ Dist(S). d(µP, νP ) < αd(µ, ν).

Proof: As M is semi-regular, there is a set Inevt in-
evitable in M. Pick ` such that

∀P ∈ P `. ∃sp ∈ S.∀s ∈ S.P (s, sp) > 0.

Fix P ∈ P ` and let sp be such that ∀s ∈ S. P (s, sp) > 0.
Let

εP = min
s∈S

P (s, sP ) and αP = 1− εP .

Note that 0 < εP ≤ 1, 0 ≤ αP < 1 and P (s, sP ) ≥ εP for
each s ∈ S. We will now show that for all µ, ν ∈ Dist(S),
d(µP, νP ) < αP d(µ, ν). We have

2d(µP, νP ) = |∑s∈S(µ(s)P (s, sP )− ν(s)P (s, sP ))|+∑
s′∈S\sP |

∑
s∈S(µ(s)− ν(s))P (s, s′)|

= |∑s∈S(µ(s)(P (s, sP )− εP + εP )−
ν(s)(P (s, sP )− εP + εP ))|+∑

s′∈S\sP |
∑
s∈S(µ(s)− ν(s))P (s, s′)|

= |∑s∈S(µ(s)(P (s, sP )− εP )−
ν(s)(P (s, sP )− εP ))|+∑

s′∈S\sP |
∑
s∈S(µ(s)− ν(s))P (s, s′)|

≤ ∑
s∈S |µ(s)− ν(s)| (P (s, sP )− εP )+∑
s′∈S\sP

∑
s∈S |µ(s)− ν(s)|P (s, s′)

≤ ∑
s∈S |µ(s)− ν(s)| (∑s′∈S P (s, s′)− εP )

≤ ∑
s∈S |µ(s)− ν(s)| (1− εP )

≤ 2αP d(µ, ν)

The result now follows by letting α = maxP∈P αP .

For each natural number k > 0, observe that the operator
Pk maps nonempty compact sets to nonempty compact sets.
In other words, for every nonempty compact set C, CPk is
nonempty and compact. Thus, the map C 7→ CPk, for any
k, is a map from the the space C(S) of nonempty compact
sets of distributions to itself. Our next observation shows that
when M is semi-regular, this map is contracting.

Proposition VI.3. Let M = (S, µ0,P) be a semi-regular
MDP. There is a number k such that the mapping on C(S)
given by C 7→ CPk is contracting. In other words, there is
an α, such that 0 ≤ α < 1, and

dH(C1Pk, C2Pk) < αdH(C1, C2).

Proof: Let k > 0 and 0 ≤ α < 1 be such that for all
P ∈ Pk,

∀µ, ν ∈ Dist(S). d(µP, νP ) < αd(µ, ν).

We have

dH(C1Pk, C2Pk) =

max
{

supµ∈C1,P1∈Pk infν∈C2,P2∈Pk d(µP1, νP2),

supν∈C2,P2∈Pk infµ∈C1,P1∈Pk d(µP1, νP2)
}



Now observe that

supµ∈C1,P1∈Pk infν∈C2,P2∈Pk d(µP1, νP2)

≤ supP1∈Pk supµ∈C1
infν∈C2 d(µP1, νP1)

≤ supµ∈C1
infν∈C2 α · d(µ, ν)

≤ α · dH(C1, C2).

Similarly, the other term will also be bounded by α ·
dH(C1, C2). Thus, dH(C1Pk, C2Pk) ≤ α · dH(C1, C2).

Recall that the space C(S) is complete (see Proposi-
tion IV.4). We use Banach’s fixpoint theorem to conclude the
uniqueness of nonempty compact invariant sets.

Theorem VI.4. Let M = (S, µ0,P) be a semi-regular MDP.
Then there is a unique compact, nonempty invariant set U
of M. Furthermore, if C is a (nonempty) compact set of
distributions, then the sequence {CPk}k∈N converges in space
C(S) to U .

Remark Please note that the above theorem only guarantees
that any two nonempty compact invariant sets of an semi-
regular MDP M are identical. There might be other invariant
sets of M which are not compact.

C. Robust Semi-regular MDPs

We conclude this section by defining a notion of robustness
that will play an important role in the decidability result.
For a semi-regular MDP M = (S, µ0,P), let U(M) denote
the unique nonempty compact invariant set. Recall that a Σ-
labeling function λ defines a partition πλ on the collection
Dist(S). Robustness is defined as follows.

Definition Let M = (S, µ0,P) be a semi-regular MDP with
U(M) being the unique nonempty compact invariant set of
distributions. M is said to be robust with respect to a Σ-
labeling function λ if U(M) ⊆ int(πλ).

In other words,M is robust if none of the distributions in the
invariant set lie on the boundary of any of the partitions of
πλ. Thus, slight changes in the labeling function λ will not
change the labels of the invariant set in a robust MDP.

VII. MODEL CHECKING ROBUST, SEMI-REGULAR MDPS

In this section we present our main decidability result. We
begin by observing that for a semi-regular MDP M that is
robust with respect to a Σ-labeling function λ, the language
of labeled executions Lλ(M) is ω-regular. We then show
that under some effectiveness assumptions on the labeling
function λ, we can in fact construct an automaton recognizing
the language Lλ(M). These two facts allow us to conclude
that checking the correctness of such MDPs against regular
specifications is decidable. We conclude the section with
applications of this result to the emptiness checking problem
for probabilistic finite automata with isolated cut-points.

A. Decidability Result

We start by showing that the language of executions of a
semi-regular MDP is ω-regular.

Theorem VII.1. LetM = (S, µ0,P) be a semi-regular MDP
that is robust with respect to the Σ-labeling function λ. The
language Lλ(M) is ω-regular.

Proof: Consider the equivalence relation ≡ defined on
Dist(S) as follows.

µ ≡ ν iff Lλ(M, µ) = Lλ(M, ν).

The crux of this proof is to show that ≡ has finitely many
equivalence classes. Observe that since Lλ(M) is a safety
language,3 proving that ≡ has finite index establishes the
regularity of Lλ(M).

Let U be the unique, nonempty, compact, invariant set of
M. By the definition of robustness we know that U ⊆ int(πλ).
Since U is compact and int(πλ) is an open set, fix ε > 0 to
be such that B(U ; ε) ⊆ int(πλ); note, here we are taking the
ball in the space D(S) and not C(S). The existence of such
an ε is guaranteed by Lemma IV.1. Consider the following
sequence of nonempty compact sets — C0 = Dist(S), and
Ci+1 = CiP . Since this sequence converges to U (Theo-
rem VI.4), it follows that there is an N such that for all i ≥ N ,
dH(Ci, U) < ε. Observe that by our choice of N and ε we
have

1) B(U ; ε) ⊆ int(πλ), and
2) B(U ; ε) ⊇ ∪i≥NCi

where these balls are taken in the space D(S).
Given a set X let us denote by ≡X the equivalence ≡

restricted to set X . Using this notation, observe that to show
that ≡ has finite index, all we need to show is that ≡Ci

has finite index, for all i. This will be accomplished by first
showing that ≡B(U ;ε) has finite index, and then inductively
establishing that ≡Ci

, for i < N , has finite index.
Let us assume (to be proved later) that ≡B(U ;ε) has finite

index. We will use this to show that ≡Ci , for i < N , has finite
index. Consider µ, ν ∈ CN−1. Observe that if λ(µ) = λ(ν),
and for every P ∈ P , µP ≡B(U ;ε) νP then µ ≡CN−1

ν. Given
that P is finite, we can conclude that ≡CN−1

has finite index.
Inductively, for µ, ν ∈ Ci, i < N−2, we have if λ(µ) = λ(ν),
and for every P ∈ P , µP ≡Ci+1 νP then µ ≡Ci ν. Thus,
inductively, we can conclude that ≡Ci , for i < N are all of
finite index.

So the crux of the proof is in establishing that ≡B(U ;ε)

is of finite index. In what follows, we will make use of the
following claim.

Claim 1: Let R = {Ri | i ∈ I} be a collection of subsets
of distributions over S such that for all i, µ, ν ∈ Ri implies
λ(µ) = λ(ν). Suppose for every i ∈ I and P ∈ P , there is a
j ∈ I such that RiP = {µP | µ ∈ Ri} ⊆ Rj . Then each Ri
is contained in an equivalence class of ≡.

Claim 1 is a straightforward consequence of the fact that
∪i∈I(Ri × Ri) is a bisimulation. The next important

3A language L ⊆ Σω is a safety language iff for any α ∈ Σω if every
prefix of α is the prefix of some string in L then α ∈ L.



observation we make is the following.

Claim 2: Let µ ∈ U and ν ∈ B(µ; ε). Then µ ≡ ν.

Proof of Claim 2: Observe that, since P is a stochastic
matrix, every P ∈ P defines a nonexpanding map. In other
words, for any µ1, µ2, d(µ1P, µ2P ) ≤ d(µ1, µ2). Thus,
for any µ′ ∈ U , B(µ′; ε)P ⊆ B(µ′P ; ε). Now, since µ′

is in the invariant set, µ′P is also in U . Moreover, since
B(U ; ε) ⊆ int(πλ), it follows that all distributions in B(µ′; ε),
for µ′ ∈ U , have the same labels. Thus, the collection
{B(µ′; ε) | µ′ ∈ U} satisfies the conditions in Claim 1,
yielding the desired observation.

Let E be an equivalence class of ≡U . The following
sequence of observations completes the proof.
(a) ≡U is of finite index. This is seen as follows. The

collection B = {B(µ′; ε) | µ′ ∈ U} is an open cover of
U , and (by Claim 2) each set in B belongs to the same
equivalence class of ≡. Now, since U is compact, there
is a finite sub-cover of B, and the size of this sub-cover
gives a bound on the number of equivalence classes of
≡U .

(b) For every µ, ν ∈ B(E; ε), µ ≡ ν. This is just an
immediate consequence of Claim 2.

(c) Now, by part (b), ≡B(U ;ε) has the same number of
equivalence classes as ≡U , which by part (a) is finite.

Having established the regularity of Lλ(M), a natural
question to ask is if it can be effectively constructed. For this
we need to make some assumptions about the effectiveness
of the labeling set and the set of matrices P that define M.
We will assume that the MDP M = (S, µ0,P) is such that
for every s ∈ S, µ0(s) is a rational number and every matrix
P ∈ P has rational entries; we will call such an MDP as
having rational entries.

The model checking algorithm and the labeling function all
need a representation for sets of distributions. Thus, it is useful
to introduce the abstract notion of a symbolic representation
of sets of distributions.

Definition A symbolic representation for distributions is a
family R = {Ri | i ∈ N} of subsets Ri ⊆ Dist(S) such
that each Ri has a finite representation rep(Ri). A symbolic
representation R is effective iff the following conditions hold.

1) R is closed under all Boolean operations and their rep-
resentations can be effectively computed. That is, given
rep(Ri) and rep(Rj), we can compute rep(Ri ∩ Rj),
rep(Ri ∪Rj) and rep(Ri).

2) Given P ∈ Mat=1(S) with rational entries, and rep(Ri),
the set P−1Ri = {µ|µP ∈ Ri} is inR and rep(P−1Ri)
can be effectively computed.

3) Given rep(Ri) and rep(Rj) the following questions are
decidable: Ri ⊆ Rj and Ri = ∅

4) Given µ ∈ Dist(S) such that µ(s) is rational for all
s ∈ S, and rep(R), determining if µ ∈ R is decidable.

The effectiveness requirements are the usual ones imposed on
representations to carry out symbolic model checking. In this
context, one symbolic representation that is effective is the
first order theory of real-closed fields [26].

We are now ready to present the main decidability result
of the paper. We will say that a Σ-labeling function λ is
represented using a symbolic representation R iff for every
K ⊆ Σ, λ−1(K) = {µ ∈ Dist(S) | λ(µ) = K} belongs to R.

Theorem VII.2. Let M be a semi-regular MDP having
rational entries. Let λ be a Σ-labeling function represented
using an effective symbolic representation R. If M is robust
with respect to λ then one can effectively construct a Büchi
automaton A such that L(A) = Lλ(M).

Proof: Recall the equivalence ≡ on Dist(S) defined in the
proof of Theorem VII.1 as µ ≡ ν iff Lλ(M, µ) = Lλ(M, ν).
From the proof of Theorem VII.1, it follows that ≡ has finite
index. Now we can run a partition refinement algorithm start-
ing from the partition πλ. The effectiveness assumptions on the
symbolic representation ensures that the partition refinement
algorithm can be carried out. Thus, ≡ can be computed, and
the automaton A constructed.

We use the main theorem to conclude the decidability of
the model checking question.

Corollary VII.3. Let A by a Büchi automaton over alphabet
2Σ. Let M be a semi-regular MDP with rational entries that
is robust with respect to a Σ-labeling function λ. Let λ be
represented in an effective symbolic representation. Then, the
problem of checking if Lλ(M) ⊆ L(A) is decidable.

Proof: From Theorem VII.2, we can construct the au-
tomaton B such that L(B) = Lλ(M). The result then follows
from the fact that language containment between Büchi au-
tomata is decidable.

B. Emptiness of PFAs

Probabilistic finite automata [16] (PFA) are finite automata
on finite words that can toss coins while making transitions.
Formally, a PFA A = (Q,∆, {Pa}a∈∆, q0, F ), where Q is a
finite set of states, ∆ the input alphabet, Pa ∈ Mat=1(Q) for
each a ∈ ∆, q0 ∈ Q is the initial state and F ⊆ Q is the set of
final states. Informally, the automaton on input w = a1 · · · an,
starts at the initial state q0 and takes transitions according to
Pai at step i. We will now define its behavior formally.

Let δ(q) ∈ Dist(Q) be the distribution that assigns probabil-
ity 1 to q and probability 0 to all other states. The probability
of accepting word w = a1 · · · an, denoted as accA(w), is
given by

∑
q∈F µ(q), where µ = δ(q0)Pa1 · · ·Pan . Given a

threshold 0 ≤ θ ≤ 1, the language accepted by A is given
by Lθ(A) = {w ∈ ∆∗ | accA(w) ≥ θ}. We say a threshold
θ is isolated if there exists ε > 0 such that for all w ∈ ∆∗,
|accA(w) − θ| > ε. One of the most celebrated results about
PFAs establishes the undecidability of the emptiness problem;
this is formally stated next.



Theorem VII.4 (Paz [17], Condon-Lipton [10]). Given a PFA
A and threshold θ, the problem of determining if Lθ(A) is
empty is undecidable.

Our results identify an important subclass of PFAs with iso-
lated cut-points, for which the emptiness problem is decidable.
This is the formal content of the next theorem.

Theorem VII.5. Let A = (Q,∆, {Pa}a∈∆, q0, F ) be semi-
regular, i.e., the MDP M = (Q, δ(q0), {Pa}a∈∆) is semi-
regular. Suppose θ is an isolated cut-point for A. Then the
problem of determining if Lθ(A) = ∅ is decidable.

Proof: The result essentially follows from Corol-
lary VII.3. Take Σ = {f} and Σ-labeling function λ such that
λ(µ) = {f} iff

∑
q∈F µ(q) ≥ θ. Observe that the fact that θ

is isolated ensures that the MDP M is robust with respect to
λ, and the result follows from the decidability of the model
checking problem for robust, semi-regular MDPs.

VIII. ANALYZING THE COMPARTMENT MODEL OF
INSULIN-131I

In this section, we show that the MDP M =
({Dr, P l, IF, Ut, Cl,Re}, µ0, {N,S}) corresponding to
compartment model described in Section III is semi-regular
and is robust with respect to a Σ-labeling function λ
where Σ contains the labels effective, nontoxic and cleared,
as defined earlier. Note that, both the matrices S and
N have the same closed class {Cl}. It is also trivial to
see that there exists some l such that from every state
s ∈ {Dr, P l, IF, Ut, Cl,Re} there is nonzero probability of
reaching the state Cl, no matter what sequence of matrices
is chosen. Hence the set {Cl} is inevitable in M. Thus,
by definition, MDP M is semi-regular. We observe that
the invariant/stationary set of distributions of this special
semi-regular MDP contains only a single distribution µl
which is a unit distribution at state Cl. In other words, in
the long run, all the drug will end up in the compartment Cl
irrespective of the mode. Consider the set of distributions D
such that D = {µ | λ(µ) = {nontoxic, cleared}}. Since the
invariant distribution µl of M is in the interior of the set D,
the MDP M is robust with respect to Σ-labeling function
λ. Thus by Corollary VII.3 model checking M against any
Büchi specification B is decidable. The MDP model satisfies
all the the properties of interest listed in Section III.

IX. CONCLUSIONS

We identified a new class of MDPs called semi-regular
MDPs that have a unique compact invariant set of distributions.
We showed that for this class of MDPs, under some robustness
and effectiveness assumptions, the problem of checking if all
executions (as sequences of distributions) belong to some ω-
regular specification is decidable. Our decidability result also
establishes the decidability of the emptiness problem for semi-
regular PFAs with isolated cut-points.
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