
Compilation of a Highly Parallel Actor-Based LanguageWooYoung Kim�and Gul AghayDepartment of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbana, IL 61801, USAEmail: fwooyoung j aghag@cs.uiuc.eduJune 23, 1992AbstractHal incorporates a number of high-level language constructs such as the incremental special-ization of synchronization constraints to maintain the consistency of actors at run-time, theinheritance of both code and synchronization constraints, and limited re
ective capabilities tocustomize the system with respect to fault tolerance. This paper describes some issues in com-piling Hal, and, in particular, three source level transformations used by the compiler for Hal.Two of the transformations translate RPC-style message sending into asynchronous messagesending. The third transformation performs code motion to optimize the implementation ofreplacement behavior. This optimization results in the reduction of object code size as well asexecution time.Keywords: Actor, concurrency, synchronization constraint, inheritance, optimization�This author is sponsored by a fellowship from Ministry of Education in Korea.yThe work described in this paper has been made possible by generous support provided by a Young InvestigatorAward from the O�ce of Naval Research (ONR contract number N00014-90-J-1899), by an Incentives for ExcellenceAward from the Digital Equipment Corporation, and by joint support from the Defense Advanced Research ProjectsAgency and the National Science Foundation (NSF CCR 90-07195).1

1 IntroductionA number of e�orts have been made to build parallelizing or vectorizing compilers which attemptto extract parallelism from code written in traditional sequential programming languages such asFORTRAN [26, 5, 27]. Others have concentrated on compiling specialized languages which areinherently concurrent, such as functional languages [18] and Data Flow [7]. Unfortunately, suchlanguages are inadequate to model concurrency in a state-based, nondeterministic world [1]. A thirdlanguage paradigm consists of languages which explicitly manipulate parallelism. Some examplesare CSP [9] and Occam [25]. However, CSP and Occam have an unavoidable limitation in thesense that a process in these systems cannot create a new communication channel at run-time orpass it to another process. The con�guration of the system is �xed at compile time resulting in astatic topology. Our work is related to the last two paradigms. We use the Actor model [1] whichuni�es the functional and the object-based view of computation, supports parallelism explicitly andprovides for a dynamic topology of computational agents. On the other hand, the Actor modeldi�ers from the model used in LINDA [11], which separates coordination from computation ratherthan treats them in a single framework.We have developed a high-level programming language, called Hal. Our goals in designingHal are as follows:Generality: We want our programming language to be truly general purpose. Control parallelismas well as data parallelism should be expressed in Hal in a natural way. Shared objectsshould be easily described. Furthermore, Hal should be architecture independent to allowe�cient execution on both shared and distributed memory machines.Modularity and Abstraction: To simplify programming, Hal should support data and func-tional abstraction. In particular, users should be able to specify the abstraction (interface)2

independently of its representation (implementation). Furthermore, Hal should supportre-usability through language constructs such as inheritance, higher-order functions and re-
ection.E�cient Execution: It should be possible to describe arbitrary applications in su�cient detailto support e�cient execution on di�erent concurrent architectures. In particular, the sameapplication may require di�erent resource management techniques on di�erent concurrentarchitectures.In designing Hal, we use a re
ective Actor model to realize those goals. The current paperdescribes ongoing work on Hal and its compiler. Compiling Hal for e�cient execution creates anumber of distinct problems. We describe some of these problems, namely, resource management,inherent concurrency, synchronization constraints and distributed objects. These problems stemfrom the power and the
exibility inherent in actor-based languages.Resource ManagementHal is designed in such a way that the code of a parallel algorithm can be described in an archi-tecture independent way. However, for e�ciency it is often essential to explicitly specify resourcemanagement policies for actor placement and load balancing. Hal allows the code for resourcemanagement and code for the application to be separately speci�ed. Besides reducing code com-plexity, this allows both the code of application algorithms and the code for resource managementstrategies to be reused. The compiler must combine these two kinds of speci�cations for e�cientexecution (Section 2.7). 3

Inherent ConcurrencyThe Actor model supports internal concurrency as well as explicit parallelism [1]. The internalconcurrency is inherently �ne-grained. However, almost every conventional processor is too coarsegrained to realize the �ne-grained computation inherent in the internal concurrency in an e�cientway. To achieve better performance, we must have a certain amount of run-time control over grainsize. The internal concurrency makes it possible to pipeline behavior changes of an actor. However,the implementation of such pipelining on coarse grained processors carries memory managementoverhead. By not implementing such pipelining, we have obtained a good performance improvementon current generation medium-grained multicomputers. (Section 3.2).Representation of method invocations in the form of functional expressions allows the simplespeci�cation of control in the program. Unfortunately, it can cause unnecessary loss of concurrencyif a function caller blocks until it receives returned function value. The transformation of suchrepresentations into asynchronous message passing makes it possible to retain maximal concurrencyin the program (Section 3.1).Synchronization ConstraintsIn a CSP like model, communicating processes must be synchronized whenever they exchangemessages with each other. The synchronization is accomplished through busy waits. Synchronouscommunication is expensive because that a sender cannot send a message until a receiver is readyto accept the message, causing loss of concurrency. In contrast, by using bu�ering accompaniedwith asynchronous message passing, we eliminate the need for extraneous synchronization, thereby,retaining the concurrency. Furthermore, asynchronous communication localizes the enforcementof synchronization constraints at the recipient. This is especially important since a requirementof fairness requires the re-evaluation of synchronization constraints with each message and state4

change [14, 15].Distributed ObjectsIf only one actor is responsible for processing all incoming communications to a large data structure,the actor will be a bottleneck. We avoid the single address bottleneck problem associated withthe uniqueness of an actor's address by allowing concurrent access to a large data structure andlocking only the relevant portion of the data structure. Our approach follows work on ConcurrentAggregates [12].In the following section, we discuss some linguistic features of Hal with their semantics. Sec-tion 3 discusses the transformations of RPC style message sending and the transformation for codemotion to optimize the implementation of replacement behavior. Some research related to our com-piler is described in Section 4. The last section provides future research directions and concludingremarks.2 HAL: A High-level Actor LanguageWe begin the section with a brief description of the Actor model. We then discusses the speci�cationof synchronization constraints, inheritance, and the speci�cation of replacement behavior. Finally,issues related to memory management, extensions to the asynchronous message passing primitiveand re
ection capability are addressed in that order.2.1 The Actor ModelActors are self contained, independent computational agents that communicate by asynchronousmessage passing [1]. An actor consists of its mail queue and behavior. It is identi�ed by its uniquemail address. The mail queue of an actor bu�ers incoming communications (i.e. messages). The5

behavior of an actor speci�es the action performed by an actor in response to a communication. Anactor's state is de�ned by its acquaintances (actors whose mail addresses are known to the actor).All computation in an actor system is carried out in response to communications sent to actorsin the system. Speci�cally, an actor may perform three kinds of actions when it accepts a message:� it may change its behavior.� it may send more communications. Communication is asynchronous and point-to-point to anacquaintance. The sender may not be known, but the recipient must be an acquaintance ofthe sender. The delivery of a message is guaranteed after an arbitrary, but �nite, delay (afairness condition [14]).� it may create more actors. These actors have their own unique mail addresses which areinitially known only to their creator and possibly themselves.The replacement behavior of an actor is speci�ed through the become primitive. Wheneverthere is no executable become primitive in the thread of an actor computation, an identicallybehaving actor is assumed to be its replacement behavior (by default). Note that communicationsmay contain mail addresses of actors; thus the interconnection topology of an actor system isdynamic.Building on the basic actor execution model, we have designed a high-level programming lan-guage, named Hal [16]. Hal is a descendant of actor languages such as Acore [24], Rosette [30]and ABCL/R [33]. It provides abstractions which facilitate software development. We describe theconstructs used for such abstractions below, emphasizing implementation issues. A more detaileddescription of the language constructs and their motivation may be found in [16, 17]. Note, how-ever, that Hal is an evolving language. New high-level constructs are continually being developedand tested in order to explore ways of simplifying the task of parallel programming while improving6

e�ciency in execution.2.2 Speci�cation of Synchronization ConstraintsActor semantics does not require message order preservation. In order to protect the system aswell as an actor from possible internal inconsistency due to message order nondeterminism, weneed to be able to specify synchronization constraints on actors. Earlier work has established howsynchronization constraints can be used for software pipelining [3]. In particular, such pipeliningtransforms some algorithms, such as the Cholesky Decomposition of a symmetric positive de�nitematrix, from unscalable algorithms into scalable ones.We have adopted a philosophy of synchronization constraints proposed in [15]. All constraintsare expressed as disabling restrictions. A disabling restriction means whenever any condition as-sociated with a method evaluates to TRUE , the underlying system closes the entry point of themethod and disables the method. All messages with the method name are not accepted until allconditions evaluate to FALSE . Use of disabling restrictions instead of enabling conditions [30, 6]ensures that the synchronization constraints which hold for a superclass also hold for the subclasseswhich are derived from the superclass. Therefore, programmers can reason about the subclasses interms of the superclass [15].Disabling restrictions are speci�ed using the following syntax:(disable <msg-expr> <expr>)(all-except <msg-expr> <expr>)where <msg-expr> speci�es the method name on which the constraint is imposed. Users areallowed to associate more than one synchronization constraint with a method. <expr> is afunction of acquaintances (i.e. actor's internal state) and the incoming communication. When<expr> evaluates to TRUE , the method speci�ed in <msg-expr> is disabled. If a constraint is7

speci�ed with all-except , all other methods are disabled except one speci�ed in <msg-expr> . Theincoming messages with the method name are kept in the actor. When all conditions associated witha method evaluate to FALSE , its entry point is open and the pending messages may be processed.A potentially signi�cant source of ine�ciency is the need to re-evaluate the constraint expres-sions of the pending messages that are kept in an actor. In the current implementation, wheneverthe actor state changes, all constraints associated with the pending messages are re-evaluated. Toallow more e�cient execution, we are currently experimenting with a scheme which requires theevaluation of only those constraints that depend on the acquaintances which have changed. Specif-ically, our scheme uses dynamic dependency lists between an actors acquaintance and constraints.2.3 InheritanceHal has been designed to satisfy all of Wegner's quali�cations to be classi�ed as an object-orientedlanguage [34] . Class variables are not supported since they imply shared data between actors, thusrestricting their autonomy and distribution. Hal allows the inheritance of both code and synchro-nization constraints. As in Smalltalk [22], any method of the superclass of an actor may be rede�nedin the de�nition of the actor. Synchronization constraints, however, may only be strengthened, notweakened [15]. In this sense, inheritance can be viewed as a means of specialization. However, weare investigating whether it is bene�cial to allow �rst-class constraints.Figure 1 de�nes a set of stack classes which exemplify the possible usage of inheritance andsynchronization constraints. The most basic actor class is Stack which has the methods to pushand pop one element to and from the stack, respectively. This de�nition has a constraint (> count0) on pop which must hold in order for a pop message to be processed.The Bounded-stack class is a subclass of Stack . This class has a constraint on the absolutesize of the stack; one cannot make the stack hold more than max elements at any time. Since we8

(defActor Stack (stack count)(disable (pop) (< count 0))(method (push x)(update stack (cons x stack))(update count (+ count 1)))(method (pop entrypoint continuation)(send entrypoint continuation (car stack))(update stack (cdr stack))(update count (- count 1))))(defActor Bounded-stack (max)(superclass Stack)(disable (push) (> count max)))(defActor Pop2-stack(superclass Bounded-stack)(disable (pop2) (< count 1))(method (pop2 entrypoint continuation)(send entrypoint continuation (car stack) (car (cdr stack)))(update stack (cdr (cdr stack)))(update count (- count 2))))Figure 1: Stack actor classeshave separated the speci�cation of synchronization constraints from the code of the actual method,we only need to state the new constraint without having to rede�ne the push method. Note thatmore restrictions are imposed on the push method in Bounded-stack class than in Stack class.Finally, we de�ne the Pop2-stack class as a subclass of the Bounded-stack class with theability to pop two elements out of the stack as an atomic action. This behavior is provided throughthe pop2 method. Under our constraint speci�cation scheme, the de�nition of both pop and pushmethods can be inherited from the Stack class into both of these subclasses. Also, the incrementalspecialization of synchronization constraints is allowed through inheritance [15].
9

2.4 State ChangeReplacement behavior is computed by the become primitive in the Actor model. An actor canbecome an entirely di�erent actor as a result of processing the become primitive. However, in manycases, replacement behavior involves only one or two acquaintance changes of an actor.The update primitive gives us a convenient way to specify a replacement behavior with thechange of one acquaintance. It has the following syntax:(update <acquaintance-name> <expr>)update obeys a single-assignment semantics: there may be only one become in any given methodinvocation. However, more than one update can appear if they do not update the same acquain-tance. Since the e�ect of replacement behavior is invisible to the current computation of an actor,multiple update 's can be viewed as one become with several acquaintance changes.2.5 Message-passing MechanismsBesides the asynchronous message sending provided in Actor semantics, Hal provides two moremessage sending primitives: ssend and bsend . The former is the message order preserving sendprimitive, or sequenced send. The latter is the RPC style send primitive akin to Acore's ask prim-itive [24]. Though they have some
avor of synchronous message sending, they are not synchronousin the sense that a sender does not need to know whether a receiver is ready to accept its messageor not.ssend gives a sender a way to control the sequence of actions which occur at a receiver. bsendis just like a function call so that the computation proceeds with the reply from the receiver. ssendis implemented by tagging the message sent and reordering messages, if needed, at the recipient'send. bsend can be used as a way to synchronize several coordinating actors. The implementationissues related to bsend are given in detail in Section 3.1.10

2.6 SuicideWhen executing a large actor program, many actors may be created as a result of computation.Some of them will never be used again after they have accepted certain communications. Oncethey process particular communications, they become garbage actors, wasting valuable resourcesuntil they are reclaimed by garbage collector. It is bene�cial to reclaim the resources which belongto such actors as soon as they become garbage. suicide is the primitive which does exactlywhat we want. It is similar to that used in Cantor [8]. When an actor executes the suicideprimitive, it frees all the resources which are allocated to it so that the resources can be reused.This primitive can be used by a programmer or the compiler. Readers can �nd an example forthe latter case in Section 3.1.1. Once garbage collection has been fully optimized, use of suicidewould be discouraged since suicide creates unsafe programs.2.7 Re
ectionRe
ection is a system's ability to reason about itself and manipulate a causally connected descrip-tion of itself [28, 23]. Causal connection means that changes to the description have an immediatee�ect on the described object. Note, however, that the changes go into e�ect only for the subse-quent messages. In general, re
ection may be used to customize the implementation of a systemfrom within the language.Currently, Hal supports the minimal amount of re
ection capability necessary to customizethe system with respect to fault tolerance [2]. An actor can reify its dispatcher and mail queue(the conceptual entities responsible for sending and receiving the communication, respectively).(Mailq <expr>)(Dispatcher <expr>)The value of <expr> is the mail address of an actor. Once the mail queue of an actor is11

rei�ed, all subsequent messages destined to the actor are delivered through its rei�ed mail queueactor. To get a next message to process, the actor noti�es its rei�ed mail queue actor by sendinga special message. A synchronization constraint is associated with the method in the mail queueactor corresponding to the message, guaranteeing that the message is accepted only when the mailqueue actor has one or more messages to deliver. Rei�cation of the dispatcher of an actor causesall the outgoing messages from the actor to be sent through its rei�ed dispatcher actor. These areimplemented by using system-generated put , get and transmit messages, respectively.Since rei�ed mail queue actors and rei�ed dispatcher actors are just ordinary actors, we canuse any actor as a mail queue actor or a dispatcher actor. However, our implementation requiresthat all mail queue actors share a set of common properties such as having put and get methods,being able to hold the incoming messages in its state, etc. The dispatcher actors share their owncommon properties too. We enforce these rules by restricting the eligible actors for mail queueactors or dispatcher actors: the run-time system provides the default mail queue/dispatcher actorclasses from which all the other mail queue and dispatcher actors inherit, respectively (Figure 2).Users can de�ne a mail queue actor class as follows:(defActor myMailQ (acq1 acq2)(superclass Mailq)(method (entry1 a b c):A dispatcher actor can be de�ned similarly. The compiler enforces all mail queue (dispatcher)actors to have the default Mailq (Dispatcher) actor class at the top of its class hierarchy. Similarly,for the dispatcher actors.Note that a user does not need to know about the existence of enqueue , dequeue and tossshown in Figure2. enqueue adds a message to the queue internal to a mail queue actor. dequeue12

(defActor Mailq (baseActor queue)(disable (get) (emptyqueue queue))(method (put msg)(enqueue queue msg))(method (get)(let [[msg (dequeue queue)]](toss msg baseActor))))(defActor Dispatcher(method (transmit msg dest)(toss msg dest)))Figure 2: Default mail queue actor class and default dispatcher actor classreturns the message at the front of the queue. toss is just a variation of send , the asynchronousmessage sending primitive but it uses an already packed message so that it saves unnecessaryunpacking and packing of the message.These re
ection capabilities have been used to carry out an experiments in implementing re-usable software fault tolerance protocols [2]. Such capabilities can also be used to separate thecode for resource management, such as that for optimal actor placement, from the code for anapplication.3 Implementation IssuesIn this section, we discuss three transformation techniques used in the Hal compiler. Two trans-formations allow translation of RPC style send primitives into asynchronous send primitives. Thelast one is the transformation for code motion to optimize the implementation of update /becomeprimitive. The transformed programs shown in the �gures are written in Hal itself to make iteasier to understand the meanings of the transformations.13

3.1 Transformation on RPC Style Send PrimitiveMost distributed memory multi-processor systems do not support truly synchronous message send-ing in the sense that a sender and a receiver cannot synchronize with each other when they exchangea message. In order to implement RPC style message sending (Section 2.5) on such architectures,we must be able to express it in terms of ordinary asynchronous message sending. In the followingtwo sections, we discuss the implementation of RPC style message sending in our compiler.3.1.1 Join ContinuationRecall that bsend is like a remote procedure call which returns a result back to the place wherethe call is made. By lifting into a separated actor the expressions that should be executed onlyafter a bsend expression receives a reply. we can implement bsend in terms of send . Note thatthe lifted actor is the continuation of the bsend expression. Delegation of work to an independentcontinuation actor makes it possible to avoid unnecessary loss of concurrency in the execution.(send mB (new ActorB a b) x (bsend mC ActorC ...)(bsend mD ActorD ...)(bsend mE ActorE ...))Figure 3: Example expression which uses bsendsConsider the expression in Figure 3. The send expression has no e�ect on the computationof the other parts of the method script except that it should be executed only after it gets all thereplies from the bsend expressions. Simply making the continuation passing style (CPS) conversion[29, 21] is not satisfactory since it sequentializes the execution of the bsend expressions, causing aloss of concurrency.We create an independent join continuation actor through dependency analyses. The expressionin Figure 3 is transformed into the join continuation actor in Figure 4 and the expression in14

Figure 5. The join continuation actor is responsible for the execution of the expressions that mustbe executed only after all replies arrive from the target actors of the bsend expressions. Whenthe join continuation actor gets a reply from one of target actors, it checks if all the other valueshave been received. If so, it executes the assigned expressions. If not, it stores the value in itsstate and waits until all values are available. The availability of each value is kept in a
ag whichis associated with the corresponding acquaintance variable. In Figure 4, a join continuation actoris created with the appropriate initial values for its acquaintance variables and the environment inwhich it executes the assigned expressions. Note that a unique method name corresponding to theentry point of each reply message as well as the join continuation actor is added in the originalbsend expressions. The de�nition of receiver actors should be modi�ed accordingly to re
ect thechange in the sender actor's de�nition.(defActor JC (acq1 acq2 v1 v2 v3 f1 f2 f3)(method (ep1 x)(if (and f2 f3)(block (send mB acq1 acq2 x v2 v3)(suicide))(block (update v1 x)(update f1 TRUE))))(method (ep2 x)(if (and f1 f3)(block (send mB acq1 acq2 v1 x v3)(suicide))(block (update v2 x)(update f2 TRUE))))(method (ep3 x)(if (and f1 f2)(block (send mB acq1 acq2 v1 v2 x)(suicide))(block (update v3 x)(update f3 TRUE)))))Figure 4: Extracted Join Continuation actorThe transformation given in this section is similar to the transformation done in Acore [24].15

(let* [[jc (new JC (new ActorB a b) x 0 0 0 FALSE FALSE FALSE)]](send mC ActorC ... ep1 jc)(send mD ActorD ... ep2 jc)(send mE ActorE ... ep3 jc))Figure 5: The transformed expression
ActorA

ActorB

ActorC ActorD ActorE

JCFigure 6: Message trajectory after extracting the Join Continuation actorHowever, there are two major di�erences. First, by associating with each acquaintance variable anexplicit
ag which holds values received, we eliminate the overhead of system-wide unique value.Second, the suicide primitive (Section 2.6) is used to optimize memory reclamation. Because ajoin continuation actor is de�ned by the compiler, the compiler knows that the continuation actorwill become garbage after it has been used only once. Thus, the compiler includes suicide in thede�nition so that the resources allocated to a join continuation actor can be reused as soon as itbecomes garbage. Figure 6 shows the message sending pattern when the transformed program isexecuted. 16

(defActor Customer (a b c)(method (m1 x y):(update a (bsend m2 (new Server) x y): (a) Before Transformation(defActor Customer (a b c flag)(all-except m1-continuation flag)(method (m1 x y):(send m2 (new Server) x y m1-continuation self)(update flag TRUE):)(method (m1-continuation x)(update a x)(update flag FALSE)): (b) After TransformationFigure 7: Transformation with method splitting3.1.2 Method SplittingWhen a bsend expression is used with the speci�cation of replacement behavior, we are forced tosacri�ce some concurrency in order to maintain the consistency of the actor's state (Figure 7.a). Ifwe allow the sender to proceed before it gets the reply back, the sender may see the old value ofthe acquaintance rather than a new value when it accepts the next message. In this situation, wecannot delegate the work dependent on the bsend expression to a continuation. Rather, we splitthe method executing the bsend expression and add a synchronization constraint to the resultingcontinuation method (Figure 7). All methods except the desired continuation method are disableduntil the reply has been received, guaranteeing a safe update .17

3.2 Optimization on the Replacement Behavior3.2.1 Transformation for Code Motion of Replacement BehaviorThe semantics of the Actor model dictates that each communication to an actor is processed onits own version of the actor's state, allowing pipelining in the execution of the method containingbecome /update [1]. This internal concurrency implies that each expression in a method can beexecuted concurrently and the e�ect of replacement behavior is visible only to subsequent com-munications. However, it can be very expensive to utilize all available internal concurrency onconventional multiprocessor architectures. We sacri�ce the concurrent execution of each expressionof a method while retaining the single assignment semantic of the replacement behavior.However, simple compilation of Hal program into sequential code preserving its textual orderis not su�cient to make the e�ect of replacement behavior invisible to the current computation.In other words, the send expression in the following method de�nition may use the new value ofbalance where it is supposed to use the old value.(method (deposit amount)(update balance (+ balance amount))(send deposit LogActor balance amount))A straight-forward solution is to have a copy of an actor's acquaintance list, and perform anupdate on the copy rather than on the original acquaintance list. At the end of the computation,we can simply replace the acquaintance list with the copy. This solution is simple but has a veryhigh overhead since it requires the entire acquaintance list to be copied whenever we execute themethod containing become /update primitives.Our solution is to be as lazy as possible. The very internal concurrency that gives us theproblem also allows us to solve it e�ciently. We move become/ update expressions to the end ofthe computation so that we can perform update in place.18

The visibility of the e�ect of become /update primitives only to the subsequent messagesguarantees the operational equivalence between the program before the transformation and theprogram after the transformation. The use of bsend 's need not a�ect the equivalence since theyhave already been detached from the corresponding update 's.(if (_A_)(block:(update a x):)(block:(update a y):))(if (_B_)(block:(update c x):)(block:(update c y):)))Figure 8: Before the transformation to optimize replacement behaviorSimply moving update 's to the end of the method is not enough when a program has more thanone if expression (Figure 8). We split each if into two if s, one with no update and the otherwith update 's only. All if expressions without update 's are placed before all if expressionswith update 's only. Splitting if expression makes two copies of the same if condition expres-sion. Unnecessary evaluation of the same conditions can be saved by introducing a let binding(Figure 9). Nested if expressions are not di�cult to transform. let bindings introduced duringsplitting inner if expressions are promoted to the outer block so that the outer if expression issplit as before. 19

(let* [[ra (_A_)] [rb (_B_)]](if ra(block ...)(block ...))(if rb(block ...)(block ...))(if ra(block (update a x))(block (update b y)))(if rb(block (update c x))(block (update c y)))))Figure 9: After the transformation to optimize replacement behavior3.2.2 Performance ComparisonTable 1 shows the execution time of di�erent number of update 's when we compiled an actorprogram with 6 acquaintance variables using the earlier version [16] and the current version of theHal compiler. The current version uses the optimization which is mentioned in Section 3.2.1. Thereason why the earlier version of Hal takes much more time to perform update 's is that update 'sare implemented in the straight-forward way by copying the acquaintance list of the actor.number of updates 1 2 3 4 5Execution time unoptimized update 285 304 323 342 361(unit: cycle) in place update 17 26 35 44 53method size unoptimized update 32 33 33 33 33(unit: byte) in place update 17 21 24 26 27Table 1: Execution time for updatesTable 1 also shows the code size per method in the executable object �le. In all cases, optimizedupdate yields less code size. Currently, Hal programs run on the top of the CHARM programmingsystem which is a C based system [20]. CHARM has been implemented on both shared anddistributed memory machines. The total execution time for this simple example was about 0.052720

sec. Over 90% of the time was spent to execute CHARM kernel code, showing that the start-upoverhead of CHARM is very high. In order to further improve performance, we are implementing ourcompiler on a lower-level run-time system, namely, CHOICES [10], an object-oriented distributedoperating system, which is known to be more e�cient.4 Related workIn this section, we brie
y compare our work with several previous e�orts to build actor-basedparallel languages and their compilers. Note that the �rst three languages, Act, Cantor and Acore,do not support inheritance and do not provide explicit constructs for specifying synchronizationconstraints.Act: It compiles the Scripter language into code which can be executed on a simulator for theActor model, called Apiary, written on Symbolics 3600 Lisp machines. The Act compilerchanges most system generated message sending to lisp function calls [13].Cantor: Programs written for the Cantor system [8] can run on either sequential machines or InteliPSC series machines. All communication is done through asynchronous message passing.Acore: C. Hewitt's group at M.I.T. implemented the Acore compiler on the Apiary operatingsystem [24]. It allows for synchronous message passing as well as asynchronous messagepassing.Rosette: Developed at MCC in collaboration with one of the authors, Rosette [30] runs on auni-processor virtual machine. It supports synchronous and asynchronous message passing.Synchronization constraints are speci�ed through enabled sets [31] which specify the methodsthat may be invoked by the next message. Enabled sets are mixed in with the code so thatRosette cannot support incremental specialization of synchronization constraints.21

ABCL/R: ABCL (Actor Based Concurrent Language) provides for asynchronous, synchronousand future based message passing. ABCL also allows the speci�cation of synchronizationconstraints. One di�erence of Hal and ABCL is that ABCL does not support inheritance[35].5 Current Status and Future Research DirectionSome practical examples show the performance advantage of using �ne-grained inherent concurrencyin the Actor model for distributed execution on multicomputers [3]. However, to design an actor-based language which is easy to use and machine independent, we need to add several linguisticextensions to the basic Actor model. For example, the ability to easily describe synchronizationconstraints in a high-level, abstract and reusable way is indispensable in a high-level concurrentlanguage: such constructs guarantee the consistent and reliable execution of parallel algorithms.Hal supports the specialization and factorization of both code and synchronization constraintsusing inheritance. Other features such as sequenced send, RPC style send, and update are addedto make the language a general and easily programmable one.The Hal compiler generates a program written in CHARM [20] as its output. Optimization onthe update primitive is implemented in Hal. We are implementing the transformation to extracta join continuation actor. Optimization on synchronization constraints is going to be added in nearfuture. Active research is being done to incorporate distributed data structures in our compiler.A fair amount of e�ort has been made to preserve the concurrency which is naturally expressedin Hal. Currently, the run-time system for Hal does not support garbage collection. Distributedgarbage collector [19, 32] should be incorporated in near future. Finally, the compiler should beable to provide the run-time system with information on load balancing and locality control usingmodular speci�cations given by the user [3]. 22

AcknowledgmentsWe would like to thank other members of Open Systems Laboratory at the University of Illinois atUrbana-Illinois, in particular, Svend Frolund and Daniel Sturman for their constructive suggestionsfor designing Hal, and Raju Panwar and Chirstian Callsen for careful reading the draft of thispaper. We also appreciate Chris Houck, a former member of OSL, for his work on designing andimplementing the earlier version of Hal.References[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,1986.[2] G. Agha, S. Fr�lund, R. Panwar, and D. Sturman. A Linguistic Framework for DynamicComposition of Fault-Tolerance Protocols. Technical Report UIUCDCS-R-92-1730, Universityof Illinois at Urbana-Champaign, April 1992.[3] G. Agha, C. Houck, and R. Panwar. Distributed Execution of Actor Systems. In Proceedingsof Fourth Workshop on Languages and Compilers for Parallel Computing, Santa Clara, 1991.[4] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. AddisonWesly, 1986.[5] R. Allen and K. Kennedy. Automatic Translation of Fortran Program to Vector Form. ACMTransactions on Programming Languages and Systems, 9, 1987.[6] P. America and F. van der Linden. A Parallel Object-Oriented Language with Inheritance andSubtyping. In OOPSLA '90, pages 161{168, October 1990.[7] Arvind and D. Culler. Annual Reviews in Computer Science, chapter Data
ow Architecture,pages 225{253. Annual Reviews Inc., 1986.[8] W. Athas and C. Seitz. Cantor User Report Version 2.0. Technical Report 5232:TR:86,California Institute of Technology, Pasadena, CA, January 1987.[9] S. Brookes, C. Hoare, and A. Roscoe. A Theory of Communicating Sequential Processes.Communications of the ACM, 31:560{599, July 1984.[10] Roy H. Campbell, Vincent Russo, and Gary Johnston. Choices: The Design of a MultiprocessorOperating System. In Proceedings of the USENIX C++ Workshop, pages 109{123, Santa Fe,New Mexico, November 1987. IEEE.[11] N. Carriero and D. Gelernter. Linda in Context. Communication of the ACM, 32(4):444{458,April 1989. 23

[12] A. Chien. Concurrent Aggregates: An Object-Oriented Language for Fine-Grained Message-Passing Machines. PhD thesis, MIT, July 1990.[13] P. de Jong. Compilation into Actors. SIGPLAN Notices, 21(10):68{77, October 1986.[14] N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag, 1986.[15] S. Fr�lund. Inheritance of Synchronization Constraints in Concurrent Object-Oriented Pro-gramming Languages. In Proceedings of European Conference on Object-Oriented Program-ming, 1992. (to appear).[16] C. Houck. Run-Time System Support for Distributed Actor Programs. Master's thesis, Uni-versity of Illinois at Urbana-Champaign, January 1992.[17] C. Houck and G. Agha. HAL: A High-level Actor Language and Its Distributed Implementa-tion. In 21st International Conference on Parallel Processing (ICPP '92), August 1992. (toappear).[18] P. Hudak. Conception, Evolution and Application of Functional Programming Languages.ACM Computing Surveys, 21(3):359{411, September 1989.[19] D. Kafura, D. Washabaugh, and J. Nelson. Garbage Collection of Actors. In OOPSLA '90,pages 126{134, October 1990.[20] L. Kale. The CHARM(3.0) Programming Language Manual. University of Illinois, February1992.[21] D. A. Kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis, Yale University,February 1988. YALEU/DCS/RR-632.[22] W. LaLonde and J. Pugh. Inside Smalltalk, volume 1. Prentice Hall, 1990.[23] P. Maes. computational re
ection. Technical Report 87-2, Vrije University. Arti�cial Intelli-gence Laboratory, 1987.[24] C. Manning. ACORE: The Design of a Core Actor Language and its Compiler. Master'sthesis, MIT, Arti�cial Intelligence Laboratory, August 1987.[25] D. May, R. Shepherd, and C. Keane. Communicating Process Architecture: Transputer andOccam. In P. Treleaven and M. Vanneschi, editors, Future Parallel Architecture, pages 35{81.Springer-Verlag, 1986. LNCS 272.[26] D. Padua and M. Wolfe. Advance compiler optimizations for supercomputers. Communicationof the ACM, 29(12):1184{1201, December 1986.[27] C.D. Polychronopoulos, M.B. Girkar, M.R. Haghighat, C.L. Lee, B.P. Leung, and D.A.Schouten. The Structure of Parafrase-2: an Advanced Parallelizing Compiler for C and For-tran. In D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for ParallelComputing, pages 423{453. The MIT press, 1990.[28] B. C. Smith. Re
ection and semantics in a procedural language. Technical Report 272,Massachusetts Institute of Technology. Laboratory of Computer Science, 1982.[29] G.L. Jr. Steele. RABBIT: a compiler for SCHEME. AI Memo 474, MIT, May 1978.24

[30] C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha. Rosette: An ObjectOriented Concurrent System Architecture. SIGPLAN Notices, 24(4):91{93, 1989.[31] C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. In OOPSLA,1989.[32] N. Venkatasubramian. Hierarchical Memory Management in Scalable Parallel Systems. Mas-ter's thesis, University of Illinois at Urbana-Champaign, 1991.[33] T. Watanabe and A. Yonezawa. ABCL An Object-Oriented Concurrent System, chapter Re-
ection in an Object-Oriented Concurrent Language, pages 45{70. MIT Press, Cambridge,Mass, 1990.[34] P. Wegner. Dimensions of Object-Based Language Design. Technical Report CS-87-14, BrownUniversity, July 1987.[35] A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System. MIT Press, Cambridge,Mass., 1990.

25

