
Parameterized, Concurrent Session Types for

Asynchronous Multi-Actor Interactions

Minas Charalambidesa, Peter Dingesb, Gul Aghac

acharala1@illinois.edu
bpdinges@acm.org
cagha@illinois.edu

Abstract

Session types have been proposed as a means of statically verifying implemen-
tations of communication protocols. Although prior work has been successful
for some classes of protocols, it does not cope well with parameterized, multi-
actor scenarios with inherent asynchrony. For example, the sliding window
protocol is not expressible in previously proposed session type notations. This
article defines System-A: a novel session type system, as well the associated
programming language that together overcome many of the limitations of
prior work. With explicit support for asynchrony and concurrency, as well as
multiple forms of parameterization, we demonstrate that System-A can be
used for the static verification of a large class of asynchronous communication
protocols.

Keywords: session types, type theory, distributed, static, parameterized,
multi-party, asynchrony, concurrency, parallel, actors, communication

1. Introduction

Session types [35] are a means of expressing the order and type of mes-
sages exchanged by concurrently executing processes. In particular, session
types can be used to statically check if a group of processes communicates
according to a given specification. In these systems, a global type specifies
the permissible sequences of messages that participants may exchange in a
given session, as well as the types of these messages. The typing requires
the programmer to provide the global type. A projection algorithm then
generates the restrictions implied by the global type for each participant.
Such restrictions are called end-point types or local types and describe the

Preprint submitted to Science of Computer Programming November 24, 2015

expected behavior of the individual participants in the protocol. The actual
program code implementing the behavior of a participant is checked for con-
formance against this localized behavior specification. We are interested in
generalizing prior work on session types to typing coordination constraints
in parameterized actor [1] programs, which can then be enforced, e.g., with
Synchronizers [27, 28, 24] or other ways [42, 2].

Typing coordination constraints in actors requires addressing two prob-
lems. First, asynchronous communication leads to delays that require con-
sidering arbitrary shuffles. Second, we need to consider parameterized pro-
tocols. For example, assume two actors communicating through a sliding
window protocol [51]: the actors agree on the length of the window (i.e., the
number of messages that may be buffered) and then proceed to a concurrent
exchange of messages. Prior work on session types is not suitable for typing
interactions such as the sliding window protocol. The reason for this lim-
itation is that their respective type languages depend on other formalisms
for type checking (such as typed λ-calculus [3] or System T [32]), and these
formalisms do not support a concurrency construct.

Contributions. We present a programming language along with a session type
system that overcomes many of the aforementioned limitations through the
use of parameters and novel constructs. The session types were originally
introduced in our 2012 FOCLASA paper [17], which serves as the foundation
of the present article. The three primary extensions are (a) the introduction
and formal definition of Lang-A, a programming language for expressing
protocols typeable in our session type system, System-A; (b) an inference
algorithm that derives local System-A types from Lang-A programs, and
(c) the formal treatment of the type system.

Overall, our work on System-A makes the following contributions: (i) the
introduction of parameterized constructs for expressing asynchrony, concur-
rency, sequence, choice and atomicity in protocols; (ii) a projection mecha-
nism that extracts local type constraints on individual actors from the global
type; (iii) a formalization of the conditions under which conformance of these
constraints to the global type is assured; (iv) a normalization algorithm for
local types, which allows equivalence testing; and (v) trace semantics of
System-A and Lang-A. We furthermore supply the formal proofs of vari-
ous useful properties, such as those concerning items (iii) and (iv), as well as
standard sanity checks of the type system.

2

Limitations. We do not address dynamic actor creation in this article, and
briefly discuss the related difficulties in Section 11. We furthermore omit
support for session delegation, and do not deal with issues of progress. Fi-
nally, we do not consider overlapping indexed names when nested in multiple
operators. This disallows some cases, such as all-to-all communication. A
more accurate description of how we restrict the use of indices is given in
Section 7.

2. Related Work

Session types [35, 54, 50, 34] originate from the context of π-calculi as stat-
ically derivable descriptions of process interaction behaviors. In two-party
sessions, they allow us to statically verify that the participants have compa-
tible behavior by requiring dual session types, that is, behaviors where each
participant expects precisely the message sequence that the other partici-
pant sends and vice versa. Extensions to session types support asynchronous
message passing [36] and introduce subtyping [29] for a looser notion of type
compatibility. Session types have been integrated into functional [52, 47] and
object-oriented [23, 38, 31] languages among others. Other extensions deal
with evolving system specifications using transformations [25]. Exception
handling, which allows the participants of a protocol to escape the normal
flow of control and coordinate on another, has also been considered [14, 12].
The present article introduces a novel combination of two enhancements to
session types: we parameterize both the number of participants, and the type
constructs, including those introducing asynchrony. This greatly extends the
applicability of types.

Asynchronous Multi-Party Sessions. Many real-world protocols involve more
than two participants, which makes their description in terms of multiple
two-party sessions unnatural. To overcome this limitation, Honda et al. [36]
extend session types to support multiple participants: A global type speci-
fies the interactions between all participants from a global perspective. A
projection algorithm then mechanically derives the behavior specification of
each individual participant, that is, its local type.

The notion of a global specification and the associated correctness require-
ments for projection were first studied by Carbone et al. [11], although in the
context of concrete implementations rather than session types; Bonelli’s work
on multi-point session types [9] treats multi-party protocols from the local

3

perspective only. Bettini et al. [7] allow multi-party sessions to interleave and
derive a type system guaranteeing global progress. Gay and Vasconcelos [30]
consider subtyping in presence of asynchrony. Recent work by Carbone and
Montesi [13] takes a novel approach to asynchrony by treating programs
from the global perspective and regaining concurrent composition through
a suitable swap relation. Although it obviates the need for an explicit con-
current operator, their approach does not support parameterized programs.
In contrast, we include a parameterized concurrent construct in our types.
Concurrent composition is also treated in the work of Kouzapas et al. [39],
who apply session type discipline to π-calculus. An event-driven approach
to asynchrony is explored by Hu et al. [37]. However, neither the system of
Kouzapas, nor that of Hu handles parameterized asynchrony.

The type systems introduced by Puntigam [49, 48] deal with asynchrony
in the context of actors. His approach has the benefit of not utilizing global
types; instead, given an actor’s specification, the system ensures its proper
use. To the best of our knowledge, this is also the only relevant body of work
where the language supports dynamic actor creation, which is something that
System-A does not handle. However, it is important to note that Puntigam’s
systems ensure safety properties on a per-actor basis, which is (naturally, due
to the absence of global types) somehow limited in scope. Parameters are
also not considered.

The present article builds on the foundation of a global protocol speci-
fication and its projection onto local behaviors, as in the work of Honda et
al. [36]. Unlike Honda’s approach (but following Castagna et al. [15, 16]), we
simplify the notation for global types by replacing recursion with the Kleene
star and limiting each pair of participants to use a single bidirectional chan-
nel. We introduce an explicit shuffle operator to preserve the commutativity
of message arrivals that can be achieved using multiple channels. Explicit
shuffles also reduce the need for a special subtyping relationship that al-
lows the permutation of (Lamport-style) concurrent asynchronous events for
optimization [43].

Following Castagna’s global type syntax further, we support join opera-
tions. Joins cannot be expressed in Honda et al.’s global types because of
the linearity requirement. However, as Deniélou and Yoshida remark [22],
join operations can only describe series–parallel graphs. Protocols such as
the alternating bit protocol [41] that require interleaved synchronization be-
tween two processes consequently cannot be expressed in our global type
language. Our choice to not support generic graph structures as global types

4

is founded on the desire to support parameterization and, at the same time,
keep the language understandable; it remains unclear to us how to visualize
parameterized graphs in an intuitive fashion.

Parameterized Session Types. Our major extension over Honda et al. and
Castagna et al.’s work is the introduction of parameters. The main in-
spiration for our parameterization of session types is the work of Yoshida
et al. [53] and Bejleri [5, 6]. Yoshida et al. augment the global types of
Bettini et al. [7] with primitive recursive combinators to obtain dependent
types that support the parameterization of the repetition count and the con-
nection topology. This allows, for example, using a single global type for a
highly participant-count dependent butterfly network. Static verifiability—
without instantiating the type parameters—is maintained by projecting onto
parameterized local types that allow syntactic comparisons. Deniélou and
Yoshida [21] achieve parameterization by means of quantification over be-
havior specifications they call roles. Like Bettini et al., and unlike System-A,
neither Deniélou et al. nor Yoshida et al. support arbitrary, concurrency-
induced shuffles in their global and local types. While Bettini et al. regain
concurrent composition through the interleaving of global types, it is unclear
how the results transfer to the other two approaches.

Realizability of Sessions. We draw our ideas for global type realizability cri-
teria primarily from the approach of Castagna et al. [16]. However, the pres-
ence of parameters in our operators makes realizability harder to tackle in a
purely structural manner; we thus apply our criteria to traces instead. Some
of our ideas for realizability parallel the work of Lanese et al. [40], although
our criteria are stronger in some cases, as for example, our sequencing crite-
rion handles repetitions. The notion of a distinctive point for implementing
choice (Section 9) is also employed in their work, where it is called unique
point of choice, but in a simpler context (absence of parameters). Basu et
al. [4] derive precise realizability criteria for choreographies. Although not
concerned with parameterization, their work demonstrates conditions that
are both necessary and sufficient. In contrast, our realizability results are
conservative, that is, we only state sufficient conditions.

Modeling of Multi-Party Protocols. Formalisms for describing multi-party
communication protocols have been studied in the context of designing dis-
tributed systems and cryptography protocols. As modeling tools, the for-
malisms provide ways to check a protocol for desired properties [55], or to

5

synthesize such protocols [46]. In contrast to session types, those formalisms
lack ways to statically verify the compliance of an actual protocol implemen-
tation against the specification. Deniélou and Yoshida [22] discuss session
types and their relation to work on distributed systems and cryptography
protocols in greater depth.

3. Motivation

This section motivates our approach with a discussion of the sliding win-
dow protocol, a case of locking–unlocking, and some cases of limited resource
sharing. We demonstrate how the behavior of such protocols can be described
in System-A.

The Sliding Window Protocol. Assume that an actor a sends messages of
type m to an actor b, which acknowledges every received message with an
ack message. The protocol determines that at most n messages can be unac-
knowledged at any given time, so that a ceases sending until it receives an-
other ack message. In this example, the window size n is a parameter, which
means that we need a way to express the fact that n sending–acknowledging
events can be in transit at any given instant in time. The global type of the
protocol is as follows:(

a
m−→ b ; b

ack−→ a
)∗ ‖ (a m−→ b ; b

ack−→ a
)∗ ‖ · · · ‖ (a m−→ b ; b

ack−→ a
)∗︸ ︷︷ ︸

n times

where a
m−→ b denotes that a sends a message of type m to b. The operator

; is used for sequencing interactions. Operator ‖ is used for the concurrent
composition of its left and right arguments, while the Kleene star has the
usual semantics of an unbounded—yet finite—number of repetitions.

The above type can be expressed using the notation of Castagna et al. [15,
16], albeit with a fixed window size n. In System-A on the other hand, we
can parameterize the type in n and statically verify that participants follow
the protocol without knowing its runtime value. Using ‖ni=1 to denote the
concurrent composition of n processes, we obtain the following type in our
notation:

n

‖
i=1

(
a

m−→ b ; b
ack−→ a

)∗
. (1)

6

Locking / Unlocking. Consider a set of n client actors c1..n, each of which
needs to acquire exclusive access to a server s, by sending it a lock message.
The server replies with ack , the client uses its services (not shown) and then
unlocks it by sending an unlock message, at which point the next client can
do the same. Using ⊗ to denote an arbitrary, atomic reordering of terms, the
following type describes the locking–unlocking protocol for a fixed number
of participants:

(c1
lock−→ s ; s

ack−→ c1 ; c1
unlock−→ s) ⊗ · · · ⊗ (cn

lock−→ s ; s
ack−→ cn ; cn

unlock−→ s).

This formula expresses that any ordering of the (ci
lock−→ s ; s

ack−→ ci ; ci
unlock−→ s)

sequences is acceptable. To support a dynamic network topology, the number
of participants should be a parameter. The following is the locking–unlocking
example in System-A, where conformance to the protocol is statically verifi-
able without knowledge of the runtime value of n:

n⊗
i=1

(ci
lock−→ s ; s

ack−→ ci ; ci
unlock−→ s). (2)

Limited Resource Sharing. In this scenario, a server s grants two clients c1

and c2 exclusive access to a set of n resources. At any given point, a maximum
of n resources can be locked, but the relevant lock–ack–unlock messages from
both clients can be interleaved in any way. Following is the global type for
this situation:

n

‖
i=1

(
c1

locki−→ s ; s
acki−→ c1 ; c1

unlocki−→ s ⊕ c2
locki−→ s ; s

acki−→ c2 ; c2
unlocki−→ s

)∗
.

The concurrent composition is parameterized in n, the number of resources.
Each sequence of lock–ack–unlock messages is also parameterized in i, which
ranges from 1 to n and signifies the resource it refers to. This is necessary to
ensure realizability of the protocol, because in the case of multiple outstand-
ing requests, it allows the participants to disambiguate the responses they
receive. Each concurrent instance subsumed by the ‖ni=1 operator consists of
a loop (Kleene star) which entails a choice, indicated by ⊕. Either c1 gets
access to a resource, or c2, and this happens repeatedly.

These type operators may be combined to express more complicated re-
source sharing. For instance, consider another version of the previous ex-

7

ample, where not only the number n of resources, but also the number k of
clients is a parameter:

n

‖
i=1

(k⊕
j=1

(
cj

locki−→ s ; s
acki−→ cj ; cj

unlocki−→ s
))∗

. (3)

4. Global Types

A global type describes a protocol to which the whole system must ad-
here. The examples in Section 3 are all global types since they describe the
behavior of all participants. This section formalizes the language of global
types in System-A. We first provide the syntax and intuitive meaning of the
operators. Then, in Section 4.2, we define their formal semantics.

4.1. Syntax of Global Types

Table 1 presents the grammar that generates the syntactic category G of
global types. The elements of G , instances of global types, will be denoted
by variations of the variable G. Intuitively, the rules capture the following
concepts:

(G-Interaction) denotes the sending and receiving of a message. For in-

stance, p1
t−→ p2 means that participant p1 sends a message of type t

to participant p2.

(G-Seq) is used for the sequential composition of events.

(G-Choice) denotes exclusive choice between the arguments. For G1,2 ∈ G ,
G1 ⊕ G2 means that only one of G1, G2 will be executed.

(G-Paral) means that the arguments run concurrently. Interleavings are
allowed, as long as the order established by the ; operator is respected.

For example, (a
t1−→ b ; a

t2−→ c) ‖ c t3−→ b means that all interleavings

ABC, ACB, CAB are possible, where A = (a
t1−→ b), B = (a

t2−→ c) and

C = (c
t3−→ b). Note that B is not allowed to precede A because of how

; orders them (hence BAC, BCA and CBA are not valid interleavings
in this example).

8

(G-Shuffle) means that both arguments are executed atomically, in an un-
specified order. Formally, G1 ⊗ G2 ≡ (G1 ; G2) ⊕ (G2 ; G1) with the
≡ relation denoting semantic equivalence (Table 2).

(G-KleeneStar) has the usual semantics of zero or more repetitions of the
argument. We assume a finite number of repetitions.

Table 1: The syntax of global types. The auxiliary sym-
bols appearing in the grammar have the following domains:
i ∈ IndexNames; n, n1, n2 ∈ ParamNames ∪ N; a, b ∈
ActorNames ∪ {αj |α ∈ ActorNames, j ∈ IndexNames}; and
m ∈ MsgNames ∪ {µj |µ ∈ MsgNames, j ∈ IndexNames}.

G ::= a
m−→ b (G-Interaction) | (G) (G-Paren)

| G ; G (G-Seq) |
n2

}
i=n1

Gi (G-Seq-N)

| G ⊕ G (G-Choice) |
n2⊕
i=n1

Gi (G-Choice-N)

| G ‖ G (G-Paral) |
n2

‖
i=n1

Gi (G-Paral-N)

| G ⊗ G (G-Shuffle) |
n2⊗
i=n1

Gi (G-Shuffle-N)

| G n (G-Exp) | G ∗ (G-KleeneStar)

The n-ary versions of the operators express behaviors where the value of
n, n1, and n2 are unknown at compile time. Intuitively, the rules (G-Seq-N),
(G-Choice-N), (G-Paral-N), and (G-Shuffle-N) apply the respective binary
operator n2 − n1 times, generating a global type for each of the n2 − n1 + 1
values of i. (G-Exp) denotes the n-fold, sequential repetition of the argument.
Note that for known parameter values, these expansions can take place during
compilation.

All of the operators are commutative, with the exception of sequencing.
All operators are furthermore associative, with the exception of shuffling. In
particular,

n⊗
i=1

Gi 6=
(
. . .
(
(G1 ⊗ G2) ⊗ G3 . . .

)
⊗ . . . ⊗ Gn

)
9

because the meaning of
⊗n2

i=n1
Gi is that all arguments Gi are executed atom-

ically, but in an unspecified order. Instead, the right-hand side above pre-
vents, for example, G3 from occurring between G1 and G2.

The distinction between the Kleene star and exponentiation is fundamen-
tal. The use of Gn means that the protocol conformance checker will have to
prove that the system is correct for any fixed value of the parameter n. G∗

on the other hand means an unbounded number of repetitions of G. There
is no parameter fixing this number, and it may be different from instance to
instance of the Kleene star and/or among executions of the same program
with the same run-time values for its parameters. The Kleene star entails
a choice as to when to exit the loop, a difference that becomes clearer in
Section 9.5.

4.2. Semantics of Global Types

This section formalizes the intuitions introduced earlier by defining the
trace semantics of global types. The traces of a global type G ∈ G capture
the permissible sequences of messages that participants may exchange. Later,
in Section 9, we define properties of G’s traces that ensure that a program
with local types derived from G adheres to the protocol specified by G. We
use the following definitions:

Definition 1 (Event). An event is a single interaction p1
m−→ p2.

Definition 2 (Trace). A trace is a finite sequence of events and is of the
form e1 ; e2 ; . . . ; ek.

In the operational semantics shown in Table 2, a configuration is a tuple
of the form (T,X), where T denotes the trace produced so far, and X is a
set of concurrently executing processes, which we need to model concurrent
composition and other constructs. Each such process is of the form 〈G〉
where G ∈ G is a global type as defined in Table 1. To make the presentation
cleaner, our rules omit T when it is clear that it remains the same. Notice
that rules after (GS-Trace) do not mention T — (GS-Trace) is the only rule
that produces an event. The rule makes a non-deterministic choice among
processes whose prefix is an interaction and appends the respective event
to T . In general, if more than one rewriting rule applies, we assume that the
system makes a non-deterministic choice.

10

Definition 3 (Traces of a Global Type). The set of traces tr (G) producible
by a global type G ∈ G consists of all traces that can be derived by applying
the semantic rules in Table 2 to the initial configuration

(
ε, {〈G〉}

)
until

termination. That is, all different values T can have when G terminates,
when T ’s initial value is set to ε. We say that G terminates when the set X
in the semantic configuration contains nothing but

〈
τ
〉

processes.

In the semantics, we assume the existence of a function v(·) that evalu-
ates its argument expression without side-effects. We use v to retrieve the
values of type parameters, constants, and simple expressions involving these.
Additionally, notice rule (GS-Init), which appends τ to G — this enables
termination as per Definition 3. In a slight abuse of notation, G can take the
value τ for the purposes of this section.

Many of the rules produce special markers to help distinguish execution
paths and coordinate concurrent processes. When the marker is first pro-
duced, it is given a fresh subscript k that identifies the particular rewriting
step that caused the marker to appear. The superscript is a counter, useful
in cases such as the join marker j xk . The latter is used in (GS-Join) to merge
concurrent processes when all x of them reach the join with the same k.

Rules (GS-Star) and (GS-Exp) perform the standard rewritings of Kleene
star and exponentiation, respectively, in terms of other operators. Rule
(GS-Paral) produces two processes to model concurrent composition. These
processes merge at a special join marker j xk , as described by rule (GS-Join).
Rule (GS-Choice) also produces two processes, one for each branch of the
choice operator. Both are preceded by a special selection marker, which is
used to make a non-deterministic choice in (GS-Ch-Done).

Note that X is an unordered set, and hence in (GS-Ch-Done) the process
to execute (denoted by G1 in the rule) is chosen non-deterministically. Be-
cause (GS-Star) introduces choice, this has the important implication that
the rules might execute Kleene star loops an infinite number of times. To
overcome such non-termination issues, we make a fairness [26] assumption
whereby rule (GS-Ch-Done) does not permanently “ignore” a branch that
shows up repeatedly. This ensures traces of finite (yet unbounded) length.

Shuffling is more complicated because it entails the atomic execution of
all the arguments of the operator. (GS-Shuffle) produces processes that en-
close the arguments in pairs of s-on and s-end markers, followed by a join.
The “on” marker allows a non-deterministic choice of which branch to begin
executing, as per (GS-Shf-Begin). This switches the rest of the processes to

11

s-off , which is only reversed when the s-end marker is reached (GS-Shf-End).
In that case, the completed branch stalls at a join marker j xk , while the re-
maining s-on’s have their counter reduced to x− 1.

The parameterized versions of the operators are resolved similarly. First,
rule (GS-Op) introduces a spxk marker that records the number of processes
to spawn, and then the appropriate -N rule takes it from there. We use the
notation R[x/y] to denote the substitution of all free instances of y in R by x.
For example, (GS-Paral-N) spawns one process for the current value of the
index i, and another one with the same operator having the starting value
incremented by one. The latter will cause repeated applications of the rule,
which stop with (GS-Op-End).

Table 2: The semantics of global types. The rules transform
configurations (T,X), where T denotes the trace produced so
far, and X is the set of concurrently executing processes 〈G〉,
G ∈ G . For brevity, the rules omit unchanged elements. Func-
tion v(·) evaluates expressions; [·/·] denotes substitution of free
variables; and s-on etc. are special markers that steer the exe-
cution. See Table 1 for the domains of the remaining symbols.

(GS-Init) ε, {
〈
G
〉
} ε, {

〈
G; τ

〉
}

(GS-Trace) T, X ∪
〈
a

m−→ b ; G
〉
 T · (a m−→ b), X ∪

〈
G
〉

(GS-Star) X ∪
〈
G∗ ; G′

〉
 X ∪

〈
(G ; G∗ ; G′) ⊕ G′

〉
(GS-Exp) X ∪

〈
Gn ; G′

〉
 X ∪

〈(n
}
i=1

G
)

; G′
〉

(GS-Paral) X ∪
〈
(G1 ‖ G2) ; G′

〉

X ∪
{〈
G1 ; j 2

k ; G′
〉
,
〈
G2 ; j 2

k ; G′
〉}

with k fresh

(GS-Join) X ∪
{〈

j xk ; G
〉
, . . . ,

〈
j xk ; G

〉︸ ︷︷ ︸
x instances

}
 X ∪

〈
G
〉

(GS-Choice) X ∪
〈
(G1 ⊕ G2) ; G′

〉

X ∪
{〈

sel 2
k ; G1 ; G′

〉
,
〈
sel 2

k ; G2 ; G′
〉}

with k fresh

Continued on the next page.

12

Table 2: The semantics of global types. Continued from the previous page.

(GS-Ch-Done)

X ∪
{〈

sel xk ; G1

〉
,
〈
sel xk ; G2

〉
, . . . ,

〈
sel xk ; Gx

〉︸ ︷︷ ︸
x−1 instances

}
 X ∪

〈
G1

〉
(GS-Shuffle) X ∪

〈
(G1 ⊗ G2) ; G′

〉

X ∪
{〈

s-on2
k ; G1 ; s-end 2

k ; j 2
k ; G′

〉
,〈

s-on2
k ; G2 ; s-end 2

k ; j 2
k ; G′

〉}
with k fresh

(GS-Shf-Begin)

X ∪
{〈

s-onxk ; G1

〉
,

x−1 instances︷ ︸︸ ︷〈
s-onxk ; G2

〉
, . . . ,

〈
s-onxk ; Gx

〉}

X ∪
{〈
G1

〉
,
〈
s-offx

k ; G2

〉
, . . . ,

〈
s-offx

k ; Gx
〉︸ ︷︷ ︸

x−1 instances

}
(GS-Shf-End)

X ∪
{〈

s-endxk ; j xk ; G1

〉
,

x−1 instances︷ ︸︸ ︷〈
s-offx

k ; G2

〉
, . . . ,

〈
s-offx

k ; Gx
〉}

X ∪
{〈

j xk ; G1

〉
,
〈
s-onx−1

k ; G2

〉
, . . . ,

〈
s-onx−1

k ; Gx
〉︸ ︷︷ ︸

x−1 instances

}

(GS-Op) X ∪
〈(c2

OP
i=c1

G
)

; G′
〉
 X ∪

〈(c2
OP
i=c1

G
)

; G′
〉spxk

with x = v(c2)− v(c1) + 1 and k fresh,

where OP ∈ {
⊕
,
⊗
, ‖,}}

(GS-Op-Nil) X ∪
〈(c2

OP
i=c1

G
)

; G′
〉spxk X ∪

〈
G′
〉

if x ≤ 0

(GS-Op-End) X ∪
〈(c2

OP
i=c1

G
)

; G′
〉spxk X if v(c1) > v(c2)

and x > 0

Continued on the next page.

13

Table 2: The semantics of global types. Continued from the previous page.

(GS-Paral-N) X ∪
〈(c2
‖

i=c1

G
)

; G′
〉spxk

X ∪
{〈
G[v(c1)/i] ; j xk ; G′

〉
,〈(c2

‖
i=v(c1+1)

G
)

; G′
〉spxk} if v(c1) ≤ v(c2)

(GS-Shf-N)

X ∪
〈(c2⊗
i=c1

G
)

; G′
〉spxk

X ∪
{〈

s-onxk ; G[v(c1)/i] ; s-endxk ; j xk ; G′
〉
,〈(c2⊗

i=v(c1+1)

G
)

; G′
〉spxk} if v(c1) ≤ v(c2)

(GS-Choice-N)

X ∪
〈(c2⊕
i=c1

G
)

; G′
〉spxk

X ∪
{〈

sel xk ; G[v(c1)/i] ; j xk ; G′
〉
,〈(c2⊕

i=v(c1+1)

G
)

; G′
〉spxk} if v(c1) ≤ v(c2)

(GS-Seq-N) X ∪
〈(c2
}
i=c1

G
)

; G′
〉spxk

X ∪
{〈
G[v(c1)/i] ;

(c2
}

i=v(c1+1)
G
)

; G′
〉}

if v(c1) ≤ v(c2)

5. Programming Language Support

The global types defined in the previous section specify the permissible
sequences of messages that participants may exchange in a given session,
as well as their types. However, global types by themselves provide no im-
plementation of the protocol. In this section, we therefore present Lang-A
to write programs that embody protocols expressible in the global types of
System-A. We define Lang-A such that there is almost a one-to-one corre-
spondence between the language constructs and the syntax of local types in
System-A, presented later in Section 6.

14

5.1. Syntax

The syntax of Lang-A is shown in Table 3. A program begins with declar-
ing the program parameters, akin to System-A parameters. Then come mes-
sage structure definitions, and the code for each actor. Both actor and mes-
sage definitions can include an optional array syntax after their name. In the
case of actors, this syntax declares as many of them as the array parameter.
In the case of message structures, it declares as many message types as the
array parameter. This allows the expression of protocols where both actor
names and message types are parameterized, such as ‖ni=1 ai

mi−→ bi.
To give a taste of the language, Figure 1 shows an implementation of the

sliding window protocol that we described in Section 3. The spawn statement
launches n parallel instances of its block argument, one for each value of
the provided index expression. Sends and receives coming from different
spawned operations can be interleaved in any way possible. In this example,
both the sender and the receiver spawn n parallel operations, each consisting
of a repeating send/receive pair. This allows any interleaving of sends and
receives, as long as no more than n sends are left unacknowledged.

n : param

// the s ende r
ac to r a = {

message m : I n t
message ack : I n t
var NotDone : Boolean
NotDone = t r u e

spawn (i = 1 . . n
wh i l e NotDone {

m = . . .
send (b , m) ;
r ecv (b , ack) ;
NotDone = . . .

})
}

// the r e c e i v e r
ac to r b = {

message m : I n t
message ack : I n t
var NotDone : Boolean
NotDone = t r u e

spawn (i = 1 . . n
wh i l e NotDone {

r ecv (a , m) ;
ack = . . .
send (a , ack) ;
NotDone = . . .

})
}

Figure 1: The sliding window example (p. 6) in Lang-A.

Figure 2 shows the limited resource sharing example of page 8, formula 3
implemented in Lang-A. The program begins with the definition of param-
eters n and k. Then it declares n different types of lock, unlock and ack
messages. This way, information about which resource is being locked is
embedded in the message type itself, and the structures can be empty.

15

Table 3: The syntax of Lang-A. Literals are underlined.

P ::= ParamDecl* StructDef* ActorDef*

ParamDecl ::= param n n ∈ ParamNames

StructDef ::= struct sn ([Const])? = { VarDecl* } sn ∈ StructNames

ActorDef ::= actor pn ([Const])? = { Stmt } pn ∈ ActorNames

Stmt ::= Spawn | If | While | Repeat | For | Shuffle

| Select | VarDecl | SimpleStmt | Stmt ; Stmt

| skip

VarDecl ::= var w : sort w ∈ VariableNames

| var ar : sort [Const] ar ∈ ArrayNames

| message mn : sort ([Const | ind])? mn ∈ MsgNames

ind ∈ IndexNames

Spawn ::= spawn (IndexDecl Block)

| spawn (Block Block)

IndexDecl ::= ind = Const .. Const ind ∈ IndexNames

If ::= if BooleanExpr Block else Block

While ::= while BooleanExpr Block

Repeat ::= repeat Const Block

For ::= for IndexDecl Block

Shuffle ::= shuffle (IndexDecl Block)

| shuffle (Block Block)

Select ::= select (IndexDecl Block)

| select (Block Block)

SimpleStmt ::= assignments, arithmetic operations etc.

| send (pn , mn) pn ∈ ActorNames

| recv (pn , mn) mn ∈ MsgNames

| send (pn [IndexExp] , mn) ind ∈ IndexNames

| recv (pn [IndexExp] , mn)

Nat ::= 0 | 1 | 2 | . . .

Const ::= Nat | n n ∈ ParamNames

IndexExp ::= Const | ind ind ∈ IndexNames

BooleanExpr ::= comparisons etc.

Block ::= { Stmt }
sort ::= struct name, or primitive type

16

The server spawns n operations to deal with the simultaneous locking of
n different resources. The index declared in the spawn statement identifies
the message used by the particular instance. The server can handle any of
the k clients (indexed by j), as long as the current client is only locking–
unlocking one resource (indexed by i). The select statement can only be
used if the first communication statement that follows is a receive. The
form used here includes an index expression j = 1..n in the beginning, and
this index is used to match either the sort of the received message, or the
sender. In this example, j determines the client that sent the request. Even
though each client spawns one lock operation per resource, these do not cause
inconsistencies because there is only one parallel handler per resource on the
server (indexed by i). This way, the server serializes the requests, so that the
same resource cannot be locked by more than one client at the same time.
Only after the receipt of the relevant unlock message (indexed by i) can the
same resource be locked again by another (or the same) client.

param n
param k
s t r u c t l o c k [n] = { }
s t r u c t un lock [n] = { }
s t r u c t ack [n] = { }

ac to r s = {
var NotDone : Boolean
NotDone = t r u e

spawn (i = 1 . . n
message l : l o c k [i]
message a : ack [i]
message u : un lock [i]
wh i l e NotDone {

s e l e c t (j = 1 . . k
r ecv (c [j] , l) ;
send (c [j] , a) ;
r ecv (c [j] , u) ;)

NotDone = . . .
})

}

ac to r c [k] = {
var NotDone : Boolean
NotDone = t r u e

spawn (i = 1 . . n
wh i l e NotDone {

message l : l o c k [i]
message a : ack [i]
message u : un lock [i]
send (s , l) ;
r ecv (s , a) ;
// compute . . . ;
send (s , u) ;
NotDone = . . .

})
}

Figure 2: The resource sharing example (p. 7) in Lang-A.

5.2. Semantics and Trace Generation
We give the operational semantics of Lang-A in Table 4. The purpose

of the semantics is to explain what traces a program can generate when
executing, which will play a central role in the correctness proof of Section 10.

17

The semantics employ configurations of the form (SEL, SHUF , T,M, V,Π,
R). SEL and SHUF are partial functions from markers to integers that we
explain later; T is the trace produced so far; M is the multiset of pending
(sent but not received) messages; V holds the values of variables, constants
and parameters; Π is the multiset of currently running actors; and R is the
program code.

Definition 4 (Lang-A Traces). The set tr (P) of traces of a program P ∈P
consists of all traces that can be derived by applying the semantic rules in
Table 4 to the initial configuration

(
⊥,⊥, ε, ∅, ∅, ∅, P

)
until termination. That

is, all different values T can have when P terminates, when T ’s initial value
is set to ε. We say that P terminates when the set Π in the configuration
contains nothing but

〈
skip
〉

processes.

Only the first two rules in Table 4 rewrite the program code: (PL-ParInit)
parses a parameter declaration and stores its value in V , assuming the value
is input by the user at that point. (PL-ActorInit) parses an actor declaration,
and places a new process in Π with the given behavior. It also appends skip to
the code, to enable termination; this is similar to the appending of τ to global
types by (GS-Init) in Table 2. An actor a with behavior B ∈ Block ∪ Stmt
is written 〈B〉a. As in the semantics of global types, rules only mention
those parts of the configuration that they alter. For example T is omitted
everywhere except for (PL-Recv). Likewise, we omit braces around singleton
sets.

We use the customary rules for loops, conditionals, and sequential com-
position. As in the semantics of global types, we simplify the rules by relying
on an auxiliary evaluation function v(·) that subsumes the standard reduc-
tion rules for computations in procedural languages [33, 45]. As before, we
assume v to be side-effect free, as it simply consults the store V and returns
the value of the expression provided as its argument. The store V is updated
by (PL-Assign).

Sends are asynchronous. The respective rule (PL-Send) places the sent
message in M , recording its type in the superscript, while the subscript
stores the sender and the receiver. The only rule allowing code prefixed
with a receive to progress is (PL-Recv). Hence, receives are blocking, which
enables us to enforce message sequencing. Note that this is also the only rule
that updates the trace T , which means that event production happens only
on receives. In effect, communication is asynchronous; the order of events
belonging to multiple sends or multiple shuffled receives is non-deterministic.

18

Note that since Π is a multiset, it may contain many actors with the same
name. In this context, rather than using the term actor to refer to 〈B〉a ∈ Π,
we henceforth use the term process. We make this distinction due to the way
the semantics handle choice, shuffling and concurrent composition: a separate
process is spawned for each branch Bi, as in 〈B1〉a, . . . , 〈Bn〉a, all of which
correspond to the same actor a, denoted in the subscript. Consequently, Π is
the set of currently running processes, which we assume to run concurrently.
In cases where many of them can receive a message in M , a non-deterministic
choice is made by rule (PL-Recv). This is a general assumption in our system:
whenever more than one reduction step can be taken, a non-deterministic
choice is made as to which rule to apply, or which concurrent process to
reduce.

Select statements choose between the different branches of the behavior
of an actor a, depending on the next received message. To implement the
statement, the semantics create a concurrent process for each possible branch,
all corresponding to the same actor a. All concurrent processes block waiting
to receive a message, and when one of them does, it determines the branch
to be followed. At this point, all but the process corresponding to the branch
taken are discarded.

Branches must be tracked across statement sequences, nested choices, and
actors created through spawn statements. To achieve this, the semantics asso-
ciate each encountered select statement with a unique identifier (PL-Select).
For each different branch, the respective process has a sel function, written
as a superscript. This function maps the identifier introduced by (PL-Select)
to the number of the branch that the process represents. Correspondingly,
the configuration employs the partial function SEL to record the choice once
it is made. A choice is made by the first process that receives a message,
because the sort of the message as well as its sender determine the branch to
be taken. Hence the SEL mapping is updated by the first branch to execute
rule (PL-Recv).

The idea is that a concurrent process is only allowed to progress if its local
sel mapping matches that of the SEL function on the configuration level. In
this fashion, (PL-Recv) only allows a branch to progress in two cases: either
the value of SEL is undefined – in which case it is updated to reflect the
local one; or it is already the same as sel , meaning that the process is on the
same branch as the one that set the value beforehand. Branches that do not
satisfy any of these conditions are disposed of in rule (PL-SelectDone).

19

Note that concurrent processes created through a spawn statement all
inherit their parent’s sel map (PL-Spawn); hence, either all of them can
progress (PL-Recv), of none (PL-SelectDone).

Shuffles are implemented in a similar way, using SHUF on the config-
uration level and shuf on the process level. The difference is that when a
branch finishes, we need to allow one of the others to execute (because they
all need to execute, albeit atomically as in the global type semantics). This is
accomplished by introducing a special marker uk when spawning the shuffle
branches (PL-Shuffle). This resets the value of SHUF to ⊥ when the branch
completes (PL-ShuffleDone), allowing the next branch to execute (PL-Recv).

Table 4: The semantics of Lang-A. The rules transform con-
figurations (SEL,SHUF , T,M, V,Π, R), where SEL and SHUF
are partial functions from markers to values; T is the trace
produced so far; M is the multiset of pending messages; V the
value store; Π the multiset of executing actors

〈
B
〉
a

such that a
is the actor executing behavior B ∈ Stmt; and R is the program
code. Like before, the rules omit unchanged elements. Function
v(·) evaluates expressions without side-effects; [·/·] denotes sub-
stitution of free variables; [· 7→ ·] updates functions point-wise;
the marker uk is used to implement shuffling. Table 3 defines
the remaining symbols.

(PL-ParInit) (V, param n ·R)
(
V ∪

{(
n, v(n)

)}
, R
)

(PL-ActorInit) (Π, actor a = {B} ·R) (Π ∪ 〈B; skip〉⊥,⊥a , R)

(PL-Empty) skip ; B B

(PL-Assign)
(
V, Π ∪

〈
w = exp ; B

〉sel , shuf
a

)
 (

updated
(
V,w, v(exp)

)
, A ∪

〈
B
〉sel , shuf
a

)
(PL-Seq) B1 ; B2 B′1 ; B2 if B1 B′1

(PL-IfTrue) if exp B1 else B2 ; B′ B1 ; B′ if v(exp) = true

(PL-IfFalse) if exp B1 else B2 ; B′ B2 ; B′ if v(exp) = false

(PL-For) for i = c1..c2 B

B
[
v(c1)/i

]
; for i = v(c1 + 1)..c2 B if v(c1) ≤ v(c2)

Continued on the next page.

20

Table 4: The semantics of Lang-A – Continued from the previous page.

(PL-ForNil) for i = c1..c2 B skip if v(c1) > v(c2)

(PL-Repeat) repeat c B for i = 1..c B

(PL-While) while exp B B ; while exp B if v(exp) = true

(PL-WhileNil) while exp B skip if v(exp) = false

(PL-Aux)

Π ∪
〈
f(i = c1..c2 B) ; B′

〉sel , shuf
a

 Π ∪
〈
f(i = c1..c2 B) ; B′

〉sel , shuf , spxk
for x = v(c2)− v(c1) + 1 and k fresh, where f ∈ {select, shuffle, spawn}

(PL-AuxEnd) Π ∪
{〈
f(i = c1..c2 B) ; B′

〉sel , shuf , spxk
a

}
 Π

if v(c1) > v(c2) and x > 0 where f ∈ {select, shuffle, spawn}

(PL-AuxNil) Π ∪
〈
f(i = c1..c2 B) ; B′

〉sel , shuf , spxk
a

 Π ∪
〈
B′
〉sel , shuf
a

if x ≤ 0, where f ∈ {select, shuffle, spawn}

(PL-Spawn) Π ∪
〈
spawn (B1B2) ; B3

〉sel , shuf
a

Π ∪
{〈
B1 ; j 2

k ; B3

〉sel , shuf
a

,
〈
B2 ; j 2

k ; B3

〉sel , shuf
a

}
for k fresh

(PL-SpawnN)(
Π ∪

{〈
spawn (i = c1..c2 {B}) ; B′

〉sel , shuf , spxk
a

})
 (

Π ∪
{〈
B[v(c1)/i] ; j xk ; B′

〉sel , shuf
a

,〈
spawn (i = v(c1 + 1)..c2 B) ; B′

〉sel , shuf , spxk
a

})
if v(c1) ≤ v(c2)

(PL-Join) Π ∪
{〈

j xk ; B
〉sel , shuf
a

, . . . ,
〈
j xk ; B

〉sel , shuf
a︸ ︷︷ ︸

x instances

}
 Π ∪

〈
B
〉sel , shuf
a

Continued on the next page.

21

Table 4: The semantics of Lang-A – Continued from the previous page.

(PL-Send)
(
M, Π ∪

〈
send(b,m) ; B

〉sel , shuf
a

)
 (

M ∪ (val)ta,b, Π ∪
〈
B
〉sel , shuf
a

)
if typeof (m) = t and v(m) = val

(PL-Recv)(
SEL, SHUF , T, M ∪ (val)ta,b, Π ∪

〈
recv(a,m) ; B

〉sel , shuf
b

)
 (

SEL[x 7→ sel(x) |x ∈ dom(sel)], SHUF [x 7→ shuf (x) |x ∈ dom(shuf)],

T · (a t−→ b), M, Π ∪
〈
B[val/m]

〉sel , shuf
b

)
if typeof (m) = t and

SEL(x) ∈ {⊥, sel(x)} ∀x ∈ dom(sel)

SHUF (y) ∈ {⊥, shuf (y)} ∀y ∈ dom(shuf)

(PL-Select) Π ∪
〈
select(B1B2) ; B3

〉sel , shuf
a

Π ∪
{〈
B1 ; B3

〉sel [k 7→1], shuf

a

〈
B2 ; B3

〉sel [k 7→2], shuf

a

}
for k fresh

(PL-SelectDone)
(
SEL, Π ∪

〈
B
〉sel , shuf
a

)

(
SEL, Π

)
if for an x ∈ dom(sel) : SEL(x) /∈ {⊥, sel(x)}

(PL-SelectN) Π ∪
{〈

select(i = c1..c2 {B}) ; B′
〉sel , shuf , spxk
a

}

Π ∪
{〈
B[v(c1)/i] ; B′

〉sel [k 7→v(c1)], shuf

a
,〈

select(i = v(c1 + 1)..c2B) ; B′
〉sel , shuf , spxk
a

}
if v(c1) ≤ v(c2)

(PL-Shuffle) Π ∪
〈
shuffle(B1, B2) ; B3

〉sel , shuf
a

Π ∪
{〈
B1 ; uk ; j 2

k ; B3

〉sel , shuf [k 7→1]

a
,〈

B2 ; uk ; j 2
k ; B3

〉sel , shuf [k 7→2]

a

}
for k fresh

(PL-ShuffleDone)(
SHUF , Π ∪

{〈
uk ; j xk ; B

〉sel , shuf
a

})
 SHUF [k 7→ ⊥], Π ∪

〈
j xk ; B

〉sel , shuf [k 7→⊥]

a

Continued on the next page.

22

Table 4: The semantics of Lang-A – Continued from the previous page.

(PL-ShuffleN) Π ∪
{〈

shuffle(i = c1..c2B) ; B′
〉sel , shuf , spxk
a

}

Π ∪
{〈
B[v(c1)/i] ; uk ; j xk ; B′

〉sel , shuf [k 7→v(c1)]

a
,〈

shuffle(i = v(c1 + 1)..c2B) ; B′
〉sel , shuf , spxk
a

}
if v(c1) ≤ v(c2)

6. Local Types

A local type specifies the abstract behavior of a single protocol partici-
pant, for example of one of the actors in a Lang-A program. Furthermore,
local types specify the behavior restrictions that a global type implies for
each protocol participant. This section defines local types and shows how to
infer them from Lang-A code. Later, we discuss how local types can be used
to check whether a Lang-A program conforms to a global type.

The syntactic category L of local types is defined by the grammar in Ta-
ble 5. We will use the variable L ∈ L , often indexed, to refer to local types.
In the grammar,

(L-Send) denotes sending a message of type t to actor a.

(L-Recv) denotes receiving a message of type t from actor a.

(L-Seq), (L-Choice), (L-Shuffle), (L-Exp), (L-KleeneStar) describe
the same concepts as in the global types.

(L-Paral) is also defined as in the case of global types. Like there, the local
type (a!t ; a!u) ‖ a?v allows three orderings of the events T = a!t,
U = a!u and V = a?v, namely TUV , TV U , and V TU . As above, the
specification a!t ; a!u enforces that T happens before U .

6.1. Local Type Inference

This section explains how local types can be derived from the code of
a Lang-A program using the inference rules in Table 6. To clarify the pre-
sentation, we distinguish between the types of program constructs (such as

23

Table 5: The syntax of local types. As in the syntax of
global types, the grammar contains the auxiliary symbols i ∈
IndexNames; n, n1, n2 ∈ ParamNames ∪N; a ∈ ActorNames ∪
{αj |α ∈ ActorNames, j ∈ IndexNames}; and t ∈ MsgNames∪
{µj |µ ∈ MsgNames, j ∈ IndexNames}.

L ::= (L) (L-Paren) | τ (L-Empty)

| a!t (L-Send) | a?t (L-Recv)

| L ; L (L-Seq) |
n2

}
i=n1

Li (L-Seq-N)

| L ⊕ L (L-Choice) |
n2⊕
i=n1

Li (L-Choice-N)

| L ‖ L (L-Paral) |
n2

‖
i=n1

Li (L-Paral-N)

| L ⊗ L (L-Shuffle) |
n2⊗
i=n1

Li (L-Shuffle-N)

| L n (L-Exp) | L ∗ (L-KleeneStar)

messages or variables) and types in System-A (which describe communica-
tion protocols). We use the term sort for the former, while the term type is
used exclusively to refer to System-A local types.

By S we denote the environment that contains the sorts of variables that
appear in a Lang-A program. S contains statements of the form w : t when
w is a message of sort t; w : const when w is a constant (numerical constant
or parameter name), and w : ind when w is the name of an index. For mes-
sages, t can have the form m[i] with S ` i : ind (that is, i is a valid index).
The sort of expressions (e.g. boolean expressions) is also determined through
S. The environment Π is used to resolve actor names. It supplies judgments
of the form x : actor , meaning that x is a valid actor name, including the
case x = a[i] with S ` i : ind . The rules for updating S and Π are stan-
dard: S is updated on message, parameter and index declarations, as well as
when encountering arithmetic and boolean expressions in the program. Π is
updated based on actor definitions. We omit the formal definition of these
rules for the sake of brevity.

The judgments presented in Table 6 are of the form Γ ` R : L, read
“under the environment Γ, the sequence of actions R has (local) type L”.
The result of the typing is given by rule (Inf-Environment), which produces
an environment ∆ containing all the local types in the program.

24

Table 6: Rules for inferring local types from Lang-A programs.
The environments S and Π contain sorts of variables and actor
names respectively. Γ assigns local types L ∈ L to (sequences
of) actions R ∈ Stmt. P is the program being typed.

(Inf-Skip)

Γ ` skip : τ

(Inf-Compute)

Γ ` Computation : τ

(Inf-Send)

Π ` a : actor S ` x : m
Γ ` send(a, x) : a!m

(Inf-Recv)

Π ` a : actor S ` x : m
Γ ` recv(a, x) : a?m

(Inf-Seq)

Γ ` R1 : L1 Γ ` R2 : L2

Γ ` R1;R2 : (L1;L2)

(Inf-For)

Γ ` R[i/k] : Li k ∈ fv(R)
S ` c1 : cons S ` c2 : cons

Γ ` for k = c1..c2R :
(c2
}

i=c1
Li

)
(Inf-Spawn-N)

S ` c1 : cons S ` c2 : cons
Γ ` R[i/k] : Li k ∈ fv(R)

Γ ` spawn(k = c1..c2 R) :
(c2
‖

i=c1

Li

)
(Inf-Spawn)

Γ ` R1 : L1 Γ ` R2 : L2

Γ ` spawn(R1R2) : (L1 ‖ L2)

(Inf-Shuffle)

Γ ` R1 : L1 Γ ` R2 : L2

first (L1) = a?m first (L2) = a′?m′

a 6= a′ ∨m 6= m′

Γ ` shuffle(R1R2) : (L1 ⊗ L2)

(Inf-Shuffle-N)

S ` c1 : cons S ` c2 : cons
Γ ` R[i/k] : Li k ∈ fv(R)

first (Li) = x?y x = ai ∨ y = mi

Γ ` shuffle(k = c1..c2 R) :
(c2⊗
i=c1

Li

)

Continued on the next page.

25

Table 6: Local type inference – continued from the previous page.

(Inf-Select-N)

S ` c1 : cons S ` c2 : cons
Γ ` R[i/k] : Li k ∈ fv(R)

first (Li) = x?y x = ai ∨ y = mi

Γ ` select(k = c1..c2 R) :
(c2⊕
i=c1

Li

)

(Inf-Select)

Γ ` R1 : L1 Γ ` R2 : L2

first (L1) = a?m first (L2) = a′?m′

a 6= a′ ∨m 6= m′

Γ ` select(R1 R2) : (L1 ⊕ L2)

(Inf-Repeat)

Γ ` R : L S ` n : cons
Γ ` repeat n R : (Ln)

(Inf-While)

Γ ` R : L S ` exp : Boolean

Γ ` while exp R : (L∗)

(Inf-If)

Γ ` R1 : L1 Γ ` R2 : L2

first (L1) = a!m first (L2) = a′!m′

a 6= a′ ∨m 6= m′

S ` exp : Boolean

Γ ` if exp R1 else R2 : (L1 ⊕ L2)

(Inf-Environment)

Π = {a | “actor a = {Ra}” ∈ P}
∀a ∈ Π, Γ ` Ra : La

Γ ` P : ∆ where ∆ = {a : La | a ∈ Π},

Note that computations (assignments, arithmetic operations etc.) type to
τ , since they are not observable actions (Inf-Compute). Here, “computation”
refers to the first line of rule SimpleStmt in Table 3. While most of the other
rules are straightforward, the ones involving shuffling and choice require some
discussion. The intended meaning of shuffling is to support the reordering of
its arguments. Implementing this in a traditional actor language would mean
that the arguments of the shuffling operator would translate into different
message handlers, so that the execution order is determined by the order
in which messages are received. Hence, the first communication primitive
(given by function first (·)) in the arguments of a shuffle statement should be
a receive. This is enforced by (Inf-Shuffle), which also demands that receive
statements from different arguments be distinguishable either because the
sender is different, or because the expected message’s sort is different. Rule
(Inf-Shuffle-N) achieves the same by making sure that the index appears free
in the argument, that is, k ∈ fv(R), and that it is part of the sender’s name
or part of the expected message sort. The same premises apply to the cases
of (Inf-Select) and (Inf-Select-N), respectively.

26

Observe that the side condition is reversed in the case of (Inf-If), where
the branches have to start with a send statement. While select and shuf-
fle statements are an internal choice mechanism, if statements implement
external choice.

7. Projection

Besides the characterization of actor behavior defined in the previous
section, local types also specify the behavior restrictions that a global type
implies for each participant.

For example, in the sliding window protocol of Section 3, the permissible
behaviors of the sender a are described by the local type ‖ni=1(b!m ; b?ack)∗.
Temporarily ignoring the leading ‖ni=1 symbol, the local type is (b!m ; b?ack)∗,
which means sending a message and then receiving an acknowledgment an
unbounded number of times. Assuming that the window size n is a pa-
rameter, any interleaving of n such sequences is possible, with the obvious
constraint of not receiving more acknowledgments than the number of mes-
sages sent. This is ensured by composing sequences of the form (b!m ; b?ack),
where ordering is forced by the ; operator.

The above example local type is a projection of the global type of the
sliding window protocol onto the sender actor. The projection function .
is formally defined in Table 7; G . p is read “the projection of global
type G onto the participant p” and the result is a local type. Applying
the projection function to all participants in G gives an environment ∆ =
{p : Lp}p∈Π, which maps actors to local types. In the table, the last four
projection rules are only defined for n1 ≤ k ≤ n2 because we assume that
we are projecting onto an actor in the range of the operator. As before,
R[x/y] denotes the substitution of the free instances of y in R by x. Also,
more specific rules take precedence over less specific ones. For example,
(P-Paral-N-Ind) takes precedence over (P-Paral-N) when projecting onto an
indexed actor. In (P-Interaction), actor names are considered equal only if
they match completely, that is, including indices.

27

Table 7: The projection function for deriving the local type of a
participant p from a global type G ∈ G . It is p ∈ ActorNames∪
{αj |α ∈ ActorNames, j ∈ IndexNames}.

(a
m−→ b) . p ::=

b!m if p = a 6= b

a?m if p = b 6= a

a!m ; a?m if p = a = b

τ otherwise

(P-Interaction)

Gn . p ::= (G . p)n (P-Exp)

(G1 ⊕ G2) . p ::= (G1 . p) ⊕ (G2 . p) (P-Choice)

(G1 ‖ G2) . p ::= (G1 . p) ‖ (G2 . p) (P-Paral)

(G1 ; G2) . p ::= (G1 . p) ; (G2 . p) (P-Seq)

(G1 ⊗ G2) . p ::= (G1 . p) ⊗ (G2 . p) (P-Shuffle)

(
n2

}
i=n1

Gi) . p ::=
n2

}
i=n1

(Gi . p) (P-Seq-N)

(
n2⊕

i=n1

Gi) . p ::=
n2⊕

i=n1

(Gi . p) (P-Choice-N)

(
n2⊗

i=n1

Gi) . p ::=
n2⊗

i=n1

(Gi . p) (P-Shuffle-N)

(
n2

‖
i=n1

Gi) . p ::=
n2

‖
i=n1

(Gi . p) (P-Paral-N)

(
n2

}
i=n1

Gi) . pk ::=

Gi[k/i] . pk if pk[i/k] ∈ Gi
n2

}
i=n1

(Gi . pk) otherwise
(P-Seq-N-Ind)

(
n2⊕

i=n1

Gi) . pk ::=

Gi[k/i] . pk if pk[i/k] ∈ Gi
n2⊕

i=n1

(Gi . pk) otherwise
(P-Choice-N-Ind)

(
n2⊗

i=n1

Gi) . pk ::=

Gi[k/i] . pk if pk[i/k] ∈ Gi
n2⊗

i=n1

(Gi . pk) otherwise
(P-Shuffle-N-Ind)

(
n2

‖
i=n1

Gi) . pk ::=

Gi[k/i] . pk if pk[i/k] ∈ Gi
n2

‖
i=n1

(Gi . pk) otherwise
(P-Paral-N-Ind)

28

For the lock/unlock example of Section 3, projecting the global type G
of formula 2 (p. 7) onto a client ck (with 1 ≤ k ≤ n) and the server s yields

Lk = G . ck

=
n⊗
i=1

(ci
lock−→ s ; s

ack−→ ci ; ci
unlock−→ s) . ck

= (ck
lock−→ s ; s

ack−→ ck ; ck
unlock−→ s) . ck (P-Shuffle-N-Ind)

= (ck
lock−→ s) . ck ; (s

ack−→ ck) . ck ; (ck
unlock−→ s) . ck (P-Seq)

= s!lock ; s?ack ; s!unlock (P-Interaction)

Ls = G . s

=
n⊗
i=1

(ci
lock−→ s ; s

ack−→ ci ; ci
unlock−→ s) . s

=
n⊗
i=1

(ci
lock−→ s ; s

ack−→ ci ; ci
unlock−→ s . s) (P-Shuffle-N)

=
n⊗
i=1

(ci?lock ; ci!ack ; ci?unlock) . (P-Interaction), (P-Seq)

Similarly, the projected local types for the server s and a client cm (with
1 ≤ m ≤ k) of the resource sharing protocol (formula 3, p. 8) are

Ls =
n

‖
i=1

(k⊕
j=1

(
cj?locki ; cj!acki ; cj?unlocki

))∗
,

Lcm =
n

‖
i=1

(
s!locki ; s?acki ; s!unlocki

)∗
.

In order for the last four rules of Table 7 to work properly, we disallow
global types where the same name appears with more than one index, each in-
troduced by a different operator application. An example of an unsupported
case would be the following:

n1

‖
i=v1

n2

‖
j=v1

ai
m−→ aj

The problem appears because the two indices i and j come from two different
applications of the concurrent composition operator, hence the result of the

29

Table 8: Rules for eliminating τ terms from local types.

L ; τ −→norm L τ ; L −→norm L

L ⊕ τ −→norm L τ ⊕ L −→norm L

L ⊗ τ −→norm L τ ⊗ L −→norm L

L ‖ τ −→norm L τ ‖ L −→norm L

τn −→norm τ τ ∗ −→norm τ

projection onto a participant ak depends on where the value of k lies in the
sub-intervals defined by v1, v2, n1 and n2. Since our projection function does
not take external restrictions into account, we omit the treatment of such
cases in this article, and discuss a possible solution in Section 11.

Finally, for reasons of presentation clarity, we assume a hygiene condi-
tion on projectable global types: parameterized operators should not include
concrete limits – that is, we do not project types such as ‖3

i=1ai
m−→ bi.

This can be easily overcome by first expanding such applications to a non-
parameterized form, and applying the projection function to the result. The
previous example would be transformed into a1

m−→ b1 ‖ a2
m−→ b2 ‖ a3

m−→ b3

before being projected onto the participants.

8. Type Checking

So far, we have shown how to extract local types from Lang-A programs
(Section 6.1) and also how to extract local types from global types using the
projection function. By comparing the inferred and the projected local type,
we can check a program’s conformance to a given global type. To perform the
comparison, we reduce the local types to a normal form according to the rules
given in Tables 8, 9 and 10. This normal form neither includes τ terms (which
come from applying the projection function), nor unnecessary parentheses.
The reduction rules also replace complex operator applications with simpler
ones, and bring the terms of commutative operators to a deterministic order.

Theorem 1 (Weak Normalization). For any local type L ∈ L in System-A,
there exists a finite sequence of reduction steps which brings the type to a
normal form.

Rules for eliminating τ and getting rid of superfluous parentheses are
shown in Tables 8 and 9, respectively. More complicated cases are those

30

Table 9: Rules for eliminating parentheses from local types.

(L1 op · · · opLn−1) op′ Ln −→norm L1 op · · · opLn−1 op′ Ln

L1 op′ (L2 op · · · opLn) −→norm L1 op′ L2 op · · · opLn

where op, op′ ∈ {‖, ⊗, ⊕, ;} and op′ <p op

with ‖ <p ⊕ <p ⊗ <p ;(
(L)
)
−→norm (L)(n

OP
i=1

L
)
−→norm

n

OP
i=1

(L) where OP ∈ {‖, ⊕, ⊗, }}

(Ln) −→norm (L)n (L∗) −→norm (L)∗

(a!m) −→norm a!m (a?m) −→norm a?m

where types are structurally different, yet semantically equivalent. With ≡
denoting trace equivalence (explained later), it is clear that both sides of

(L1 ⊕ L2) ; (L3 ⊕ L4) ≡ L1 ; L3 ⊕ L1 ; L4 ⊕ L2 ; L3 ⊕ L2 ; L4

describe the same behavior. Rule (R-Distributive) in Table 10 ensures that
such equivalences do not enable infinite reduction sequences, by effectively
disallowing one of the two directions. Additionally, rule (R-Simple-Paral)
comes from the fact that the concurrent execution of two message sends/re-
ceives is effectively the same as shuffling them. The obvious extensions hold
for sequences of operator applications (but not the parameterized versions).

A more complex case of semantic equivalence is introduced by the commu-
tativity of operators ⊕, ⊗, and ‖. This is because we need to avoid reduction
steps of the form L1 opL2 −→norm L2 opL1 with op ∈ {⊕, ⊗, ‖} as that
would allow for infinite reduction sequences. By establishing an ordering
among local types, we can reduce equivalent applications of an operator to a
form where arguments always appear in a specific order. This is dealt with
by rule (R-Commute), which uses the total order implied by Lemma 1.

Lemma 1 (Coding). For each type L in our language of local types L , there
exists a unique code c(L) ∈ N.

We give the proof of Lemma 1 in Appendix A. Using the reduction rules
mentioned above, we can now prove the weak normalization property for
local types in System-A.

31

Table 10: Reductions of local types due to semantic equivalence.

L1 ⊕ L2 −→norm L1 where L1 = L2
c2
}
i=c1

L −→norm Lx if i not free in L

with x = c2 − c1 + 1

and c1, c2 known constants

n
}
i=1
L −→norm Ln if i not free in L

and n a parameter

L1 ⊗ L2 −→norm (L1 ; L2) ⊕ (L2 ; L1) (R-Distributive)

(L1 ⊕ L2) ; L3 −→norm (L1 ; L3) ⊕ (L2 ; L3)

(L1 ⊕ L2) ‖ L3 −→norm (L1 ‖ L3) ⊕ (L2 ‖ L3)

p1 op1m1 ‖ p2 op2m2 −→norm p1 op1m1 ⊗ p2 op2m2 (R-Simple-Paral)

where op1, op2 ∈ {!, ?}, p1, p2 are participating actors,

and m1,m2 ∈ message sorts

∃i s.t. c(Li) > c(Li+1) op ∈ {⊕, ⊗, ‖}

L1 op, . . . , opLk −→norm Li1 op, . . . , opLik
s.t. c(Li1) < · · · < c(Lik)

(R-Commute)

Proof. (Weak Normalization)
Procedure normalize in Algorithm 1 brings the given local type to a

normal form. In lines 2-6, it repeatedly applies operator precedence rules
to eliminate parentheses (Table 9), applies the distributive law and other
operator expansion laws (Table 10) as well as τ -eliminations (Table 8). We
can show that the loop in lines 2-6 terminates, by observing that

(i) types are finite in length;

(ii) except for (R-Distributive), (R-Simple-Paral) and (R-Commute), all
rules strictly shorten the type;

(iii) rule (R-Commute) is not applied in the loop, and

32

(iv) rules (R-Distributive) and (R-Simple-Paral) systematically reduce some
cases of shuffling and concurrency to choices, and hence cannot produce
repetitions.

After the loop, procedure order handles operator commutativity by
reordering the operator arguments (line 24) according to the coding given
in Lemma 1. The following observations imply that order terminates and
that the produced type cannot be reduced any further:

1. line 11 is the base case (termination);

2. lines 14, 16, 18 and 21 get closer to the base case;

3. line 24 is only executed after the Lis have been normalized (line 21);

4. lines 2–6 converge and the loop terminates;

5. lines 2–6 need not be repeated as a result of order.

Corollary 1 (Strong Normalization). Every local type L ∈ L has a unique
normal form Lnorm.

Proof. The normalization process given in Algorithm 1 is deterministic, and
its output depends solely on the input type L. Hence the output is unique
to the input type.

It remains to show that a type and its normal form describe the same
behavior. In order to do this, we need to define the semantics of local types,
and show that the normalization process does not semantically alter a type.

On the semantics of local types. Recall that an environment ∆P = {a:La, . . . }
maps every actor in the program P to its local type. Also, observe that there
is a clear correspondence between the constructs of Lang-A and those of lo-
cal types (Table 5). This means we can define the trace generation relation
 on environments by essentially following the reduction rules of Lang-A
(Table 4). For an environment ∆P as above, this idea gives a reduction re-
lation such that the code of the actors is simultaneously reduced with the
respective types. The only extra requirement is that when an actor takes a
non-observable action (assignment, expression evaluation etc.), the respective
type takes a silent step. Restricting this reduction relation only to the local
types of an environment, we get the operational semantics of local types;
these are formally given in Appendix B.

33

Algorithm 1 Normalization of local types.

Input: A local type L.
Output: The respective unique normal form Lnorm.

1: procedure normalize(L)
2: repeat
3: erase extraneous parentheses according to Table 9
4: apply the τ -eliminations of Table 8
5: apply the rules of Table 10 except (R-Commute)
6: until no further change is possible in L
7: order(L)
8: end procedure
9:

10: procedure order(L)
11: if L = a!m or L = a?m then
12: return;

13: else if L =
n

OP
i=s

Li where OP ∈ {} , ⊕ , ‖ , ⊗} then
14: order(Li)
15: else if L = Ln1 or L = L∗1 then
16: order(L1)
17: else if L = (L′) then
18: order(L′)
19: else if L = L1 op . . . opLk where op ∈ {; , ⊕ , ‖} then
20: for i = 1 . . . k do
21: order(Li)
22: end for
23: if op 6= ; then
24: reorder L according to (R-Commute)
25: end if
26: end if
27: end procedure

Theorem 2 (Type Normalization Preserves Semantics). A type L and its
normal form Lnorm are trace equivalent.

Informally, two local types are trace equivalent [20, 10, 1] when they can
be used interchangeably, in the sense that when placed within any given
context, they both produce the same set of traces. Although we omit a
formal proof for the sake of brevity, Theorem 2 can be shown by induction

34

on the length of the normalization process. Following the semantics in the
appendix, one can verify that each normalization step results in an equivalent
type (i.e. producing the same set of traces).

The similarity between the semantics of local types and those of Lang-A
furthermore suggests the following theorem:

Theorem 3 (Subject Reduction). Fix a program P , such that P : ∆. Then,
if P ∗ P ′ as per the language semantics (Table 4) with P ′ : ∆′, we have
that ∆ ∗ ∆′.

Since ∗ is the reflexive transitive closure of , the above can be shown
by induction on the number of reduction steps the program takes. Sketching
the proof: because of the way the semantics of local types are formed, we
can see that each possible reduction step of the program (Table 4) can be
juxtaposed to a reduction step of the respective local type (Appendix B).

9. Global Type Realization

In this section, we discuss the properties that a global type must satisfy
in order to be projectable. Applying the projection function to a projectable
global type will result in local types for the participants whose combined
behavior is consistent with the global type—a fact we show in Section 10.

Before we proceed, it is important to observe that the side conditions in
the rules of Table 6 ensure well-typed programs, whereas the conditions we
describe here ensure well-formed global types. The subsequent discussion of
projectability criteria uses the following notions:

• We extend the projection function onto events and write e . p to
denote the projection of event e onto the participant p using rule
(P-Interaction).

• Since a trace is simply a sequence of events of the form p
m−→ q, we

extend the projection function onto traces in the natural way. We write
t . p to denote the projection of trace t onto p using rules (P-Seq) and
(P-Interaction). When t . p contains only τ terms, we shorten the
description by writing t . p = τ (empty projection).

• For a trace t, let first (t) and last (t) denote the first and last event of t
respectively. Note that as discussed in Section 4.2, we only deal with
finite traces.

35

• Recall that the set of traces a global type G can produce is denoted by
tr (G). Abusing notation, the set of events that appear first in traces
of G is denoted first (G) = {first (t) | t ∈ tr (G)}. Similarly, the set of
events that appear last in traces of G is denoted last (G).

9.1. Sequentiality Criterion

The purpose of this criterion is to ensure that the sequential constructs
of a global type retain their sequential semantics after projection. As an
example problematic case, consider G1 = a

m1−→ b ; c
m2−→ d. Without the

use of some covert coordination channel (for example by implementing a
barrier mechanism), it is impossible for c to know when b has received the
message. The two events a

m1−→ b and c
m2−→ d are impossible to order using

our projection function, as the resulting environment would be ∆1 = {a :
b!m1, b : a?m1, c : d!m2, d : c?m2}, which allows c to send m2 to d before m1

is received at b. G1 does not satisfy the sequentiality criterion and thus is
not projectable.

However, the case G2 = a
m1−→ b ; a

m2−→ b is not problematic, since
b can sequence the order of receiving messages. The following definition
captures the conditions under which events are guaranteed to respect the
sequencing restrictions imposed in a global type, when the latter is projected
onto individual actors.

Definition 5 (Sequentially Projectable Global Type). The set P ; of sequen-
tially projectable global types is defined inductively as follows:

p1
m−→ p2 ∈ P ; ∀p1, p2 ∈ Π

p1
m1−→ p2 ; p2

m2−→ p3 ∈ P ; ∀p1, p2, p3 ∈ Π

p1
m1−→ p2 ; p3

m2−→ p2 ∈ P ; ∀p1, p2, p3 ∈ Π

G1 ; G2 ∈ P ; iff
(
e1 ; e2 ∈ P ; ∀e1 ∈ last (G1) , e2 ∈ first (G2)

)
n2

}
i=n1

Gi ∈ P ; iff
(
e1 ; e2 ∈ P ; ∀e1 ∈ last (Gi[1/i]) , e2 ∈ first (Gi[2/i])

)
Gn ∈ P ; iff

(
e1 ; e2 ∈ P ; ∀e1 ∈ last (G) , e2 ∈ first (G)

)
G∗ ∈ P ; iff

(
e1 ; e2 ∈ P ; ∀e1 ∈ last (G) , e2 ∈ first (G)

)
where Π denotes the set of participating actors.

We illustrate the third case of the definition above with a type that is
in P ;. Consider the global type (a

m−→ b ‖ c m−→ b) ; (b
m−→ l ‖ b m−→ k).

36

It is easy to see that last(a
m−→ b ‖ c m−→ b) = {a m−→ b, c

m−→ b} and
first(b

m−→ l ‖ b m−→ k) = {b m−→ l, b
m−→ k}, so that all four sequences (e.g.,

a
m−→ b ; b

m−→ k) are in P ; according to the first two lines of Definition 5.

9.2. Choice Criterion

The purpose of this criterion is to ensure that projecting G1 ⊕ G2

maintains the choice semantics, meaning that all participants can recognize
which branch of the choice operator they need to take during execution. As
an example of a type that does not satisfy this criterion, consider

G = (a
m1−→ b ; b

k−→ c ; c
t1−→ d) ⊕ (a

m2−→ b ; b
k−→ c ; c

t2−→ d).

Here, a and b know which branch they are on, because on the left branch
b receives a message of type m1 from a, while on the branch on the right
it receives a message of type m2. However, from that point on, b behaves
identically with respect to c, which has no way of telling whether the message
to send to d should be of type t1 or t2. We call the first point at which two
traces differ with respect to a given participant the distinctive point, which
can be undefined if no such point exists.

Before giving the formal definition of the distinctive point, we first in-
troduce some auxiliary notation. Let t = e1; . . . ;en denote a trace and p a
participant; then we have the projection t . p = e1 . p; . . . ;en . p. For any
of the individual event projections, src(·) returns the index of the event in
the original trace where the projection came from. In other words, for the
projected events comprising t . p, it is src(ei . p) = i with 1 ≤ i ≤ n. We
also write t .τ p to denote the result of removing τ from t . p. Essentially,
t .τ p is the result of first projecting the trace, then applying the rules of
Table 8 to the result. In this case, src(·) is useful to recover the indices as
they were before eliminating τ .

Definition 6 (Distinctive Point). Let t1 and t2 be traces. For a participant
p, take the τ -free projections t1 .

τ p = s1; . . . ;sk and t2 .
τ p = u1; . . . ;ul.

Then the distinctive point for the participant p with respect to the pair of
traces t1, t2 is defined as

dt1,t2(p) = (i, j) with i = src(sq), j = src(uq)

for the unique (sq, uq) s.t. q = min{z | sz 6= uz}.

In the case where t1 . p = τ , or t2 . p = τ , or t1 . p = t2 . p, no such
(i, j) exists and the distinctive point is undefined.

37

The definition that follows captures the conditions under which the choice
semantics are maintained after projection. The first bullet deals with the
non-parameterized version of the choice operator ⊕. Item (i) captures the
case where a participant p is the first one acting on the two branches, in
which case it must inform the others of the branch they are on. It does so by
either sending a different message, or by sending to a different actor in each
case. Note that the same actor must inform the others on both branches.
Item (ii) captures the case where p is not the first one to act, in which case
it must be informed of the branch it is on and the distinctive point should
be a suitable receive event.

The second bullet inductively uses the first one to define choice-wise pro-
jectability in the parameterized case of choice ⊕.

Definition 7 (Choice-Wise Projectable Global Type). The set P⊕ of choice-
wise projectable global types is defined inductively as follows:

• G = G1 ⊕ G2 ∈ P⊕ iff ∀p ∈ Π, either of the following is true:

(i) ∀e1 ∈ first (G1) , e2 ∈ first (G2) : e1 = p
m−→ q, e2 = p

m′−→ q′

where p 6= q and p 6= q′and (q 6= q′ or m 6= m′)

(ii) ∀t1 = (s1, . . . , sk1) ∈ tr (G1) , t2 = (u1, . . . , uk2) ∈ tr (G2) ,

either dt1,t2(p) is undefined, or

dt1,t2(p) = (i, j) and si = q
m−→ p, uj = q′

m′−→ p

where si ∈ tr (G1) , uj ∈ tr (G2)

and p 6= q and p 6= q′and (q 6= q′ or m 6= m′)

• G =
n2⊕
i=n1

Gi ∈ P⊕ iff
(
Gi[1/i] ⊕ Gi[2/i]

)
∈ P⊕

where Π is the set of participating actors.

9.3. Shuffle Criterion

To be able to project the shuffle operators while maintaining the seman-
tics, we rely on both the choice and the sequencing criteria. Recall that we
define the shuffle operator as

G1 ⊗ G2 = (G1 ; G2) ⊕ (G2 ; G1).

38

For this to be projectable, it has to be the case that G1 and G2 can be
sequenced both ways, and also that the right hand side satisfies the choice
projectability criteria.

Definition 8 (Shuffle-Wise Projectable Global Type). The set P⊗ of shuffle-
wise projectable global types is defined inductively as follows:

• G1 ⊗ G2 ∈ P⊗ iff all of the following are true:

1. G1 ; G2 ∈ P ;

2. G2 ; G1 ∈ P ;

3. G1 ⊕ G2 ∈ P⊕

•
n2⊗
i=n1

Gi ∈ P⊗ iff Gi[1/i] ⊗ Gi[2/i] ∈ P⊗.

Notice how item (3) above works: if an actor can tell whether it is on G1

or G2, then it is also able to tell the order in which G1 and G2 appear.

9.4. Concurrent Composability Criterion

As an example of what can go wrong when composing two global types
with the ‖ operator, consider the following example:

G =
(
(a

m1−→ b ; b
k1−→ c) ⊕ (a

m2−→ b ; b
k2−→ c)

)
‖ a m1−→ b.

The intended behavior of G is that a chooses whether to send a message
of type m1 or m2 to b, which in turn decides whether to send c a message
of type k1 or k2. Concurrently with this, an additional m1 is sent from a
to b. Assume that as far as ⊕ is concerned, a decides to send m2 to b. It is
then obvious how the additional concurrent event a

m1−→ b might confuse b to
simultaneously take both branches of the choice operator.

In general, the problem appears when actions in one concurrent branch
affect choices made on another. Global types that do not exhibit this problem
are concurrently projectable.

39

Definition 9 (Concurrently Projectable Global Types). For two global types
G1 and G2, we have that (G1 ‖ G2) is concurrently projectable if there is no
overlap between the distinctive points in G1 and events in G2. Formally, the
set P ‖ of concurrently projectable global types is defined as follows:

• G1 ‖ G2 ∈ P ‖ iff ∀t1 = (e1, . . . , ek), t
′
1 = (e′1, . . . , e

′
k′) ∈ tr (G1) ,

t2 ∈ tr (G2) , p ∈ Π, one of the following is true:

(a) dt1,t′1(p) is undefined

(b) dt1,t′1(p) = (i, j) and ei, e
′
j both have p as the sender

(c) dt1,t′1(p) = (i, j) and ei /∈ t2 and e′j /∈ t2

•
n2

‖
i=n1

Gi ∈ P ‖ iff
(
Gi[1/i] ‖ Gi[2/i]

)
∈ P ‖

where Π denotes the set of participating actors. Notice how this definition
also deals with the concurrent composability of two Kleene starred types (the
Kleene star entails a choice pertaining to loop entrance and exit).

9.5. Kleene Star Criterion

Use of the Kleene star in global types can result in protocols whose pro-
jection is unsafe, that is, can result in execution traces that are not part of
the original global type. To avoid this, a global type must be such that the
entry and exit conditions to the starred type can be identified by all partic-
ipants. Determining whether this is the case requires inspection of not only
the starred type itself, but also of what comes after the starred section. Ob-
serve that G∗ ; G′ ≡ G ; (G∗ ; G′) ⊕ G′, which means that both sequencing
and choice constraints must be satisfied simultaneously.

Definition 10 (Kleene Star Projectable Global Types). The set P ∗ of Kleene
star projectable global types is defined to be the set of all global types of the
form G∗ ; G′ for which the following are all true:

• G∗ ∈ P ;

• G ⊕ G′ ∈ P⊕

• G ; G′ ∈ P ;

40

Recall that P ; and P⊕ are the sets of sequentially and respectively choice-
wise projectable types. As an example of a type that is not in P ∗, consider

G = (a
m−→ b ; b

m′−→ c)∗ ; c
m′′−→ d where c has no way of knowing whether it

should wait for m′ from b, or proceed immediately with sending the message
m′′ to d.

10. Correctness

The conditions discussed in the previous section are sufficient to ensure
that the projection function generates local types which are functionally con-
sistent with the global type. We call a global type that satisfies all of the
above criteria projectable:

Definition 11 (Projectable Global Type). The set PR of projectable global
types is inductively defined in Table 11.

Table 11: Inductive definition of the set PR of projectable
global types. The sets P ; of sequentially projectable, P⊕ of
choice-wise projectable, P⊗ of shuffle-wise projectable, P ‖ of
concurrently projectable, and P ∗ of Kleene star projectable
global types G ∈ G are defined in Section 9. See Table 2 for the
domains of the auxiliary symbols.

a
m−→ b ∈ PR

Gn ∈ PR iff G ∈ PR and Gn ∈ P ;

(G1 ; G2) ∈ PR iff G1, G2 ∈ PR and (G1 ; G2) ∈ P ;

(G1 ⊕ G2) ∈ PR iff G1, G2 ∈ PR and (G1 ⊕ G2) ∈ P⊕

(G2 ⊗ G2) ∈ PR iff G1, G2 ∈ PR and (G1 ⊗ G2) ∈ P⊗

(G1 ‖ G2) ∈ PR iff G1, G2 ∈ PR and (G1 ‖ G2) ∈ P ‖

(G∗1 ; G2) ∈ PR iff G1, G2 ∈ PR and (G∗1 ; G2) ∈ P ∗
n2

}
i=n1

Gi ∈ PR iff Gi[1/i], Gi[2/i] ∈ PR and (Gi[1/i] ; Gi[2/i]) ∈ P ;

n2⊕
i=n1

Gi ∈ PR iff Gi[1/i], Gi[2/i] ∈ PR and (Gi[1/i] ⊕ Gi[2/i]) ∈ P⊕

n2⊗
i=n1

Gi ∈ PR iff Gi[1/i], Gi[2/i] ∈ PR and (Gi[1/i] ⊗ Gi[2/i]) ∈ P⊗

n2

‖
i=n1

Gi ∈ PR iff Gi[1/i], Gi[2/i] ∈ PR and (Gi[1/i] ‖ Gi[2/i]) ∈ P ‖

41

We denote the environment resulting from the projection of G onto each
one of the participants by ∆G. That is, ∆G = {p : G . p}p∈Π where Π is the
set of participating actors.

Definition 12 (Environment Traces). The set of traces tr (∆) producible by
an environment ∆ is the union of the sets of traces producible by the local
types in ∆, as per the semantics found in Appendix B.

Theorem 4 formalizes our intuition that under the constraints of Table 11,
the projection function of Table 7 is correct; that is, the projected environ-
ment produces the same set of traces as the global type.

Theorem 4. G ∈ PR⇒ tr (G) = tr (∆G)

Proof. We prove Theorem 4 by induction on the structure of global types.
The base case consists of two parts:

• G = a
m−→ b with a 6= b, projecting onto the environment

∆G = {a : b!m, b : a?m}. Obviously, tr (G) = tr (∆G) = {a m−→ b}.

• G = a
m−→ a, projecting onto ∆G = {a : a!m ; a?m} and again,

tr (G) = tr (∆G) = {a m−→ a}.

We now treat each of the inductive steps separately. For G ∈ PR, the
inductive hypothesis is that the theorem holds for each of the sub-components
Gi ∈ PR comprising G.

[Seq] (G1 ; G2) ∈ PR⇒ tr (G1 ; G2) = tr (∆G1;G2)

Let t ∈tr (G1 ; G2)

⇔ ∃t1 ∈ tr (G1) , t2 ∈ tr (G2) s.t. t = t1 ; t2 (def. of sequencing)

⇔ t1 ∈ tr (∆G1) and t2 ∈ tr (∆G2) (inductive hypothesis)

Observe that

∆G1;G2 =

. . .

a : (G1 . a) ; (G2 . a) ,

b : (G1 . b) ; (G2 . b) ,

c : (G1 . c)︸ ︷︷ ︸
∆G1

; (G2 . c)︸ ︷︷ ︸
∆G2

42

and that the part on the left of the semi-colons is ∆G1 , while the part on
the right is ∆G2 , which means that they produce t1 and t2 respectively.
Now since G1;G2 ∈ PR, we have that G1;G2 ∈ P ; which means that
last (t1) = a

m1−→ b and first (t2) ∈ {b m2−→ c , c
m2−→ b}. Hence, for the

environment above, we have: having produced t1 at the semi-colon,
the nature of the connective events (last (t1) and first (t2)) forces the
execution of ∆G1;G2 to produce exactly the trace t1 ; t2. We complete
the proof by observing that this argument holds for any t1, t2 as above,
because of the definition of P ;.

[Exp] Gn ∈ PR⇒ tr (Gn) = tr (∆Gn)

From the definition of PR, we have G ∈ PR and Gn ∈ P ;. Notice how
the latter implies that (G ; . . . ; G) ∈ P ;, thus the proof is similar to
case [Seq] above.

[Choice] (G1 ⊕ G2) ∈ PR⇒ tr (G1 ⊕ G2) = tr (∆G1⊕G2).

From the definition of PR, we have G1, G2 ∈ PR and (G1 ⊕ G2) ∈ P⊕.

(⊆)
Let t ∈ tr (G1 ⊕ G2). By definition of the choice operator, t ∈ tr (G1)
or t ∈ tr (G2). It is easy to see that t ∈ ∆G1⊕G2 , by noticing (i) the
latter equals {p : (G1 . p) ⊕ (G2 . p)}p∈Π; (ii) the part on the left of
the choice operator is ∆G1 , while the part on the right is ∆G2 ; (iii) by
the inductive hypothesis, tr (∆G1) = tr (G1) and tr (∆G2) = tr (G2).

(⊇)
Let t ∈ tr (∆G1⊕G2). By definition of the⊕ operator, we have t ∈ tr (∆G1)
or t ∈ tr (∆G2), and by the inductive hypothesis, tr (G1) = tr (∆G1)
and tr (G2) = tr (∆G2). Pick any two participants p, q in the system
and let t1 ∈ tr (G1) and t2 ∈ tr (G2). Since G1 ⊕G2 ∈ P⊕, we see the
following cases:

• first (t1) = p
m−→ q and first (t2) = p

m′−→ q′. These two events
are different from the perspectives of p and q alike. Hence, either
they are both executing t1, or they are both executing t2.

• dt1,t2(p) is undefined. Then two cases: either t1 . p = t2 . p so it
doesn’t matter which one p is executing; or one of the projections
is empty (τ) but the other isn’t, so p definitely knows which branch
it is on.

43

• dt1,t2(p) = (i, j) with si = q
m−→ p ∈ t1, uj = q′

m′−→ p ∈ t2. These
events are different from the perspective of p, as they are from the
perspective of q, so they are both on t1, or (both) on t2.

Notice that the roles of p, q above can be interchanged. Since the cases
above are true for all pairs of participants, it is either t = t1, or t = t2
for some t1 ∈ tr (G1) , t2 ∈ tr (G2) as above. By definition of the ⊕
operator, t ∈ tr (G1 ⊕ G2).

[Shuffle] (G1 ⊗ G2) ∈ PR⇒ tr (G1 ⊗ G2) = tr (∆G1⊗G2)

The definition of PR gives us G1, G2 ∈ PR and (G1 ⊗ G2) ∈ P⊗.
Because shuffling can be expressed in terms of sequencing and choice,
the proof falls back onto cases [Seq] and [Choice].

[Paral] (G1 ‖ G2) ∈ PR⇒ tr (G1 ‖ G2) = tr
(
∆G1‖G2

)
From the definition of PR, we have G1, G2 ∈ PR and (G1 ‖ G2) ∈ P ‖.
(⊆)
Let t ∈ tr (G1 ‖ G2), which (by definition of the ‖ operator) is an
interleaving of some t1 ∈ tr (G1) and some t2 ∈ tr (G2). By the
induction hypothesis, t1 ∈ tr (∆G1) and t2 ∈ tr (∆G2). Obviously
t ∈ tr ({p : (G1 . p ‖ G2 . p)}p∈Π) as the parts on the left of the ‖
operator are ∆G1 and those on the right are ∆G2 .

(⊇)

Observe that ∆G1‖G2 = {p : (G1 . p ‖ G2 . p)}p∈Π. Clearly the left
side of the ‖ operator corresponds to ∆G1 , while the right corresponds
to ∆G2 . Because of this form, any trace t ∈ tr

(
∆G1‖G2

)
will be a

function of some t1, t
′
1 ∈ tr (∆G1) , t2 ∈ tr (∆G2). By the inductive

hypothesis, we have t1, t
′
1 ∈ tr (G1) and t2 ∈ tr (G2).

Assume that t1 = (e1, . . . , ek) and t′1 = (e′1, . . . , e
′
k′). Because (G1 ‖ G2) ∈

P ‖, we have that for every participant p, one of the following is true:

• dt1,t′1(p) is undefined so t2 cannot “confuse” p regarding choices
concerning t1 and t′1 (p knows if it is executing t1 or t′1).

• dt1,t′1(p) = (i, j) and both e1 and e′j have p as the sender, so t2
cannot “confuse” p regarding choices in t1 and t′1.

• dt1,t′1(p) = (i, j) and ei /∈ t2 and e′j /∈ t2 in which case nothing in
t2 can confuse p by definition.

44

Thus interleaving G1 and G2 does not alter choices made by p on
traces produced by either, for any p ∈ Π. This means that t1 ‖ t2 ∈
tr (G1 ‖ G2) – and symmetrically, t′1 ‖ t2 ∈ tr (G1 ‖ G2)1

[KleeneStar] (G∗1 ; G2) ∈ PR⇒ tr (G∗1 ; G2) = tr
(
∆G∗1 ; G2

)
Since the definition of PR implies both G∗1 ∈ P ; and G1 ; G2 ∈ P ;,
sequencing as in G1 ; . . . ; G1 ; G2 is dealt with by case [Seq] above.
The choice part of the Kleene Star (see Section 9.5) is dealt with by case
[Choice], since the definition of PR also implies that G1 ⊕ G2 ∈ P⊕.

A note on global types that end with a Kleene Star, such that G2

above is empty: This case can be reasoned about by extending the
projection function in the natural way, so that the empty global type
projects to the empty environment. We complete this part of the proof
by observing that (a) both the empty type and the empty environment
produce the empty set of traces, and (b) sequencing any type with the
empty one trivially respects the sequencing constraints of Section 9.1.

[ParamSeq] G ∈ PR⇒ tr (G) = tr (∆G) where G =
n2

}
i=n1

Gi.

Gi[1/i], Gi[2/i] ∈ PR and (Gi[1/i] ; Gi[2/i]) ∈ P ; hold from the defini-
tion of PR. Substituting 1 and 2 for i to generate G1 and G2 allows for
the direct checking of the P ; criteria, and an inductive argument lets
the proof fall back onto case [Seq].

[ParamChoice] G ∈ PR⇒ tr (G) = tr (∆G) where G =
n2⊕
i=n1

Gi.

Gi[1/i], Gi[2/i] ∈ PR and (Gi[1/i] ⊕ Gi[2/i]) ∈ P⊕ are true from the
definition of PR. It is easy to see that substituting 1 and 2 for i to
generate G1, G2 allows for the direct checking of the P⊕ criteria, and
an inductive argument lets the proof fall back onto case [Choice].

[ParamShuffle] G ∈ PR⇒ tr (G) = tr (∆G) where G =
n2⊗
i=n1

Gi.

From the definition of PR, we have that Gi[1/i], Gi[2/i] ∈ PR and
(Gi[1/i] ⊗ Gi[2/i]) ∈ P⊗. It is easy to see that substituting 1 and 2

1 we abuse notation, so that t1 ‖ t2 means “some interleaving of” traces t1 and t2.

45

for i to generate G1, G2 allows for direct checking of the P⊗ criteria,
and an inductive argument has the proof fall back onto case [Shuffle].

[ParamParal] G ∈ PR⇒ tr (G) = tr (∆G) where G =
n2

‖
i=n1

Gi.

From the definition of PR, we have that Gi[1/i], Gi[2/i] ∈ PR and
(Gi[1/i] ‖ Gi[2/i]) ∈ P ‖. It is easy to see that substituting 1 and 2
for i allows for the direct checking of the P ‖ criteria, and an inductive
argument lets the proof fall back onto case [Paral].

11. Conclusions and Future Work

We introduced System-A, a session-type system that allows for parame-
terized concurrency, where the number of participants, the types of messages
sent, as well as the number of such messages are controlled by type pa-
rameters. We also demonstrated how to parameterize choice among various
execution paths, so that the number and types of different paths to be taken
may be unknown at compile time. Our system includes a novel shuffling
operator, which expresses arbitrary reorderings of its arguments, again in a
parameterized fashion. We furthermore described Lang-A, a programming
language in which we can implement programs whose adherence to System-A
specifications can be statically checked. A series of examples demonstrates
that our approach allows us to specify and check more complicated inter-
actions than prior work, such as the sliding window protocol and parallel
resource locking/unlocking (Section 3).

In System-A, we can statically verify—without parameter instantiation—
the compliance of implementations to protocols. We do this by first project-
ing (Section 7) the specification to parameterized types, and then compar-
ing these projections against the types extracted from the program. We
showed how to perform the latter step, i.e. type inference from Lang-A code
(Section 6.1), and also demonstrated that structural equivalence of types in
System-A is decidable. We presented this result in Section 8 by first showing
weak, and subsequently strong normalization of local types. In Section 9 we
discussed the conditions under which our projection function is correct, and
proved their sufficiency in Section 10.

46

Future Work. Adding support for dynamic process creation is an important
direction for future work. In its current form, System-A cannot express actor
creation as a behavior, and global types assume that all participants already
exist. Matching a created actor with its subsequent use in a type requires an
extra step which is not obvious.

The semantic comparison of local types constitutes another practical con-
sideration. Our normalization algorithm (Section 8) already includes many
cases of semantically equivalent, yet structurally differing types (Table 10).
Semantic comparison is unnecessary for the weak normalization proof, but
would be useful in a practical setting where the user is interested in semantic
adherence to a protocol. Specifically in the case where reordering of terms
is possible as a result of operator commutativity, our suggested coding only
serves as an existential proof. A more practical coding scheme could be
developed, perhaps employing lexicographic ordering.

In its present form, System-A does not allow the arbitrary use of pa-
rameters. First of all, only indices that range over continuous integers are
supported. Secondly, some all-to-all types of communication are not sup-
ported, due to the issues discussed in Section 7. These limitations can be
overcome by allowing index sets, and making restrictions on them explicit.
This would, for example, enable types with constraints such as

‖
i∈I
‖
j∈J
ai

m−→ aj I ∩ J = ∅.

One can then reason about how these restrictions affect projection, which
will produce different output depending on provided side-conditions such as
“project onto ak where k ∈ I”.

Deniélou and Yoshida [21] propose a system where parameterization is
achieved by means of quantification over roles. Roles are behavior specifi-
cations that are taken up by processes while they participate in a protocol,
and processes are allowed to join and leave protocols dynamically. Their
notation’s expressiveness is limited when it comes to arbitrary, concurrency-
induced interleavings of events. Nevertheless, incorporating their work into
System-A would expand the applicability of the ideas presented here – even
though towards a different direction.

Other possible extensions include support for session delegation and ex-
ception handling (in the sense of Carbone et al. [12]). It may also be possible
to transfer the recent, precise realizability results [4] for choreographies [44]

47

to our parameterized specifications. Finally, other possible extensions con-
cern the runtime monitoring application domain [18]. In particular, adding
support for global assertions [8] can form the basis of a powerful theory for
deriving local restrictions for each participant, which an asynchronous ob-
server [19] can then enforce.

Acknowledgments

The authors would like to thank Karl Palmskog for his helpful comments.
We would also like to thank the anonymous reviewers for their many sug-
gestions, which have undoubtedly led to the maturement of this paper. This
publication was made possible in part by sponsorships from the Air Force
Research Laboratory and the Air Force Office of Scientific Research under
agreement number FA8750-11-2-0084, and also the National Science Founda-
tion under grant number CCF-1438982. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon.

References

[1] G. Agha, I.A. Mason, S.F. Smith, C.L. Talcott, A foundation for actor
computation, J. Funct. Program. 7 (1997) 1–72.

[2] F. Arbab, Reo: a channel-based coordination model for component com-
position, Mathematical Structures in Computer Science 14 (2004) 329–
366.

[3] H. Barendregt, S. Abramsky, D.M. Gabbay, T.S.E. Maibaum, H.P.
Barendregt, Lambda calculi with types, in: Handbook of Logic in Com-
puter Science, Oxford University Press, 1992, pp. 117–309.

[4] S. Basu, T. Bultan, M. Ouederni, Deciding choreography realizability,
in: J. Field, M. Hicks (Eds.), POPL, ACM, 2012, pp. 191–202.

[5] A. Bejleri, Practical parameterised session types, in: J.S. Dong, H. Zhu
(Eds.), ICFEM, volume 6447 of Lecture Notes in Computer Science,
Springer, 2010, pp. 270–286.

[6] A. Bejleri, Parameterised session types communication patterns:
through the looking glass of session types, Ph.D. thesis, Imperial College
London, 2012.

48

[7] L. Bettini, M. Coppo, L. D’Antoni, M.D. Luca, M. Dezani-Ciancaglini,
N. Yoshida, Global progress in dynamically interleaved multiparty ses-
sions, in: F. van Breugel, M. Chechik (Eds.), CONCUR, volume 5201
of Lecture Notes in Computer Science, Springer, 2008, pp. 418–433.

[8] L. Bocchi, K. Honda, E. Tuosto, N. Yoshida, A theory of design-
by-contract for distributed multiparty interactions, in: P. Gastin,
F. Laroussinie (Eds.), CONCUR, volume 6269 of Lecture Notes in Com-
puter Science, Springer, 2010, pp. 162–176.

[9] E. Bonelli, A.B. Compagnoni, Multipoint session types for a distributed
calculus, in: G. Barthe, C. Fournet (Eds.), TGC, volume 4912 of Lecture
Notes in Computer Science, Springer, 2007, pp. 240–256.

[10] M. Boreale, R. De Nicola, R. Pugliese, Trace and testing equiva-
lence on asynchronous processes, Inf. Comput. 172 (2002) 139–164.
URL: http://dx.doi.org/10.1006/inco.2001.3080. doi:10.1006/
inco.2001.3080.

[11] M. Carbone, K. Honda, N. Yoshida, Structured communication-centred
programming for web services, in: R. De Nicola (Ed.), ESOP, volume
4421 of Lecture Notes in Computer Science, Springer, 2007, pp. 2–17.

[12] M. Carbone, K. Honda, N. Yoshida, Structured interactional exceptions
in session types, in: F. van Breugel, M. Chechik (Eds.), CONCUR,
volume 5201 of Lecture Notes in Computer Science, Springer, 2008, pp.
402–417.

[13] M. Carbone, F. Montesi, Deadlock-freedom-by-design: multiparty asyn-
chronous global programming, in: R. Giacobazzi, R. Cousot (Eds.),
POPL, ACM, 2013, pp. 263–274.

[14] M. Carbone, N. Yoshida, K. Honda, Asynchronous session types: Ex-
ceptions and multiparty interactions, in: M. Bernardo, L. Padovani,
G. Zavattaro (Eds.), SFM, volume 5569 of Lecture Notes in Computer
Science, Springer, 2009, pp. 187–212.

[15] G. Castagna, M. Dezani-Ciancaglini, L. Padovani, On global types and
multi-party sessions, in: R. Bruni, J. Dingel (Eds.), FMOODS/FORTE,
volume 6722 of Lecture Notes in Computer Science, Springer, 2011, pp.
1–28.

49

http://dx.doi.org/10.1006/inco.2001.3080
http://dx.doi.org/10.1006/inco.2001.3080
http://dx.doi.org/10.1006/inco.2001.3080

[16] G. Castagna, M. Dezani-Ciancaglini, L. Padovani, On global types and
multi-party session, Logical Methods in Computer Science 8 (2012).

[17] M. Charalambides, P. Dinges, G. Agha, Parameterized concurrent multi-
party session types, in: N. Kokash, A. Ravara (Eds.), FOCLASA, vol-
ume 91 of EPTCS, pp. 16–30.

[18] T.C. Chen, L. Bocchi, P.M. Deniélou, K. Honda, N. Yoshida, Asyn-
chronous distributed monitoring for multiparty session enforcement, in:
R. Bruni, V. Sassone (Eds.), TGC, volume 7173 of Lecture Notes in
Computer Science, Springer, 2011, pp. 25–45.

[19] T.C. Chen, K. Honda, Specifying stateful asynchronous properties for
distributed programs, in: M. Koutny, I. Ulidowski (Eds.), CONCUR,
volume 7454 of Lecture Notes in Computer Science, Springer, 2012, pp.
209–224.

[20] R. De Nicola, M. Hennessy, Testing equivalences for processes, Theor.
Comput. Sci. 34 (1984) 83–133. URL: http://dx.doi.org/10.1016/
0304-3975(84)90113-0. doi:10.1016/0304-3975(84)90113-0.

[21] P.M. Deniélou, N. Yoshida, Dynamic multirole session types, in: T. Ball,
M. Sagiv (Eds.), POPL, ACM, 2011, pp. 435–446.

[22] P.M. Deniélou, N. Yoshida, Multiparty session types meet communicat-
ing automata, in: H. Seidl (Ed.), ESOP, volume 7211 of Lecture Notes
in Computer Science, Springer, 2012, pp. 194–213.

[23] M. Dezani-Ciancaglini, E. Giachino, S. Drossopoulou, N. Yoshida,
Bounded session types for object oriented languages, in: F.S. de Boer,
M.M. Bonsangue, S. Graf, W.P. de Roever (Eds.), FMCO, volume 4709
of Lecture Notes in Computer Science, Springer, 2006, pp. 207–245.

[24] P. Dinges, G. Agha, Scoped synchronization constraints for large scale
actor systems, in: M. Sirjani (Ed.), COORDINATION, volume 7274 of
Lecture Notes in Computer Science, Springer, 2012, pp. 89–103.

[25] P. Eugster, T. Frischbier, S. Buchmann, Sound transformations for fed-
erated objects, in: M.B. Dwyer (Ed.), OOPSLA, ACM, 2012.

50

http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/0304-3975(84)90113-0

[26] N. Francez, Fairness, Texts and Monographs in Computer
Science, Springer, 1986. URL: http://dx.doi.org/10.1007/

978-1-4612-4886-6. doi:10.1007/978-1-4612-4886-6.

[27] S. Frølund, Coordinating distributed objects - an actor-based approach
to synchronization, MIT Press, 1996.

[28] S. Frølund, G. Agha, A language framework for multi-object coordina-
tion, in: O. Nierstrasz (Ed.), ECOOP, volume 707 of Lecture Notes in
Computer Science, Springer, 1993, pp. 346–360.

[29] S.J. Gay, M. Hole, Subtyping for session types in the pi calculus, Acta
Inf. 42 (2005) 191–225.

[30] S.J. Gay, V.T. Vasconcelos, Linear type theory for asynchronous session
types, J. Funct. Program. 20 (2010) 19–50.

[31] S.J. Gay, V.T. Vasconcelos, A. Ravara, N. Gesbert, A.Z. Caldeira, Mod-
ular session types for distributed object-oriented programming, in: M.V.
Hermenegildo, J. Palsberg (Eds.), POPL, ACM, 2010, pp. 299–312.

[32] K. Gödel, Über eine bisher noch nicht benützte erweiterung des finiten
standpunktes, Dialectica (1958) 280287.

[33] M. Hennessy, Semantics of programming languages - an elementary in-
troduction using structural operational semantics, Wiley, 1990.

[34] K. Honda, Types for dyadic interaction, in: E. Best (Ed.), CONCUR,
volume 715 of Lecture Notes in Computer Science, Springer, 1993, pp.
509–523.

[35] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and
type discipline for structured communication-based programming, in:
C. Hankin (Ed.), ESOP, volume 1381 of Lecture Notes in Computer
Science, Springer, 1998, pp. 122–138.

[36] K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session
types, in: G.C. Necula, P. Wadler (Eds.), POPL, ACM, 2008, pp. 273–
284.

51

http://dx.doi.org/10.1007/978-1-4612-4886-6
http://dx.doi.org/10.1007/978-1-4612-4886-6
http://dx.doi.org/10.1007/978-1-4612-4886-6

[37] R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, K. Honda, Type-safe event-
ful sessions in java, in: T. D’Hondt (Ed.), ECOOP, volume 6183 of
Lecture Notes in Computer Science, Springer, 2010, pp. 329–353.

[38] R. Hu, N. Yoshida, K. Honda, Session-based distributed programming
in java, in: J. Vitek (Ed.), ECOOP, volume 5142 of Lecture Notes in
Computer Science, Springer, 2008, pp. 516–541.

[39] D. Kouzapas, N. Yoshida, K. Honda, On asynchronous session seman-
tics, in: R. Bruni, J. Dingel (Eds.), FMOODS/FORTE, volume 6722 of
Lecture Notes in Computer Science, Springer, 2011, pp. 228–243.

[40] I. Lanese, C. Guidi, F. Montesi, G. Zavattaro, Bridging the gap be-
tween interaction- and process-oriented choreographies, in: A. Cerone,
S. Gruner (Eds.), SEFM, IEEE Computer Society, 2008, pp. 323–332.

[41] W.C. Lynch, Computer systems: Reliable full-duplex file transmission
over half-duplex telephone line, Commun. ACM 11 (1968) 407–410.
URL: http://doi.acm.org/10.1145/363347.363366. doi:10.1145/
363347.363366.

[42] G. Milicia, V. Sassone, Jeeg: temporal constraints for the synchroniza-
tion of concurrent objects, Concurrency - Practice and Experience 17
(2005) 539–572.

[43] D. Mostrous, N. Yoshida, K. Honda, Global principal typing in partially
commutative asynchronous sessions, in: G. Castagna (Ed.), ESOP, vol-
ume 5502 of Lecture Notes in Computer Science, Springer, 2009, pp.
316–332.

[44] C. Peltz, Web services orchestration and choreography, IEEE Computer
36 (2003) 46–52.

[45] G.D. Plotkin, A structural approach to operational semantics, J. Log.
Algebr. Program. 60-61 (2004) 17–139.

[46] R.L. Probert, K. Saleh, Synthesis of communication protocols: Survey
and assessment, IEEE Trans. Computers 40 (1991) 468–476.

[47] R. Pucella, J.A. Tov, Haskell session types with (almost) no class, in:
A. Gill (Ed.), Haskell, ACM, 2008, pp. 25–36.

52

http://doi.acm.org/10.1145/363347.363366
http://dx.doi.org/10.1145/363347.363366
http://dx.doi.org/10.1145/363347.363366

[48] F. Puntigam, Types for active objects based on trace semantics, in:
E.N. et al. (Ed.), Proceedings of the Workshop on Formal Methods for
Open Object-based Distributed Systems (FMOODS’96), IFIP WG 6.1,
Chapman & Hall, Paris, France, 1996. URL: http://www.complang.
tuwien.ac.at/franz/papers/Punt96b.ps.gz.

[49] F. Puntigam, Coordination requirements expressed in types for active
objects, in: ECOOP, pp. 367–388.

[50] K. Takeuchi, K. Honda, M. Kubo, An interaction-based language and
its typing system, in: C. Halatsis, D.G. Maritsas, G. Philokyprou,
S. Theodoridis (Eds.), PARLE, volume 817 of Lecture Notes in Com-
puter Science, Springer, 1994, pp. 398–413.

[51] G. Tel, Introduction to Distributed Algorithms, Cambridge university
press, 2000.

[52] V.T. Vasconcelos, S.J. Gay, A. Ravara, Type checking a multithreaded
functional language with session types, Theor. Comput. Sci. 368 (2006)
64–87.

[53] N. Yoshida, P.M. Deniélou, A. Bejleri, R. Hu, Parameterised multiparty
session types, in: C.H.L. Ong (Ed.), FOSSACS, volume 6014 of Lecture
Notes in Computer Science, Springer, 2010, pp. 128–145.

[54] N. Yoshida, V.T. Vasconcelos, Language primitives and type discipline
for structured communication-based programming revisited: Two sys-
tems for higher-order session communication, Electr. Notes Theor. Com-
put. Sci. 171 (2007) 73–93.

[55] M. Yuang, Survey of protocol verification techniques based on finite
state machine models, in: Computer Networking Symposium, 1988.,
Proceedings of the, pp. 164 –172. doi:10.1109/CNS.1988.4993.

53

http://www.complang.tuwien.ac.at/franz/papers/Punt96b.ps.gz
http://www.complang.tuwien.ac.at/franz/papers/Punt96b.ps.gz
http://dx.doi.org/10.1109/CNS.1988.4993

Appendix A. Proofs

Lemma 1 (Coding). For each type L in our language of local types, there
exists a unique code c(L) ∈ N.

Proof. We describe a way to assign natural numbers to local types. The
coding is defined inductively; it assigns codes to the smallest components of
local types, and then derives codes for larger types from the codes of their
components. We use πi to denote the ith prime number and c(t) for the code
of component t.

We begin by assigning the codes π1, π2, . . . π26 to the characters of the
English alphabet. Operators ! , ? , ; , ⊕ , ⊗ , ‖ are assigned the codes π27

to π32, while π33 to π38 are used to code the n-ary versions of the operators,
along with Kleene star and exponentiation, explained later. π39 is reserved
for coding type subscript parameters, and π40 is used to code parenthesized
types – both will be explained shortly. Beginning with π41, we code the
natural numbers: c(0) = π41, c(1) = π42, etc.

Actor names and message sorts are described by sequences of characters
of the English alphabet and/or Arabic numerals. As such, we need to assign
codes to their descriptions, henceforth simply referred to as words. The code
of a word w = w1w2 . . . wn is given by

c(w) = π
c(w1)
1 π

c(w2)
2 . . . πc(wn)

n

where wi is the ith character in the word. In the case of indexed words, (e.g.,
client i) we have w = (w1 . . . wn)i1...ik and

c(w) = π
c(w1)
1 . . . πc(wn)

n π
c(subscript)
n+1 π

c(i1)
n+2 . . . π

c(ik)
n+k+1

where c(subscript) = π39 which was reserved above. Note that the number
of indices in a simple type is known at compile time, as System-A does not
allow for a parameterized number of parameters. Thus we have established
unique codes for words.

54

Local types are formed from words combined with operators. We induc-
tively assign codes to local types as follows:

c(α!µ) = π
c(α)
1 π

c(!)
2 π

c(µ)
3

c(α?µ) = π
c(α)
1 π

c(?)
2 π

c(µ)
3

c(L1 ; L2 ; . . . ; Lk) = π
c(L1)
1 π

c(;)
2 π

c(L2)
3 π

c(;)
4 . . . π

c(;)
2k−2π

c(Lk)
2k−1

c(L1 ⊕ L2 ⊕ . . . ⊕ Lk) = π
c(L1)
1 π

c(⊕)
2 π

c(L2)
3 π

c(⊕)
4 . . . π

c(⊕)
2k−2 π

c(Lk)
2k−1

c(L1 ⊗ L2 ⊗ . . . ⊗ Lk) = π
c(L1)
1 π

c(⊗)
2 π

c(L2)
3 π

c(⊗)
4 . . . π

c(⊗)
2k−2 π

c(Lk)
2k−1

c(L1 ‖ L2 ‖ . . . ‖ Lk) = π
c(L1)
1 π

c(‖)
2 π

c(L2)
3 π

c(‖)
4 . . . π

c(‖)
2k−2π

c(Lk)
2k−1

where α, µ are—in this context—meta symbols denoting an actor name and
a message sort respectively. Note that the number of arguments of the oper-
ators is fixed above. The codes for the parameterized versions are:

c
(ν
}
ι=χ

)
= ππ331 π

c(ι)
2 π

c(χ)
3 π

c(ν)
4

c
(ν⊕
ι=χ

)
= ππ341 π

c(ι)
2 π

c(χ)
3 π

c(ν)
4

c
(ν⊗
ι=χ

)
= ππ351 π

c(ι)
2 π

c(χ)
3 π

c(ν)
4

c
(ν

‖
ι=χ

)
= ππ361 π

c(ι)
2 π

c(χ)
3 π

c(ν)
4

where ι, χ, ν are meta-symbols denoting an index name, a starting value
(integer) and a type parameter respectively. As a reminder, π33 to π36 had
been reserved for this purpose. Coding local types that use parameterized
operators is done as follows:

c
(ν

OP
ι=χ

Lι

)
= π

c

(
ν

OP
ι=χ

)
1 π

c(Lι)
2

where OP denotes any of }, ⊕ , ⊗ , ‖. Since Lι is parameterized by ι,
the rules for lexicographic coding of words with subscripts take care of this.

55

Similarly,

c(G∗) = ππ371 π
c(G)
2

c(Gν) = ππ381 π
c(ν)
2 π

c(G)
3

where ν is a meta-symbol ranging over words that describe type parameters.
Recall that π37 and π38 had been reserved for the purpose above. Parenthe-
sized types are coded as

c
(
(L)
)

= ππ401 π
c(L)
2

where π40 was reserved for this purpose.
It is clear from the way we use prime numbers that the fundamental theo-

rem of arithmetic (uniqueness of prime factorization) implies the uniqueness
of codes assigned to local types.

56

Appendix B. Local Type Reduction Semantics

Table B.12: The semantics of Local Types, in close accordance to
the semantics of Lang-A in Table 4. The rules transform configurations
(SEL,SHUF , T,M,∆,Π), where SEL and SHUF are partial functions
from markers to values; T is the trace produced so far; M is the mul-
tiset of pending messages; ∆ is the environment seen so far; and Π is
the multiset of executing actors

〈
L
〉
a

where a is the actor executing the
behavior specified by L ∈ L . Unchanged elements are omitted from the
rules. Function v(·) evaluates expressions without side-effects; [·/·] de-
notes substitution of free variables; [· 7→ ·] updates functions point-wise;
for an explanation of the various markers used here, see Section 5.2.

(LS-Init) ∆ ∪ {L : a}, Π ∆, Π ∪ 〈L ; τ〉a

(LS-Seq)
L1 L′1

L1 ; L2 L′1 ; L2

(LS-Empty)

τ ; L L

(LS-Exp)

Ln
n
}
i=1
L

(LS-Star)

L∗ (L ; L∗) ⊕ τ

(LS-SeqN)

v(n1) ≤ v(n2)
n2

}
i=n1

L L[v(n1)]/i] ;
(n2

}
i=v(n1+1)

L
)

(LS-SeqNil)

v(n1) > v(n2)
n2

}
i=n1

L τ

(LS-AuxBegin)

x = v(n2)− v(n1) + 1, OP ∈ {
⊕
,
⊗
, ‖}, k fresh

Π ∪
〈 n2

OP
i=n1

L ; L′
〉sel , shuf
a

 Π ∪
〈 n2

OP
i=n1

L ; L′
〉sel , shuf , spxk
a

(LS-AuxEnd)
v(n1) > v(n2), x > 0, OP ∈ {

⊕
,
⊗
, ‖}

Π ∪
{〈 n2

OP
i=n1

L ; L′
〉sel , shuf , spxk
a

}
 Π

Continued on the next page.

57

Table B.12: The semantics of local types. Continued from the previous page.

(LS-AuxNil)
x ≤ 0, OP ∈ {

⊕
,
⊗
, ‖}〈 n2

OP
i=n1

L ; L′
〉sel , shuf , spxk
a

 Π ∪
〈
L′
〉sel , shuf
a

(LS-Paral) Π ∪
〈
(L1 ‖ L2) ; L3

〉sel , shuf
a

Π ∪
{〈
L1 ; j 2

k ; L3

〉sel , shuf
a

,
〈
L2 ; j 2

k ; L3

〉sel , shuf
a

}
k fresh

(LS-ParalN)
v(n1) ≤ v(n2)(

Π ∪
{〈 n2

‖
i=n1

L ; L′
〉sel , shuf , spxk
a

})
 (

Π ∪
{〈
L[v(n1)/i] ; j xk ; L′

〉sel , shuf
a

,
〈 n2

‖
i=v(n1+1)

L ; L′
〉sel , shuf , spxk
a

})

(LS-Join) Π ∪
{〈

j xk ; L
〉sel , shuf
a

, . . . ,
〈
j xk ; L

〉sel , shuf
a︸ ︷︷ ︸

x instances

}
 Π ∪

〈
L
〉sel , shuf
a

(LS-Send)
(
M, Π ∪

〈
b!m ; L

〉sel , shuf
a

)

(
M ∪ (m)a,b, Π ∪

〈
L
〉sel , shuf
a

)

(LS-Recv)

SEL(x) ∈ {⊥, sel(x)} ∀x ∈ dom(sel)
SHUF (y) ∈ {⊥, shuf (y)} ∀y ∈ dom(shuf)(

SEL, SHUF , T, M ∪ (m)a,b, Π ∪
〈
a?m ; L

〉sel , shuf
b

)
 (

SEL[x 7→ sel(x) |x ∈ dom(sel)],

SHUF [x 7→ shuf (x) |x ∈ dom(shuf)],

T · (a t−→ b), M, Π ∪
〈
L
〉sel , shuf
b

)
Continued on the next page.

58

Table B.12: The semantics of local types. Continued from the previous page.

(LS-Choice) Π ∪
〈
L1 ⊕ L2) ; L3

〉sel , shuf
a

Π ∪
{〈
L1 ; L3

〉sel [k 7→1], shuf

a

〈
L2 ; L3

〉sel [k 7→2], shuf

a

}
k fresh

(LS-ChoiceDone)
∃x ∈ dom(sel) : SEL(x) /∈ {⊥, sel(x)}(

SEL, Π ∪
〈
L
〉sel , shuf
a

)

(
SEL, Π

)

(LS-ChoiceN)
v(n1) ≤ v(n2)

Π ∪
{〈 n2⊕

i=n1

L ; L′
〉sel , shuf , spxk
a

}

Π ∪
{〈
L[v(n1)/i] ; L′

〉sel [k 7→v(n1)], shuf

a
,〈 n2⊕

i=v(n1+1)

L ; L′
〉sel , shuf , spxk
a

}

(LS-Shuffle) Π ∪
〈
(L1 ⊗ L2) ; L3

〉sel , shuf
a

Π ∪
{〈
L1 ; uk ; j 2

k ; L3

〉sel , shuf [k 7→1]

a
,〈

L2 ; uk ; j 2
k ; L3

〉sel , shuf [k 7→2]

a

}
k fresh

(LS-ShuffleDone)
(
SHUF , Π ∪

{〈
uk ; j xk ; L

〉sel , shuf
a

})

SHUF [k 7→ ⊥], Π ∪
〈
j xk ; L

〉sel , shuf [k 7→⊥]

a

(LS-ShuffleN)
v(n1) ≤ v(n2)

Π ∪
{〈 n2⊗

i=n1

L ; L′
〉sel , shuf , spxk
a

}

Π ∪
{〈
L[v(n1)/i] ; uk ; j xk ; L′

〉sel , shuf [k 7→v(n1)]

a
,〈 n2⊗

i=v(n1+1)

L ; L′
〉sel , shuf , spxk
a

}

59

	Introduction
	Related Work
	Motivation
	Global Types
	Syntax of Global Types
	Semantics of Global Types

	Programming Language Support
	Syntax
	Semantics and Trace Generation

	Local Types
	Local Type Inference

	Projection
	Type Checking
	Global Type Realization
	Sequentiality Criterion
	Choice Criterion
	Shuffle Criterion
	Concurrent Composability Criterion
	Kleene Star Criterion

	Correctness
	Conclusions and Future Work
	Proofs
	Local Type Reduction Semantics

