Compilation of a Highly Parallel Actor-Based Language

WooYoung Kim*and Gul Aghal

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

Email: {wooyoung | agha}@cs.uiuc.edu

June 23, 1992

Abstract

HAL incorporates a number of high-level language constructs such as the incremental special-
ization of synchronization constraints to maintain the consistency of actors at run-time, the
inheritance of both code and synchronization constraints, and limited reflective capabilities to
customize the system with respect to fault tolerance. This paper describes some issues in com-
piling HAL, and, in particular, three source level transformations used by the compiler for HAL.
Two of the transformations translate RPC-style message sending into asynchronous message
sending. The third transformation performs code motion to optimize the implementation of
replacement behavior. This optimization results in the reduction of object code size as well as

execution time.

Keywords: Actor, concurrency, synchronization constraint, inheritance, optimization

*This author is sponsored by a fellowship from Ministry of Education in Korea.

"The work described in this paper has been made possible by generous support provided by a Young Investigator
Award from the Office of Naval Research (ONR contract number N00014-90-J-1899), by an Incentives for Excellence
Award from the Digital Equipment Corporation, and by joint support from the Defense Advanced Research Projects
Agency and the National Science Foundation (NSF CCR 90-07195).

1 Introduction

A number of efforts have been made to build parallelizing or vectorizing compilers which attempt
to extract parallelism from code written in traditional sequential programming languages such as
FORTRAN [26, 5, 27]. Others have concentrated on compiling specialized languages which are
inherently concurrent, such as functional languages [18] and Data Flow [7]. Unfortunately, such
languages are inadequate to model concurrency in a state-based, nondeterministic world [1]. A third
language paradigm consists of languages which explicitly manipulate parallelism. Some examples
are CSP [9] and Occam [25]. However, CSP and Occam have an unavoidable limitation in the
sense that a process in these systems cannot create a new communication channel at run-time or
pass it to another process. The configuration of the system is fixed at compile time resulting in a
static topology. Our work is related to the last two paradigms. We use the Actor model [1] which
unifies the functional and the object-based view of computation, supports parallelism explicitly and
provides for a dynamic topology of computational agents. On the other hand, the Actor model
differs from the model used in LINDA [11], which separates coordination from computation rather
than treats them in a single framework.

We have developed a high-level programming language, called HAL. Our goals in designing

HAL are as follows:

Generality: We want our programming language to be truly general purpose. Control parallelism
as well as data parallelism should be expressed in HAL in a natural way. Shared objects
should be easily described. Furthermore, HAL should be architecture independent to allow

efficient execution on both shared and distributed memory machines.

Modularity and Abstraction: To simplify programming, HAL should support data and func-

tional abstraction. In particular, users should be able to specify the abstraction (interface)

independently of its representation (implementation). Furthermore, HAL should support
re-usability through language constructs such as inheritance, higher-order functions and re-

flection.

Efficient Execution: It should be possible to describe arbitrary applications in sufficient detail
to support efficient execution on different concurrent architectures. In particular, the same
application may require different resource management techniques on different concurrent

architectures.

In designing HAL, we use a reflective Actor model to realize those goals. The current paper
describes ongoing work on HAL and its compiler. Compiling HAL for efficient execution creates a
number of distinct problems. We describe some of these problems, namely, resource management,
inherent concurrency, synchronization constraints and distributed objects. These problems stem

from the power and the flexibility inherent in actor-based languages.

Resource Management

HaATL is designed in such a way that the code of a parallel algorithm can be described in an archi-
tecture independent way. However, for efficiency it is often essential to explicitly specify resource
management policies for actor placement and load balancing. HAL allows the code for resource
management and code for the application to be separately specified. Besides reducing code com-
plexity, this allows both the code of application algorithms and the code for resource management
strategies to be reused. The compiler must combine these two kinds of specifications for efficient

execution (Section 2.7).

Inherent Concurrency

The Actor model supports internal concurrency as well as explicit parallelism [1]. The internal
concurrency is inherently fine-grained. However, almost every conventional processor is too coarse
grained to realize the fine-grained computation inherent in the internal concurrency in an efficient
way. To achieve better performance, we must have a certain amount of run-time control over grain
size. The internal concurrency makes it possible to pipeline behavior changes of an actor. However,
the implementation of such pipelining on coarse grained processors carries memory management
overhead. By not implementing such pipelining, we have obtained a good performance improvement
on current generation medium-grained multicomputers. (Section 3.2).

Representation of method invocations in the form of functional expressions allows the simple
specification of control in the program. Unfortunately, it can cause unnecessary loss of concurrency
if a function caller blocks until it receives returned function value. The transformation of such
representations into asynchronous message passing makes it possible to retain maximal concurrency

in the program (Section 3.1).

Synchronization Constraints

In a CSP like model, communicating processes must be synchronized whenever they exchange
messages with each other. The synchronization is accomplished through busy waits. Synchronous
communication is expensive because that a sender cannot send a message until a receiver is ready
to accept the message, causing loss of concurrency. In contrast, by using buffering accompanied
with asynchronous message passing, we eliminate the need for extraneous synchronization, thereby,
retaining the concurrency. Furthermore, asynchronous communication localizes the enforcement
of synchronization constraints at the recipient. This is especially important since a requirement

of fairness requires the re-evaluation of synchronization constraints with each message and state

change [14, 15].

Distributed Objects

If only one actor is responsible for processing all incoming communications to a large data structure,
the actor will be a bottleneck. We avoid the single address bottleneck problem associated with
the uniqueness of an actor’s address by allowing concurrent access to a large data structure and
locking only the relevant portion of the data structure. Our approach follows work on Concurrent
Aggregates [12].

In the following section, we discuss some linguistic features of HAL with their semantics. Sec-
tion 3 discusses the transformations of RPC style message sending and the transformation for code
motion to optimize the implementation of replacement behavior. Some research related to our com-
piler is described in Section 4. The last section provides future research directions and concluding

remarks.

2 HAL: A High-level Actor Language

We begin the section with a brief description of the Actor model. We then discusses the specification
of synchronization constraints, inheritance, and the specification of replacement behavior. Finally,
issues related to memory management, extensions to the asynchronous message passing primitive

and reflection capability are addressed in that order.

2.1 The Actor Model

Actors are self contained, independent computational agents that communicate by asynchronous
message passing [1]. An actor consists of its mail queue and behavior. It is identified by its unique

mail address. The mail queue of an actor buffers incoming communications (i.e. messages). The

behavior of an actor specifies the action performed by an actor in response to a communication. An
actor’s state is defined by its acquaintances (actors whose mail addresses are known to the actor).
All computation in an actor system is carried out in response to communications sent to actors

in the system. Specifically, an actor may perform three kinds of actions when it accepts a message:

e it may change its behavior.

e it may send more communications. Communication is asynchronous and point-to-point to an
acquaintance. The sender may not be known, but the recipient must be an acquaintance of
the sender. The delivery of a message is guaranteed after an arbitrary, but finite, delay (a

fairness condition [14]).

e it may create more actors. These actors have their own unique mail addresses which are

initially known only to their creator and possibly themselves.

The replacement behavior of an actor is specified through the become primitive. Whenever
there is no executable become primitive in the thread of an actor computation, an identically
behaving actor is assumed to be its replacement behavior (by default). Note that communications
may contain mail addresses of actors; thus the interconnection topology of an actor system is
dynamic.

Building on the basic actor execution model, we have designed a high-level programming lan-
guage, named HatL [16]. HAL is a descendant of actor languages such as Acore [24], Rosette [30]
and ABCL/R [33]. It provides abstractions which facilitate software development. We describe the
constructs used for such abstractions below, emphasizing implementation issues. A more detailed
description of the language constructs and their motivation may be found in [16, 17]. Note, how-
ever, that HAL is an evolving language. New high-level constructs are continually being developed

and tested in order to explore ways of simplifying the task of parallel programming while improving

efficiency in execution.

2.2 Specification of Synchronization Constraints

Actor semantics does not require message order preservation. In order to protect the system as
well as an actor from possible internal inconsistency due to message order nondeterminism, we
need to be able to specify synchronization constraints on actors. Earlier work has established how
synchronization constraints can be used for software pipelining [3]. In particular, such pipelining
transforms some algorithms, such as the Cholesky Decomposition of a symmetric positive definite
matrix, from unscalable algorithms into scalable ones.

We have adopted a philosophy of synchronization constraints proposed in [15]. All constraints
are expressed as disabling restrictions. A disabling restriction means whenever any condition as-
sociated with a method evaluates to TRUE, the underlying system closes the entry point of the
method and disables the method. All messages with the method name are not accepted until all
conditions evaluate to FALSE. Use of disabling restrictions instead of enabling conditions [30, 6]
ensures that the synchronization constraints which hold for a superclass also hold for the subclasses
which are derived from the superclass. Therefore, programmers can reason about the subclasses in
terms of the superclass [15].

Disabling restrictions are specified using the following syntax:

(disable <msg-expr> <expr>)

(all-except <msg-expr> <expr>)
where <msg-expr> specifies the method name on which the constraint is imposed. Users are
allowed to associate more than one synchronization constraint with a method. <expr> is a
function of acquaintances (i.e. actor’s internal state) and the incoming communication. When

<expr> evaluates to TRUE, the method specified in <msg-expr> is disabled. If a constraint is

specified with all-exzcept, all other methods are disabled except one specified in <msg-expr>. The
incoming messages with the method name are kept in the actor. When all conditions associated with
a method evaluate to FALSE, its entry point is open and the pending messages may be processed.

A potentially significant source of inefficiency is the need to re-evaluate the constraint expres-
sions of the pending messages that are kept in an actor. In the current implementation, whenever
the actor state changes, all constraints associated with the pending messages are re-evaluated. To
allow more efficient execution, we are currently experimenting with a scheme which requires the
evaluation of only those constraints that depend on the acquaintances which have changed. Specif-

ically, our scheme uses dynamic dependency lists between an actors acquaintance and constraints.

2.3 Inheritance

HATL has been designed to satisfy all of Wegner’s qualifications to be classified as an object-oriented
language [34] . Class variables are not supported since they imply shared data between actors, thus
restricting their autonomy and distribution. HAL allows the inheritance of both code and synchro-
nization constraints. Asin Smalltalk [22], any method of the superclass of an actor may be redefined
in the definition of the actor. Synchronization constraints, however, may only be strengthened, not
weakened [15]. In this sense, inheritance can be viewed as a means of specialization. However, we
are investigating whether it is beneficial to allow first-class constraints.

Figure 1 defines a set of stack classes which exemplify the possible usage of inheritance and
synchronization constraints. The most basic actor class is Stack which has the methods to push
and pop one element to and from the stack, respectively. This definition has a constraint (> count
0) on pop which must hold in order for a pop message to be processed.

The Bounded-stack class is a subclass of Stack. This class has a constraint on the absolute

size of the stack; one cannot make the stack hold more than max elements at any time. Since we

(defActor Stack (stack count)

(disable (pop) (< count 0))

(method (push x)
(update stack (cons x stack))
(update count (+ count 1)))

(method (pop entrypoint continuation)
(send entrypoint continuation (car stack))
(update stack (cdr stack))
(update count (- count 1))))

(defActor Bounded-stack (max)
(superclass Stack)
(disable (push) (> count max)))

(defActor Pop2-stack
(superclass Bounded-stack)
(disable (pop2) (< count 1))
(method (pop2 entrypoint continuation)
(send entrypoint continuation (car stack) (car (cdr stack)))
(update stack (cdr (cdr stack)))
(update count (- count 2))))

Figure 1: Stack actor classes

have separated the specification of synchronization constraints from the code of the actual method,

we only need to state the new constraint without having to redefine the push method. Note that

more restrictions are imposed on the push method in Bounded-stack class than in Stack class.

Finally, we define the Pop2-stack class as a subclass of the Bounded-stack class with the

ability to pop two elements out of the stack as an atomic action. This behavior is provided through

the pop2 method. Under our constraint specification scheme, the definition of both pop and push

methods can be inherited from the Stack class into both of these subclasses. Also, the incremental

specialization of synchronization constraints is allowed through inheritance [15].

2.4 State Change

Replacement behavior is computed by the become primitive in the Actor model. An actor can
become an entirely different actor as a result of processing the become primitive. However, in many
cases, replacement behavior involves only one or two acquaintance changes of an actor.

The update primitive gives us a convenient way to specify a replacement behavior with the

change of one acquaintance. It has the following syntax:

(update <acquaintance-name> <expr>)
update obeys a single-assignment semantics: there may be only one become in any given method
invocation. However, more than one update can appear if they do not update the same acquain-
tance. Since the effect of replacement behavior is invisible to the current computation of an actor,

multiple update’s can be viewed as one become with several acquaintance changes.

2.5 Message-passing Mechanisms

Besides the asynchronous message sending provided in Actor semantics, HAL provides two more
message sending primitives: ssend and bsend. The former is the message order preserving send
primitive, or sequenced send. The latter is the RPC style send primitive akin to Acore’s ask prim-
itive [24]. Though they have some flavor of synchronous message sending, they are not synchronous
in the sense that a sender does not need to know whether a receiver is ready to accept its message
or not.

ssend gives a sender a way to control the sequence of actions which occur at a receiver. bsend
is just like a function call so that the computation proceeds with the reply from the receiver. ssend
is implemented by tagging the message sent and reordering messages, if needed, at the recipient’s
end. bsend can be used as a way to synchronize several coordinating actors. The implementation

issues related to bsend are given in detail in Section 3.1.

10

2.6 Suicide

When executing a large actor program, many actors may be created as a result of computation.
Some of them will never be used again after they have accepted certain communications. Once
they process particular communications, they become garbage actors, wasting valuable resources
until they are reclaimed by garbage collector. It is beneficial to reclaim the resources which belong
to such actors as soon as they become garbage. suicide is the primitive which does exactly
what we want. It is similar to that used in Cantor [8]. When an actor executes the suicide
primitive, it frees all the resources which are allocated to it so that the resources can be reused.
This primitive can be used by a programmer or the compiler. Readers can find an example for
the latter case in Section 3.1.1. Once garbage collection has been fully optimized, use of suicide

would be discouraged since suicide creates unsafe programs.

2.7 Reflection

Reflection is a system’s ability to reason about itself and manipulate a causally connected descrip-
tion of itself [28, 23]. Causal connection means that changes to the description have an immediate
effect on the described object. Note, however, that the changes go into effect only for the subse-
quent messages. In general, reflection may be used to customize the implementation of a system
from within the language.

Currently, HAL supports the minimal amount of reflection capability necessary to customize
the system with respect to fault tolerance [2]. An actor can reify its dispatcher and mail queue
(the conceptual entities responsible for sending and receiving the communication, respectively).

(Mailq <expr>)

(Dispatcher <expr>)

The value of <expr> is the mail address of an actor. Once the mail queue of an actor is

11

reified, all subsequent messages destined to the actor are delivered through its reified mail queue
actor. To get a next message to process, the actor notifies its reified mail queue actor by sending
a special message. A synchronization constraint is associated with the method in the mail queue
actor corresponding to the message, guaranteeing that the message is accepted only when the mail
queue actor has one or more messages to deliver. Reification of the dispatcher of an actor causes
all the outgoing messages from the actor to be sent through its reified dispatcher actor. These are
implemented by using system-generated put, get and transmit messages, respectively.

Since reified mail queue actors and reified dispatcher actors are just ordinary actors, we can
use any actor as a mail queue actor or a dispatcher actor. However, our implementation requires
that all mail queue actors share a set of common properties such as having put and get methods,
being able to hold the incoming messages in its state, etc. The dispatcher actors share their own
common properties too. We enforce these rules by restricting the eligible actors for mail queue
actors or dispatcher actors: the run-time system provides the default mail queue/dispatcher actor
classes from which all the other mail queue and dispatcher actors inherit, respectively (Figure 2).
Users can define a mail queue actor class as follows:

(defActor myMailQ (acql acq2)

(superclass Mailq)

(method (entryl a b ¢)

A dispatcher actor can be defined similarly. The compiler enforces all mail queue (dispatcher)
actors to have the default Mailq (Dispatcher) actor class at the top of its class hierarchy. Similarly,
for the dispatcher actors.

Note that a user does not need to know about the existence of enqueue, dequeue and toss

shown in Figure2. enqueue adds a message to the queue internal to a mail queue actor. dequeue

12

(defActor Mailq (baseActor queue)
(disable (get) (emptyqueue queue))
(method (put msg)

(enqueue queue msg))
(method (get)
(let [[msg (dequeue queue)]]
(toss msg baselctor))))

(defActor Dispatcher

(method (transmit msg dest)
(toss msg dest)))

Figure 2: Default mail queue actor class and default dispatcher actor class

returns the message at the front of the queue. toss is just a variation of send, the asynchronous
message sending primitive but it uses an already packed message so that it saves unnecessary
unpacking and packing of the message.

These reflection capabilities have been used to carry out an experiments in implementing re-
usable software fault tolerance protocols [2]. Such capabilities can also be used to separate the
code for resource management, such as that for optimal actor placement, from the code for an

application.

3 Implementation Issues

In this section, we discuss three transformation techniques used in the HAL compiler. Two trans-
formations allow translation of RPC style send primitives into asynchronous send primitives. The
last one is the transformation for code motion to optimize the implementation of update /become
primitive. The transformed programs shown in the figures are written in HAL itself to make it

easier to understand the meanings of the transformations.

13

3.1 Transformation on RPC Style Send Primitive

Most distributed memory multi-processor systems do not support truly synchronous message send-
ing in the sense that a sender and a receiver cannot synchronize with each other when they exchange
a message. In order to implement RPC style message sending (Section 2.5) on such architectures,
we must be able to express it in terms of ordinary asynchronous message sending. In the following

two sections, we discuss the implementation of RPC style message sending in our compiler.

3.1.1 Join Continuation

Recall that bsend is like a remote procedure call which returns a result back to the place where
the call is made. By lifting into a separated actor the expressions that should be executed only
after a bsend expression receives a reply. we can implement bsend in terms of send. Note that
the lifted actor is the continuation of the bsend expression. Delegation of work to an independent

continuation actor makes it possible to avoid unnecessary loss of concurrency in the execution.

(send mB (new ActorB a b) x (bsend mC ActorC ...)
(bsend mD ActorD ...)
(bsend mE ActorE ...))

Figure 3: Example expression which uses bsends

Consider the expression in Figure 3. The send expression has no effect on the computation
of the other parts of the method script except that it should be executed only after it gets all the
replies from the bsend expressions. Simply making the continuation passing style (CPS) conversion
[29, 21] is not satisfactory since it sequentializes the execution of the bsend expressions, causing a
loss of concurrency.

We create an independent join continuation actor through dependency analyses. The expression

in Figure 3 is transformed into the join continuation actor in Figure 4 and the expression in

14

Figure 5. The join continuation actor is responsible for the execution of the expressions that must
be executed only after all replies arrive from the target actors of the bsend expressions. When
the join continuation actor gets a reply from one of target actors, it checks if all the other values
have been received. If so, it executes the assigned expressions. If not, it stores the value in its
state and waits until all values are available. The availability of each value is kept in a flag which
is associated with the corresponding acquaintance variable. In Figure 4, a join continuation actor
is created with the appropriate initial values for its acquaintance variables and the environment in
which it executes the assigned expressions. Note that a unique method name corresponding to the
entry point of each reply message as well as the join continuation actor is added in the original
bsend expressions. The definition of receiver actors should be modified accordingly to reflect the

change in the sender actor’s definition.

(defActor JC (acql acq2 vi1 v2 v3 f1 £f2 £3)
(method (epl x)
(if (and £2 £3)
(block (send mB acql acq2 x v2 v3)
(suicide))
(block (update vl x)
(update f£1 TRUE))))
(method (ep2 x)
(if (and f1 £3)
(block (send mB acql acq2 vl x v3)
(suicide))
(block (update v2 x)
(update f£2 TRUE))))
(method (ep3 x)
(if (and f1 £2)
(block (send mB acql acq2 vl v2 x)
(suicide))
(block (update v3 x)
(update £3 TRUE)))))

Figure 4: Extracted Join Continuation actor

The transformation given in this section is similar to the transformation done in Acore [24].

15

(let* [[jc (new JC (new ActorB a b) x O 0 O FALSE FALSE FALSE)]]

(send mC ActorC ... epl jc)
(send mD ActorD ... ep2 jc)
(send mE ActorE ... ep3 jc))

Figure 5: The transformed expression

Figure 6: Message trajectory after extracting the Join Continuation actor

ActorB

However, there are two major differences. First, by associating with each acquaintance variable an
explicit flag which holds values received, we eliminate the overhead of system-wide unique value.
Second, the suicide primitive (Section 2.6) is used to optimize memory reclamation. Because a
join continuation actor is defined by the compiler, the compiler knows that the continuation actor
will become garbage after it has been used only once. Thus, the compiler includes suicide in the
definition so that the resources allocated to a join continuation actor can be reused as soon as it
becomes garbage. Figure 6 shows the message sending pattern when the transformed program is

executed.

(defActor Customer (a b c)
(method (ml x y)

(update a (bsend m2 (new Server) x y)

(a) Before Transformation

(defActor Customer (a b c flag)
(all-except ml-continuation flag)
(method (ml x y)

(send m2 (new Server) x y ml-continuation self)
(update flag TRUE)
:)
(method (ml-continuation x)
(update a x)
(update flag FALSE))

(b) After Transformation

Figure 7: Transformation with method splitting

3.1.2 Method Splitting

When a bsend expression is used with the specification of replacement behavior, we are forced to

sacrifice some concurrency in order to maintain the consistency of the actor’s state (Figure 7.a). If

we allow the sender to proceed before it gets the reply back, the sender may see the old value of

the acquaintance rather than a new value when it accepts the next message. In this situation, we

cannot delegate the work dependent on the bsend expression to a continuation. Rather, we split

the method executing the bsend expression and add a synchronization constraint to the resulting

continuation method (Figure 7). All methods except the desired continuation method are disabled

until the reply has been received, guaranteeing a safe update.

17

3.2 Optimization on the Replacement Behavior

3.2.1 Transformation for Code Motion of Replacement Behavior

The semantics of the Actor model dictates that each communication to an actor is processed on
its own version of the actor’s state, allowing pipelining in the execution of the method containing
become /update [1]. This internal concurrency implies that each expression in a method can be
executed concurrently and the effect of replacement behavior is visible only to subsequent com-
munications. However, it can be very expensive to utilize all available internal concurrency on
conventional multiprocessor architectures. We sacrifice the concurrent execution of each expression
of a method while retaining the single assignment semantic of the replacement behavior.

However, simple compilation of HAL program into sequential code preserving its textual order
is not sufficient to make the effect of replacement behavior invisible to the current computation.
In other words, the send expression in the following method definition may use the new value of
balance where it is supposed to use the old value.

(method (deposit amount)

(update balance (+ balance amount))

(send deposit Loghctor balance amount))

A straight-forward solution is to have a copy of an actor’s acquaintance list, and perform an
update on the copy rather than on the original acquaintance list. At the end of the computation,
we can simply replace the acquaintance list with the copy. This solution is simple but has a very
high overhead since it requires the entire acquaintance list to be copied whenever we execute the
method containing become /update primitives.

Our solution is to be as lazy as possible. The very internal concurrency that gives us the
problem also allows us to solve it efficiently. We move become /update expressions to the end of

the computation so that we can perform update in place.

18

The visibility of the effect of become /update primitives only to the subsequent messages
guarantees the operational equivalence between the program before the transformation and the
program after the transformation. The use of bsend’s need not affect the equivalence since they

have already been detached from the corresponding update’s.

(if (_A_)
(block

(update a x)

:)
(block

(update a y)
))
(if (_B_)
(block

(update ¢ x)

:)
(block

&update c y)
)))

Figure 8: Before the transformation to optimize replacement behavior

Simply moving update’s to the end of the method is not enough when a program has more than
one if expression (Figure 8). We split each if into two ifs, one with no update and the other
with update’s only. All if expressions without update’s are placed before all if expressions
with update’s only. Splitting if expression makes two copies of the same if condition expres-
sion. Unnecessary evaluation of the same conditions can be saved by introducing a let binding
(Figure 9). Nested if expressions are not difficult to transform. let bindings introduced during
splitting inner if expressions are promoted to the outer block so that the outer if expression is

split as before.

19

(let* [[ra (_A_)] [xrb (_B_)]]

(if ra
(block ...)
(block ...))
(if rb
(block ...)
(block ...))
(if ra

(block (update a x))

(block (update b y)))
(if rb

(block (update c¢ x))

(block (update c y)))))

Figure 9: After the transformation to optimize replacement behavior

3.2.2 Performance Comparison

Table 1 shows the execution time of different number of update’s when we compiled an actor
program with 6 acquaintance variables using the earlier version [16] and the current version of the
HAL compiler. The current version uses the optimization which is mentioned in Section 3.2.1. The
reason why the earlier version of HAL takes much more time to perform update’sis that update’s

are implemented in the straight-forward way by copying the acquaintance list of the actor.

number of updates 1 2 3 4 5
Execution time | unoptimized update | 285 | 304 | 323 | 342 | 361

(unit: cycle) in place update 171 26| 35| 44| 53
method size unoptimized update | 32| 33| 33| 33| 33
(unit: byte) in place update 171 21| 24| 26| 27

Table 1: Execution time for updates

Table 1 also shows the code size per method in the executable object file. In all cases, optimized
update yields less code size. Currently, HAL programs run on the top of the CHARM programming
system which is a C based system [20]. CHARM has been implemented on both shared and

distributed memory machines. The total execution time for this simple example was about 0.0527

20

sec. Over 90% of the time was spent to execute CHARM kernel code, showing that the start-up
overhead of CHARM is very high. In order to further improve performance, we are implementing our
compiler on a lower-level run-time system, namely, CHOICES [10], an object-oriented distributed

operating system, which is known to be more efficient.

4 Related work

In this section, we briefly compare our work with several previous efforts to build actor-based
parallel languages and their compilers. Note that the first three languages, Act, Cantor and Acore,
do not support inheritance and do not provide explicit constructs for specifying synchronization

constraints.

Act: It compiles the Scripter language into code which can be executed on a simulator for the
Actor model, called Apiary, written on Symbolics 3600 Lisp machines. The Act compiler

changes most system generated message sending to lisp function calls [13].

Cantor: Programs written for the Cantor system [8] can run on either sequential machines or Intel

iPSC series machines. All communication is done through asynchronous message passing.

Acore: C. Hewitt’s group at M.I.T. implemented the Acore compiler on the Apiary operating
system [24]. It allows for synchronous message passing as well as asynchronous message

passing.

Rosette: Developed at MCC in collaboration with one of the authors, Rosette [30] runs on a
uni-processor virtual machine. It supports synchronous and asynchronous message passing.
Synchronization constraints are specified through enabled sets [31] which specify the methods
that may be invoked by the next message. Enabled sets are mixed in with the code so that

Rosette cannot support incremental specialization of synchronization constraints.

21

ABCL/R: ABCL (Actor Based Concurrent Language) provides for asynchronous, synchronous
and future based message passing. ABCL also allows the specification of synchronization
constraints. One difference of HAL and ABCL is that ABCL does not support inheritance

[35].

5 Current Status and Future Research Direction

Some practical examples show the performance advantage of using fine-grained inherent concurrency
in the Actor model for distributed execution on multicomputers [3]. However, to design an actor-
based language which is easy to use and machine independent, we need to add several linguistic
extensions to the basic Actor model. For example, the ability to easily describe synchronization
constraints in a high-level, abstract and reusable way is indispensable in a high-level concurrent
language: such constructs guarantee the consistent and reliable execution of parallel algorithms.
HAL supports the specialization and factorization of both code and synchronization constraints
using inheritance. Other features such as sequenced send, RPC style send, and update are added
to make the language a general and easily programmable one.

The HAL compiler generates a program written in CHARM [20] as its output. Optimization on
the update primitive is implemented in HAL. We are implementing the transformation to extract
a join continuation actor. Optimization on synchronization constraints is going to be added in near
future. Active research is being done to incorporate distributed data structures in our compiler.

A fair amount of effort has been made to preserve the concurrency which is naturally expressed
in HAL. Currently, the run-time system for HAL does not support garbage collection. Distributed
garbage collector [19, 32] should be incorporated in near future. Finally, the compiler should be
able to provide the run-time system with information on load balancing and locality control using

modular specifications given by the user [3].

22

Acknowledgments

We would like to thank other members of Open Systems Laboratory at the University of Illinois at

Urbana-Illinois, in particular, Svend Frolund and Daniel Sturman for their constructive suggestions

for designing HAL, and Raju Panwar and Chirstian Callsen for careful reading the draft of this

paper. We also appreciate Chris Houck, a former member of OSL, for his work on designing and

implementing the earlier version of HAL.

References

[1]

[2]

[10]

[11]

G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
1986.

G. Agha, S. Frglund, R. Panwar, and D. Sturman. A Linguistic Framework for Dynamic
Composition of Fault-Tolerance Protocols. Technical Report UTUCDCS-R-92-1730, University
of Illinois at Urbana-Champaign, April 1992.

G. Agha, C. Houck, and R. Panwar. Distributed Execution of Actor Systems. In Proceedings
of Fourth Workshop on Languages and Compilers for Parallel Computing, Santa Clara, 1991.

A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison
Wesly, 1986.

R. Allen and K. Kennedy. Automatic Translation of Fortran Program to Vector Form. ACM
Transactions on Programming Languages and Systems, 9, 1987.

P. America and F. van der Linden. A Parallel Object-Oriented Language with Inheritance and
Subtyping. In OOPSLA °90, pages 161-168, October 1990.

Arvind and D. Culler. Annual Reviews in Computer Science, chapter Dataflow Architecture,
pages 225-253. Annual Reviews Inc., 1986.

W. Athas and C. Seitz. Cantor User Report Version 2.0. Technical Report 5232:TR:86,
California Institute of Technology, Pasadena, CA, January 1987.

S. Brookes, C. Hoare, and A. Roscoe. A Theory of Communicating Sequential Processes.
Communications of the ACM, 31:560-599, July 1984.

Roy H. Campbell, Vincent Russo, and Gary Johnston. Choices: The Design of a Multiprocessor
Operating System. In Proceedings of the USENIX C++ Workshop, pages 109-123, Santa Fe,
New Mexico, November 1987. IEEE.

N. Carriero and D. Gelernter. Linda in Context. Communication of the ACM, 32(4):444-458,
April 1989.

23

[12] A. Chien. Concurrent Aggregates: An Object-Oriented Language for Fine-Grained Message-
Passing Machines. PhD thesis, MIT, July 1990.

[13] P. de Jong. Compilation into Actors. SIGPLAN Notices, 21(10):68-77, October 1986.
[14] N. Francez. Fairness. Texts and Monographs in Computer Science. Springer-Verlag, 1986.

[15] S. Frolund. Inheritance of Synchronization Constraints in Concurrent Object-Oriented Pro-
gramming Languages. In Proceedings of Furopean Conference on Object-Oriented Program-
ming, 1992. (to appear).

[16] C. Houck. Run-Time System Support for Distributed Actor Programs. Master’s thesis, Uni-
versity of lllinois at Urbana-Champaign, January 1992.

[17] C. Houck and G. Agha. HAL: A High-level Actor Language and Its Distributed Implementa-
tion. In 21st International Conference on Parallel Processing (ICPP ’92), August 1992. (to
appear).

[18] P. Hudak. Conception, Evolution and Application of Functional Programming Languages.
ACM Computing Surveys, 21(3):359-411, September 1989.

[19] D. Kafura, D. Washabaugh, and J. Nelson. Garbage Collection of Actors. In OOPSLA ’90,
pages 126134, October 1990.

[20] L. Kale. The CHARM(3.0) Programming Language Manual. University of Illinois, February
1992.

[21] D. A. Kranz. ORBIT: An Optimizing Compiler for Scheme. PhD thesis, Yale University,
February 1988. YALEU/DCS/RR-632.

[22] W. Lalonde and J. Pugh. Inside Smalltalk, volume 1. Prentice Hall, 1990.

[23] P. Maes. computational reflection. Technical Report 87-2, Vrije University. Artificial Intelli-
gence Laboratory, 1987.

[24] C. Manning. ACORE: The Design of a Core Actor Language and its Compiler. Master’s
thesis, MIT, Artificial Intelligence Laboratory, August 1987.

[25] D. May, R. Shepherd, and C. Keane. Communicating Process Architecture: Transputer and
Occam. In P. Treleaven and M. Vanneschi, editors, Future Parallel Architecture, pages 35-81.
Springer-Verlag, 1986. LNCS 272.

[26] D. Padua and M. Wolfe. Advance compiler optimizations for supercomputers. Communication
of the ACM, 29(12):1184-1201, December 1986.

[27] C.D. Polychronopoulos, M.B. Girkar, M.R. Haghighat, C.L. Lee, B.P. Leung, and D.A.
Schouten. The Structure of Parafrase-2: an Advanced Parallelizing Compiler for C and For-

tran. In D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for Parallel
Computing, pages 423-453. The MIT press, 1990.

[28] B. C. Smith. Reflection and semantics in a procedural language. Technical Report 272,
Massachusetts Institute of Technology. Laboratory of Computer Science, 1982.

[29] G.L. Jr. Steele. RABBIT: a compiler for SCHEME. AI Memo 474, MIT, May 1978.

24

[30] C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha. Rosette: An Object
Oriented Concurrent System Architecture. SIGPLAN Notices, 24(4):91-93, 1989.

[31] C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. In OOPSLA,
1989.

[32] N. Venkatasubramian. Hierarchical Memory Management in Scalable Parallel Systems. Mas-
ter’s thesis, University of lllinois at Urbana-Champaign, 1991.

[33] T. Watanabe and A. Yonezawa. ABCL An Object-Oriented Concurrent System, chapter Re-
flection in an Object-Oriented Concurrent Language, pages 45-70. MIT Press, Cambridge,
Mass, 1990.

[34] P. Wegner. Dimensions of Object-Based Language Design. Technical Report CS-87-14, Brown
University, July 1987.

[35] A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System. MIT Press, Cambridge,
Mass., 1990.

25

