On Scaling Multi-Agent Task Reallocation Using Market-Based Approach *

Rajesh K. Karmani

Timo Latvala

Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801 USA
{rkumar8,tlatvala,agha} @uiuc.edu

Abstract

Multi-agent systems (MAS) provide a promising tech-
nology for addressing problems such as search and rescue
missions, mine sweeping, and surveillance. These prob-
lems are a form of the computationally intractable Multi-
Depot Traveling Salesman Problem (MDTSP). We propose
a novel market-based approach, called Market-based Ap-
proach with Look-ahead Agents (MALA), to address the
problem. In MALA, agents use look ahead to optimize their
behavior. Each agent plans a preferred, reward-maximizing
tour for itself using our proposed algorithm which is based
on the Universal TSP algorithm. The agent then uses the
preferred tour to evaluate potential trades with other agents
in linear time — a necessary prerequisite for scalability of
market-based approach. We use simulations in a two di-
mensional world to study the performance of MALA and
compare it with O-contracts and TraderBots, respectively, a
centralized approach and a distributed approach. Experi-
ments suggest that MALA efficiently scales to thousands of
tasks and hundreds of agents in terms of both computation
and communication complexity, while delivering relatively
good-quality but approximate solutions.

1. Introduction

Multi-agent systems have been proposed as a promis-
ing technology to address problems such as search and res-
cue missions, sensing and data collection, mine sweeping,
surveillance, etc. We motivate the problem with two ex-
amples. Consider a team of robots is dropped from a heli-
copter for mine-sweeping. The robots know the suspected
locations of the mines. The mission of the team is to visit
the sites, and detect and disable mines that are found. Each
robot has limited battery power. The problem is to find an

*This research has been supported in part by NSF under grant CNS
05-09321 and by ONR under DoD MURI award N0014-02-1-0715.

allocation of mines to robots so that each mine gets visited
once by some agent and the mission is accomplished in the
shortest time feasible. As another example, consider milli-
bots [10] launched from different points in order to monitor
the structural health of a building. For such monitoring,
vibration and strain need to be measured at hundreds and
thousands of points of interest.

One way to address the problem described above is by
using a group of robotic agents to visit a set of pre-selected
observation points and accomplish an objective such as tak-
ing a measurement. We’ll call such a ‘visit’ to an observa-
tion point, a fask. We assume that we are working with a
‘known’ world: each agent knows the position correspond-
ing to the tasks but need not know the position of other
agents.

An agent’s mission consists of a set of tasks that are as-
signed to it, together with the agent’s plan to visit these tasks
(a tour). A mission is complete when every task in the set
has been performed, i.e., the tour is complete. Observe that
computing optimal mission plans corresponds to solving the
Multi-Depot Traveling Salesman Problem (MDTSP), and
is thus a generalization of the classic Traveling Salesman
Problem (TSP). The MDTSP problem is computationally
intractable; it involves computing multi-agent TSP solu-
tions. A naive solution would be to exhaustively enumer-
ate the possible allocations and compute a tour for each
allocation. However, this approach is not computationally
feasible: given m agents and n tasks, there are m"™ allo-
cations. Each allocation requires computing m NP-Hard
TSPs, where the size of a TSP varies from 0 to n.

To systematically tackle the problem, we model our
agents in the following way. First, each agent is rational
but has bounded computational power. Second, an agent
is self-interested but cooperative: it wants to maximize the
number of tasks that it performs. Finally, each agent is ca-
pable of covering only a fixed total distance (corresponding
to its fuel). Given this constraint, the global objective be-
comes that of servicing maximum number of tasks.

We propose a distributed, market-based approach to find

reasonably efficient, but not optimal, solutions to the task al-
location problem. Market-based approaches have been suc-
cessfully used to solve co-ordination problems for multi-
agent systems [1, 5, 8, 17]. They naturally form a dis-
tributed framework, and offer a good way of sharing infor-
mation between agents. The challenge faced by economic
approaches, including market-based ones, is to design effi-
cient algorithms for the behavior of individual agents.

Our approach Market-based Approach with Look-ahead
Agents (MALA) works as follows. We start the process by
randomly allocating each task to some agent. The prob-
lem then becomes one of task reallocation. Each agent then
computes a tour on the set of tasks within its fuel range
using a modified Universal TSP (U-TSP) algorithm [9].
Specifically, we use a 2-approximation TSP tour [3] to
guide the non-deterministic choices that are inherent in the
original U-TSP algorithm. Our simulations suggest that the
use of 2-approximation TSP tour significantly reduces the
cost of tours obtained using the original U-TSP algorithm.
Note that the 2-approximation tour is only used for resolv-
ing the non-determinism, and this does not modify the prop-
erties of a U-TSP tour.

The U-TSP based algorithm is desirable due to two rea-
sons. First, observe that some tours computed over the tasks
within the fuel range may still exceed the given fuel bud-
get. We propose a greedy pruning strategy which exploits
the representation and properties of U-TSP tour, and allows
agents to compute their desired tour for a given fuel budget.
Second, a U-TSP tour allows linear time computation of the
cost of subtours while guaranteeing a good approximation
on the tour cost.

The desired tour approximates the maximization of
agents’ reward for given fuel constraint. Once an agent has
computed a desired tour, it negotiates with other agents to
get as close as possible to their desired tour. Myopic agents
run the risk of getting stuck on a local optimum. Performing
a full look ahead in the future would address this problem.
In an agent-based decentralized solution, such a look ahead
requires each agent to estimate other agents’ preferences.
This is prohibitively expensive for large instances [12]. We
conjecture that a partial look ahead reduces the chances that
the solution gets stuck in a local optimum.

We evaluate MALA by means of simulations and com-
pare it with two existing approaches specifically the central-
ized O-contracts approach [11] and the distributed, multi-
agent Traderbots approach [7] . Results suggest that MALA
outperforms the centralized approach in solution quality as
well as computation time, while the Traderbots approach
suffers from higher communication cost.

2. Related Work

Different approaches such as linear programming, mixed
integer linear programming and iterative network flow have
been adopted to overcome the computational challenge in
solving MDTSP. In this paper, we will compare our ap-
proach to other market-based approaches—not only because
such approaches are the most closely related to our ap-
proach, but also because they show considerable improve-
ment in solution quality over the other approaches.

One approach that has been proposed to avoid the in-
tractability of full look ahead may be termed the instanta-
neous assignment (IA) (e.g. [1]). In the IA approach, agents
do not plan for tasks beyond the immediate one; instead
they focus on the one task they are carrying out or they are
bidding for. Predictably, IA can lead to poor solution qual-
ity due to local optima.

Sujit et al. [15] restrict the scope of the problem by as-
suming that the field is unknown, and hence the agents can-
not plan ahead. In their work, agents can communicate
within a limited range (global broadcast is not feasible).
Their approach has been tested for small scale multi-agent
systems: their experiments use 7 agents and up to 50 tasks.
Note that we experiment with hundreds of agents and thou-
sands of tasks.

An alternative approach is to use a central mediator. An
example of these approaches is auction mechanism which
has been very popular recently. In auctions, a central auc-
tioneer puts tasks in a market and agents can bid for them
according to their cost functions. Auctions come in two
flavors: single-task and combinatorial. In single-task auc-
tions, agents are uncertain about the preferences of other
agents and about future contracts. Hence, agents make
short-sighted commitments. Combinatorial auctions [14]
can theoretically find optimal solutions but they suffer from
some major deficiencies: an agent needs to compute a strat-
egy for bidding, and the number of combinations of items
(known as bundles) grows exponentially as a function of
the size of a bundle, which makes the cost calculation for
large instances intractable—both at the bidder’s end and at
the seller’s end (where winners are chosen in the auction
clearance).

Reallocation mechanisms are generally used to improve
the quality of solutions obtained through centralized ap-
proaches. Peer-to-peer task reallocation is equivalent to a
local search where every move or exchange between the
agents decreases the cost or increases the utility. It has been
shown that global optimum can be reached in finite number
of steps if the agents could have a complete look ahead [11],
where each step is an O-contract which moves a single task
possibly with some payment. However, as we mentioned
earlier, complete look ahead is computationally intractable.

An alternative is to use OCSM-contracts: an OCSM-

contract is a member of the set formed by the cross-product
of a number of different types of contracts: original con-
tracts, cluster contracts, swap contracts and multi-agent
contracts. For detailed explanation of these contracts, see
[11]. Globally optimal solution can be reached in a finite
number of steps using OCSM-contracts and a simple greedy
strategy without requiring look ahead [11]. The problem
with this approach is two fold: the number of steps required
is exponential and evaluating contracts at each step is com-
putationally intractable. There is a need to study strategies
for distributed negotiation short of exhaustive enumeration
and greedy exchange.

It is interesting to note that Sandholm and his group,
who have done considerable research in contract evaluation
based on marginal costs, suggest a paradigm shift to central-
ized or mediated clearing to overcome the inefficient solu-
tions negotiated by myopic agents [12]. However, our work
is motivated by the conjecture that complete look ahead may
not be necessary for efficient solutions; we conjecture that
approximate, partial lookahead will support a decentralized
approach that is both scalable and efficient.

3. Approach

MALA works in two-phases (see Figure 1):

Planning Phase: In the planning phase, each agent com-
putes a preferred tour. Such a tour provides the agent
a means of doing a look ahead to determine its utility
for a potential task.

Negotiation Phase: In the negotiation phase, an agent at-
tempts to trade tasks with other agents in order to sell
unwanted tasks and acquire preferred tasks. Each trade
is pair-wise and is evaluated based on a marginal cost
analysis done by the two agents involved in the trade.

We now define the problem formally and provide the de-
tails of the U-TSP based algorithm and the negotiation strat-

cgy.

3.1. Problem Definition

Let T be a set consisting of n tasks, and A be a set
consisting of m agents such that n > m. Assume a k-
dimensional Euclidean field on which the tasks in 7" and the
agents in A are located. Their distribution across the field
is uniform random. Let T* be the set consisting of finite
sequences of tasks. Each sequence corresponds to a possi-
ble tour for an agent, and the tasks in a sequence are said
to be assigned to the agent. A task allocation is a mapping
A — T such that the intersection between each of the se-
quences in the range is empty. In other words, each task is
uniquely assigned to an agent.

According to the taxonomy presented in [6], the problem
we are addressing may be characterized as follows. Tasks
are single-agent, i.e., tasks require just one single agent to
service. Agents are single-task, i.e., agents can service only
one task at a time. The approach is time-extended since the
agents plan ahead and may include more than one task in
their schedule.

We start with a random allocation R. The goal is to find
a task allocation O such that the maximum number of tasks
can be serviced by the agents. Note that starting with a ran-
dom allocation ensures that each task is initially allocated
to some agent. Each agent is subject to a fuel constraint
which limits the total distance it can travel. It is obvious
that some tasks may be impossible to service due to the fuel
constraint, even given an optimal allocation.

We assume that the field is static in the sense that neither
the agents, nor the tasks, move, appear or disappear; the
communication between agents is reliable; and there is no
central mediator. These assumptions ensure that the only
uncertainties agents face are those related to other agents’
preferences. The simplification enables us to focus on the
effect of limited look ahead, measured in terms of scalabil-
ity and quality of solution metrics.

3.2. Mechanism Design

A market-based approach has to fix the rules of the game
(mechanism). Mechanism design critically affects potential
outcomes: properly designed mechanisms play a significant
role in restricting the solution space to a space that mostly
contains desirable outcomes [16]. Our market uses the fol-
lowing mechanism:

e Each task has a constant utility associated with it.
This provides each agent the incentive to maximize the
number of tasks it services.

e Each task which remains un-serviced incurs a penalty
(constant p here) for the agent assigned to it. Thus, an
agent has the incentive to actively sell-off tasks which
it does not expect to be able to service.

e Agents offer tasks which they own to the market. Such
offers may include side-payments as inducements.

e Agents may bid for tasks that are available in the mar-
ket.

e Agents may accept a bid.

e Agents can express their interest in buying a task
which is owned by some other agent but is not avail-
able in the market. Such offers are called hostile offers.
Hostile offers are accompanied by the offer of a pay-
ment as inducement.

Planning

Compute tour in
Phase

the neighborhood

Y

Aggressively offer

Greedy negotiation |« payment for <

constraint?

Within No————»| Prune the tour

Yes
v

Transfer tasks to

Negotiation

Phase preferred tasks

Offer unwanted
tasks

P Bid for preferred
winners tasks

<«

Figure 1. Overview of the approach.

3.3. Modified Universal TSP

In the planning phase, each agent computes a preferred
tour in its neighborhood using the Universal TSP (U-TSP)
algorithm [9] such that the tour maximizes its reward for
the given fuel constraint. We express the fuel constraint in
terms of total distance an agent may travel. Since the agent
is required to return to its origin, an agent’s neighborhood
is defined as the region within the radius d/2, where d is the
agent’s fuel constraint. Once a tour for all destinations in
the neighborhood has been computed, the U-TSP algorithm
enables a linear time computation of the cost of a subtour.
This enables a marginal cost analysis in linear time.

Using the U-TSP algorithm provides an O(logn) ap-
proximation for the cost of a the subtour. On the other
hand, using a 2-approximation TSP algorithm would pro-
duce an approximation that is at most two times from the
optimum cost of the tour. However, in this case evaluating
each trade requires up to four computations, each of which
costs O(nlogn) [2, 4]. This is a significant cost for large
problem instances and hinders scalability. Thus we have to
make a trade-off between solution quality and scalability.

In order to try to reduce the error in the U-TSP approxi-
mation, we modify it as follows. Note that the U-TSP algo-
rithm is based on a tree data structure and involves some
nondeterminism during its computation. In order to im-
prove the tours, an agent computes a tighter tour on the
same points using the 2-approximation algorithm [3]. This
computation is used to heuristically guide the U-TSP algo-
rithm’s initial computation. With such guidance, we ob-

served significant improvements in the quality of the solu-
tions provided by the U-TSP algorithm.

The need for tight tours is fairly obvious. Our global ob-
jective is to maximize the number of tasks carried out given
that each agent has a fuel constraint. This is helped by find-
ing low-cost tours for each agent: in general, the global ob-
jective is positively correlated with agent allocations which
minimize the cost of its tour.

The complete algorithm is described in Algorithm 1.

Algorithm 1 - Modified Universal TSP Algorithm

T = Tree structure from U-TSP algorithm
R = 2-approximation tour

makeTour (Node T)
if (T.hasChildren)
for all (v in t.children)
- w = makeTour(v)
- rank(w) = arg max
- list.add(w)
sort list in ascending order of rank
for all (v in list)
add elements of v to the list Tour
return Tour
else
return list containing T

indexOf(wi, R))

wicw (

While we constrain an agent’s tour to tasks within its

radius, the tour obtained by our modified U-TSP may ex-
ceed the agent’s fuel constraint (and generally will). To
prune this tour, we experimented with two approaches. We
first tried a greedy algorithm: find a task with the highest
marginal cost at each step and remove it from the tour; re-
peat until the tour cost is just within the agent’s fuel con-
straint.

We then tried a more sophisticated approach which ex-
ploits the tree-based data structure of the U-TSP algorithm.
The core idea behind U-TSP algorithm is to divide the field
into small regions and progressively build a tree of tasks
bottom-up by selecting coarser regions at each subsequent
level. The intuition behind our algorithm is to exploit the
structure provided by this tree to remove the smallest re-
gion from the tour such that the resulting tour is just within
an agent’s fuel constraint.

Specifically, our algorithm starts from the root of the tree
and removes branches which correspond to chunks of re-
gion from the tour until the tour cost falls below the agent’s
fuel constraint. At this point, it “zooms down” on that
chunk, keeps removing finer chunks until the tour cost falls
below d. This repeats until it finds a tour such that the tour’s
cost is just below the fuel constraint d. From experiments,
we found that the second algorithm produces marginally
better tours than the first one. The second algorithm is de-
scribed in Algorithm 2.

Algorithm 2 - Pruning Tours

pruneTree (Node T)
if (T is leaf)
remove T from tour
while(cost > CONSTRAINT)
- Find the branch j having the least
reward with respect to cost
- Remove tasks in the branch from tour
- Compute cost of the remaining tour
Restore the tasks in branch j to the tour
pruneTree (j)

3.4. Negotiation Strategy

Once all agents have computed a preferred tour, they ne-
gotiate with each other towards their preferred tour. At step
1, agents put tasks they do not want in the market (recall
that an agent will be penalized for not servicing tasks as-
signed to it in the final allocation). Let the set of tasks that
were initially assigned (by random allocation) to an agent
be RA, and the set of tasks in its preferred tour be PT.
Then the agent wants to get rid of RA \ PT, and acquire
PT \ RA from the market.

If only one agent is interested in an offered task, it simply
takes the task. If multiple agents are interested in a task, the
owner agent starts an auction realizing the potential to gain
utility. After such tasks have been moved, we have one the
following situations for each task ¢:

1. Only one agent prefers ¢ and the task is assigned to that
agent. In this case, no further action is necessary.

2. No agent prefers to have ¢ but it is assigned to one of
them. In this case, the owner computes the maximum
side-payment it can offer for ¢ and puts this offer into
the market. Each agent for whom the task is in its range
uses this side-payment to compute its marginal gain.

3. Multiple agents prefer ¢ and one of them owns it. Ob-
serve that ¢t may not be available in the market if ran-
dom allocation assigns it to an agent that prefers t.
This agent may not have the highest incentive to ser-
vice t, though. Each of the remaining interested agents
puts a hostile bid in the market offering a price it is
willing to pay based on its marginal cost analysis. The
owner decides whether to accept the offer based on its
own marginal cost analysis.

Thus far marginal cost analysis has been based on
agents’ preferred tours (See Figure 1: we are now at the
point just before the box ‘Greedy negotiation’). We assume
that in the face of uncertainty, agents remain “optimistic”
about reaching their preferred tour. Now the agents realize
that they may not reach the preferred tour and become “pes-
simistic.” In this case, we assume agents resort to a greedy
strategy and analyze contracts myopically, based on their
current assignment.

4. Results

We tested the effectiveness of using MALA by experi-
ments done on a custom-designed simulator. The simulator
is synchronous: at each time step, every agent is allowed
to execute some action. We generated 1730 problem in-
stances, each representing a different combination of num-
ber of agents (from 20 to 200 in increments of 20), number
of tasks (from 100 to 2000 in increments of 100) and fuel
constraint (from 100 to 1900 in increments of 200). We also
imposed the requirement that the number of tasks must be
at least three times the number of agents in every instance.

We ran the simulations on the same test instances for
each of three approaches: MALA, centralized O-contracts,
and Traderbots. We measured the (simulated) computa-
tion time, the number of messages required, the number of
broadcasts required, coverage and cost of the tours. Our
definition of coverage is as follows. Let d be the fuel con-
straint for an agent. Then every task located outside the ra-
dius d/2 of that agent is trivially infeasible (for the agent).

100 1

80

60

Coverage

40

88 oo esen,
S Y TS
- :0’~

. .

20

0 50000 100000 150000 200000 250000 300000 350000

Cost
(a) Traderbots approach.

120

Coverage

0 50000 100000 150000 200000 250000 300000 350000
Cost

(c) MALA.

120

Coverage

‘e

0 50000 100000 150000 200000 250000 300000 350000
Cost

(b) O-contracts.

Figure 2. Solution quality as coverage vs cost for all instances.

Coverage is the number of not trivially infeasible tasks that
have been allocated to some agent as a fraction of the total
number of tasks. Note that servicing a task may be infeasi-
ble but not trivially unfeasible. In MALA, this may happen
in two ways: firstly, because the initial random allocation
assigns an infeasible task to an agent which the agent is
not able to subsequently get rid of; or secondly, because
of the use of the greedy strategy by a pessimistic agent.
This means that our coverage metric introduces a possible
bias against MALA: unlike MALA, neither of the other ap-
proaches prunes tasks within the fuel range of agents to ar-
rive at their tours. Thus the tours proposed by the other ap-
proaches may be more likely to be infeasible, which would
make our estimate of their coverage relatively generous. We
have not studied the results for this bias.

Figure 2 (a,b,c) shows scatter plots of coverage against
cost representing all problem instances. Essentially, this
plot represents the quality of solution. High-quality solu-
tions provide high coverage for lowest possible cost (the
upper-left portion of the graph) and this is where we would
like more points to appear.

The O-contracts approach results in a significant number
of points in the high cost, low coverage (lower-right) section
of the graph. The greedy, multi-agent approach does better
than the O-contracts approach but MALA fares significantly
better than both—as evident by the density of points in the
upper-left section of the graph. The lower periphery of the
plots warrants careful observation. In plot (c), the lower pe-
riphery has a higher slope compared to those in plots (a)
and (b) and thus, seems to evade the lower-right region. For
example, at 100000 units of cost, the lowest point in (c) is
at around 28% coverage while corresponding numbers for
(a) and (b) are 15% and 16%. Similarly, at 150000 units
of cost, the lowest point in (c) is at around 41% coverage
while corresponding numbers in (a) and (b) are 22% and
23%. This observation supports our hypothesis that the ap-
proximate look ahead helps in avoiding the worst solutions.

Figure 3 (a) shows a plot of coverage versus number of
tasks, for a specific combination of number of agents and
fuel constraint (100 and 1100 respectively) while (b) shows
the same for 60 agents and fuel constraint of 1300. Intu-
itively, coverage will decrease with increasing number of

120

v W
80
—0—O-Contracts

60 —%— TraderBots
—&—MALA

Coverage

40

20

0 500 1000 1500 2000 2500
Tasks

(a) 100 agents - 1100 units fuel constraint

120

80

—0— O-Contracts
60 —— TraderBots
—4— MALA

Coverage

40 4

20 4

0 500 1000 1500 2000 2500
Tasks

(b) 60 agents - 1300 units fuel constraint

Figure 3. Behavior of coverage with respect to tasks.

120

* O-Contracts
= TraderBots
A MALA

Coverage

.
m
* =
onr
.=
on >
o ur

4 e m»

A 4
e

0 20 40 60 80 100 120
Tasks/Agent

(a) 500 units fuel constraint

80

A * O-Contracts
= TraderBots
A A MALA

60 1 im

Coverage

40 4 .

20

Tasks/Agent

(b) 1500 units fuel constraint

Figure 4. Behavior of coverage with respect to the ratio tasks/agents.

tasks keeping other factors constant, and this plot indicates
how different approaches fare relative to each other. Cover-
age drops rapidly for O-contracts based approach as number
of tasks increase. This suggests that O-contracts based ap-
proach is more likely to get stuck in local optimum. The
curve for MALA shows a much lower slope. Interestingly,
the other distributed approach has a very similar curve to
that of MALA.

We analyzed coverage as a function of the ratio of tasks
per agent, keeping the agents’ fuel constraint constant. The
difficulty of satisfying a problem instance increases as a
function of this ratio (given constant fuel), and therefore the
coverage drops. Figure 4 shows a scatter plot for all three
approaches for two different fuel constraints. It is quite
clear that both the distributed approaches provide better so-
lutions than the central approach. For the most difficult
instances—those with a density ratio of 50 or more-MALA
dominates the other two approaches in both the plots. This

again suggests that MALA avoids the worst solutions.

Figure 5 shows the average coverage as a function of the
fuel constraint (the average is taken across all combinations
of numbers of agents and tasks). The best fit model for these
curves appear to be a power law (R-squared for the best
fits: 0.45 for O-contracts, 0.44 for TraderBots, and 0.60 for
MALA).

To analyze these results statistically, we performed a
number of paired t-tests (recall that we ran simulations for
all approaches for the same problem instances). For cover-
age as a function of fuel, the TraderBots approach does bet-
ter than MALA for fuel constraints below 900 (p < .001),
while MALA outperforms TraderBots for fuel constraints
greater than 1500 (p < .001). The two approaches are
comparable between fuel constraint of 900 and 1500. Ob-
serve that MALA provides good solutions in comparison
to the other two approaches despite them employing a 2-
approximation TSP algorithm for evaluating contracts.

i Approach

I MALA
4 1 Tetuten
80,00~ 4,,‘/%)\?] ﬁ%b[§ Jn 3 I’ 1}
3 W i
& Sl

o G000 /,’ f

? i v

g i

5 / A

© 000 #

20,00 e

0.00=

T T T T T T T T T T
100 300 500 700 800 1100 1300 41500 1700 1800
Fuel

Figure 5. Coverage vs Fuel across all combi-
nations of humber of agents and number of
tasks. 95% Confidence Intervals around the
mean are shown.

Figure 6 compares the communication cost of the two
distributed approaches, MALA and TraderBots, in terms
of messages (point-to-point) and broadcasts (offers made
in the market). Clearly, MALA requires fewer messages
and broadcasts to reach its solution: a paired t-test shows
that the difference is significant (t = 42, p < .001 for mes-
sages, and t = 37,p < .001 for broadcasts). These results
can be explained by observing that in the planning phase of
MALA, agents are selective in determining their preferred
trades, and therefore require less communication. The re-
sult supports the importance of look ahead. Because the
O-contracts approach is a centralized approach, obviously
there is no communication overhead during the computa-
tion. However, a burst of communication is expected in the
beginning to gather preferences from agents, and after the
computation in order to propagate the allocation to agents.
Gathering preferences requires scheduling messages of all
the agents; this could be quite expensive and involve a lot of
messages. Moreover, communication with the centralized
server are also likely to be expensive as the server could be
a hotspot.

We did all our simulations on a single machine. In our
approach, we observed that significant computation time is
spent in computing U-TSP based tours. In a real distributed
environment, this time would be spread across all agents
executing in a parallel fashion. On the other hand, the O-
contracts based approach is completely centralized and has
a very high computation time. The TraderBots approach
does not involve computing tours and does better in terms
of computation time per agent. In real settings, though, the
TraderBots approach would suffer from high convergence

time due to very high volume of messages and broadcasts
required. We believe there is ample evidence from the re-
sults that the investment in computing a preferred tour ahead
pays off significantly both in terms of solution quality and
the number of messages exchanged.

5. Conclusion and Future Work

We proposed a novel market-based approach to solve
multi-agent task allocation, whereby an agent has a limited
look ahead. Agents trade tasks based on their estimates of
the marginal cost or payoff of a trade. We proposed using a
modified U-TSP algorithm to enable agents to achieve such
look ahead because U-TSP based marginal cost computa-
tions are linear in time and hence allow the agents to pro-
cess large number of messages at each step. This enables
our algorithm to be scalable to large instances of the prob-
lem. The results of our simulations support the conjecture
that such limited look ahead may provide an effective and
scalable solution to the problem.

By using an initial allocation, we defined the problem
as one of task reallocation. However, the choice of ran-
dom allocation may not be the best. An alternative initial
allocation could be obtained by using an auction mecha-
nism. It is possible that such an allocation could further
improve the solution quality while lowering computation
and communication cost. Furthermore, an allocation ob-
tained through auctions allows us to relax the assumption
of ‘known’ world, and reliable communication in the whole
field. Each agent will bid for and trade tasks, and commu-
nicate with other agents located only in its neighborhood.

To evaluate the pay-off from look ahead, we assumed a
two dimensional world and reliable communication. We be-
lieve this work can be readily extended to a k-dimensional
Euclidean world. However, in certain applications, such as
search and rescue operations in an urban terrain, Euclidean
metric may be inapplicable. In some cases, a City Block or
Manhattan metric may be more appropriate. In this case,
using the Euclidean assumption in MALA may still pro-
vide a reasonable approximation that may be adjusted: the
Manhattan distance between two points is at most /2 times
the Euclidean distance between them, and on average, as
a simple calculation shows, it is 1.28 times the Euclidean
distance. However, note that obstacles could introduce a
complex topology that cannot be captured by the Manhat-
tan metric; in this case, our results may not hold.

It is important to reiterate that MALA does not lead to
optimal solutions as the look ahead itself is approximate.
Even if the look ahead were optimal, this preference would
be unknown to other agents. Moreover, multiple agents
may have conflicting preferences, making global optimiza-
tion difficult. In our approach, look ahead provides tem-
porary “optimism” to the agent (in terms of allocation they

Approach

20000+
| I wmaLa
|

I TraderBots

15000

100004

Messages

1
5000 %‘!/4:

Approach

I MALA
T TraderBots

12000+
10000
8000

5000+ | 1L

Broadcasts

4000 %
A

2000 et 4

Figure 6. Number of messages and broadcasts required vs the nhumber of tasks across all combi-
nations of humber of agents and fuel constraint. 95% Confidence Intervals around the mean are

shown.

have reached a milestone or a higher level); once they real-
ize that they may not have what they prefer, agents switch
to “pessimism” as a fall-back strategy. In our implementa-
tion, pessimistic agents adopt a greedy approach. We found
some literature in economics on modeling optimism or pes-
simism due to uncertainty in game-theoretic settings [13].
We believe there is potential future work in this direction.

We plan to extend our approach to handle dynamic envi-
ronments where tasks are allowed to appear and disappear,
and agents may have limited mobility. Also, there are quite
a few applications which impose constraints or dependen-
cies between the tasks. The challenge in this case is to rep-
resent and evaluate bids for interdependent tasks. Another
generalization of the current problem is as follows: instead
of each task requiring a single agent, a task may require
multiple agents to service it. Finally, we plan to test the
behavior of MALA with imperfect communication and het-
erogenous agents (such as agents having different fuel con-
straint) which can introduce further uncertainties into the
problem.

Acknowledgements

We would like to thank Chandra Chekuri for suggest-
ing the use of the Universal TSP algorithm and for provid-
ing useful insights into alternative approaches for planning
tours. We would also like to thank Vijay Anand Reddy for
suggestions about the relation between Manhattan and Eu-
clidean metrics.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

A. Ahmed, A. Patel, T. Brown, M. Ham, M.-W. Jang, and
G. Agha. Task assignment for a physical agent team via a
dynamic forward/reverse auction mechanism. In The Inter-
national Conference of Integration of Knowledge Intensive
Multi-Agent Systems KIMAS ’05: Modeling, Evolutions and
Engineering, pages 311-317, April 2005.

M. Andersson and T. Sandholm. Time-quality tradeoffs in
reallocative negotiation with combinatorial contract types.
In AAAI/IAAI pages 3-10, 1999.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms, 2nd edition. MIT Press, McGraw-
Hill Book Company, 2000.

M. B. Dias, B. Ghanem, and A. T. Stentz. Improving cost es-
timation in market-based coordination of a distributed sens-
ing task. In 2005 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3972 — 3977, August
2005.

M. B. Dias and A. T. Stentz. Opportunistic optimization for
market-based multirobot control. In Proceedings of the 2002
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS ’02), volume 3, pages 2714 — 2720,
September 2002.

M. B. Dias, R. M. Zlot, N. Kalra, and A. T. Stentz.
Market-based multirobot coordination: A survey and anal-
ysis. Technical Report CMU-RI-TR-05-13, Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA, April
2005.

M. B. Dias, R. M. Zlot, M. B. Zinck, J. P. Gonzalez, and
A. T. Stentz. A versatile implementation of the trader-
bots approach for multirobot coordination. In Proceedings

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

of the International Conference on Intelligent Autonomous
Systems (IAS), March 2004.

B. P. Gerkey and M. J. Matari¢. Sold!: Auction methods for
multi-robot coordination. IEEE Transactions on Robotics
and Automation, 18(5):758-768, Oct. 2002.

L. Jia, G. Lin, G. Noubir, R. Rajaraman, and R. Sundaram.
Universal approximations for TSP, Steiner tree, and set
cover. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, pages 386—395, 2005.
L. Navarro, R. Grabowski, C. Paredis, and P. Khosla. Milli-
bots. IEEE Robotics and Automation Magazine, pages 31 —
40, December 2002.

T. Sandholm. Contract types for satisficing task allocation:
I theoretical results. In AAAI Spring Symposium: Satisficing
Models, 1998.

T. Sandholm. Making markets and democracy work: A story
of incentives and computing. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
pages 1649-1671, 2003.

B. C. Schipper. The evolutionary stability of optimism,
pessimism and complete ignorance. Discussion Papers 68,
SFB/TR 15 Governance and the Efficiency of Economic
Systems, Free University of Berlin, Humboldt University of
Berlin, University of Bonn, University, Nov. 2005. available
at http://ideas.repec.org/p/trf/wpaper/68.html.

T. Smith, T. Sandholm, and R. Simmons. Constructing and
clearing combinatorial exchanges using preference elicita-
tion. In Proceedings of the AAAI workshop on Preferences
in Al and CP: Symbolic Approaches, 2002.

P. B. Sujit, A. Sinha, and D. Ghose. Multiple uav task al-
location using negotiation. In AAMAS ’06: Proceedings
of the fifth international joint conference on Autonomous
agents and multiagent systems, pages 471-478, New York,
NY, USA, 2006. ACM Press.

H. Varian. Economic mechanism design for computerized
agents. In Proceedings of the First USENIX Workshop on
Electronic Commerce, July 1995.

R. Zlot, A. Stentz, M. Dias, and S. Thayer. Multi-robot ex-
ploration controlled by a market economy. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation, 2002.

10

	. Introduction
	. Related Work
	. Approach
	. Problem Definition
	. Mechanism Design
	. Modified Universal TSP
	. Negotiation Strategy

	. Results
	. Conclusion and Future Work

