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Abstract—We propose a methodology to analyze algorithms
in order to reduce energy waste in executing applications. Our
methodology is based on three observations. First, the relation
between power and frequency of a single core is approximately
cubic. Thus it may be possible to run an application slower on a
core in order to save energy. In the case of a parallel architecture,
one has to also factor the effect (on performance and energy
consumption) of the interaction between cores. Second, multicore
architectures which aggressively manage power consumption by
allowing cores to be operated at reduced frequencies are being
developed. This means that parallel applications on a multicore
architecture can be executed using a variable number of cores
running at different frequencies–affecting both the performance
of the application and the energy required to execute it. Lastly,
there is a certain benefit (positive utility) in running an application
faster and a cost (negative utility) in terms of the energy
consumed. Expending energy that does not contribute to the
overall utility wastes the energy. The precise trade-off between
performance and energy consumption depends on the structure
of a parallel algorithm and the associated utilities. We describe
a methodology to do this trade-off and illustrate it with several
parallel algorithms.
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I. INTRODUCTION

A significant amount of energy is consumed by computers:
by one estimate, in the United States alone computers consume
13% of all electricity [1]. It is should also be noted that other
estimates have come up with a lower figure, all estimates
are dated, and there is no consensus on the the numbers
or even how to measure them. Nevertheless, it is clear that
energy consumption by computers incurs both economic and
environmental costs, contributing to an ever increasing degree
to global warming (e.g. see [2]). In a series of papers, we
have been studying how performance (inverse of time taken
to execute an application) can be traded for energy savings in
executing an application [3], [4].

The key idea is based on the following observations.
Roughly speaking, power is approximately proportional to the
cube of the speed (frequency) at which a core operates [5].
Recall that power is the rate at which energy is expended.
This means that the energy E consumed by an algorithm
(on a single core) is approximately proportional to the square
of frequency at which it is executed. In other words, for a
sequential algorithm, E.T 2 is constant with respect to varying
frequency(where T represents the time taken by the algorithm
to execute). Thus we can save energy by reducing the fre-
quency at which a core operates. In case of an embarassingly

parallel algorithm, the relation between frequency of cores
and energy consumption is similar to that of the sequential
algorithms. In this case running 2n cores at frequency f , for
example, would take approximately a quarter the energy of
n cores running at frequency 2f , while providing the same
performance.

In general, the relation between energy and performance
of a parallel application is more complicated. This is because
parallel algorithms typically involve interaction between dif-
ferent actors, and communication (or acess to shared memory)
takes both time and energy. Moreover, the precise relation of
performance and energy to the number of cores used, and the
frequency at which those cores operate, can be complicated.
For example, for certain parallel algorithms and architectures,
communication delays can be masked by overlapping com-
munication and computation. This can dramatically improve
performance [6], [7], but the energy required for communica-
tion would be unaffected by such overlapped execution.

We associate a utility function with the performance of
an application. Specifically, we assume utility is a mono-
tonically increasing function of performance (time taken),
and a monotonically decreasing function of the amount of
energy used in executing the application. This suggests that we
can maximize utility by trading performance for energy. The
increased energy that is consumed by deploying more cores
or increasing the frequency at which they operate, without a
corresponding increase in the utility associated with improved
performance of the application, is energy that is wasted.

For the analysis in this paper, we will use a cost function that
is the inverse of the the utility associated with an execution.
Thus our objective is to minimize this cost of executing
parallel algorithms may be minimized by changing the number
of cores and their frequency. In order to make our analysis
concrete, we assume that cost is a linear function of the energy
consumed by an application. Our simplifying assumption is
quite reasonable. Energy is often linearly priced per unit (if
environmental costs were assessed through a Carbon tax, that
too would be factored in the price of the energy).

Moreover, we assume that cost is also a linear function of
the time taken in executing an application. This assumption
is quite reasonable in some contexts. If applications are run
on a commercial supercomputer or in the cloud, what one
pays a vendor is roughly linear with the time used. However,
the assumption of linear cost of execution time is restrictive
and may not hold in other contexts. For example, in case of



a laptop with hundreds of cores, user response time will not
have a linear cost function. Concave utility functions would
provide a more general model. Our motivation in restricting
the analysis to linear utility (cost) functions is to keep the
analysis simple.

An analysis of performance or energy consumption requires
fixing a particular computational model. It is reasonable to
assume that as the number of cores increase, multicore archi-
tectures are likely to be based on message-passing [8]. We
therefore choose a message-passing model of parallel compu-
tating for our analysis. We make some further assumptions
about the associated energy model. Specifically, we assume
that all cores are homogeneous. This assumption keeps the
analysis simpler and allows us to focus on the effect of
the parallel algorithm. We also assume that cores that are
idle consume minimal power, something that is already true
in many architectures. We do not concern ourselves with a
memory hierarchy but assume that local memory accesses
are part of the time taken by an instruction. We assume
that the communication time between cores is constant. This
assumption is unlikely to be true with very large numbers of
cores, but is reasonable as long as the time taken for sending
and receiving a message is much greater than the time taken
en route between the cores. We discuss ideas for possible
extensions in Sec. VII.

Note that the architectural model we use in this paper is
similar to the one we used earlier in [3], except that in the
present paper we also consider energy leakage when a core
is running at a lower frequency. In our earlier work [3], we
fixed a performance requirement and analyzed parallel algo-
rithms to minimize energy consumption given the performance
requirement. The present paper shares the methodology for
framing an energy equation with this earlier paper. However,
the objective in this paper is far more general. Thus previous
work can be seen as a special case of the work presented in
this paper. Specifically, in the earlier work, one can think of
the utility function used as step function of execution time: its
value is some constant until some performance threshold and
then 0 afterwards.

Note that this paper shares some of the text with the
previous one: for completeness, we have included a description
of the model and some of the details describing three of
the algorithms that were also analyzed in earlier paper, as
well as some of the relevant related work. The description
of the minimun spanning tree algorithm is entirely new as
this algorithm was not studied in [3]. Moreover, the analyses
in this paper are original, as they consider linear utilities
(including energy costs) rather than what amounts to step
function utilities in earlier work.

Our analysis is sensitive to two ratios:
1) The ratio of energy required to execute an instruction

and the energy required to send a message.
2) The ratio of the cost associated with single unit of energy

to the cost associated with using the parallel system for
a unit time.

In order to understand the energy behavior of parallel

algorithms on a range of practical architectures, we study the
optimal configurations as a function of a range of values of
the two ratios.
Contributions of the paper: This paper is the first to propose
a methodology to propose saving energy by considering the
utility gain as a result of trading off performance and energy
consumption as the number of cores used and the frequency
at which they operate are varied in the execution of a parallel
algorithm. We illustrate our methodology by analyzing dif-
ferent types of algorithms, ranging from algorithms that are
almost embarrassingly parallel to those which have a strong
sequential component. Specifically, we analyze tree addition,
LU factorization, and two parallel sorting algorithms.
Outline of the paper: The next section discusses related work.
Sec. III provides the background for our analysis, justifications
for our assumptions and description of constants used in the
analysis. Sec. IV explains our methodology to reason about
the maximal utility configurations for parallel algorithms by
means of an example. Sec. VI applies our methodology to
other parallel algorithms–namely, Naive quicksort algorithm
(inefficient parallel algorithm), parallel quicksort algorithm
and LU factorization. Finally, Sec. VII discusses the results
and future work.

II. RELATED WORK

Several researcher have proposed the use of software-
controlled dynamic power management in multicore proces-
sors. These dynamic power management techniques are based
on using one or both of two control knobs for runtime
power performance adaptation: namely, dynamic concurrency
throttling to adapt the level of concurrency at runtime, and
dynamic voltage and frequency scaling [9]–[13] to change
power usage. The work on dynamic power management is
useful for creating runtime tools which may be used in
conjunction with profilers for the code. How accurate such
tools can be remains to be seen. By contrast, we develop
methods for theoretical analyzing parallel algorithms. Such an
analysis can statically determine how to minimize the costs
associated with the execution of a parallel application. One
advantage is that one may be able to choose the right algorithm
and resources a priori. Another advantage of our approach is
that it can provide greater insight into the design of algorithms
for energy conservation.

Bingham and Greenstreet have proposed a generic energy
complexity metric, ETα, for representing energy-time trade-
offs of CMOS technology [14]. Prior to this, various re-
searchers had promoted the use of the ET [15] and ET 2 [16]
metrics for modeling energy complexity. These models try to
hide voltage/frequency scaling from the programmer, while
enabling reasoning about the overall energy complexity of the
computation. On the other hand, we use the metric αE + T ,
to map the cost (utility) of running a parallel algorithm as
a function of the number of cores and the frequency at
which they operate, and view both concurrency throttling and
voltage/frequency scaling as two orthogonal control knobs
to change energy and execution time in order to maximize



the overall utility. Moreover, although energy for sending
messages forms a significant proportion of the total energy
consumed, the earlier generic complexity metrics does not
account for the energy required for message passing. We
consider both the energy required for message passing, as
well as the energy lost to leakage, during the execution of
a a parallel algorithm.

Some researchers have already considered the metric αE+
T (termed as ’flow plus energy’) [17], [18]. However, these
researchers have studied a different problem: given a set of
independent processes and processors, how can we develop
a policy to assign processes to processors and scale the
speed of the processors so that the assignment will be satisfy
the objective of optimizing ’flow plus energy’. However, we
analyze a single parallel algorithm and explicitly consider its
potentially complex messaging structure to compute ’flow plus
energy’ of actors which may interact with each other.

In our earlier work, we have studied the relation between
energy and performance for parallel algorithms. The goal of
that work was to optimize the performance given an energy
budget [19], or to optimize energy given a performance
requirement [3], [4]. In this paper, we build on our prior
work by considering the utility of performance and energy.
This provides a general framework for cost-conscious energy
conservation.

III. PROBLEM DEFINITION AND ASSUMPTIONS

In utility theory, the utility function of an agent is a function
that ranks all pairs of consumption bundles by order of
preference (completeness) such that any set of three or more
bundles forms a transitive relation. This means that for each
bundle (x, y) there is a unique relation, U(x, y), representing
the utility (satisfaction) relation associated with the bundle
(x, y). The relation (x, y) → U(x, y) is called the utility
function. The range of the function is a set of real numbers.
The actual values of the function have no importance. Only
the ranking of those values is significant in the theory.

We use a utility function based on the cost associated with
running a parallel algorithm. In our case, the consumption
bundle is the pair consisting of the number of cores used, P ,
and the frequency at which these cores operate, X . Formally,
for a parallel algorithm, a utility function Ucost(P,X) is
defined as negative cost, and cost C is defined as follows:

C(P,X) = a ·E(P,X) + b · T (P,X) (1)

where E(P,X) and T (P,X) represent, respectively, the en-
ergy consumed by the parallel algorithm and the time taken by
it, a denotes the cost associated with consuming a single unit
of energy and b denotes the cost associated with using (e.g.,
with renting) a parallel computer for a single unit of time.
We are interested in finding the appropriate bundle, (P,X),
which maximizes the utility function (i.e., minimizes the cost).
Without any loss for generality, we consider the following
simplified cost function C(P,X):

C(P,X) = α · E(P,X) + T (P,X) (2)

where α = (a/b).
We are interested in following question: given a parallel

algorithm, an architecture model, and the ratio α, what is the
optimal number of cores and their frequencies that minimizes
the cost function C(P,X) as a function of input size. In
other words, we are interested in finding the appropriate
configuration of the parallel computer (number of cores and
their frequencies) such that the cost of executing the parallel
algorithm on the parallel system is minimized. Note that using
more than the obtained optimal number of cores will lead
to an increase in the amount of energy consumed without
a corresponding advantage of decreasing the overall cost. In
other words, using more cores than the optimal number will
lead to an energy waste (as measured by the utility function).

As discussed in the introduction, we make a number of sim-
plifying architectural assumptions. Specifically, we assume:

1) All active cores operate at the same frequency and the
frequency of the cores can be varied using a frequency
(voltage) probe. The cores switch to idle state if there
is no computation left at them.

2) There is no memory hierarchy at the cores.
3) Each core has its own memory and cores synchronize

through message communication.
4) The computation and memory access time of the cores

can be scaled by varying the frequency of the cores.
5) Communication time between the cores is constant. We

justify this assumption by noting that the time consumed
for sending and receiving a message is usually high
compared to the time taken to route the messages
between the cores.

The computation time Tbusy on a given core is proportional
to the number of compute cycles (including cache accesses)
that are executed on the core. Let X be the frequency of a
core, then:

Tbusy = number of cycles × 1

X
(3)

We denote the time for which a given core is active (not idle)
as Tactive.

The following equation approximates the power consump-
tion in a CMOS circuit:

P = CLV
2f + ILV (4)

where CL is the load capacitance, V is the supply voltage, IL
is the leakage current, and f is the operational frequency. The
first term corresponds to the dynamic power consumption by
an algorithm, while the second term corresponds to its leakage
power consumption.

Recall that a linear increase in the voltage supply leads to
a linear increase in the frequency of the core. However, a
linear increase in the voltage supply also leads to a nonlin-
ear (typically cubic) increase in power consumption. Thus,
for simplicity, we model the dynamic and leakage energies
consumed by a core, E, to be the result of the above mentioned
critical factor:

Edynamic = Ed · Tbusy ·X3 (5)



Eleakage = El · Tactive ·X (6)

where Ed and El are some hardware constants [5].
We assume that a single message transfer consumes a

constant amount of energy. Because recent processors have
introduced efficient support for low power modes that can
reduce the power consumption to near zero, it is reasonable
to consider the energy consumed by idle cores as 0.

The following parameters and constants are used in the rest
of the paper.

• Em : Energy consumed for single message communica-
tion between cores.

• F : Maximum frequency of a single core.
• N : Input size of the parallel application.
• P : Number of cores allocated for the parallel application.
• Kc : Number of cycles executed at maximum frequency

during the time it takes to send a single message.

IV. GENERIC METHODOLOGY

We now describe our methodology to determine for a given
parallel algorithm as a function of the input size, the optimal
number of cores and the frequencies at which they should
operate. By optimal we mean that the cost function C(P,X)
associated with executing the algorithm is minimized at the
particular values of P and X .

As an initial step, we evaluate energy consumed E(P,X)
by the execution of the parallel algorithm, and the (total) time
taken T (P,X) in the execution. We do this by the following
series of steps:
Step 1. Consider the task dependence graph of the algorithm,
where the nodes represent tasks and the edges represent task
serialization. Find the critical path of the parallel algorithm,
where the critical path is the longest path through the task
dependency graph of the parallel algorithm. Note that the
critical path length gives a lower bound on the execution time
of the parallel algorithm.

Step 2. Partition the critical path into communication and
computation steps.

Step 3. Evaluate the message complexity (total number of
messages processed) of the parallel algorithm. The example
algorithms we later discuss show that the message complexity
of some parallel algorithms may depend only on the number
of cores, while for others it depends on both the input size
and the number of cores used.

Step 4. Evaluate the total number of computation cycles at
all the cores.

Step 5. Evaluate the total active time (Tactive) at all the
cores as a function of the frequency of the cores. Scaling the
parallel algorithm (critical path) may lead to an increase in
active time in other paths (at other cores).

Step 6. Using the energy model discussed earlier, frame an
expression for the energy consumed by the parallel algorithm

as a function of the frequency of the cores E(P,X). The
energy expression E is the sum of the energy consumed by:
1) the computation carried out by the algorith, Ecomp, 2)
the communication required by the algorithm, Ecomm, and 3)
leakage when cores are idle, Eleak . Energy consumption for
each of these components is given by the following equations:

Ecomp = Ed · (Total number of computation cycles) ·X2

Ecomm = Em · (Total number of communication steps)

Eleak = El · Tactive ·X
Note that Ecomp is lower if the cores run at a lower frequency,
while Eleak may increase as the busy cores take longer to
finish. Ecomm may increase as more cores are used and the
computation is in this case more distributed.

Step 7. Compute the execution time of the parallel algorithm,
T (P,X):

T (P,X) = μcomm · Kc

F
+ μcomp · 1

X

where μcomm and μcomp denote, respectively, the total number
of communication steps and the number of computation cycles
in the critical path.

Note that the execution time of an algorithm corresponds to
the inverse of its performance.

After obtaining expressions for energy consumption and
execution time, we now frame an expression for the cost
function C(P,X) of the parallel algorithm using Eq. 2:

C(P,X) = α · (Ecomp + Ecomm + Eleak) + T (P,X)

Finally, we analyze the cost expression to obtain the number
of cores and the frequencies at which they should operate in
order to minimize the cost as a function of the input size.

Illustrative Example.

We illustrate our methodology using a simple parallel
addition algorithm. The parallel addition algorithm adds N
numbers using M cores. Initially all N numbers are assumed
to be distributed equally among the P cores; at the end of the
computation, one of the cores stores their sum. Without loss
of generality, we assume that the number of cores available is
some power of two. The algorithm runs in log2 P steps. In the
first step, half of the cores send the sum they compute to the
other half so that no core receives a sum from more than one
core. The receiving cores then add the number the local sum
they have computed. We perform the same step recursively
until there is only one core left. At the end of computation, a
single core will store the sum of all N numbers.

In the above algorithm, the critical path is easy to find:
it is the execution path of the core that has the sum of all
numbers at the end (Step 1). We can see that there are log(P )
communication steps and ((N/P )− 1+ log(P )) computation
steps (Step 2).

We next evaluate the total number of message transfers
required by the parallel algorithm (Step 3). It is trivial to see



Fig. 1. Example scenario: Adding N numbers using 4 actors; Left most line
represents the critical path

that the number of message transfers for this parallel algorithm
when running on P cores is (P − 1). Note that, message
complexity of this algorithm depends only on P and not on
the input size N . Moreover, observe that the total number of
computation steps at all cores is N − 1 (Step 4).

We now evaluate the total ’active’ time at all the cores,
running at frequency X (Step 5). The total active time is:

Tactive =
β

X
· (N − 1) +

Kc

F
· (2 ∗ (P − 1))

where the first term represents the total active time spent by all
cores performing computations, and the second term represents
the total active time spent by all the cores during message
transfers.

We now frame an expression for energy consumption
E(P,X) using the energy model (Step 6). The energy con-
sumed for computation, communication and leakage while the
algorithm is running on P cores at frequency X are given by
the following equations:

Ecomp = Ed · (N − 1) · β ·X2

Ecomm = Em · (P − 1)

Eleak = El · Tactive ·X
where β is the number of computation cycles required per
addition. Observe that the energy consumed by the parallel
addition algorithm increases as either the number of cores used
(P ) increases, or the frequency at which these cores operate–
when they are active (X)–increases.

The execution time of the addition algorithm as a function
of frequency of the cores X (Step 7) is as follows:

T (P,X) = log2 P · Kc

F
+ ((N/P )− 1 + log(P )) · β · 1

X

Note that time taken by the parallel addition algorithm de-
creases as either number of cores (P ) or frequency of the
cores (X) increase.

The cost of the parallel addition algorithm is given as
follows:

C(P,X) = α · (Ecomp + Ecomm + Eleak) + T (P,X)

As noted earlier, E increases and T decreases as either P or X
increase. Thus, there exist an optimal configuration at which
the cost is minimum. The cost curve shown in Fig 2 depicts
the energy-time trade-off assuming a (reasonable) set of values
for the various parameters. In the next section, we analyze
the cost expression obtained above in order to understand the
properties of optimal configurations.

Fig. 2. Addition: Cost curve with C(P,X) on Z axis, number of cores
on X axis and frequency on Y axis with k = 500, β = 1, Kc = 500 and
α = 0.1. Frequency is plotted in units F/100 where F is the maximum
frequency. Number of cores is plotted in units of 104.

V. ANALYZING COST EXPRESSION

We now analyze the cost expression obtained above for the
addition algorithm in order to determine the number of cores
and their frequencies which minimize cost as a function of
the input size. While we could differentiate the expression
to compute the configuration which minimizes cost, symbolic
differentiation results in a rather complex expression. Instead,
we simply analyze the corresponding graphs.

Note that the cost expression is dependent on many pa-
rameters: N (input size), P (number of cores), β (number
of instruction per addition), Kc (number of cycles executed at
maximum frequency for single message communication time),
Em (energy consumed for single message communication be-
tween cores), El (leakage constant), the maximum frequency
F of a core and the utilization ratio α. We can simplify a
couple of these parameters without loss of generality. In most
architectures, the number of cycles involved per addition is
just one, so we assume β = 1. Without loss of generality, we
set the leakage energy constant El = 1 and express all energy
values with respect to this normalized energy value.

In order to graph the required differential, we must make
some assumptions about the other parameters. While these
assumptions compromise generality, we discuss the sensitivity
of the analysis to a range of values for these parameters. One
such parameter is the the energy consumed for single cycle
at maximum frequency (as a multiple of the leakage energy
constant). We assume this ratio to be 10, i.e., that Ed · F 2 =
10 ·El. It turns out that this parameter is not very significant
for our analysis; in fact, large variations in the parameter



do not affect the shapes of the graphs significantly. Another
parameter, k, represents the ratio of the energy consumed
for a communicating a single message, Em, and the energy
consumed for executing a single instruction at the maximum
frequency. Thus, Em = k ·Ed ·F 2. We analyze the sensitivity
of our results to a wide range of values of k and α. For
convenience, we denote X = γ · F such that 0 < γ < 1
(since 0 < X < F ). Note that, with the above simplification,
the cost expression will be free of F and the range of X is
mapped correspondingly to the range of the parameter γ.

Fig. 3. Addition: optimal number of cores on Y axis and input size on X
axis with k = 500, β = 1, Kc = 500 and α = 0.1.

Fig. 4. Addition: Optimal frequency on Y axis and input size on X axis
with k = 500, β = 1, Kc = 500 and α = 0.1. Frequency on Y axis is
plotted in units F/100000 where F is the maximum frequency.

We use a brute force search technique to evaluate the
optimal pair of number of cores and frequency of the cores
required to minimize cost. Fig. 3 and Fig. 4 plot, respectively,
the number of cores and the frequency of these cores (when
active) which minimizes the cost as a function of input size.
We see that optimal number of cores required increases with
increasing input size (roughly following a negative exponential
curve with a positive coefficient). However, the frequency of
cores required to minimize the cost decreases with input size.

We now consider the sensitivity of this analysis with respect
to k: recall that k is the ratio of energy used per message over

Fig. 5. Sensitivity analysis: optimal number of cores on Y axis and k (ratio
of the energy consumed for single message transfer and the energy consumed
for executing a single instruction at the maximum frequency) on X axis with
N = 108, β = 1, Kc = 500 and α = 0.1.

Fig. 6. Sensitivity analysis: Optimal frequency on Y axis and k (ratio of the
energy consumed for single message transfer and the energy consumed for
executing a single instruction at the maximum frequency) on X axis N = 108,
β = 1, Kc = 500 and α = 0.1. Frequency on Y axis is plotted in units
F/100000.

the energy used per instruction. Fig. 5 and Fig. 6 plot the
number of cores and the frequency of the cores required to
minimize cost by fixing the input size and varying k respec-
tively. We see that optimal number of cores decreases with
increasing k. Furthermore, the frequency of cores required to
minimize cost increases with increasing k. We observe that
this trend remains the same for the range of input values we
studied (108 to 1010).

We now consider the sensitivity of this analysis with respect
to the ratio α, the cost of unit energy. Fig. 7 and Fig. 8
plot, respectively, the number of cores and their frequency
(when active) that is required to minimize cost. We do this
by fixing the input size and varying α. We note that both
optimal number of cores and frequency of the cores required
to minimize cost decreases with increasing α. We observe that
this trend also remains the same for entire range of the input
values considered (108 to 1010).

The above graphs depict the exact behavior of the optimal
number of cores and frequencies as a function of input size



Fig. 7. Sensitivity analysis: optimal number of cores on Y axis and cost of
unit energy (α) (measured relative to the cost of running the parallel system
for unit time) on X axis with N = 108 , β = 1, Kc = 500 and k = 500.

Fig. 8. Sensitivity analysis: Optimal frequency on Y axis and cost of unit
energy (α) (measured relative to the cost of running the parallel system for
unit time) on X axis with N = 108, β = 1, Kc = 500 and k = 500.
Frequency on Y axis is plotted in units F/100000.

(over a specific input range) and, as far as can tell, appears
to generalize to larger input sizes. However, we are unable
to give an analytic expression for the asymptotic behavior of
the optimal number of cores and frequencies as a function of
input size as the cost expression is very complex.

VI. CASE STUDIES

We now analyze four algorithms: two quicksort-based paral-
lel algorithms, LU factorization, and Parallel Prim’s Minimum
Spanning Tree (MST) algorithm.

A. Naı̈ve Parallel Quicksort Algorithm

Consider a naı̈ve (and inefficient) parallel algorithm for
quicksort. Recall that in the quicksort algorithm, an array is
partitioned into two parts based on a pivot, and each part
is solved recursively. In the naı̈ve parallel version, an input
array is partitioned into two parts by a single core (based on
a pivot), and then one of the sub-arrays is assigned to another
core. Now each of the cores partitions the arrays it is working
on using the same approach as above, and assigns one of its
sub-arrays to other cores. This process continues until all the

available cores are used up. After the partitioning phase, in
the average case, each core will have approximately an equal
division of all elements of the input array. Finally, all the cores
sort their arrays in parallel, using the serial quicksort algorithm
on each core. The sorted input array can be recovered by
traversing the cores. The naı̈ve parallel quicksort algorithm
is very inefficient (in terms of performance), as partitioning
the array into two sub-arrays is done by single core which
means that the execution time of the naı̈ve parallel quicksort
algorithm is bounded from below by the length of the input
array.

Assume that the input array has N elements and the number
of cores available for sorting are P . Without loss of generality,
we assume both N and P are powers of two, so that N = 2a,
for some a and P = 2b, for some b. For simplicity, we also
assume that during the partitioning step, each core partitions
the array into two equal sub-arrays by choosing the appropriate
pivot (the usual average case analysis).

The critical path of this parallel algorithm is the execution
done by the core which initiates the partitioning of the input
array. The total number of communication and computation
steps in the critical path are, respectively, N(1 − (1/P )) and
2N(1− (1/P )) +Kq((N/P ) · log(N/P )), where Kq (1.4) is
the quicksort constant.

Next, we evaluate the number of message transfers required
in total by the parallel algorithm. It is trivial to see that number
of message transfers for this parallel algorithm running on M
cores is log(P )·(N/2). Note that, unlike the previous example,
the message complexity for naı̈ve quicksort is dependent both
on the number of cores and on the input size. Moreover, the
total number of computation steps at all cores is N · log(P )+
Kq ·N · log(NP )(Step 4).

We now evaluate the total active time at all the cores,
running at frequency X . The total active time is given by
the following equation

Tactive =
β

X
·(N ·log(P )+Kq ·N ·log(N

P
))+

Kc

F
· log(P )·N

where the first term represents the total active time spent by
all cores performing computations, and second term represents
the total active time spent by all the cores during message
transfers.

We now frame an expression for energy consumption as a
function of the frequency of the cores. The energy consumed
for computation, communication and leakage while the algo-
rithm is running on P cores at frequency X is given by:

Ecomp = Ed ·
(
N · log(P ) +Kq ·N · log(N

P
)

)
· β ·X2

Ecomm = Em · log(P ) · N
2

Eleak = El · Tactive ·X
where β is the number of cycles required per comparison.

The time taken T (P,X) by the naı̈ve quicksort algorithm
as a function of X , the frequency at which the active cores



run, is as follows:

T (P,X) = N(1− (1/P )) · Kc

F
+ 2N(1− (1/P )) · β

X

+ (Kq((N/P ) · log(N/P ))) · β

X

The cost of the naive quicksort algorithm is:

C(P,X) = α · (Ecomp + Ecomm + Eleak) + T (P,X)

Fig 9 depicts the cost of the naive quicksort algorithm for a
wide range of configurations (P,X). It is clear from the curve
that the cost is minimum when single core is used. In other
words, there is no benefit from using more cores (using more
cores will lead to energy wastage).

Fig. 9. Naive Quicksort: Utility curve with C(P,X) on Z axis, number of
cores on X axis and frequency on Y axis with k = 500, β = 1, Kc = 500
and α = 0.1. Frequency is plotted in units F/100 where F is the maximum
frequency. Number of cores is plotted in units of 104.

We now analyze the cost expression obtained above for the
naı̈ve parallel quicksort algorithm in order to determine as
a function of the input size, the optimal number of cores
and their frequencies. For this analysis, we use the same
assumptions that were used earlier in the analysis of the
parallel addition algorithm (k = 500, β = 1, Kc = 500
and α = 0.1). We observe that both the optimal number of
cores and frequencies of these cores required to minimize cost
remain constant at 1 and 0.79F respectively (for the input sizes
ranging from 108 to 1010).

We now consider the sensitivity of this analysis with respect
to the ratio k (representing the energy per message over the
energy per instruction). For a fixed input size, Fig. 10 and
Fig. 11 plot, respectively, the optimal number of cores and
frequency of the cores as a function of k respectively. We
see that number of cores required to minimize cost decreases
significantly at very small k and attains the minimum value
(number of cores = 1) for the remaining range of k. The
frequency of the cores follows a similar trend except that it
increases initially. We observe that this trend remains the same
for entire range of input sizes we consider (108 to 1010).

We next consider the sensitivity of this analysis with re-
spect to the ratio α measuring the relative cost of a unit of

Fig. 10. Sensitivity analysis: optimal number of cores on Y axis and k (ratio
of the energy consumed for single message transfer and the energy consumed
for executing a single instruction at the maximum frequency) on X axis with
N = 108, β = 1, Kc = 500 and α = 0.1.

Fig. 11. Sensitivity analysis: Optimal frequency on Y axis and k (ratio of
the energy consumed for single message transfer and the energy consumed for
executing a single instruction at the maximum frequency) on X axis N = 108,
β = 1, Kc = 500 and α = 0.1. Frequency on Y axis is plotted in units
F/100000.

energy. We observed that the optimal number of cores remains
constant at 1 for a wide range of values of α. Fig. 12 plots
the frequency of the cores required to minimize the cost as a
function of and varying α (assuming a fixed input size). We
see that the frequency of the cores are required to operate at in
order to minimize cost decreases with α. We also observe that
this trend remains the same for entire range of input values
considered (108 to 1010). Based on these observations, we
claim that, for the naı̈ve parallel quicksort algorithm, using a
single core at an appropriate frequencies is good enough for
attaining minimizing cost (and avoiding energy wastage).

B. Parallel Quicksort Algorithm

The parallel quicksort formulation [20] works as follows.
Let N be the number of elements to be sorted and P = 2b

be the number of cores available. Each cores is assigned a
block of N/P elements, and the labels of the cores {1, ..., P}
define the global order of the sorted sequence. For simplicity,
we assume that the initial distribution of elements in each



Fig. 12. Sensitivity analysis: Optimal frequency on Y axis and cost of unit
energy (α) (measured relative to the cost of running the parallel system for
unit time) on X axis N = 108, β = 1, Kc = 500 and k = 500. Frequency
on Y axis is plotted in units F/100000.

core is uniform. The algorithm starts with all cores sorting
their own set of elements (sequential quicksort). Then ’Core
1’ broadcasts the median of its elements to each of the other
cores. This median acts as the pivot for partitioning elements
at all cores. Upon receiving the pivot, each cores partition its
elements into elements smaller than the pivot and elements
larger than the pivot. Next, each Core i where i ∈ {1...P/2}
exchanges elements with the Core i + P/2 such that core
i retains all the elements smaller than the pivot, and Core
i + P/2 retains all elements larger than the pivot. After this
step, each Core i i ∈ {1....P/2} stores elements smaller than
the pivot, and remaining cores ({P/2+1, ...P}) store elements
greater than the pivot. Upon receiving the elements, each core
merges them with its own set of elements so that all elements
at the core remain sorted. The above procedure is performed
recursively for both sets of cores, splitting the elements further.
After b recursions, all the elements are sorted with respect to
the global ordering imposed on the cores.

Since all cores are busy all the time, the critical path of
this parallel algorithm would be the execution path of any
one of the cores. The total number of communication and
computation steps in the critical path evaluates to (1+N/P ) ·
logP and (log(N/P )+N/P ) · logP +Kq(N/P · log(N/P )),
where Kq (1.4) is the quicksort constant.

The number of message transfers for this parallel algorithm
running on P cores is (P · log(P )−P +1)+ log(P ) · (N/2).
Moreover, the total number of computation steps at all cores
evaluates to ((logN/P+N/P )·logP+Kq ·N/P ·logN/P )·P .

We now evaluate the total active time at all the cores,
running at frequency X . The total active time is given by
the following equation:

Tactive

=
β · P
X

·
((

log
N

P
+

N

P

)
· logP +Kq · N

P
· log N

P

)

+
Kc

F
· 2 ·

(
(P · log(P )− P + 1) + log(P ) · (N

2
)

)

where the first term represents the total active time spent by all
the cores performing computations, and second term represents
the total active time spent by all the cores during message
transfers.

We frame an expression for energy consumption E using
the energy model. The energy consumed for computation,
communication and leakage while the algorithm is running
on P cores at frequency X is given by:

Ecomp =

Ed

((
log

N

P
+

N

P

)
logP +Kq · N

P
· log N

P

)
· P · β ·X2

Ecomm = Em ·
(
P · logP − P + 1 + logP · N

2

)

Eleak = El · Tactive ·X
The time taken T by the parallel quicksort algorithm as a

function of frequency of the cores X is as follows:

T (P,X) =

(
1 +

N

P

)
· logP · Kc

F

+

(
log(

N

P
) +

N

P

)
· logP +Kq

(
N

P
· log(N

P
)

)
· β · 1

X

The cost of the parallel quicksort algorithm is given by the
following:

C(P,X) = α · (Ecomp + Ecomm + Eleak) + β · T (P,X)

Fig 13 depicts the cost of the naive quicksort algorithm for a
wide range of configurations (P,X). As in the case for the
naı̈ve parallel quicksort algorithm, the cost is minimum when
a single core is used. In other words, there is no benefit to
overall utility to be gained by using more cores.

Fig. 13. Parallel Quicksort: Cost curve with C(P,X) on Z axis, number of
cores on X axis and frequency on Y axis with k = 500, β = 1, Kc = 500
and α = 0.1. Frequency is plotted in units F/100 where F is the maximum
frequency. Number of cores is plotted in units of 104.

We now analyze the cost expression obtained above for
the parallel quicksort algorithm in order to determine, as a
function of the input size, the number of cores and their
frequencies required for minimum cost. We use the same
values that were used earlier in the analysis of the parallel



addition algorithm (k = 500, β = 1, Kc = 500 and
α = 0.1). We observe that both the optimal number of cores
and frequencies of the cores required to minimize cost remains
constant at 1 and 0.79F , respectively, for the range of input
sizes varying from 108 to 1010.

We now consider the sensitivity of this analysis with respect
to the ratio k. By assuming N = 108, β = 1, Kc = 500 and
α = 0.1, we observe that to minimize cost both the optimal
number of cores and the frequencies of the cores required
remains constant (in the range 10 < k < 2000. We observe
that this trend also remains the same in the entire range of
input sizes considered (108 to 1010).

Fig. 14. Sensitivity analysis: Frequency on Y axis and cost of unit energy
(α) (measured relative to the cost of running the parallel system for unit time)
on X axis N = 108, β = 1, Kc = 500 and k = 500. Frequency on Y axis
is plotted in units F/100000.

Finally, we consider the sensitivity of the analysis of this
algorithm with respect to the relative cost of unit energy
α. We observe that the optimal number of cores remains
constant (at 1) for a wide range of values of α. Fig. 14 plots
frequency of the cores required to minimize cost by fixing
the input size and varying α. We can see that the frequency
of cores required to minimize cost decreases with α. We
observe that this trend remains the same for the entire range of
input sizes considered (108 to 1010). From above observations,
we conclude that parallel quicksort algorithm–which it turns
out has better scalability characteristics than naive quicksort
algorithm–does not scale when it comes to minimizing cost
(or avoiding energy wastage).

C. LU Factorization

1) Sequential Algorithm: Given a N × N matrix A, LU
factorization involves coming up with a unit lower triangular
matrix L and an upper triangular matrix U such that A = LU.
A standard way to compute LU factorization is by Guassian
elimination. In this approach, the matrix U is obtained by
overwriting A. We presume that the reader is familiar with the
Gaussian elimination algorithm. Recall that Guassian elimina-
tion requires about N3/3 paired additions and multiplications
and about N2/2 divisions. (For performance analysis we ignore
the later lower order term).

2) Parallel Algorithm: There are many parallel algorithms
for LU factorization problem. Here we consider only the
coarse-grain 1-D column parallel algorithm [21] for our
performance analysis. Each core is assigned a few columns
of the matrix and the cores communicate with each other and
obtain the required matrix U. The algorithm at each of the P
cores is described as follows:

LU Factorization

1: for k = 1 to N − 1 do
2: if k ∈ mycols then
3: for i = k + 1 to N do
4: lik = aik/akk {multipliers}
5: end for
6: end if
7: broadcast {lik : k < i ≤ N} {broadcast}
8: for J ∈ mycols, j > k do
9: for i = k + 1 to N do

10: aij = aij − likakj {update}
11: end for
12: end for
13: end for

In the algorithm, matrix rows need not be broadcast verti-
cally, since any given column is contained entirely in only one
process. But there is no parallelism in computing multipliers
or updating a column. Horizontal broadcasts are required to
communicate multipliers for updating. On average, each core
performs about N3/(3 · P ) operations (one addition and one
multiplication). Moreover, each core broadcasts about N2/2
messages, under the assumption that overlap of broadcasts for
successive steps is allowed.

The number of message transfers required in total by the
parallel algorithm evaluates to P · (N2/2). Furthermore, the
total number of computation steps at all cores evaluates to
(N3/3).

We now evaluate the total active time at all the cores,
running at frequency X . The total active time is given by
the following equation:

Tactive =
β

X
· (N3/3) +

Kc

F
· 2 · (P · (N2/2))

where the first term represents the total active time spent by
all cores performing computations, and second term represents
the total active time spent by all the cores during message
transfers.

We frame an expression for energy consumption E using
the energy model. The energy consumed for computation,
communication and leakage while the algorithm is running
on P cores at frequency X is given by:

Ecomm = Em · P · N
2

2

Ecomp = Ed · N
3

3
· β ·X2

Eleak = El · Tactive ·X
.



The time taken T(P,X) by the parallel LU-factorization
algorithm as a function of frequency of the active cores X
is as follows:

T (P,X) =
N2

2
· Kc

F
+

N3

3 · P · β · 1

X

The cost of the parallel addition algorithm is given by the
following:

C(P,X) = α · (Ecomp + Ecomm + Eleak) + T (P,X)

Fig 15 depicts the cost of the LU-factorization algorithm for a
wide range of configurations (P,X). Note that the cost curve
is very similar to the one obtained for the parallel addition
algorithm.

Fig. 15. LU Factorization: Cost curve with C(P,X) on Z axis, number of
cores on X axis and frequency on Y axis with k = 500, β = 1, Kc =
500 and α = 0.1. Frequency is plotted in units F/100000 where F is the
maximum frequency.

We now analyze the cost expression obtained above for the
LU-factorization algorithm in order to determine the optimal
number of cores and their frequencies as a function of the
input size. We again use the same assumptions about parameter
values that were used earlier in the analysis of the previous
algorithms.

Fig. 16. LU Factorization: optimal number of cores on Y axis and input
size on X axis with k = 500, β = 1, Kc = 500 and α = 0.1.

Fig. 17. LU Factorization: Optimal frequency on Y axis and input size on
X axis with k = 500, β = 1, Kc = 500 and α = 0.1. Frequency on Y
axis is plotted in units F/100000 where F is the maximum frequency.

Fig. 16 and Fig. 17 plots optimal number of cores and
frequency of the cores required to minimize cost as a function
of input size respectively. We see that optimal number of
cores required to minimize cost increases with increasing
input size (roughly follows a negative exponential curve with
coefficient). Note that for all input sizes, the optimal number
of cores obtained for parallel addition algorithm is greater
than the number obtained for this algorithm. Moreover, the
frequency of cores required to minimize cost decreases with
input size.

Fig. 18. Sensitivity analysis: optimal number of cores on Y axis and k (ratio
of the energy consumed for single message transfer and the energy consumed
for executing a single instruction at the maximum frequency) on X axis with
N = 108, β = 1, Kc = 500 and α = 0.1.

We consider the sensitivity of this analysis with respect to
the ratio k. Fig. 18 and Fig. 19 plot, respectively, the optimal
number of cores and the frequency at which the cores are
required to operate in order to minimize cost, if the input
size is fixed and k is varied. We can see that, as in parallel
addition algorithm, the optimal number of cores decreases with
increasing k. Moreover, as in the parallel addition algorithm,
the frequency of the active cores required to minimize cost
increases with increasing k. We observe that this trend remains



Fig. 19. Sensitivity analysis: Optimal frequency on Y axis and k (ratio of
the energy consumed for single message transfer and the energy consumed for
executing a single instruction at the maximum frequency) on X axis N = 108 ,
β = 1, Kc = 500 and α = 0.1. Frequency on Y axis is plotted in units
F/100000.

the same for entire range of input values considered (108 to
1010).

Fig. 20. Sensitivity analysis: optimal number of cores on Y axis and cost of
unit energy (α) (measured relative to the cost of running the parallel system
for unit time) on X axis with N = 108 , β = 1, Kc = 500 and k = 500.

Finally, we now consider the sensitivity of this analysis with
respect to the ratio α. Fig. 20 and Fig. 21 plots as a function of
k, respectively, the optimal number of cores and the optimal
frequency of these cores operate when active (for a fixed input
size). We note that, as in parallel addition algorithm, both the
optimal number of cores and the frequency of these cores
required to minimize cost decreases with increasing α. We
observe that this trend also remains the same for a range of
input sizes (108 to 1010). Based on the above observations, we
claim that both the parallel LU-factorization algorithm and the
parallel addition algorithm have similar optimal configuration
characteristics.

D. Minimum Spanning Tree: Prim’s Algorithm

a) Sequential Algorithm: A spanning tree of an undi-
rected graph G is a subgraph of G that is a tree containing all
vertices of G. In a weighted graph, the weight of a subgraph

Fig. 21. Sensitivity analysis: Frequency on Y axis and cost of unit energy
(α) (measured relative to the cost of running the parallel system for unit time)
on X axis N = 108, β = 1, Kc = 500 and k = 500. Frequency on Y axis
is plotted in units F/100000.

is the sum of the weights of the edges in the subgraph. A
minimum spanning tree for a weighted undirected graph is
a spanning tree with minimum weight. Prim’s algorithm for
finding an MST is a greedy algorithm. The algorithm begins
by selecting an arbitrary starting vertex. It then grows the
minimum spanning tree by choosing a new vertex and edge
that are guaranteed to be in the minimum spanning tree. The
algorithm continues until all the vertices have been selected.
We provide the code for the algorithm below.

PRIM MST(V,E,w, r)

1: VT = {r};
2: d[r] = 0;
3: for all v ∈ (V − VT ) do
4: if edge(r, c) exists then
5: set d[v] = w(r, v)
6: else
7: set d[v] = ∞
8: end if
9: while VT �= V do

10: find a vertex u such that d[u] = min{d[v]|v ∈ (V −
VT )};

11: VT = VT ∪ {u}
12: for all v ∈ (V − VT ) do
13: d[v] = min{d[v], w(u, v)};
14: end for
15: end while
16: end for

In the above program, the body of the while loop (lines 10–
13) is executed n− 1 times. Both the number of comparisons
performed for evaluating min{d[v]|v ∈ (V − VT )} (Line 10)
and the number of comparisons performed in the for loop
(Lines 12 and 13) decreases by one for each iteration of the
main loop. Thus, by simple arithmetic, the overall number of
comparisons done by the algorithm is around n2 (ignoring
lower order terms).



1) Parallel Algorithm: We consider the parallel version of
Prim’s algorithm in [22]. Let P be the number of cores, and
let N be the number of vertices in the graph. The set V is
partitioned into P subsets such that each subset has N/P
consecutive vertices. The work associated with each subset
is assigned to a different core. Let Vi be the subset of vertices
assigned to core Ci for i = 0, 1, · · · ,M − 1. Each core Ci

stores the part of the array d that corresponds to Vi. Each core
Ci computes di[u] = min{di[v]|v ∈ (V \ VT ∧ Vi)} during
each iteration of the while loop. The global minimum is then
obtained over all di[u] by sending them to core C0. The core
C0 now holds the new vertex u, which will be inserted into VT .
Core C0 broadcasts u to all cores. The core Ci responsible for
vertex u marks u a belonging to set VT . Finally, each processor
updates the values of d[v] for its local vertices. When a new
vertex u is inserted into VT , the values of d[v] for v ∈ (V \VT )
must be updated. The core responsible for v must know the
weight of the edge (u, v). Hence each core Ci needs to store
the columns of the weighted adjacency matrix corresponding
to the set Vi of vertices assigned to it.

On average, each core performs about N2/P comparisons.
Moreover, each core is involved in 2 ·N (ignoring lower order
constants) message communications. The number of message
transfers required in total by the parallel algorithm evaluates
to 2 · P · N . Furthermore, the total number of computation
steps at all cores on average evaluates to N2.

We now evaluate the total active time at all the cores,
running at frequency X . Total active time is given by the
following equation

Tactive =
β

X
· (N2) +

Kc

F
· 2 · (2 · P ·N) (7)

where the first term represents the total active time spent by
all cores performing computations, and second term represents
the total active time spent by all the cores during message
transfers.

Now, we frame an expression for energy consumption as a
function of the frequency of the cores. The energy consumed
for computation and communication while the algorithm is
running on P cores at frequency X is given by the following
equations:

Ecomm = Em · 2 · P ·N
Ecomp = Ed ·N2 · β ·X2

Eleak = El · Tactive ·X
The time taken T(P,X) by the parallel Prim’s minimum

spanning tree algorithm as a function of the frequency of the
cores X is as follows:

T (P,X) = 2 ·N · Kc

F
+

N2

2 · P · β · 1

X

The cost of the parallel MST algorithm is given as follows:

C(P,X) = α · (Ecomp + Ecomm + Eleak) + T (P,X)

Fig 22 depicts the cost of the parallel MST algorithm for
a wide range of configurations (P,X). Note that the cost

curve is very similar to the ones obtained for parallel addition
algorithm and LU factorization.

Fig. 22. Parallel MST: Cost curve with C(P,X) on Z axis, number of cores
on X axis and frequency on Y axis with k = 500, β = 1, Kc = 500 and
α = 0.1. Frequency is plotted in units F/100 where F is the maximum
frequency. Number of cores is plotted in units of 104.

We now analyze the cost expression obtained above for
the parallel MST algorithm in order to determine the optimal
number of cores and their frequencies as a function of the input
size. We use the same assumptions that were used earlier in
the analysis of the parallel addition algorithm.

Fig. 23. Parallel MST: optimal number of cores on Y axis and input size
on X axis with k = 500, β = 1, Kc = 500 and α = 0.1.

Fig. 23 and Fig. 24 plot, respectively, the optimal number of
cores and their frequency which minimize cost as a function
of input size. We see that the optimal number of cores
increases with increasing input size (roughly follows a negative
exponential curve with a positive coefficient). Note that for
all input sizes, the optimal number of cores obtained for this
algorithm is comparatively much smaller than the numbers
obtained for both the parallel addition and the LU-factorization
algorithms. The frequency of cores required to minimize cost
decreases with the input size.

We now consider the sensitivity of this analysis with respect
to the ratio k. Fig. 25 and Fig. 26 plot, respectively, the
optimal number of cores and the frequency of these cores



Fig. 24. Parallel MST: Optimal frequency on Y axis and input size on X
axis with k = 500, β = 1, Kc = 500 and α = 0.1. Frequency on Y axis is
plotted in units F/100000 where F is the maximum frequency.

Fig. 25. Sensitivity analysis: optimal number of cores on Y axis and k (ratio
of the energy consumed for single message transfer and the energy consumed
for executing a single instruction at the maximum frequency) on X axis with
N = 108, β = 1, Kc = 500 and α = 0.1.

as a function of k (asssuming a fixed input size). We see
that, as was the case in both the parallel addition and the
LU-factorization algorithms, the optimal number of cores
decreases with increasing k. Furthermore, the frequency of
cores required to minimize cost increases with increasing k.
We observe that this trend remains the same entire range of
input sizes considered (108 to 1010).

We now consider the sensitivity of this analysis with respect
to the ratio α. Fig. 27 and Fig. 28 plot, respectively, the optimal
number of cores and the optimal frequency for these cores
(fixing the input size and varying k). We note that, as was
the case in both the parallel addition and the LU-factorization
algorithms, the optimal number of cores and the frequency
of these cores required to minimize cost decreases with
increasing α. We observe that this trend also remains the same
the range of input sizes considered (108 to 1010). Based on the
above observations, we claim that LU-factorization, parallel
addition and Prim’s algorithm asymptotically possesses similar
optimal configuration characteristics for maximizing utility.

Fig. 26. Sensitivity analysis: Optimal frequency on Y axis and k (ratio of
the energy consumed for single message transfer and the energy consumed for
executing a single instruction at the maximum frequency) on X axis N = 108,
β = 1, Kc = 500 and α = 0.1. Frequency on Y axis is plotted in units
F/100000.

Fig. 27. Sensitivity analysis: optimal number of cores on Y axis and cost of
unit energy (α) (measured relative to the cost of running the parallel system
for unit time) on X axis with N = 108, β = 1, Kc = 500 and k = 500.

VII. DISCUSSION

As expected, our analysis shows that the optimal config-
uration (number of cores and their frequency when active)
that is required to maximize utility depends on the structure
of a parallel algorithm. For example, the optimal number of
cores and frequencies of the cores of the parallel addition al-
gorithm, the LU factorization, and the Parallel MST algorithm
behave similarly as a function of the input size (i.e.,they have
approximately same structure), at least in the range of input
sizes we considered. However, for a particular input size, the
optimal number of cores and frequencies of the cores may vary
significantly with the algorithm. It appears that for the above
three parallel algorithms, the optimal number of cores and
frequencies of the cores required to maximize utility exhibit
the same asymptotic growth.

On the other hand, the two parallel versions of the quicksort
algorithm possesses similar characteristics but differ from the
other three algorithms. We observe that the optimal number
of cores and the frequencies of these cores for both the quick-
sort algorithms appear to have the same asymptotic growth.



Fig. 28. Sensitivity analysis: Optimal frequency on Y axis and cost of unit
energy (α) (measured relative to the cost of running the parallel system for
unit time) on X axis N = 108, β = 1, Kc = 500 and k = 500. Frequency
on Y axis is plotted in units F/100000.

This is an interesting considering that both algorithms have
dramatically different performance scalability characteristics.

For purposes of interpreting our results concretely, we fixed
the ratio of time required for a message transfer versus that
required for a computation cycle (Kc). This ratio will vary
depending on the architecture. In general, Kc is in the range
200 to 500 for current architectures. Varying the value of
Kc over this range does not affect our results much (i.e., the
optimal number of cores and frequencies of the cores do not
change much as a result of varying Kc). We also fixed the
ratio of the energy required for a message transfer versus that
required for a computation cycle (k). However, there is greater
uncertainty as to what the value of k should be. Therefore,
we studied the sensitivity of our analysis to a wide range of
possible values for k. We observe that varying the values of k
can dramatically affect the optimal number of cores for some
parallel algorithms.

The sort of analysis done in this paper is more similar in
spirit to parallel complexity analysis, than it is to performance
evaluation on an architecture. However, the analysis could be
refined to be closer to some proposed multicore architectures–
for example, by modeling a memory hierarchy and using
specific values of the constants. One abstract way to do this
would be to develop a variant of the BSP model of parallel
computation [23], specifically, one that takes into account the
fact that for multicore architectures, the memory hierarchy
may include a level consisting of shared memory between a
small number of cores.

In this paper, we only considered linear utility functions to
model the costs associated with the execution of a parallel
algorithm. One could generalize our approach to a wide
range of convex utility functions (wuch functions are a norm
for utilities in economics). Furthermore, in this work, we
have analyzed the utilities of existing parallel algorithms. It
would be an interesting to design new parallel algorithms
which provide maximal utility (minimum cost) for a particular
problem.
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