HAL: A High-level Actor Language and Its Distributed
Implementation

Chris Houck*and Gul Aghal
Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
Email: {houck | agha}@cs.uiuc.edu

Abstract

We describe HAL, a high-level, actor-based lan-
guage which has served as a test-bed for experi-
menting with powerful linguistic constructs for par-
allel and distributed programming. HAL is an archi-
tecture independent, concurrent object-oriented lan-
guage which supports inheritance, synchronization
constraints, continuation capture, synchronous and
asynchronous message passing, and reflection. The
HAL compiler has been used to execute actor pro-
grams on a number of shared and distributed memory
machines. HAL allows powerful abstractions to be de-
fined and reused. Furthermore, HAL supports the use
of synchronization constraints at a fine-grained level
and the use of software pipelining. In this paper, we
describe the design of HAL, using specific examples
to illustrate its features. We then discuss some of the
implementation issues in the run-time system.
Keywords: Actors, Concurrency, Object-Oriented
Languages, Distributed Execution.

1 Introduction

The actor model is a flexible model of concurrent com-
putation in distributed systems [1]. Specifically, ac-
tors can be thought of as an abstract representation
for multicomputer architectures. Although, the ac-
tor model is fairly low-level, it unifies object-oriented
and functional programming and allows a rich set of

*Author’s current address: National Center for Super-
computing Applications, University of Illinois at Urbana-
Champaign.

tThe work described in this paper has been made possible by
generous support provided by a Young Investigator Award from
the Office of Naval Research (ONR contract number NO0014-
90-J-1899), by an Incentives for Excellence Award from the
Digital Equipment Corporation, and by joint support from the
Defense Advanced Research Projects Agency and the National
Science Foundation (NSF CCR 90-07195).

abstractions to be built. Actors are dynamically re-
configurable and extensible and thus suitable for mod-
eling open systems.

A number of actor languages have been imple-
mented; these implementations have generally used a
simulation of distributed execution on a single proces-
sor [17, 18, 23]. Although such simulations are a use-
ful tool for some purposes, a number of issues such as
load balancing and distributed garbage collection are
harder to realistically emulate. On the other hand, a
number of other concurrent languages available on dis-
tributed memory machines are generally not portable
[6, 12], thus limiting the their utility.

This paper describes an architecture independent
actor system called HAL. HAL programs have been
run on shared memory, distributed memory and
uniprocessor architectures. We focus on issues of com-
pilation and the necessary run-time support needed
to execute actor based programs. Architecture inde-
pendence has been achieved by compiling HAL source
code down to an existing architecture independent
parallel processing environment called CHARM [8].

HAL has served as a test-bed for experimenting with
new language constructs and dependability methods.
This paper discusses some of the more interesting lin-
guistic extensions that have been made to the basic
actor model. We have found that these extensions
greatly increase the flexibility and reusability of HAL
programs. In particular, new mechanisms for inheri-
tance, reflection and synchronization constraints have
been added. Because each of these mechanisms needs
to address problems arising from its interaction with
concurrency, they differ from their sequential counter-
parts. We discuss the details of the design later in the
paper.

This paper is organized as follows. Section 2 gives
a brief overview of the actor model and a short de-
scription of the syntax of HAL. Section 3 contains a
comparison with other distributed object-based pro-



gramming systems. Linguistic extensions to the ac-
tor model are outlined in Section 4. Examples using
HAL as a programming language are given in Sec-
tion 5. Section 6 discusses our compiler and run-time
system implementation. Conclusions and future di-
rections are outlined in Section 7.

2 The Actor Model

Actors are self-contained, interacting, independent
components of a computing system that communicate
by asynchronous message passing [1]. Each actor has
a matl address and a behavior. The acquaintances of
a given actor are the actors whose mail addresses are
known by the actor. The mail addresses of actors may
be contained in messages, leading to a dynamic actor
interconnection topology. In order to abstract over
processor speeds and allow adaptive routing, preser-
vation of message order is not guaranteed. However,
messages sent are guaranteed to be received with an
unbounded but finite delay. New actors may be cre-
ated dynamically thus allowing continuations to be
modeled. Actor creation and reconfiguration supports
flexible, incremental construction of distributed sys-
tems.

State change in actors is specified by replacement
behaviors. Each time an actor processes a communi-
cation, the actor computes the behavior it will exhibit
in response to the next communication. The replace-
ment behavior for a purely functional actor is identical
to the original behavior; in general the behavior may
change. The change in the behavior of an actor may
represent a simple change of state variables, such as
change in the balance of a bank account, or it may rep-
resent a change in the class of an actor. For example,
suppose a bank account actor accepts a withdrawal
request. In response, it will compute a new balance
which will be used to process the next message. If
the same bank account actor receives a request to be-
come a pizza-delivery actor, it may decide to change
its entire structure.

The HAL language

The actor model is a general framework of compu-
tation. In order to experiment with distributed im-
plementations of actor programs, we have developed
a high-level actor language HAL. HAL is an object-
oriented language with a lisp-like syntax which is com-
piled to C code and executed using the CHARM pro-
gramming system [15]. The full syntax of HAL can
be found in [11]. HAL is loosely based on the pre-
vious actor languages Rosette [18], Acore [17] and

ABCL/1[23].

In HAL, there are two primitives to modify an ac-
tor’s state. A change in an actor’s behavior definition
is specified through the become command. For ex-
ample, changing a Bank Account actor to a Pizzeria
actor or changing the number of local variables an ac-
tor knows requires the become statement. The syntax
of become is:

(become <class-name> <expr>* )

The actor’s new class is <class-name>. The new
bindings for all of its local variables are given by
<expr>*. The update statement can be used to
specify less dramatic changes in an actor’s state. The
expression (update A B) binds the variable 4 to B
for the next message (actor state changes only go into
effect for the nezt message that they process [1]).

The canonical example of actor behavior is a simu-
lation of a bank account. A bank account may change
its state as money is deposited or withdrawn. In
addition, a bank account may be shared between one
or more actors. This sharing of mutable objects is
what prevents functional languages from effectively
modeling an object such as a bank account. Fig-
ure 1 defines a Bank-Account actor class in the syn-
tax of HAL. An instance of this class will accept
deposit, withdraw and get-balance messages. A
new Bank-Account with a balance of 1000 units is
created with the expression:

(new Bank-Account 1000)

One may deposit 150 units into a Bank-Account
bound to the variable account by the command:

(send deposit account 150)

The account may be shared with one’s spouse with a
message of type our—account by the command:

(send our-account spouse account)

Now, whenever either party interacts with the ac-
count, both actors may see the results.

3 Related Work

The HAL system has benefited from a large body of
research in concurrent object-based programming lan-
guages. Some of the important aspects of the more
relevant projects are described below.

Inheritance has been found to be an effective means
of expressing classifications between objects and sup-
porting modular reuse of code. Unfortunately, many



(define-Actor Bank-Account
(slots balance)
(method (deposit amount)
(update balance (+ balance amount))
(print "Deposited %d\n" amount))
(method (withdraw amount)
(let* [[newBal (- balance amount)]]
(update balance newBal)
(print "Withdrew %d\n'" amount)
(print "Balance %d\n'" newBal)))
(method (get-balance)
(print "Balance %d\n" balance))

Figure 1: A Bank-Account actor class

concurrent programming languages, (e.g., CHARM
[15], Acore [17], Cantor[6], Emerald[12] and ABCL/1
[23]) do not incorporate inheritance. In our view, it
is important to study the use of inheritance in con-
current systems. In particular, synchronization con-
straints (described below) can interfere with inheri-
tance in concurrent systems.

It is often desirable to place some form of synchro-
nization constraint on objects to maintain their in-
ternal consistency. In Rosette[18], these constraints
take the form of enabled-sets which are specified in-
line. This mixing of code and enabledness condi-
tions greatly reduces the reusability of inherited code.
ABCL/1 also places synchronization issues within the
scope of method definitions. In POOL[5], the body of
an object is responsible for maintaining object con-
sistency. However, object bodies are not inheritable;
therefore, synchronization constraints must be repeat-
edly specified.

Another important aspect of a language’s pro-
grammability is the types of message passing styles
supported. Rosette, ABCL/1 and Acore are the only
languages that provide support for both synchronous
and asynchronous message passing styles. CHARM
and Cantor allow only asynchronous message passing
while, in Emerald, all invocations are synchronous.
The POOL languages vary in their support for mes-
sage passing styles. It appears as though some dialects
(POOL2) allow only asynchronous message passing
[4], while others (POOL-I) allow only synchronous
messages [5].

Perhaps the most surprising aspect of these concur-
rent languages is that many of them are not portable.
For example, ACBL/1, Rosette and Acore are run
on uniprocessor virtual machines (though ABCL/1 is
currently being ported to the EM-4 platform). Can-

tor, POOL and Emerald can be run in a limited num-
ber of distributed environments. CHARM is one of
the few languages that is reasonably architecture in-
dependent. This fact was the primary motivation for
basing the HAL run-time system on CHARM.

4 Language Features

The basic actor model [1] is a fairly low-level model,
without predefined abstraction mechanisms and lin-
guistic features necessary for non-trivial program-
ming. We have therefore introduced a number of
syntactic constructions to make programming easier.
High level descriptions of these features will be dis-
cussed in the rest of this section. All the additional
functionality we support could be simulated in terms
of the basic actor primitives, but this would exact a
great cost in terms of readability and modularity.

A conscious effort has been made to make HAL more
of a class-based language than Rosette [18]. As a re-
sult, HAL satisfies all of Wegner’s qualifications to be
classified as object-oriented [22]. For example, the
define—Actor construct defines a class of actors; ev-
ery actor belongs to a class. However, new (instance
creation) and suicide (instance destruction) are the
only class methods. In addition, class variables go
against the actor paradigm of avoiding shared state
between actors; thus they are not supported.

4.1 Constraints

In order to maintain internal consistency, it i1s often
the case that an actor is unable to process a mes-
sage as soon as the message arrives. Going back
to the bank account example, this may occur if a
withdraw message arrives when the account balance
is zero. Some form of synchronization constraint must
be placed on the bank account actor to specify when
withdraw messages are “serviceable” [10]. The fol-
lowing syntax is used to specify acceptance constraints
as a function of the actor’s state and the contents of
the message:

(constrain <msg-expr> <expr>)

where <msg-expr> specifies a message name and
bindings of message values, so that they may be
used in testing the constraints. The semantics of
constrain is that when <expr> evaluates to TRUE
the actor is enabled to execute <msg-expr>. If mul-
tiple constraints are specified for the same method all
of the constraint expressions must evaluate to TRUE
for that method to be enabled. Note that <expr> is
a side-effect free expression which may be a function



of the actor’s state variables and values contained in
the <msg-expr>. If <expr> is FALSE, the mail
message is added to a local Pending queue and re-
evaluated later. Currently, whenever the state of an
actor changes the constraints of all of the messages
on Pending queue are checked, providing strong fair-
ness [9]. A proposed optimization would create de-
pendency lists between the actor’s state variables and
the constraints to reduce the number of constraint ex-
pressions which need to be retested.

The (constrain...) construct may be used to or-
der messages of a certain type. This ability is useful in
many numeric computations [3] where multiple itera-
tions of an algorithm may be active concurrently but
execution ordering must be maintained. This style of
constraint specification makes code more reusable as
will be seen in Section 4.4. However, it only offers
a hold/deliver decision procedure. More generally, it
may be the case that an actor knows that it will never
be able to process a message. In the next section we
introduce the concept of message forwarding.

4.2 Message Forwarding

Message forwarding provides a mechanism to abstract
control flow and delegation choices from method def-
initions. Message forwarding addresses the problem
that an actor may receive a message which it knows
it will never be able to process. It is useful in cases
such as exception handling, delegation and real-time
deadline checking. As an example of where such er-
ror handling would be useful, consider the canonical
bank account. If a bank account actor receives a
deliver-pizza message it must somehow be dealt
with. Actor semantics say that the actor could con-
ceivably become a pizza-delivery actor at some later
date. Therefore, in standard implementations, the
deliver-pizza message would be placed on the ac-
tor’s Pending queue.

If it can be determined that the bank account will
never become a pizzeria, such a behavior is unsatisfac-
tory. From an implementation standpoint, the mes-
sage, stuck on the Pending queue, will take up space
and waste cycles as its constraint conditions are re-
peatedly checked. The syntax we have developed for
message forwarding is:

(forward <msg-expr> <msg-send> <expr>)

As with constraints, <expr> is a side-effect free ex-
pression which can use values supplied by the message
to determine enabledness. If the expression is FALSE
the <msg-send> is executed, otherwise it is tested
against any other synchronization constraints.

Automatic forwarding may be used to provide a
global service while only requiring clients to know the
addresses of the local representative. In this way, we
have been able to build primitive forms of Concurrent
Aggregates (CA) [7]. A CA is a multi-object struc-
ture: when a message arrives at an object in a CA
the object forwards the message to the members of
the aggregate responsible for processing that particu-
lar message. Not having a single entry point into the
aggregate structure increases the throughput of the
service that the CA implements. We are currently
studying high-level abstractions for CA.

4.3 Message Passing Paradigms

We have implemented two message passing constructs
in addition to the basic asynchronous send. The first
is a message order preserving send, or sequenced send.
The second is a remote procedure call mechanism sim-
ilar to Acore’s ask primitive [17].

Sequenced Sends. As noted above, the
(constrain...) expression may be used to order
messages of a certain type. This construct is speci-
fied in the receiver and is primarily concerned with
types of messages. In contrast, sequenced sends allow
the sender to impose an arrival order on a series of
messages sent to the same target. With constraints,
the receiver is responsible for the order of message
processing; with sequenced sends, the sender is given
some control over the message reception order.

Sequenced sends are implemented by tagging and
reshuffling such messages at the recipient. Thus com-
munication overhead is reduced. The prime benefit
arises when the sender requires a sequence of actions
to happen in a given order when the receiver may or
may not care about the order.

RPC Sends. With asynchronous communication,
the programmer needs to explicitly write continua-
tions whenever a synchronous exchange is desired. By
synchronous we mean that the original sender requires
some form of response from the receiver. The response
can be either a value based on the original message
or a simple acknowledgment that the original message
was processed. HAL extends the basic actor semantics
by supporting synchronous communication.

In synchronous method invocations, the calling pro-
gram implicitly blocks and waits for a value to be
returned from the actor whose method was invoked.
Because only explicit message passing is allowed in
CHARM [15], we automatically lifé synchronous mes-
sages and their continuations out of user code in a



manner akin to lambda lifting [13]. A more detailed
description of this problem and our implementation is
contained in Section 6.3.

4.4 Inheritance

HaL allows for inheritance of both code and syn-
chronization constraints. However, while the code
of one’s ancestor may be overwritten in the style
of Smalltalk[16], we have adopted the view that an
ancestor’s synchronization constraints may never be
over-written; they are always in effect[10]. In this
sense, inheritance is viewed as a means of specializa-
tion. An example of how inheritance and synchroniza-
tion constraints interact will be seen in Section 5.2.

4.5 Reflection

One of the fundamental aspects of open systems is
that they are exztensible. One aspect of extensibility is
the ability to dynamically change the underlying sys-
tem executing a program through reflection [20]. Full
reflection, which would allow modification of every as-
pect of the system down to the arithmetic interpreter,
is not currently supported.

The current definition of HAL allows for an actor to
replace its dispatcher and mailg (the actors responsi-
ble for sending and receiving mail messages, respec-
tively) through the process of reification. The dis-
patcher is represented as an actor through which all
outgoing mail is passed. A message to an actor is
received by its (reified) mailq. Once the mailq ac-
tor processes the message, it forwards the message to
the original recipient. The current reflective architec-
ture is sufficient to implement a number of significant
examples — including a meta-architecture for fault-
tolerance[2].

5 Examples

5.1 Software Pipelining

The actor model provides for a means of increasing
program efficiency by supporting a high degree of soft-
ware pipelining. In [3], implementations of a Cholesky
Decomposition of a symmetric positive definite ma-
trix were explored in order to demonstrate the ben-
efits of pipelining. Using an actor based program-
ming style can lead to programs that monotonically
improve in performance. The pipelining is natural to
express: instead of global synchronization, constraints
are pushed to the lowest level of granularity.

(define-Actor Buffer

(slots count)
(constrain (get) (> count 0))
(method (get)

(update count (- count 1)))
(method (put)

(update count (+ count 1)))
(method (get-count)

(print "Size %d" count)))

(define-Actor Bounded-Buffer
(slots max)
(superclass Buffer)
(constrain (put) (> max count)))

(define-Actor Get2-Buffer
(superclass Bounded-Buffer)
(constrain (get2) (> count 1))
(method (get2)
; Remove two elements atomically
(update count (- count 2))))

Figure 2: A hierarchy of Buffer classes.

5.2 Inheritance of Constraints

Figure 2 defines a set of buffer classes which illus-
trates some of the re-use that is supported by inheri-
tance and our constraint syntax. The most basic class
in this example is a Buffer which has methods to
get and put elements to and from the buffer and
a get—count method which prints the number of el-
ements currently in the buffer. The simple Buffer
class has a constraint, namely (> count 0), which
must hold in order for a get message to be processed.

The Bounded-Buffer class is a sub-class of
Buffer. In the Bounded-Buffer, there is a con-
straint on the absolute size of the buffer; there can
never be more than max elements in the buffer at any
time. Since we have separated the logic of the con-
straints from the code for the actual methods, we only
need to state the new constraints without having to
redefine the put method.

Finally, we define the class Get2-Buffer, a sub-
class of Bounded-Buffer, with the ability to remove
two elements from the buffer as an atomic action.
This behavior is provided through the get2 method.
In contrast, defining a method such as get2, in
Rosette, would require reimplementing both get and
put as constraints are specified through enabled-sets
and the superclass get and put operations would



(define-Actor Dispatcher
(method (default)
(print "Sent type %d\n'" msg-type)
(send msg-type msg-dst)))

(define—Actor Me
(method (initialize)
(dispatcher (new Dispatcher))
(method (...)))

Figure 3: Using reflection for debugging informa-
tion.

never enable the get2 method [19]. In HAL, we can
simply declare the new method and the relevant syn-
chronization constraints. Thus, the definitions of both
get and put can then be inherited from the class
Buffer in both of these subclasses.

5.3 Reflection

A practical need for reflection can be found in the area
of program debugging. In order to debug a program,
it is often helpful to know the order and frequency of
method invocations. However, for the programmer to
edit the source code and place print statements at
every method invocation is tedious and error prone.
Instead, the actor model allows a programmer to reify
the postal system (i.e. to modify the routines respon-
sible for both message delivery and message sending),
so that whenever a message is sent or delivered, the
newly reified postal system prints the relevant diag-
nostic information. When nolonger required, the pro-
grammer can simply remove the reflection code and
return the system to normal execution.

The reflective capabilities of HAL may be used to
print such information (see Figure 3). An actor of
class Me will replace its dispatcher with an actor that
will print diagnostic information to the console. Our
implementation of Dispatcher makes no refernce to
its base actor; therefore, many actors could share
the same meta-dispatcher providing a limited form of
groupwide reflection[21].

HAL has also been used to experiment with im-
plementing dependability protocols at the meta level
thus providing a separation of design concerns [2].
One of the design motivations for HAL was to cre-
ate a platform to test out theoretical ideas. In this
case, 1t has been clearly shown that using reflection
to implement fault-tolerance is possible and, from a
code complexity standpoint, desirable.

6 An Actor Run-Time System

In order to make the compiler and run-time system
machine independent, the CHARM system [15] is used
as the compilation target. A CHARM source program
only needs to be recompiled to be transferred between
many existing shared memory and distributed mem-
ory architectures [8]. The reliance on CHARM implies
that a number of aspects of the actor model are sac-
rificed, the most serious being internal concurrency.
The actor model allows the expressions that make up
a single method to be executed concurrently [1].

It is obvious that simply building an actor com-
piler is insufficient for distributed execution of actor
programs; a run-time system must also be provided.
For example, it is necessary to provide facilities for
address lookup and resource management problems
among others. HAL run-time support is provided by
a distributed kernel which uses the following CHARM
facilities: architecture independence, dynamic process
creation, transmission of addresses in messages, glob-
ally valid addresses and creation-time load balancing.
Actors are load balanced at their creation time, au-
tomatic migration of existing tasks is not supported
by the CHARM system, however, our implementation
has been based on the assumption that it may soon
be available.

Another critical aspect of run-time support is
garbage collection. The actor model abstracts away
from details of memory management; the task is thus
left to the run-time system. Actor languages present
a unique difficulty for resource management in that it
is necessary to determine both the “reachability” and
“state” (active or blocked) of an actor[14]. Automatic
garbage collection in HAL has been implemented but
has not yet been fully tested.

6.1 Distributed Kernel

The distributed run-time kernel contains all of the
code for the methods in an actor program (see below),
the kernel is, additionally, responsible for bookkeep-
ing tasks such as checking constraints and managing
pending queues. Currently, the same kernel is placed
on every node, an artifact of CHARM. The concep-
tual view of an individual processor node is presented
in Figure 4. The object labeled “interpreter” is nec-
essary for some types of reflection and does not cur-
rently exist. Dotted lines are messages sent between
actors; solid lines represent kernel function calls.
Even though it is written in C, great care has been
taken to make the code for the kernel as readable and
modular as possible. Routines which provide different
kernel facilities are disjoint. Kernel modularity is also



Actor process

Link to

other nodes
—

*. Interpreter

Figure 4: Conceptual view of a node.

beneficial from an efficiency standpoint: for example,
code to check constraints is not generated in the ker-
nel unless the source program contains constraint ex-
pressions. Therefore, an executing program does not
call the constraint checker unless it is necessary. In
fact, when a program does not contain constraints,
the constraint checking routines are not even linked
into the kernel, saving space.

6.2 Actor Representation

In our implementation, actors are represented as light-
weight processes. The process has a single data struc-
ture representing the entire state of the actor. One
part of the state record is a Behavior field which
specifies the type of actor the process is currently rep-
resenting. Method definitions are stored in the kernel.
When an actor receives a message, it hands control to
an interface routine in the kernel which takes the ac-
tor’s state record and the new message and calls the
appropriate function to execute the actor’s behavior.

Since all behavior definitions are stored in the lo-
cal kernel, it keeps the amount of code that has to be
placed on each node at a minimum. The kernel code
size is linear in the number of methods defined in a
user’s program. Actor processes require storage lin-
ear in the size of an actor’s acquaintance list and the
number of messages on the Pending queue. Further-
more, the actors are self-contained, that is to say that
all of the state information pertaining to a particular
actor is accessible from a single data structure.

An individual actor is represented as a single record
containing its state; a pointer to this record is then

passed to the kernel on message reception. This cre-
ates a special problem with state changing expressions
(become and update). Actor semantics say that
these commands only take effect when the nexzt mes-
sage is processed. Therefore, when an actor changes
its state, it 1s necessary to create a new record to keep
track of the new acquaintance bindings: expressions
in the current method after the update may not see
the updated bindings.

6.3 Unrolling RPC Sends

In Section 4.3 we added RPC sends to our basic actor
language. However, only asynchronous exchanges are
allowed in CHARM. Specifically, when an RPC send
is compiled it is necessary to explicitly create contin-
uation methods in the actor definition. Consider an
example where an actor of type Adder, on receipt of
an add message, invokes the method next of the ac-
tor bound to Get-Res. It then adds value to the
returned result:

(define-Actor Adder
(method (add value)
(+ (rpc—send next Get-Res) value)))

We can get the same behavior, with explicit message
passing, from an Adder’ actor:

(define-Actor Adder’
(method (add value)
(send next’ Get-Res add-cont self))
(method (add-continuation answer)
(+ answer value)))

On receipt of an add message, an Adder’ ac-
tor sends a next’ message to the actor bound to
Get-Res and requests that the result be sent back
to its add-continuation method. When the result
arrives the Adder’ actor adds value to it as accord-
ing to the original definition. Notice, that this re-
quires us to propagate the original value parameter
to the continuation. In addition, if the actor’s new
behavior depends on the response, all other messages
must be ignored by this actor; otherwise, the remem-
bered binding of value might get corrupted. Finally,
such translations will also require modifying the ac-
tor Get-Res, since it now must accept an address
and method name as parameters and explicitly re-
turn its result to the continuation. These translations
are done automatically by the compiler. The user can
Jjust write code in terms of rpc-sends.



7 Results and Future Research

The HAL system is based on CHARM which has been
implemented on both shared and nonshared mem-
ory machines including Sequent Balance and Symme-
try, Encore Multimax, Alliant FX/8 Intel iPSC/2,
iPSC/i860 and NCUBE/2[8]. As a result, HAL pro-
grams are expected to run on all such machines. HAL
programs have been tested on uniprocessor, Encore
Multimax and Intel iPSC/2 architectures. Prelimi-
nary results on an iPSC/2 indicate that a message
send from within HAL which goes across processor
boundaries takes approximately ten times the time it
takes for a similarly sized message to be sent across
processor boundaries from an optimized C program.
Creation of an actor, in HAL, on a remote node of the
iPSC/2 takes approximately 50% longer than an HAL
message send. Note that the primary goal of HAL
is high-level programming support; it provides a test-
bed for ideas in concurrent language design. However,
we are currently studying sources of inefficiency.

To exploit internal concurrency, the actor model
mandates that updates to local variables only go into
effect upon receipt of the next message. This requires
the shadowing of local variables, if an actor updates
a variable, a new state record is created and the new
value is placed in the new state so that the old value
will be available for the rest of the method. When
the actor is finished processing the current method,
the system throws out the old state record. This can
be rather inefficient as every time a local variable is
modified a new state must be allocated. In addition,
all of the state variables and system information must
be copied over. Using static analysis, one can deter-
mine safe, in-place, mutations.

References

[1] G. Agha. Actors: A Model of Concurrent Computa-
tion in Distributed Systems. MIT Press, 1986.

[2] G. Agha, S. Frglund, R. Panwar, and D. Sturman.
A linguistic framework for dynamic composition of
fault-tolerance protocols. Technical Report UIUC
DCS-R-92-1730, University of Illinois at Urbana-
Champaign, April 1992.

[3] G. Agha, C. Houck, and R. Panwar. Distributed ex-
ecution of actor systems. In Proceedings of Fourth
Workshop on Languages and Compilers for Parallel
Computing, Santa Clara, 1991.

[4] P. America. Issues in the design of a parallel object-
oriented language. Formal Aspects of Computing,
1(4):366-411, 1989.

[5] P. America and F. van der Linden. A parallel object-
oriented language with inheritance and subtyping. In
OOPSLA ’90, pages 161-168, October 1990.

[6] W. Athas and C. Seitz. Cantor user report version
2.0. Technical Report 5232:TR:86, California Insti-
ture of Technology, Pasadena, CA, January 1987.

[7] A. Chien. Concurrent Aggregates: An
Object-Oriented Language for Fine-Grained Message-
Passing Machines. PhD thesis, MIT, July 1990.

[8] W. Fenton, B. Ramkumar, V.A. Saletore, A.B. Sinha,
and L.V.Kale. Supporting machine independent pro-
gramming on diverse parallel architectures. In Pro-
ceedings of the International Conference on Parallel
Processing, pages 193-201, August, 1991.

[9] N. Francez. Fairness. Texts and Monographs in Com-
puter Science. Springer-Verlag, 1986.

[10] S. Frplund. Inheritance of synchronization con-
straints in concurrent object-oriented programming
languages. To appear at ECOOP 1992.

[11] C. Houck. Run-time system support for distributed
actor programs. Master’s thesis, University of Illinois
at Urbana-Champaign, May 1992.

[12] N. Hutchinson, R. Raj, A. Black, H. Levy, and E. Jul.
The emerald programming language REPORT. Tech-
nical Report 87-10-07, University of Washington, Oc-
tober 1987.

[13] S. Peyton Jones. The Implementation of Functional
Programming Languages. Prentice-Hall, 1987.

[14] D. Kafura, D. Washabaugh, and J. Nelson. Garbage
collecton of actors. In OOPSLA ’90, pages 126-134,
October 1990.

[15] L. Kale. The CHARM(3.0) Programming Language
Manual. University of Illinois, October 1991.

[16] W. LaLonde and J. Pugh. Inside Smalltalk, volume 1.
Prentice Hall, 1990.

[17] Carl Manning. Acore: The design of a core actor
language and its compiler. Master’s thesis, MIT, Ar-
tificial Intelligence Laboratory, August 1987.

[18] C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will,
and G. Agha. Rosette: An object oriented concur-
rent system architecture. Sigplan Notices, 24(4):91—
93, 1989.

[19] C. Tomlinson and V. Singh. Inheritance and synchro-
nization with enabled-sets. In OOPSLA, 1989.

[20] T. Watanabe and A. Yonezawa. ABCL An Object-
Oriened Concurrent System, chapter Reflection in an
Object-Oriented Concurrent Language, pages 45-70.
MIT Press, Cambridge, Mass, 1990.

[21] T. Watanabe and A. Yonezawa. A actor-based
metalevel architecture for group-wide reflection. In
J. W. deBakker, W. P. deRoever, and G. Rozenberg,
editors, Foundations of Object-Oriented Languages,
pages 405-425. Springer-Verlag, 1990. LNCS 489.

[22] P. Wegner. Dimensions of object-based language de-
sign. Technical Report CS-87-14, Brown University,
July 1987.

[23] A. Yonezawa, editor. ABCL An Object-Oriented Con-
current System. MIT Press, Cambridge, Mass., 1990.



