AT Space: A Middle Agent to Support Application Oriented
Matchmaking and Brokering Services

Myeong-Wuk Jang, Amr Abdel Momen, Gul Agha
Department of Computer Science
University of Illinois at Urbana-Champaign, USA
{mjang, amrmomen, agha} @uiuc.edu
http://odl.cs.uiuc.edu

Abstract

An important problem for agents in open multiagent
systems is how to find agents that match certain criteria.
A number of middle agent services—such as matchmaking
and brokering services-have been proposed to address this
problem. However, the search capabilities of such ser-
vices are relatively limited since the match criteria they
use are relatively inflexible. We propose AT Space, a model
to support application-oriented matchmaking and broker-
ing services. Application agents in ATSpace deliver their
own search algorithms to a public tuple space which holds
agent property data; the tuple space executes the search al-
gorithms on this data. We show how the ATSpace model
increases the dynamicity and flexibility of a middle agent
service. Unfortunately, the model also introduces security
threats: the data and access control restrictionsin ATSpace
may be compromised, and system availability may be af-
fected. We describe some mechanisms to address these se-
curity threats.

1 Introduction

In multiagent systems, agents need to communicate with
each other to accomplish their goals, and an important prob-
lem in open multiagent systems is the problem of finding
other agents that match given criteria, called the connection
problem [4]. When agents are designed or owned by the
same organization, developers may be able to design agents
which explicitly know the names of other agents that they
need to communicate with. However in open systems, be-
cause an agent may be implemented by different groups, it
is not feasible to let agents know the names of all agents
that they may at some point need to communicate with.

Decker classifies middle agent services as either match-
making (also called Yellow Page) services or brokering ser-

vices [5]. Matchmaking services (e.g. Directory Facilitator
in FIPA platforms[7]) are passive services whose goal isto
provide a client agent with alist of names of agents whose
properties match its supplied criteria. The agent may later
contact the matched agentsto request services. On the other
hand, brokering services (e.g. ActorSpace [1]) are active
services that directly deliver amessage (or areguest) to the
relevant agents on their client’s behalf.

In both types of services, an agent advertises itself by
sending a message which contains its name and a descrip-
tion of its characteristics to a service manager. A service
manager may be implemented on top of atuple space model
such as Linda[3]; this involves imposing constraints on the
format of the stored tuples and using Linda-supported prim-
itives. Specifically, to implement matchmaking and broker-
ing services on top of Linda, a tuple template may be used
by the client agent to specify the matching criteria. How-
ever, the expressive power of atemplate is very limited; it
consists of value constraints for its actual parameters and
type congtraints for its formal parameters. In order to over-
come this limitation, Callsen’s ActorSpace implementation
used regular expressions in its search template [1]. Even
though thisimplementation increased expressivity, its capa
bility is still limited by the power of its regular expressions.

We propose ATSpace! (Active Tuple Spaces) to em-
power agents with the ability to provide arbitrary
application-oriented search algorithms to the tuple space
manager for execution on the tuple space. While AT Space
increases the dynamicity and flexibility of the tuple space
model, it also introduces some security threats as codes de-
veloped by different groupswith different interests are exe-
cuted in the same space. We will discuss the implication of
these threats and how they may be mitigated.

1We will use ATSpace to refer the model for a middle agent to support
application-oriented service, while we use an atSpace to refer an instance
of AT Space.



2 ATSpace
2.1 A Motivativing Example

We present a simple example to motivate the AT Space
model. Assume that a tuple space has information about
seller agents (e.g., city and name) and the prices of the prod-
uctsthey sell. A buyer agent wantsto contact the two “ best”
seller agents who offer computers and whose location is
within 50 miles of hiscity. A brokering service supplied by
a generic tuple space implementation may not support the
request of the buyer agent because, firstly, it may not sup-
port the “best two” primitive, and secondly, it may not store
distance information between cites. The buyer agent is now
opt to retrieve from the tuple space the complete tuples that
are related to computer sellers, and then execute their own
search algorithm on them. However, this approach entails
the movement of large amount of data. In order to reduce
communication overhead, AT Space alows a sender agent
to send its own search algorithm which may, for example,
carry information about distances to the nearest cities.

2.2 Overall Architecture

AT Space consists of three components: a tuple space, a
message queue, and a tuple space manager (see Figure 1).

ATSpace Message Queue
Tuple Space @m |
v return names

Tupl e (matchmaking)

G N —
Manager ask service agents

(brokering)

v

Figure 1. Basic Architecture of ATSpace

Thetuple space is used as a shared pool for agent tuples,
(a,p1,p2,...,pn), Which consists of a name field, a, and
a property part, P = pi1,p2, -, pn Wheren > 1; each
tuple represents an agent whose name is given by the first
field and whose characteristics are given by the subsequent
fields. AT Space enforces the rule that there cannot be more
than one agent tuple whose agent names and property fields
are identical at any time. However, an agent may regis-
ter itself with different properties, and different agents may
register themselves with the same property fields.

th;,tj 275] — [ (tq;.a = tj.a) - (ti.p 7é tj.p) &&

(tip=t;p) — (ti.a#tja) |

The message queue contains input messages that are re-
ceived from other agents. Messages are classified into two
types. datainput messages and service request messages. A
data input message includes a new agent tuple for insertion
into the tuple space. A service request message includes ei-
ther a tuple template or a mobile object. The template (or,
aternately, the object) is used to search for agents with the
appropriate agent tuples. A service message may optionally
contain another field, called the service call message field,
to facilitate the brokering service. A mobile object is an ob-
ject that is provided by a service request agent; such objects
have a pre-defined public method called £ind. The £ind
method is called by the tuple space manager with tuplesin
this atSpace as a parameter; it returns names of agents se-
lected by the search algorithm specified in the mobile ob-
ject.

The tuple space manager retrieves names of service
agents whose properties match a tuple template or which
are selected by the mobile object. In case of a matchmak-
ing service, it returns the names to the client agent. In case
of brokering service, it forwards the service call message
supplied by the client agent to the agents.

2.3 Operation Primitives

The ATSpace model supports the three general tuple
space primitives. write, read, and take. In addi-
tion, AT Space aso provides primitives for the matchmak-
ing and brokering services. The searchOne primitive
is used to retrieve the name of a service agent that satis-
fiesa given property, whereasthe searchall primitiveis
used to retrieve the names of all service agents that satisfy
the property. The deliverOne primitive is used to for-
ward a specified message to a service agent that matches
the property, whereas the deliverall is used to send
this message to all such service agents. These matchmak-
ing and brokering service primitives alow client agents to
use mobile objects to support application-oriented search
algorithm as well as a tuple template. MobileObject is
used as an abstract class that defines the interface methods
between a mobile object and the ATSpace. One of these
methodsis f ind, which may be used to provide the search
algorithm to an atSpace.

When a client agent requires information about specific
properties of service agents stored in an atSpace to make
service call messages, the above matchmaking or broker-
ing service primitives cannot be used. The exec primitive
within a mobile object provides this service. The supplied
mobile object has to implement the doAction method
which when called by the atSpace with agent tuples, exam-
ines the properties of agents using the client agent applica-
tion logic, creates different service call messages according
to the properties, and then returns a list of agent messages



to the atSpace for delivery to the selected agents.

3 Security Issues

There are three important security problemsin AT Space.

Data Integrity A mobile object may not modify tuples
owned by other agents.

Denial of Service A mobile object may not consume too
much processing time or space of an atSpace and a
client agent may not send repeatedly mobile objects
to overload an atSpace.

Illegal Access A mobile object may not carry out unautho-
rized accesses or illegal operations.

We address the data integrity problem by blocking at-
tempts to modify tuples. When a mobile object is executed
by a tuple space manager, the manager makes a copy of tu-
ples and then sends the copy to the £ind or doAction
method of the mobile object. Therefore, even when amali-
cious agent changes some tuples, the original tuples are not
affected by the modification. However, when the number of
tuplesin the tuple space is very large, this solution requires
extramemory and computational resources. For better per-
formance, the creator of an atSpace may select the option
to deliver a shallow copy of the original tuples to mobile
objectsinstead of adeep copy, although thiswill violatethe
integrity of tuples if an agent tries to delete or change its
tuple. We are currently investigating under what conditions
ause of ashallow copy may be sufficient.

To address denial of service by consuming all processor
cycles, we deploy user-level thread scheduling. Figure 2
depicts the extension of the tuple space manager to achieve
this. When a mobile object arrives, the object is executed
as athread, and its priority is set to high. If the thread exe-
cutesfor along time, itspriority is continually downgraded.
Moreover, if the running time of a mobile object exceeds a
certain limit, it may be destroyed by the Tuple Space Man-
ager; inthis case, amessage is sent to its supplier informing
it of the destruction. To incorporate these restrictions, we
have extended the architecture of ATSpace by implement-
ing job queues.

To prevent unauthorized accesses, if an atSpace is cre-
ated with an access key, then this key must accompany ev-
ery message sent from service requester agents. In thiscase,
agents are allowed to modify only their own tuples. This
prevents removal or modification of tuples by unauthorized
agents.

4 Evaluation

Figure 3 shows the advantage of AT Space compared to
a matchmaking service which provides the same semantic

Tuple Space Manager

job queues
AT -— high
Maﬁggagre — plriqority
iddl
g:liorit?/
I
pricrity

Figure 2. Extended Architecture of ATSpace

in UAV simulation (see [9] for details of this simulation).
In these experiments, the UAV's use either an active broker-
ing service or amatchmaking serviceto find their neighbor-
ing UAVS. In both cases, the middle agent includes infor-
mation about the locations of UAVs. In case of the active
brokering service, UAV's send mobile objects to the middle
agent while UAV's using matchmaking service send tuple
templates. The simulation time for each run is around 35
minutes.

600 T

T
ATSpace
Matchmaking --------

500

400

300

Wall Clock Time (min)

200

100

200 300 400 500 600 700 800 900 1000
Number of Agents

Figure 3. Wall Clock Time for ATSpace and
Matchmaking Services

When the number of agents is small, the difference be-
tween the two approaches is not significant. However, as
the number of agents is increased, the difference becomes
significant.

5 Reated Work

Our work is related to Linda [3] and its variations, such
as JavaSpaces and TSpaces [10, 13]. In these models, pro-
cesses communicate with other processes through a shared
common space called atuple space without considering ref-



erencesor names of other processes. From the middle agent
perspective, Directory Facilitator in the FIPA platform and
Broker Agent in InfoSeuth are related to our research [7, 8].
However, these systems do not support customizable match-
ing agorithm.

Some work has been done to extend the matching ca-
pability in the tuple space model. Berlinda allows a con-
creteentry classto extend the matching function[14]. How-
ever, this approach does not allow the matching function to
be changed during execution time. OpenSpaces provides a
mechanism to change matching polices during the execu-
tion time [6]. OpenSpaces groups entries in its space into
classes and allows each class to have its individua match-
ing algorithm. A manager for each class of entries can
change the matching algorithm during execution time. All
agents that use entries under a given class are affected by
any change to its matching algorithm. This is in contrast
to AT Space where each agent can supply its own matching
algorithm without affecting other agents. Another differ-
ence between OpenSpaces and AT Space is that the former
requires aregistration step before putting the new matching
algorithm into action.

TuCSoN and MARS provide programmable coordination
mechanisms for agents through Linda-like tuple spaces to
extend the expressive power of tuple spaces [2, 11]. How-
ever, they differ in theway they approach the expressiveness
problem; while TUCSoN and MARS use reactive tuples to
extend the expressive power of tuple spaces, AT Space uses
mobile objectsto support search a gorthms defined by client
agents. A reactive tuple handles a certain type of tuples and
affects various clients, whereas amobile object handles var-
ious types of tuples and affects only its creator agent. Also,
these approaches do not provide an execution envrionment
for client agents. Therefore, these may be considered as
orthogonal approaches and can be combined with our ap-
proach together.

6 Conclusion

AT Space works as a common shared space to exchange
data among agents, a middle agent to support matchmak-
ing and brokering services, and an execution environment
for mobile objects utilizing data on its space. Our exper-
iments with a UAV surveillance task show that the model
may be effective in reducing coordination costs. We de-
scribed some security threats that arise when using mobile
objects for agent coordination, along with some mecha-
nisms we use to mitigate them. We are currently incor-
porating memory use restrictions into the architecture and
considering mechanismsto address denial of service attacks
that may be caused by flooding the network [12].

Acknowledgements

This research is sponsored by the DARPA ITO under
contract number F30602-00-2-0586.

References

[1] G.Aghaand C. Callsen. ActorSpaces. An Open Distributed
Programming Paradigm. In Proceedings of the 4th ACM
Symposium on Principles & Practice of Parallel Program-
ming, pages 23-32, May 1993.

[2] G. Cabri, L. Leonardi, and F. Zambonelli. MARS: a Pro-
grammable Coordination Architecture for Mobile Agents.
|EEE Computing, 4(4):26-35, 2000.

[3] N. Carreiro and D. Gelernter. Lindain Context. Communi-
cations of the ACM, 32(4):444-458, 1989.

[4] R. Davisand R. Smith. Negotiation as a Metaphor for Dis-
tributed Problem Solving. Artificial Intelligence, 20(1):63—
109, January 1983.

[5] K. Decker, M. Williamann, and K. Sycara. Matchmak-
ing and Brokering. In Proceedings of the Second Interna-
tional Conference on Multi-Agent Systems (ICMAS-96), Ky-
oto, Japan, December 1996.

[6] S. Ducasse, T. Hofmann, and O. Nierstrasz. OpenSpaces:
An Object-Oriented Framework for Reconfigurable Coordi-
nation Spaces. In A. Porto and G. Roman, editors, Coor-
dination Languages and Models, LNCS 1906, pages 1-19,
Limassol, Cyprus, September 2000.

[7] Foundation for Intelligent Physical Agents. SC00023J:
FIPA Agent Management Specification, December 2002.
http://www.fi pa.org/specs/fipad0023/.

[8] N. Jacobs and R. Shea. The Role of Java in InfoS-
leuth: Agent-based Exploitation of Heterogeneous Informa-
tion Resources. In Proceedings of Intranet-96 Java Devel-

opers Conference, April 1996.

[9] M. Jang, A. A. Momen, and G. Agha. A Flexible Coordina-
tion Framework for Application-Oriented Matchmaking and
Brokering Services. Technical Report UIUCDCS-R-2004-
2430, Department of Computer Science, University of Illi-
nois at Urbana-Champaign, 2004.

[10] T. Lehman, S. McLaughry, and P. Wyckoff. TSpaces: The
Next Wave. In Proceedings of the 32nd Hawaii Interna-
tional Conference on System Sciences (HICSS-32), January
1999.

[11] A. Omicini and F. Zambonelli. TuCSoN: a Coordination
Model for Mobile Information Agents. In Proceedings of the
1st Workshop on Innovative Internet Information Systems,
Pisa, Italy, June 1998.

[12] C. Shields. What do we mean by Network Denia of Ser-
vice? In Proceedings of the 2002 |EEE Workshop on Infor-
mation Assurance and Security, pages 17-19, United States
Military Academy, West Point, NY, June 2002.

[13] Sun Microsystems. JavaSpaces’™ Service Specification,
ver. 2.0, June 2003. http://java.sun.com/products/jini/specs.

[14] R. Tolksdorf. Berlinda: An Object-oriented Platform for
Implementing Coordination Language in Java. In Proceed-
ings of COORDINATION 97 (Coordination Languages and
Models), LNCS 1282, pages 430-433. Pringer-Verlag, 1997.



