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ABSTRACT
Test input generators using symbolic and concolic execu-
tion must solve path conditions to systematically explore a
program and generate high coverage tests. However, path
conditions may contain complicated arithmetic constraints
that are infeasible to solve: a solver may be unavailable, solv-
ing may be computationally intractable, or the constraints
may be undecidable. Existing test generators either simplify
such constraints with concrete values to make them decidable,
or rely on strong but incomplete constraint solvers. Unfor-
tunately, simplification yields coarse approximations whose
solutions rarely satisfy the original constraint. Moreover,
constraint solvers cannot handle calls to native library meth-
ods. We show how a simple combination of linear constraint
solving and heuristic search can overcome these limitations.
We call this technique Concolic Walk. On a corpus of 11 pro-
grams, an instance of our Concolic Walk algorithm using
tabu search generates tests with two- to three-times higher
coverage than simplification-based tools while being up to
five-times as efficient. Furthermore, our algorithm improves
the coverage of two state-of-the-art test generators by 21%
and 32%. Other concolic and symbolic testing tools could
integrate our algorithm to solve complex path conditions
without having to sacrifice any of their own capabilities,
leading to higher overall coverage.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution

General Terms
Algorithms
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1. INTRODUCTION
Thorough testing of programs is crucial, but time con-

suming and expensive [1]. Automatic test input generators
can simplify testing by supplying values that trigger differ-
ent behaviors in the program, including hidden corner-cases.
We are interested in generating inputs for programs whose
control-flow depends on complex arithmetic operations such
as non-linear and trigonometric functions, for example the
TSAFE1 program used to prevent airplane collisions. Such
programs, which are common in the domain of cyber-physical
systems, pose major challenges for test input generators based
on symbolic and concolic execution.

Symbolic and concolic test generators [43, 19, 36, 8, 12, 7,
41] attain their strength—high coverage—by picking a dis-
tinct path in the program for each round of input generation.
They do this by characterizing a fresh path’s branch condi-
tions as a set of symbolic constraints, and solving this path
condition to obtain concrete inputs that drive the program
down the path. A central problem in this approach, as exem-
plified in TSAFE, is translating the arithmetic constraints of
the path condition into the theory of the underlying solver.
The difficulties in translating are:

(1) Non-linear integer constraints often make it infeasible
to solve the path condition. Such constraints are even
undecidable in general [11].

(2) Path conditions can contain calls to (uninterpreted) li-
brary methods, such as trigonometric functions, about
which the solver cannot reason [44].

Classic concolic testing mitigates these problems by replac-
ing troublesome symbolic terms with their concrete values [19,
36, 41, 34]. This reduction of symbolic reasoning to simple
evaluation allows concolic testing to explore paths whose
branch conditions lie outside the solver’s theory. However,
such simplification restricts the search space rather arbitrar-
ily. The result is that it can find a solution only in a few
cases (see section 5).

Another mitigation strategy for symbolic testing is relying
on a domain-specific solver that can interpret all occurring
arithmetic operations and library methods [37, 6]. While
performing well within the target domain, the approach
requires a solver extension for every new operation. Existing
solvers based on heuristic search furthermore ignore the
symbolic structure of the path condition.

The Concolic Walk algorithm introduced in this paper
solves path conditions through a novel blend of symbolic
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reasoning, concrete evaluation, and heuristic search, which
overcomes the limitations of previous approaches. The algo-
rithm is based on a geometric interpretation of the problem:
We regard assignments of values to the variables appearing
in a path condition as points in a valuation space. Intuitively
thinking of the valuation space as Rn, we find a solution
point to a path condition by combining the following ideas:

• The solutions of the linear constraints in the path
condition define a contiguous convex region in the space
(a polytope).2 All solutions to the whole path condition
must lie within this polytope.

• All terms appearing in the constraints that comprise
the path condition, including library methods, can be
evaluated. Hence, we can assign each constraint an
evaluation-based fitness function that measures how
close a valuation point is to satisfying the constraint.
This allows us to find solutions through heuristic search.

• Many non-linear terms are at least piece-wise continu-
ous. Numerical optimization techniques akin to New-
ton’s method can thus accelerate the solution search.

In particular, our algorithm (1) splits the path condition
into linear and non-linear constraints; (2) finds a point in
the polytope induced by the linear constraints with an off-
the-shelf solver; and then, (3) starting from this point, uses
adaptive search [9] within the polytope, guided by the con-
straint fitness functions, to find a solution to the whole path
condition.

This paper contains the following research contributions:

• We introduce the Concolic Walk (CW) algorithm, a
novel combination of symbolic reasoning and heuristic
search for solving complex arithmetic path conditions
(section 3). The algorithm is sound and complete for
linear constraints and supports non-linear constraints
and calls to native library methods.

• We evaluate an implementation (section 4) of the CW
algorithm on a corpus of 11 programs whose path con-
ditions include mostly non-linear constraints. We show
(section 5) that the algorithm (1) generates tests with
two- to three-times higher coverage than simplification-
based tools while being up to five-times as efficient; and
(2) considerably improves the coverage of state-of-the-
art test generators such as Pex [41].

In its current form, the CW algorithm is limited to solving
arithmetic constraints in path conditions. However, it can be
combined with approaches for solving pointer constraints [36,
26] or heuristic–concolic object generation [23] to fill this gap.
For purpose of exposition, we limit the discussion to test
input generation, but the CW algorithm also applies to other
uses of concolic execution such as regression testing [24, 40],
specification mining [10], and property checking [22, 3, 4].

2. MOTIVATION
A common goal for test input generators is producing in-

puts that cover as many different execution paths as possible.
While random inputs are fast to generate, they mostly cover

2We ignore “not equal” constraints to convey the essential
idea of our algorithm.

1 static void example1(int x, int y) {
2 int z = x ∗ y; // non−linear operation
3 if (x == z)
4 if (x > 2)
5 assert false : ”Found error”;
6 }
7
8 static void example2(double u) {
9 // work with the binary representation of u

10 long v = Double.doubleToRawLongBits(u); // native method
11 long w = v & 0xff000;
12 if (w > 0)
13 assert false : ”Found error”;
14 }

Figure 1: Example Java methods with complex
path conditions. In method example1, the path to
the error (line 5) has the non-linear path condition
x = x · y ∧ x > 2. Neither jCUTE [36] nor mixed
concrete–symbolic solving [34] discover input values
that satisfy this path condition. In method example2,
the path condition for the error (line 13) contains
a call to an uninterpreted library method. Neither
SPF-CORAL [37] nor Pex [41] (for the C# version)
discover input values that satisfy the path condition.

the common paths in a program. Narrow branch conditions,
such as x = x · y, are unlikely to be met by random values
for x and y. Instead, most generated inputs will execute the
same path x 6= x · y, resulting in repeated tests of the same
program behavior.

To cover narrow branches and avoid repetition, symbolic
and concrete–symbolic (concolic) input generation [43, 19,
36, 8, 12, 7, 41] take a more systematic approach. They first
collect all branch conditions along a target path, picking a
single clause from disjunctive conditions, and represent them
as conjunction of symbolic constraints. Then, they solve this
path condition to obtain concrete inputs. The path condition
characterizes the set of all concrete inputs that lead the
program down this path. A solution thus satisfies all branch
conditions, including narrow ones. Furthermore, solving a
different path condition every time prevents repetitions that
may occur with random inputs.

For example, assume we want to find an input for the
example1 method in Figure 1 that covers the path along the
statements in the lines 3, 4, and 5. To drive the execution
down this path, x and y must satisfy the path condition
x = x ·y∧x > 2. Given a suitable decision procedure, we can
solve the path condition to obtain, for instance, the concrete
inputs x=3 and y=1.

Solver Limitations and Mitigation Strategies
Unfortunately, a complete symbolic decision procedure for
general non-linear integer constraints cannot exist [11]. Fur-
thermore, a decision procedure can typically only find solu-
tions if it has an interpretation for all appearing operations.
If a path condition contains arbitrary integer arithmetic or,
importantly, calls to opaque library methods—like the native
cos method in Java—, then finding a solution is hard [44].

A common approach to work around the solver limitations
is to simplify (under-approximate) the path condition: parts
of the path condition that the solver cannot handle are
first executed on concrete inputs and then replaced with



Figure 2: Solutions of the non-linear equation x = x·y
(circles) and its linearization x = 2 · y (squares). No
solution for x = 2 · y, satisfies the path condition
x = x · y ∧ x > 2, which shows the danger of blindly
simplifying path conditions.

the concrete results. Simplification has been applied while
constructing the path condition, and while solving it. Classic
concolic test generators such as jCUTE and Pex simplify at
construction time. For example, jCUTE relies on a linear
constraint solver. When building the path condition for
the path 2, 3, 4, 5 in Figure 1, it replaces the non-linear
expression x · y with 2 · y if x = 2 when the expression is
added. This yields the path condition x = 2 ·y∧x > 2∧x = 2
if we include the constraint x = 2 that is required to make
the simplification sound [18, 34]. In contrast, mixed concrete–
symbolic solving [34] simplifies at solution time. To solve a
path condition, mixed solving splits it into resolvable and
complex constraints, solves the resolvable ones directly, and
uses the solution to simplify and concretely execute the
complex constraints. The execution results, in turn, serve to
simplify the complex constraints.

Figure 2 shows how simplification produces bad approxi-
mations. The simplified path condition of above example is
unsatisfiable because of a bad approximation due to a random
choice of x. Likewise, mixed solving fails to cover the path
because the only feedback from the concrete execution to
the constraint solver is ruling out non-working values, which
is often insufficient to find a solution (section 5). Observe
that both simplification techniques are problematic because
of blind commitment to concrete values, regardless of other
constraints on the variables.

Stronger Solvers
The number of such bad approximations decreases as the
strength of the solver increases. The Pex concolic test gener-
ator [41], for example, relies on the Z3 SMT3 solver [31] to
find inputs that satisfy a path condition. Z3 supports (some)
non-linear integer operations in its constraints, and hence
Pex discovers the error in line 5 of Figure 1. Likewise, SPF-
CORAL, a combination of the Symbolic PathFinder (SPF)
symbolic execution tool [33, 35] and a constraint solver based
on heuristic search (CORAL [37, 6]), discovers the error.

While this extends the domain of programs that can be
handled and enables coverage of more paths than before, it
does not fully fix the interpretation problem. Specifically,
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programs may call hitherto unknown library methods. For
example, an implementation of trigonometric functions con-
verts floating-point numbers to bit-vectors, as exemplified
in Figure 1. Such methods would require a solver extension,
arguably a maintenance nightmare. Other interactions, such
as database queries, are even harder to integrate.

3. ALGORITHM
The Concolic Walk (CW) algorithm for solving path con-

ditions addresses the aforementioned challenges of relying on
decision procedures (section 2). Specifically, it treats linear
and non-linear constraints differently: to solve the linear
constraints, it uses an off-the-shelf solver; to solve the non-
linear constraints, it uses heuristic search based on concrete
execution (evaluation). Using concrete execution allows the
algorithm to handle opaque library methods without further
extension. At the same time, the algorithm never simpli-
fies or approximates the path condition; this avoids blind
commitment to concrete values.

3.1 Synopsis
The algorithm distinguishes between linear and non-linear

constraints because linear constraint systems are decidable
and efficient solvers exist. Furthermore, linear constraints
have a useful geometric interpretation: Assume that we relax
the domain of each variable in the path condition to R. Then
we can regard an assignment of values to each variable as
point in a valuation space, which corresponds to Rn. In the
valuation space, the solutions of a linear constraint form
a half-space; a conjunction of linear constraints therefore
describes an intersection of half-spaces, which is a convex
(hence, contiguous) region—a convex polytope.4 In Figure 2,
the polytope is the region right of the line x = 2.

All variable assignments that are global solutions to the
whole path condition must lie within the polytope because
the points outside violate the linear constraints. To find a
global solution, the CW algorithm thus picks points in the
polytope and evaluates the non-linear constraints on them
to check whether these are satisfied, too.

An efficient way to pick random points in the polytope is a
random walk. However, if global solutions are sparse within
the polytope, a random walk has slim chances of discovering
one. The algorithm therefore combines the random walk with
a search heuristic that guides the walk towards promising
regions. For this, each non-linear constraint is assigned
a fitness function—based on evaluating the terms in the
constraint—that measures how close the current point is to
a solution of the constraint.

From the many meta-heuristics (simulated annealing, ge-
netic algorithms, etc.), we chose the adaptive search vari-
ant [9] of tabu-search [16, 17] for its ease of adding a non-
random neighbor-picking strategy (see below). In each it-
eration, adaptive search picks the variable that appears in
the most violated constraints and examines neighbor points
that differ only in this variable. A variable becomes tabu for
several iterations if changing its value failed to yield a better
neighbor. The search moves towards the fittest neighbor, like
hill-climbing, but escapes local minima with the help of the
tabu mechanism.

4Recall that each clause of an or branch condition is treated
as a separate path. The path condition is therefore a pure
conjunction of constraints. Our interpretation ignores “not
equal” constraints; these cut slices out of the polytope.



〈Exp〉 ::= 〈Var〉 | 〈Lit〉 | 〈Call〉 | 〈Exp〉 ◦ 〈Exp〉 | (〈Exp〉)
〈Call〉 ::= 〈Fun〉() | 〈Fun〉( 〈Var〉 (, 〈Var〉)? )

〈Cond〉 ::= 〈Var〉 ∼ 〈Var〉
〈Stmt〉 ::= 〈Var〉 = 〈Exp〉

| if ( 〈Cond〉 ) 〈Stmt〉 else 〈Stmt〉
| while ( 〈Cond〉 ) 〈Stmt〉
| { 〈Stmt〉

(
; 〈Stmt〉

)? }
〈Prog〉 ::= 〈Stmt〉

(
; 〈Stmt〉

)?
Figure 3: Syntax of the example language, with
variables Var, literals Lit, function symbols Fun, bi-
nary operations ◦ ∈ {+,−, ·, /,mod}, and relations
∼∈ {<,≤,≥, >,=, 6=}.

In addition to picking random neighbors, the CW algo-
rithm furthermore tries to exploit (piece-wise) continuity of
non-linear terms. Given the values of the fitness function at
the current point and a neighbor, it estimates a third point
where the constraint would be satisfied, were it linear. Such
estimation equals a single step of the bisection method for
numerical zero-finding and can accelerate the search.

Example
Consider the partial plot of the valuation space for the vari-
ables x and y in Figure 2. The path condition x = x·y∧x > 2,
consists of the linear constraint x > 2 and the non-linear
constraint x = x · y. The linear constraint x > 2 describes an
unbounded convex polytope: the half-plane right of the line
x = 2. All feasible solutions must be contained within this
polytope. To discover a solution to the non-linear constraint,
we start a random walk at an arbitrary point in the polytope,
for instance (x, y) = (4,−1). Modifying x, we randomly
generate the neighbors (3,−1) and (8,−1), choosing (3,−1)
because it is closer to satisfying the equation x = x · y. Modi-
fying x again does not yield a better neighbor; all of these lie
outside the polytope. Thus, x is marked as tabu and the next
iteration modifies y. Aside from a random neighbor (3, 2),
we estimate a zero for the linear parameterization of x− x · y
on the line (3,−1)–(3, 2), which yields the solution (3, 1).

3.2 Terms and Definitions
Before formalizing the CW algorithm in the next section,

we briefly define the terms used. To simplify the exposition,
we describe the algorithm for a small imperative program-
ming language whose Java-like syntax is shown in Figure 3.
The algorithm itself is independent of the target language
and applies to any language for which the ceval and seval
functions can be defined accordingly.

The example language supports the basic imperative state-
ments. It lacks support for function definitions to keep
matters simple, but expressions may contain calls to opaque
library functions that have been defined elsewhere. The only
data types are integers and real numbers because of our focus
on solving arithmetic constraints.

Concrete Execution
An evaluation function ceval models the concrete opera-
tional small-step semantics of the language. In practice,
ceval could take the shape of an interpreter or virtual

machine. Formally, ceval returns the successor configu-
ration for a given program prog and a concrete environment
χ : Var→ R ∪ {⊥}:

ceval(prog , χ) = (prog ′, χ′),

where prog ′ is the program derived from prog by executing
one step, and χ′ is derived from χ by applying the effects
of this step. Using record notation 〈z : c〉 for the environ-
ment χ with χ[z] = c and χ[y] = ⊥ for y 6= z, we thus
have ceval

(
y=2(x−2), 〈x : 23〉

)
=
(
⊥, 〈y : 42, x : 23〉

)
. As

shorthand for expression evaluation, we write ceval(e, χ) for
χ′[z] where (⊥, χ′) = ceval(z = e, χ) with a fresh variable z.
When a program runs, it follows an execution path, which is
a sequence of steps i ↪→ j from statement number i in the
program to one of its successors j.

Symbolic Execution
Symbolic execution of the language is encapsulated by the
function seval. For an execution step i ↪→ j, seval builds
a symbolic description of the step’s effects. The description
consists of two parts: a symbolic environment σ, and a set
of control-flow constraints P . In symbols,

seval(prog , i ↪→ j, σ,P) = (σ′,P ′).

The symbolic environment σ′ captures updates to the
program state as expressions. It assigns each variable x
an expression e that, when evaluated in a concrete envi-
ronment χ, yields the same value that x would have after
executing the step concretely. Thus, e must be precise and
cannot approximate the effects through simplification. How-
ever, there are no structural transparency requirements on e;
seval may encapsulate the effects as opaque function calls.
Using the expression evaluation notation from above, we
have

ceval(e, χ) = χ′[x] for (⊥, χ′) = ceval(prog i, χ),

where prog i is the i-th statement in prog . For example,
seval

(
y=2(x−2), 0 ↪→ 1, 〈x : x〉, ∅

)
=
(
〈y : 2(x− 2), x : x〉, ∅

)
so that evaluating the expression assigned to y yields 42
as above. We assume that seval performs the variable
renaming necessary to support reassignments.

The second half of the description built by seval, the
set P ′, collects the symbolic constraints of traversed condi-
tionals. If the execution step i ↪→ j follows the “true” branch
of an if- or while-statement with the condition x ∼ y, then
seval derives P ′ by adding the constraint σ′(x) ∼ σ′(y) to P ;
if the step follows the“false”branch, seval adds σ′(x) 6∼ σ′(y)
to P ; otherwise it copies P . A concrete execution of the
program thus follows the path given to seval only if the
values in the concrete environment satisfy all constraints
in P ′. Hence, P ′ is the path condition.

Constraints
Formally, the constraints in the path condition are triples
(`,∼, r) ∈ Exp× {≤, <,>,≥,=, 6=} × Exp, written as ` ∼ r.
A constraint is satisfied in an environment χ if the relation
denoted by ∼ holds between the values ceval(`, χ) and
ceval(r, χ). We say that the path condition P is satisfied
in χ if each of its constraints is satisfied in χ. In this case,
we write χ |= P .



Algorithm 1 The Concolic Walk algorithm for solving the
path condition P . Notation: P = {`i ∼i ri | i} is a set
of constraints, x, y ∈ Var are variables, and α, β, γ, ε, µ, τ :
Var→ R are environments whose elements are 0 by default.
Operations between environments apply point-wise. The
vars function returns the set of variables appearing in an
expression, constraint, or path condition.

1: procedure SolveWithConcolicWalk(P)
2: L ← {c ∈ P | c is linear} . polytope
3: N ← P \ L . non-linear constraints
4: α ← SolveLinear(L) . starting point
5: if α = ⊥ then return ⊥
6: i ← 0 . iteration (step) counter
7: while α 6|= N do . α is not a solution
8: if i > I · |N | then return ⊥
9: i ← i+ 1

10: if ∀y ∈ vars(P) : τ [y] > 0 then . all vars tabu
11: α ← RandomStep(α,vars(P),L)
12: τ ← 〈y : 0 | y ∈ vars(P)〉
13: end if

14: eα ← 0 . error at α
15: ε ← 〈y : 0 | y ∈ vars(P)〉 . error per variable
16: for c ∈ N do
17: w ← ComputeError(c, α)
18: eα ← eα + w
19: ε ← ε+ 〈y : w | y ∈ vars(c)〉
20: end for
21: x ← VarWithMaxValue(ε− 〈y :∞ | τ [y] > 0〉)
22: eµ, µ ← FindBestNeighbor(α, x,L,N )
23: if eµ < eα then . found better neighbor
24: α ← µ
25: eα ← eµ
26: τ ← τ − 〈y : 1 | τ [y] > 0〉)
27: else
28: τ [x] ← T . x is tabu for T steps
29: end if
30: end while
31: return α
32: end procedure

As motivated in subsection 3.1, we distinguish linear from
non-linear constraints to exploit their decidability and geo-
metric interpretation. A constraint ` ∼ r is linear if it can
be transformed into a normal form

n∑
i=1

aixi ∼ b

with variables xi and constants ai, b ∈ R.

3.3 Concolic Walk Algorithm
Algorithm 1 formalizes the CW algorithm. The algorithm

accepts a path condition P as input and returns a concrete
environment that satisfies P , or ⊥ if it could not find such
environment.

In preparation for the random walk, the algorithm extracts
the polytope description from P and generates a starting
point within the polytope (lines 2–5). The polytope descrip-
tion, denoted L, simply consists of all linear constraints in P .
The starting point is the solution for L returned by a linear
constraint solving function SolveLinear. In dimensions un-

Algorithm 2 Error score for the constraint ` ∼ r in the
environment χ that captures “how badly” the constraint is
violated. The procedure computes the score by executing
the symbolic expressions `, r on the concrete inputs in χ.

1: procedure ComputeError(` ∼ r, χ)
2: d ← ceval(`, χ)− ceval(r, χ)
3: if ∼ is = then
4: return |d|
5: else if ∼ is 6= then
6: if d 6= 0 then return 0 else return 1
7: else
8: if d ∼ 0 then return 0 else return |d|+ 1
9: end if

10: end procedure

11: procedure ComputeError({`i ∼i ri | i}, χ)
12: return

∑
iComputeError(`i ∼i ri, χ)

13: end procedure

constrained by L, the point has arbitrary entries. Assuming
that SolveLinear is sound and complete, P is unsatisfiable
if no solution for L exists, and the algorithm hence returns ⊥.
Otherwise, the random walk starts and continues until either
a solution was found (line 7), or the iteration budget was
exhausted (line 8).

In each iteration, the algorithm tries to find an environment
with a lower error score than the current environment α. To
do so, it (1) finds the variable x with the highest error score
(lines 14–20); (2) generates neighbor environments for α by
modifying this variable’s value; (3) picks the neighbor µ
with the lowest error score (both line 21); (4) and makes µ
the current environment if is better than α (lines 23–26).
Algorithm 2 shows the function for computing the error
scores; the function resembles Korel’s branch functions [27].

The algorithm maintains a tabu counter τ for each variable
to escape local error-score minima. If modifying a variable x
failed to yield a better neighbor, it is marked as tabu for T
iterations (line 28). Variables marked as tabu cannot be
selected for modification: they are assigned an error score
of −∞ before choosing the maximal one (line 21). Conse-
quently, the algorithm explores other directions if one seems
to lead nowhere. Every iteration a better neighbor was found,
all tabu counters are decremented (line 26). However, some
constraints, like x · y > 0, require changing multiple variables
at the same time and cause the algorithm to declare each
variable tabu, one after another. Thus, if all variables are
tabu, the algorithm modifies the values of all variables and
resets the tabu counters (lines 10–13).

Neighbor Selection
Generating neighbors and picking the best one has been
extracted to the FindBestNeighbor function (Algorithm 3).
R times, the function generates two neighbor environments β
and γ for its input α, remembering the overall best one.

The environment β is the result of taking a random step
in the polytope L along the axis of the given variable x;
see Algorithm 4. The function RandomStep guarantees
that the returned environment lies within the polytope.

The environment γ is the result of linear approximation:
for a random unsatisfied constraint ` ∼ r ∈ N that contains x,
the BisectionStep function estimates the environment that
would satisfy the constraint if both ` and r were linear



Algorithm 3 Choosing the best among environments that
differ from α in their x-entry and lie inside the polytope L
(satisfy L).

1: procedure FindBestNeighbor(α, x,L,N )
2: eµ ← ∞ . error at µ
3: for R iterations do
4: β ← RandomStep(α, x,L) . in the polytope

5: c ← OneOf
(
{c ∈ N | α 6|= c and x ∈ vars(c)}

)
6: γ ← BisectionStep(c, α, β) . may be outside

7: eβ ← ComputeError(N , β)
8: eγ ← ComputeError(N , γ)
9: if eβ < eµ then

10: eµ ← eβ
11: µ ← β
12: end if
13: if γ |= L and eγ < eµ then
14: eµ ← eγ
15: µ ← γ
16: end if
17: end for
18: return eµ, µ
19: end procedure

Algorithm 4 Taking a random step from χ in the yi-
directions within the polytope L. The algorithm uses rejec-
tion sampling with at most M samples. Parameter S affects
the step radius. The function AdjustToSatisfy restores
linear equalities that were violated during randomization by
re-computing affected values from ν.

1: procedure RandomStep(χ, {yi | i},L)
2: E ← {` = r ∈ L} . linear equations
3: for M iterations do
4: ν ← χ+ 〈yi : NormalRandom(0, S) | i〉
5: ν ← AdjustToSatisfy(E , ν)
6: if ν |= L then return ν
7: end for
8: return χ
9: end procedure

functions. This can be seen as performing one step of the
bisection method in the hope of jumping to a region where
a solution is close. Setting vα = ceval(` − r, α) and vβ =
ceval(` − r, β), the slope of the linear approximation is
t = −vα/(vβ − vα), and γ is the zero of t · (β − α) + α. If
vα = vβ , a random slope is used.

3.4 Discussion
The CW algorithm uses a sound and complete off-the-

shelf solver for linear constraints. Hence, it is sound and
complete for path conditions that contain only linear con-
straints. For non-linear path conditions, the algorithm uses
heuristic search. The search ends with a negative result
when it has exhausted its iteration budget. Thus, it is not
complete. However, it is sound because a returned envi-
ronment α must satisfy the non-linear path condition N to
escape the main loop, and all generated neighbors lie within
the polytope L. Consequently, α satisfies the original path
condition P = L ∪N .

4. IMPLEMENTATION
We have implemented the algorithm described in subsec-

tion 3.3 as an extension of Symbolic PathFinder (SPF) [33,
35]. SPF is a symbolic execution engine built on top of the
JPF verification framework. Our extension works with ex-
isting SPF test-drivers; the only change required is enabling
the extension by setting a configuration flag. The implemen-
tation, as well as the evaluation harness and the raw data
are available for download on our website.5

5. EVALUATION
This section evaluates how effective and efficient the Con-

colic Walk (CW) algorithm is in solving path conditions
with non-linear arithmetic constraints. To make the results
comparable and link them to a practical application of the
algorithm, we measure effectiveness as the coverage of gen-
erated test cases on a focused program corpus. The corpus
consists of programs whose path conditions contain mostly
non-linear constraints. In subsection 5.1, we evaluate the
performance of the CW algorithm. In subsection 5.2, we
investigate how the parameters of the algorithm influence
the coverage.

Program Corpus
Table 1 lists the programs used in the evaluation together
with the type of non-linear operations appearing in their
path conditions. Due to our focus on non-linear arithmetic
constraints, the programs are samples from a population of
programs that use such constraints; they do not represent
common programs. To avoid a bias towards specific strengths
of our approach and to foster comparability, we use mostly
examples from works presenting other approaches to concrete–
symbolic and randomized solving of path conditions: The
coral program6 is a collection of 65 benchmark functions used
to evaluate the CORAL constraint solver [37]. The functions
consist of a single if-statement whose condition includes a
mixture of complex mathematical operations like calls to
trigonometric functions. opti contains the six non-linear
benchmark functions that were part of evaluating the FloPSy
floating-point constraint solver [28]. The dart , power , sine,
stat , and tsafe programs are part of the Symbolic PathFinder
distribution. stat computes the mean and standard deviation
of a list of numbers; and tsafe is an aviation safety program
that predicts and resolves the loss of separation between
airplanes. blind is an implementation of Figure 1, and hash
tries to provoke five collision variants in a common hash
function [5]. tcas features involved, but linear, control-flow.
It demonstrates how the evaluated algorithm behaves on
classical testing problems. Finally, the ray application7 is a
simple ray tracing renderer.

Method
We generate test cases for each program in the corpus and
record the coverage of the generated tests with JaCoCo.8 To
account for randomness, we repeat this process seven times
and verify the statistical significance of observed differences in

5http://osl.cs.illinois.edu/software/
6http://pan.cin.ufpe.br/coral/Download.html
7http://groups.csail.mit.edu/graphics/classes/6.
837/F98/Lecture20/RayTrace.java
8http://www.eclemma.org/jacoco/

http://osl.cs.illinois.edu/software/
http://pan.cin.ufpe.br/coral/Download.html
http://groups.csail.mit.edu/graphics/classes/6.837/F98/Lecture20/RayTrace.java
http://groups.csail.mit.edu/graphics/classes/6.837/F98/Lecture20/RayTrace.java
http://www.eclemma.org/jacoco/


Table 1: Programs used to evaluate the CW algo-
rithm. The LoC column lists the number of source
code lines in the program, excluding comments and
empty lines. The Operations column describes the
type of operations appearing in the path condition.

Program Operations LoC

coral Trigonometric functions, polynomials 335
blind Multinomial 17
hash Polynomial, shift, bit-wise xor 54
opti Exponentials, square roots 48

dart Polynomials, required overflow 18
power Exponential function 31
ray Polynomials (dot product) 304
sine Float to bit-vector conversion 289
stat Mean and std. dev. computation 113
tcas Constant equality checks 157
tsafe Trigonometric functions 88

the coverage and generation time distributions through non-
parametric Mann–Whitney U-tests.9 To account for varying
difficulty, we perform one test per program between the seven
measurements of the two compared algorithms. Unless stated
otherwise, the test is two-tailed and the significance level is
α = 0.01. To prevent small programs from dominating the
mean coverage of the algorithms, we weight each program’s
contribution by the program’s lines of code when computing
the arithmetic mean.

The kind of coverage reported depends on the type of the
program. We distinguish between benchmarks and other
programs. Benchmarks encode a single constraint that must
be solved as a conditional in an if-statement. For these, we
report whether one of the generated test cases covers the
target statement, which indicates that the encoded constraint
was solved. Branch coverage is a bad measure in this case
because short-circuit logic operators manifest as branches in
the control flow, meaning that despite solving the constraint,
some “false” branches may remain uncovered. The other
programs contain a more diverse range of execution paths
that should be explored. For these, we report the total
branch coverage of the generated test cases.

To avoid adverse effects on a tool’s performance from
handling object-creation [44], each test invokes a single driver
method with just numerical parameters. Thus, the challenge
of creating objects as test inputs is absent in our setup.

5.1 Effectiveness and Efficiency
This section discusses the performance of the Concolic

Walk algorithm.

RQ1: Is the CW algorithm more effective than simplifi-
cation for solving complex arithmetic path conditions?
We consider the null-hypothesis that simplification is as ef-
fective as the CW algorithm in solving path conditions with
non-linear arithmetic constraints. To test this hypothesis,
we compare the coverage achieved by our algorithm imple-
mentation against that of two other tools that use solvers
for linear constraints, but otherwise rely on simplification:

9scipy.stats.mannwhitneyu() in SciPy v0.13.3

Table 2: Coverage and generation (wall-clock) time
of the test cases generated for each program. The
Med. columns show the median of seven runs; the
Var. columns show the respective variance. For
benchmarks, the coverage is the percentage of cov-
ered target statements; for other programs, it is
the branch coverage. Dots denote zeros. The LoC-
Weighted Avg. row lists the arithmetic mean over all
programs, using the LoC as weights to prevent small
programs from dominating the numbers.

Coverage (%) Time (sec.)

Program Med. Var. Med. Var.

coral 78 2.0 1.4 min. 1.6
blind 100 · 1.1 ·
hash 80 · 5.6 0.1
opti 50 · 7.0 0.1

dart 86 · 1.2 ·
power 100 · 1.2 ·
ray 90 · 11 min. 1.9
sine 55 3.7 1.9 0.2
stat 75 · 1.2 ·
tcas 91 · 45.6 1.6
tsafe 92 · 4.8 0.1

LoC-Weighted Avg. 78 1.2 1.2 min. 0.5

• SPF-Mixed [33, 35] is a variant of Symbolic PathFinder
that attempts to solve a non-linear arithmetic path
condition by solving the decidable (simple) part, using
the solution to concretely execute the complex part,
and then further simplifying all constraints using the
results [34]. As suggested in the paper, we enable the
randomization heuristic of SPF-Mixed. In addition, we
increase the maximum number of solving tries to three
per path condition instead of the default of one.

• jCUTE [36] is a classic concolic testing tool. During the
construction of a path condition, it substitutes parts
of non-linear terms with their concrete run-time value
to ensure that all constraints remain linear. In our
setup, jCUTE randomizes the initial concrete values
and explores paths in random order.

Both simplification-based tools achieve a much lower cov-
erage: the weighted average of the median coverages is 41%
for jCUTE and 26% for SPF-Mixed; the respective standard
deviations are 1.8% and 0.5%. This is far from the 78%
coverage achieved by our algorithm (s.d. 1.2%), see Table 2.
On each program, our algorithm achieves a higher coverage
than jCUTE. Except for stat and tcas, the same is true for
SPF-Mixed. All differences are significant. Furthermore, the
inputs generated by our algorithm subsume the inputs of the
other tools except for a small fraction of ray and stat inputs,
which shows that the differences are true improvements. The
draw between our algorithm and SPF-Mixed on tcas, which
lacks non-linear operations, indicates that the differences
originate in the management of non-linear constraints.

Consequently, we reject the null-hypothesis; the results
suggest that the CW algorithm is more effective than the
simplification used in both tools.



RQ2: Can the algorithm improve the effectiveness of
concolic test generators that use strong solvers?
As discussed in section 2, strong constraint solvers allow test
generators to solve more path conditions directly, thereby
reducing the need to resort to approximations like simpli-
fication. For such tools, the CW algorithm can serve as a
fallback strategy whenever the solver cannot handle the path
condition. However, such cases might be rare with state-of-
the-art solvers. We therefore investigate the null-hypothesis
that combining state-of-the-art concolic test generators with
the CW algorithm does not improve the achieved coverage.
To test the hypothesis, we consider combinations of our
algorithm with two tools:

• SPF-CORAL, a symbolic execution tool that relies on
the CORAL solver [37, 6]. CORAL targets non-linear
arithmetic constraints and uses the Particle Swarm
Optimization [25] search heuristic to find solutions. We
use SPF-CORAL in the default configuration set in the
SPF repository.

• Pex10 [41], a concolic test generator that employs fit-
ness-guided exploration [45] and a strong SMT solver
(Z3 [31]). Because our experiment focuses on coverage
rather than user responsiveness, we increase Pex’s solver
timeout to five seconds and allow it to run up to 500
iterations without generating new tests.

To avoid the cost of implementing the tool combinations,
we simulate them by unifying the generated tests. For each
run and each program, we take the union of the inputs
generated by SPF-CORAL and the CW algorithm, and
likewise for Pex. This allows us to measure the increase in
coverage that our algorithm contributes; inputs that lead to
duplicated execution of already-covered program paths have
no effect on the coverage.

The combination with the CW algorithm raises the aver-
aged median coverage of SPF-CORAL from 62% to 82% (s.d.
0.2% and 0.9%), and that of Pex from 68% to 82% (s.d. 0.5%
and 1.5%). Both tools achieve higher coverage on the coral ,
opti , ray , and sine programs. SPF-CORAL furthermore im-
proves on hash, dart , and tcas, while Pex improves on tsafe.
In the case of sine, this is not surprising: the problematic
example2 method in Figure 1 is a snippet of this program. In
the case of coral , the tools and our algorithm complement
each other: the union of test inputs achieves higher coverage
than each set of inputs alone.

A one-tailed Mann–Whitney U-test on the coverages of
each program between SPF-CORAL or Pex and its combi-
nation with our algorithm indicates that all improvements
are significant. We therefore reject the null-hypothesis and
conclude that our algorithm can improve the effectiveness of
test generators that use strong constraint solvers.

RQ3: How efficient is the CW algorithm?
Efficiency, that is, test coverage achieved per unit of gener-
ation time, depends on implementation choices. To reduce
the impact of unrelated details—such as the depth-first path
exploration strategy that leads to 5 min. timeouts in ray—,

10Pex is a C# tool. For the evaluation, we translated the
whole program corpus to C#, generated inputs with Pex,
and made the inputs into Java unit tests. The coverage for
Pex is thus measured like that of other tools and directly
comparable.

we compare our SPF-based implementation against the two
SPF-based test generators SPF-Mixed and SPF-CORAL.

Averaged over all programs, our CW implementation (1.1%
coverage / second) is about 1.6 times as efficient as SPF-
CORAL (0.7%/s) and 5.5 times as efficient as SPF-Mixed
(0.2%/s) in generating test inputs. One reason for the higher
efficiency is the inability of SPF-Mixed and SPF-CORAL
to generate inputs for the hash and sine programs, which
contain bit-operations and library calls. However, even on the
coral benchmarks, which lack such problems, our algorithm is
only slightly slower than SPF-Mixed (1.4 min. vs. 1.2 min),
but delivers considerably more solutions (78% vs. 12%); it
is 1.8 times as fast as SPF-CORAL while achieving 92%
of the coverage (78% vs. 85%). The coverage differences
of all programs are significant (α = 0.01), as are the time
differences for SPF-CORAL. For SPF-Mixed, only 6 of 11
times differ significantly (α = 0.05). In summary, these
numbers suggest that the CW algorithm is more efficient
than its two competitors.

5.2 Influence of Algorithm Parameters
This section discusses how the parameters of the CW

algorithm influence its effectiveness. In our experiments, we
vary a single parameter at a time and compare the variation’s
coverage with the baseline coverage shown in Table 2.

RQ4: How much does the tabu mechanism improve the
effectiveness of the algorithm?
Without the marking of variables as tabu, the overall cov-
erage drops to 62% (s.d. 0.9%), which is 0.79 times (Ta-
ble 3) the 78% baseline coverage. Thus, the tabu mechanism
contributes a relative performance increase of 26% to the
algorithm. This performance change appears consistently
over all runs of the algorithm; the difference is significant
for all programs except sine, whose hard floating-point to
bit-vector conversion emphasizes the random walk aspect of
our algorithm. Once tabu marking is enabled, however, the
chosen number of tabu iterations seems to have little influ-
ence on the algorithm’s performance: increasing it from the
default T = min(3, |vars(N )|/2) to T = min(5, |vars(N )|),
for example, lacks any effect on the coverage.

RQ5: How much does the bisection step improve the
effectiveness of the algorithm?
Disabling the estimation of solutions through linear approx-
imation—the bisection step explained in subsection 3.3—
reduces the overall coverage to 0.92 times the baseline. Thus,
the bisection step improves the overall coverage from 72%
(s.d. 1.4%) to 78%, a relative increase of about 8%. Without
bisection, the algorithm consistently achieves lower coverage
on the coral , hash, and opti benchmarks (significant for
α = 0.01). It therefore seems that the bisection step steers
the random walk towards promising areas, resulting in more
found solutions.

RQ6: What influence do the number of neighbors and
number of steps have on the performance?
For the majority of programs in the corpus, granting the
algorithm more steps to find a solution or choosing among
more neighbors has little effect on the coverage. The average
coverage for just 10 steps per constraint is 0.95 times the
baseline coverage. Likewise, allowing more than the 150 base-
line steps per constraint leads to the same overall coverage.



Table 3: Fraction of the baseline coverage (Table 2) that the algorithm variations achieve. Values below
1.0 mean less coverage than the baseline algorithm; values above 1.0 mean more coverage. Dots (·) denote
the value 1.0 and indicate no change. Each variation changes a single parameter of the baseline algorithm,
which uses the following settings (see Algorithm 1): I = 150 steps per constraint, R = 10 neighbors, T =
min(3, |vars(N )|/2) tabu iterations, and bisection enabled. Each fraction is that of the median of seven runs.

Benchmarks Other

Algorithm Variation W.Avg. coral blind hash opti dart power ray sine stat tcas tsafe

Tabu disabled (T = 0) 0.79 0.57 · 0.25 · · 0.64 0.79 0.93 · · 0.92
Tabu extended (T ≥ 5) · · · · · · · · · · · ·
Bisection disabled 0.92 0.86 · 0.5 0.33 · · · 0.89 · · ·
10 steps (I = 10) 0.95 0.82 · · · 0.75 · 1.04 0.89 · · ·
75 steps (I = 75) 1.01 1.02 · · · · · · 1.04 · · ·
300 steps (I = 300) · 1.04 · · · · · · 0.96 · · ·
3 neighbors (R = 3) · 1.02 · · · · · · · · · ·
25 neighbors (R = 25) 1.01 · · · · · · · 1.04 · · ·
100 neighbors (R = 100) · 1.04 · · · · · 0.98 · · · ·

It appears that for most programs, the constraints are simple
enough that few steps suffice to find a solution. However,
for the complex constraints of coral , more steps increase the
coverage, but only for 10 steps per constraint is the difference
to the baseline significant (α = 0.05). The price for the 27%
relative coverage improvement from 10 steps to 300 steps
per constraint is a relative slowdown of 23%: the test gener-
ation time grows from 1.3 minutes (s.d. 0.3s) for 10 steps to
1.6 minutes (s.d. 3.2s) for 300 steps per constraint.

The number of neighbors generated per step seems to
have little influence on the overall coverage. The coverage
differences are statistically significant (α = 0.05) only for 100
and for 3 neighbors. The slowdown from generating more
neighbors is similar to that of increasing the number of steps.

6. LIMITATIONS AND FUTURE WORK

Evaluation—Threats to Validity
We try to ensure conclusion validity of our evaluation by
checking the statistical significance of measured differences
with a robust non-parametric test at a high level α = 0.01.
One threat to the construct validity of our experiments is
the use of coverage as effectiveness metric. While branch
coverage is a good predictor for the bug-detection capabil-
ity of test suites [15], it does not measure how useful the
generated inputs are for the user. Lacking a user study, we
are unfortunately limited to this common surrogate metric.
Another threat, in particular for RQ1, is the aggregate na-
ture of coverage: two test suites with similar coverage may
complement each other, making them incomparable. We
mitigate this risk in by checking whether the test suite with
higher coverage subsumes the one with lower coverage.

The internal validity of our experiments is threatened
by our comparison of different tools. Many implementation
details, not just constraint solving, influence the performance.
We try to lessen this problem by (a) including a program
in the corpus (tcas) that lacks non-linear operations and
ensuring that the compared tools have similar effectiveness
(RQ1); and (b) limiting the efficiency comparison to tools
sharing the same SPF-based infrastructure (RQ3).

Finally, the external validity of our evaluation is threatened
by our focused corpus. Despite over one third of programs
being excerpts of realistic programs, the corpus does not
constitute a random sample of programs with non-linear path
conditions. Consequently, our results may generalize poorly.
A larger study would mitigate this risk, but is unfortunately
too expensive at this time as the used tools (SPF, jCUTE,
Pex) require significant manual setup.

Algorithm
The CW algorithm currently cannot create objects as test
inputs. While it could employ, among others, feedback-
directed randomization [32] or heuristic search [23, 13] to fill
this gap, we plan to investigate in future work how exactly
object randomization relates to the notions of continuity and
neighborhood used by its local search strategy.

For arithmetic constraints, the algorithm assumes an (at
least) piece-wise continuity of the constraint error score func-
tions to identify the most promising neighbor. While the
assumption seems to work well in practice, other modes
of finding solutions may be more effective for highly non-
continuous operations like hash functions.

The algorithm currently makes no provisions for disjunc-
tive constraints, for which the linear constraints can describe
non-contiguous regions. While disjunctions cannot occur if
boolean connectives are encoded in the program’s control-
flow, as assumed in this paper, tools that work under different
assumptions may have to spawn multiple instances of the al-
gorithm. Support for non-contiguous regions within a subset
of dimensions would improve the algorithm’s applicability in
such scenarios.

Implementation
The CW implementation described in section 4 assumes that
the native methods occurring in constraints are pure, that
is, lack side-effects. A more general implementation could
purge this assumptions by integrating setup and tear-down
methods—as in unit tests—that are executed before and
after each constraint evaluation, and by maintaining the pro-
gram’s execution order for native methods. Furthermore, a
better implementation could accelerate the algorithm (a) by



executing constraint expressions directly in the JVM instead
of interpreting them; (b) by caching the error scores of con-
straints whose inputs remained unchanged during a step; and
(c) by using memoized solutions [42, 46] to seed the starting
point.

7. RELATED WORK
The Concolic Walk algorithm (CW) presented in this paper

uses a mix of heuristic search and symbolic reasoning to
generate inputs that satisfy a path condition.

Search-Based Software Testing
Combinations of heuristic search and symbolic reasoning have
been explored in the context of search-based software testing
(SBST) [30]. Like our approach, SBST searches for test
inputs that meet a coverage criterion by iteratively selecting
inputs that, according to a fitness function, seem closer to a
solution. However, inputs can vary in granularity, ranging
from primitive values to method sequences for constructing
objects. Common heuristics for finding better inputs are
genetic algorithms (GA), as well as the Alternating Variable
Method (AVM) [27], which is similar to the adaptive search [9]
used by us.

Heuristic search can be slow in discovering the specific so-
lutions of narrow branch conditions. A number of approaches
thus suggests to accelerate the search through symbolic rea-
soning: The Evacon framework [23] constructs high coverage
tests for object-oriented programs by alternating between
generating method sequences for object creation via GA, and
generating primitive method arguments via concolic execu-
tion. Other techniques introduce a mutation operator in
the GA that yields new test individuals by concolically exe-
cuting an existing test and flipping a branch condition [29,
14]. Symbolic execution has also been applied to derive
fitness functions that represent the search landscape more
accurately [2], thereby improving the efficiency of the search
heuristic. These approaches differ from ours in that they
use symbolic reasoning as part of heuristic search steps. In
contrast, the CW algorithm uses heuristic search to solve a
symbolic path condition. The robustness and strength that
symbolic solving gains from the CW algorithm would thus
benefit the hybrid SBST approaches without any further
modification.

Symbolic and Concolic Execution
Search heuristics have been applied to concolic testing. The
Fitnex approach [45] improves the coverage of concolic testing
by picking the fittest path for exploration in each iteration.
However, Fitnex is independent of the path condition solver.
In particular, it does not influence how classic concolic execu-
tion [19, 36, 41] replaces unsolvable constraints with concrete
values (see section 2).

Instead of simplifying such constraints, our algorithm eval-
uates them to avoid the coarse approximations from blind
commitment to concrete values. This notion of using concrete
execution to solve undecidable arithmetic constraints during
symbolic execution has been explored as mixed concrete–
symbolic solving [34] (see section 2). Like our approach,
mixed solving seeks to avoid blind commitment and therefore
does not eagerly simplify the path condition with run-time
values. However, simplification remains a central strategy.
Another difference is that mixed solving makes no assump-
tions about the type of directly solvable constraints. Hence

it must rely on the solver to provide all concrete inputs
for executing the complex constraints. Yet, no mechanism
guides the solver towards potential solutions for the complex
constraints when re-solving the simple constraints. A similar
disconnect between simple and complex constraints limits
the performance of solvers based purely on randomization
and substitution-based simplification [38, 39].

Search-Based Constraint Solving
Search heuristics similar to the adaptive search used in our
approach have been used for solving complex arithmetic con-
straints. In contrast to the CW algorithm, the resulting
solvers are domain-specific and lack callback interfaces to
include previously unknown functions in the constraints. The
CORAL solver [37] uses Particle-Swarm Optimization [25]
and AVM to solve constraints that include rich mathematical
operations like exponentiation and trigonometric functions.
A recent extension [6] improves CORAL’s efficiency by seed-
ing the initial solution population through interval solving.
FloPSy [28] is a plugin for Pex [41] that solves floating-point
constraints with heuristic search methods, including AVM.

Random Testing
To facilitate random testing of specific program parts, Gotlieb
and Petit [20, 21] show how to construct a domain for uni-
formly sampling inputs that satisfy a path condition. The
approach is based on constraint propagation and refutation.
Unlike our approach, it cannot handle uninterpreted func-
tions or bit-wise operations in the path condition.

8. CONCLUSIONS
The path conditions of programs may contain calls to li-

brary methods and complicated arithmetic constraints that
are infeasible to solve. Yet, test input generators based
on symbolic and concolic execution must solve such path
conditions to systematically explore the program paths and
produce high coverage tests. Existing approaches either
simplify complicated constraints, or rely on specialized con-
straint solvers. However, simplification yields few solutions;
and specialized constraint solvers lack support for native
library methods. To address both limitations, this paper
introduces the CW algorithm for solving path conditions. An
evaluation on a corpus of small to medium sized programs
shows that the algorithm generates tests with higher coverage
than simplification-based tools and moreover improves the
coverage of state-of-the-art concolic test generators.
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Păsăreanu. CORAL: Solving complex constraints for



Symbolic PathFinder. In NASA Formal Methods, pages
359–374, 2011.

[38] M. Takaki, D. Cavalcanti, R. Gheyi, J. Iyoda,
M. d’Amorim, and R. B. C. Prudêncio. A comparative
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