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Abstract. Linear systems are one of the most commonly used models to rep
resent physical systems. Yet, only few automated tools baes developed to
check their behaviors over time. In this paper, we propogseeat temporal logic

for specifying complex properties of discrete time linegstems. The proposed
logic can also be used in a control system to generate canpat in the pro-
cess of model checking. Although, developing a full feedtbeantrol system is
beyond the scope of this paper, authors believe that a fekdibap can be easily
introduced by adopting the receding horizon scheme of ptigdicontrollers. In
this paper we explain the syntax, the semantics, a modekutgealgorithm, and

an example application of our proposed logic.

1 Introduction

Linear systems have been widely used as mathematical mfmdgihysical systems
because they can accurately represent the actual systepitedeir simple structure.
Thus, not surprisingly, many control systems are develdyased on this simple math-
ematical model. In designing a control system, one of thednmental questions about
the system is theontrollability of the system: whether we can drive the system from
any state to any state [8]. Nowadays, with the popular usesfatile digital controllers,
control systems can perform ever complex tasks and so bett@mequirements. In
this challenging environment, one may want to know more thartraditional notion
of controllability. For example, in a vehicle control systewe want to know, whether
the vehicle can maintain certain speed even though we cdmem accelerate it for
longer than a duration to prevent overheating. The tratificontrollability does not
address this type of problem. Also, this seemingly simptébfem has too many cases
to be checked by hand: feasible set of state at each stepdteparits past computa-
tional path — whether we accelerate or not at the currentastepts the feasible set of
state after the duration.

One obvious problem here is that we need a way to describeothelex require-
ments. Combinations of linear constraints can be a buildingk for the description:
conjunctions of linear constraints define a convex regidhérstate space of the system
and any arbitrary regions can be described by union or camgai¢s of them. However,
these combinations of constraints can be too complex torganer to modify by hand
for nontrivial requirements. In this paper, we propose adocalledLinear Temporal



Logic for Control (LTLC) on linear systems to describe the requirements ingalii
abstract manner. LTLC uses logical and temporal operadozsmbine the constraints
so that the complex path-dependent behaviors can be eapilgssed. The usefulness
of LTLC is not limited to checking the refined notion of contadbility: it can also be
used to compute a sequence of control input that can obtaina@bjectives.

Temporal logics like LTL, CTL, and CTL* are initially deveped to specify behav-
iors of concurrent systems and later they are introducedddeichecking [11, 6, 7].
Because their reasoning process is automated, model dlgdti&s been widely used in
verifying complex hardware and software systems. Howeliermodels of these log-
ics are finite state machines whereas the model of LTLC iseatisystem which has
uncountably many states. Thus, in order to introduce thmged to linear systems we
need dfferent ways of expressing the states arftedént model checking algorithms.
There has been approaches to address the problems of épgeifild model checking
in infinite state spaces. For example, Alur and Dill devetbieed automaton, which
is a finite state automaton with finite number of real valuextks associated with the
states, to model hybrid systems [2]. A decidability resalt ETL model checking on
controllable linear systems has been reported where acdegstem defined on a space
of grid blocks bisimilar to the original linear system is buo divide the uncountable
state space into finite partitions [12]. This result is eghto build a framework for de-
signing controllers [13]. In iLTL, properties of Discreténie Markov Chains (DTMC)
are specified in the form of inequalities about expected résvi 0]. In iLTL the set of
atomic propositions partitions the uncountapiebability mass function (pmf) space
into a finite number of equivalent classes. Although thegg@arhes address the un-
countable state space problem, none of these approachesstite question: “Given a
system and a requirement, is there an initial state and aesequof input that can drive
the system to satisfy the specification?”

From the perspective of automatic contrilpdel Predictive Control (MPC) has
similarity with our approach. MPC is an optimal control medhminimizing a cost
function of the error between the predicted output and tfereace and of the energy
to change the system state [4, 5]. One of the merits of MPGaistibcause it computes
the predicted output it can follow non-constant referenaeie satisfying other phys-
ical constraints. The key idea in the success of MPC is theofifiaite inpufoutput
horizons where the input and output to and from the systerorhecconstant. These
finite horizons enable us to express the output of the systetarins of a finite se-
guence of input. This conversion removes the dependeneyebetinput and output
defined by the system dynamics equation during the optimizgirocess. In LTLC
model checking we adopt the key idea of MPC: adopt the jioptphut horizons and re-
move the inpybutput dependencies from the model checking process. Hawavike
MPC wherealways enforced constraints are hard coded in the controller ifidira of
quadratic programming, LTLC provides a high level abstoaciogic to generate com-
plex sets of constraints. Note that this hard coded conbjelatives are dficult gener-
ate or modify because of the lack of the abstractions. Na&eLfFLC model checking
can also be used to compute a sequence of control input gfysatcomplex control
objective described in LTLC: a counter example of the natjatintrol objective is a
sequence of input that will satisfy the original goal.



2 DiscreteLinear Timelnvariant System Model

Our system model is a Discrete Linear Time Invariant Systérickvcan be represented
by a seven-tupleM = (U, Y, X, A, B, C, D), whereld = {us,...,Uy} is a set
of inputs,Y = {y1,...,Yn} iS @ set of outputsX = {Xi,..., X/} is a set of states, and
A € R™™ B e R™M™ Ce RY™™ and De R™™ are system matrices that describe
the diference equations for the dynamics of the system. Our modetitles a Multiple
Input and Multiple Output (MIMO) system which has inputs andhy outputs.

In this paper, we overload the definitions wf y;, andx; with the functionsy; :
N - R,yi : N - R, andx : N — R that map discrete timeto the value of input,
output, and state at that time. We also define the followirgargunctions:

u: N — R™™! such thau(t); = ui(t), fori =1,...,nu,
y: N - R™ such thaty(t); = yi(t), fori=1,...,ny,
x: N = R™ such thai(t); = x(t), fori =1,...,nx,

where the subscriptof a vector is thé" element of the vector.
The relations among input, output, and state functions amengoy the following
difference equations.

X(t+1)=A-x(t) +B-u(t), Q)
y(t) = C- x(t) + D - u(t).

Note that in the first dference equation, the next staf¢ + 1) is solely determined by
the current statg(t) and the current input(t). Thus, while inputs do not change, if two
consecutive states remains the same, then the system iseady state from then on.
That s, ifx(t + 1) = x(t) andu(t + i) = u(t) fori > 0 thenx(t + j) = x(t) for j > 0.

Given an inpuu and an initial statex(0), we can compute the state and the output
of the system at timeas follows by recursively applying the equation (1).

t-1

X(t) = At - x(0) + Z AELUB (i), 2)
i=0

y(t) = C- x(t) + D - u(t).

3 Linear Temporal Logic for Control (LTLC)

In this section, we describe the syntax and the semantic$l0ELLTLC has the same
temporal and logical operators hmear Temporal Logic (LTL). However, LTLC has
different ways of describing atomic propositions than coneealiLTL. A commonly
used model for LTL is a Kripke structure [9] which is a finitatgt automaton with a
set of atomic propositions associated with each state. IrC, Wwith its uncountable
state model, atomic propositions are given as a predicatgitin of states: equalities
or inequalities about linear combinations of input, outpid state variables. With this
form of atomic propositions, we can easily describe manjulipeoperties of physical
systems.



3.1 Syntax

The syntax of an LTLC formulé is as follows:

Yyii=T|F|ap
WIYNVOlYAPlY o>l o ¢
Xy lyUglyRpIOY|OY,
ap(t) ::=c1-vi(texpy) + - - - + Cq - Vn(texp,) > d,

whereap is an atomic propositioriexp, is a polynomial of variablé c, ..., ¢y, andd
are real numbers,e U UY U X is one of input, output, or state variables, ants one
of{<, <, > > =}

As MPC enforces input and outpliorizon constraints, LTLC also enforces them.
Note that they are not just constraints but an importantrobobjective as well: drive
the system to a steady state in finite time horizon. Theseti@nts may restrict the
scope of LTLC model checking but they play crucial roles inieg the decidability
result of Theorem 2. Also those computational paths prugeldse constraints are less
interesting from an automatic control perspective: we aterested in those sequences
of input that will drive the system to a steady state rathanthrbitrary sequences of
input. LetHy be an output horizon when the system arrives a steady stdtElabe
an input horizon lu < Hy) from which the inputs to the system do not change. This
horizon constraint can be expressed as follows:

AX %(Hy + 1) = x(Hy) A Au ui(Hu+ j) = u(Hu) for j > 0. (3)
i=1 i=1

Thetexp of LTLC is a polynomial of time variablé The use otexp enriches the
expressiveness of LTLC such that some formula cannot beesgpd otherwise. For
example, in Pharmacokinetics, an instruction like take ioied at every three hours
can be easily expressed in LTLC adways (dose(3-t+ 0) > Oand dose(3-t+ 1) =
0) and dose(3 - t + 2) = 0). However, improper use déxp can hamper the steady
state constraints (3). Thus, we assume that all non-canstqnfor state and output
variablestexp(t) > Hy for t > Hy and that all non-constagxp for input variables,
texp(t) > Hu for t > Hu, wheretexp(t) is the value otexp at timet.

3.2 Semantics

An LTLC formula has atomic propositions, logical conneetiy-, v, A, —, and <,
and temporal connectives, U, R, O, and¢ . An atomic proposition of LTLC is a
linear constraint on time-indexed variables (input, ottpmd state variables) with a
comparatoed. The meaning of an atomic proposition at any given ttrisawhether the
linear constraint at timéexp(t) satisfies the usual meaning®f Note that the value of
state variables and the output variables can be rewrittégrins of an initial state and
a sequence of inputs as can be seen in equation (2).

The meaning of logical operators v, andA are:—y is true if and only ify is false,
YV ¢ is true if and only ifys or ¢ is true, andy A ¢ is true if and only ify and¢ are both



Mu,x(0),tE T

M,u,x(0),t £ F

Mux(O).tE 36 - vitexp) m d & 36 - i(texp, (1)) = d

Mu,x(0)tE-v o MuxO),tEy

Mu,x(0),t Ey A ¢ o M,u,x(0),tE ¢y andM,u,x(0),t E ¢

Mu,x(0),tEy Ve o Mu,x0),tEyor M, u,x(0),tE ¢

MuxO)tEXy o Mux0),t+1Ey

M,u,x(0),tEyU¢ < there isj > 0 such thatM,u,x(0),t + j ¢ and
M,u,x(0),t+iEyfori=0,...,j-1

Mu,x(0),tEyR¢ o foralli > 0if M,u,x(0),t+ j £ ¢ for0 < j < ithen
M, u,x(0),t+1 [ ¢.

Fig. 1. Quintuple satisfaction relatioa.

true. The meaning of implies{) isy — ¢ < -y Vv ¢ and that of equivalen&$) is
Veod o y—-S9oNd - Y.

The meaning of temporal operatds U, and R are:X y is true if and only ify is
true at the next stem; U ¢ is true if and only if¢ eventually becomes true and before
¢ becomes tru# is true, andy R ¢ is true if and only if¢ is true whiley is false and
if Y becomes true thegiis true until that moment. The meaningmiy is alwaysy is
true which is equivalent t& Ry and the meaning o ¢ is eventuallyy becomes true
which is equivalent toT U y.

Formally, the semantics of LTLC formula is defined by a birsatisfaction relation
Ec Mxy. Inorder to help explain the binary satisfaction relatigrwe overload the
symbol and define a quintuple satisfaction relation Mx (N — R™)x R™x N x ¢
which is described in Figure 1. For simplicity we writel |  for (M,y) € E and
M, u,x(0),t E ¢ for (M, u, x(0),t,¢) € k.

The quintuple satisfaction relation is about a single pathether a sequence of
transitions from an initial state by a sequence of inpus§ias the given LTLC formula.
Using the definition of the quintuple satisfaction relatithe binary satisfaction relation
k= is defined as:

ME ¢ o M,u,x(0),0 E ¢ for all u, x(0).

The binary satisfaction relation is about all paths: whethe transitions from all initial
states by all sequences of input satisfy the quintuplefaatien relation.

In order to bring more insight into the syntax, the semantosl usages of LTLC
we explain the following example about drug administratiorPharmacokinetics, drug
concentrations in our body is often modeled as linear system

Example 1. Suppose that there is a patient who has disease in his luogdén to cure
the disease certain level of drug concentration (say, A sigould be maintained in the
lung for certain period of time (say, 3 hour). However, besgathis drug is toxic to liver,
its concentration at the liver should not exceed certaiallgsay, 3 mg). Also, in order
to increase absorption of the drug, it should be taken aft@ng), or say, every 4 hours.
As a final condition, the drug should be cleared from the bagytually.

Let dose be the dose of medicinéyer is the concentration of the drug at the liver,
andlung is the concentration of the drug at the lung.



The constraint that the drug should be taken at every 4 hamse written as
O(dose(4-t+1) =0Adose(4d-t+2) =0Adose(4-t+ 3) = 0). In this formula
thealways operatoro providest from 0 to infinity. A similar but diferent formula is:
O (dose(t) > 0 — (dose(t + 1) = 0 A dose(t + 2) = 0 A dose(t + 3) = 0)). This formula
can be read as, once he took the medicine he shouldn’t takgiih avithin 4 hours.
Similarly, the drug concentration constraint in the livande written asi(liver (t) < 3).

The goal, the condition about the drug concentration in timg lcan be written as
< (lung(t) > 5 A X lung(t) > 5 A XX lung(t) > 5). Note that theventually operatoro
ensures that the condition should happen.

The last clearance condition can be written@s (lung(t) = O A liver(t) = 0). Note
that the combined operatotso specify properties at a steady state.

Finally, we can express the whole problem in LTLC as follows:

O(dose(4-t+1)=0Adose(4-t+2)=0Adose(4-t+3)=0)
A O (liver(t) < 3)
A < (lung(t) > 5 A X lung(t) > 5 A X X lung(t) > 5)
A O (lung(t) = O A liver(t) = 0).

4 Model Checking

In this section, we describe an LTLC model checking algaritt/e first transform vari-
ables at dierent times into normal form, which is a fixed length ffaéent vector. We

then remove all temporal operators from the specificatiomgthie horizon constraints.
Finally, we prove the decidability of LTLC model checking.

4.1 Convertingtimed variablesto a normal form

The atomic propositions of LTLC are equality or inequalitynstraints about linear
combinations of input, output, or state variables. Thesables are related to others
by the system dynamics equation (1). In this section we abtivese timed variables
into a normal form so that the dependencies among varialdedlianinated during the
model checking process. This is a standard technique in MR®@mpute an optimal
solution [4, 5]. In Section 3.1 we described the steady statestraint of LTLC. This
constraint not only is a useful control objective but alskesaL TLC model checking
decidable. The constraint also plays a key role in definimghtrmal form explained
below.

Let t, be min¢, Hy) and lett, andiy, be min¢, Hu) and min{, Hu) respectively. If
the steady state constraint (3) is satisfied then the sysyaamaics equation (2) can be
rewritten as:

ty-1

X(t) = AY - x(0) + Z AY1UB L u(iy), 4)
i=0

y(t) = C-x(t) + D - u(ty).



For a constant c:

_Jcifj=1
oc.0); = {O otherwise

For an input variable;(t):

_JLlifj=14+nx+nu-t, +i
ou.1); = {0 otherwise

For a state variablg (t):

c(xt): =0
o(x, )1, = (AY); for1< j<nx
c(X, t)1+n><+j-nu+l< =
0 ifj>t, -1
Av-i1.B) elseifj < Hu

For an output variablg (t):

C(yv t)l =0
oy, D1sj = (C- AY);; for 1< j < nx
c(y, t)1+n>(+j«nu+k =
c(y, t)j-nu+k + Djk if j = min(Hu, ty)
C'(y, t)j«nu+k otherwise

(Z}Y;J.IAJ’ ) B)ik else ifj = Hu for0< j < Hu,1 <k <nu, where
forO<j<Hul<k<nu . Ojnuekc = "
0 . ifj>t, -1
(C-Avit.B) elseifj <Hu
(zyc A B), else ifj = Hu

Fig. 2. The conversion function.
Note that in equation (4x(t) or y(t) at any timet can be expressed in termsx@D) and
u@i) fori =0,...,Hu. Letv be a vector of these variables defined as:
Vv =[1, x2(0), . . ., Xx(0), us(0), . . ., Uny(O), . . ., ur(Hy), . . ., Unu(HWI ™.

Then, the normal form for a variabit) is a codficient vector, say, such that(t) =

z - v, wherez is one of input, output, or state variables. The conversiorctionc:
(UUYUXUR)x N - R¥™Hud) g defined in Figure 2. For simplicity, we
overload the function : (HUYUXUR)xN — RY¥™HWED with ¢ - APXIN — AP

as follows.

c(Cy - va(texpy) + - - - + Cn - Vn(texpy) = d,t) =
(€1 - c(vy, texpy (1)) + - - - + Cn - C(Vi, texp,(t)) — ¢(d, 0)) - v > O.

With the normal form

C1 - Vi(texpy (1)) + - - - + Cq - Vn(texp,(t)) < d &
c(ca - va(texpy) + - - - + Cn - Vn(texpy,) > d, t).

The horizon constraint (3) can be written in LTLC formula akdws:
nx nu
H: /\ (xi(Hy + 1) = xi(Hy)) A /\ o (u(Hu+1t) = u(Hu)
i=1 i=1

Thus, given an LTLC formulg we implicitly meanH — .



4.2 Model checking as a feasibility checking

Before we explain the details of model checking algorithre, fizst show an exam-
ple that illustrates how to convert an LTLC model checkingljdem into a feasibility
checking problem.

211’11
propositiona(t) bey(t) < 3, horizon constraints bu = 2 andHy = 2, and suppose
that we want to find an initial state and a sequence of input thetH A XaA XX a.
For this problem, we do LTLC model checking for the systéfragainst a specifi-
cationy : H - =(Xa A XX a). Note that any counter example M E y satisfies the
original goal. In practice, we search foft) andx(0) such thaiM, u, x(0), 0 E —. That
is,

Example 2. Letalinear systenM bel{u}, {y}, {X1, X2}, [1 1] , [2},[1 1],0), an atomic

M, u,x(0),0EHAXaAnXXa

u(t+2)=u(2) fort > OA (input horizon constraint)
© 1 X1(2) = x1(3) A X2(2) = x2(3)A (output horizon constraint)
y(1)<3AYy(2)< 3 XanXXa)

o [043432].v=0A [0,62631]-v=0n
[-3,3,2,3,0,0]-V<0A[-3,7,57,30]-v<0,

wherev is [1, x1(0), X2(0), u(0), u(1), u(2)]. Thus,

 [0,4,3,4,32]-v=0A [0,6,2,6,3,1]-v=0A
M#W@{V'[—3,3,2,3,0,0]-v<o/\[—3,7,5,7,3,0]-v<o #0.

Note that the emptiness gfcan be checked by linear programming and any feasible
is the counter example that we are seeking.
|

We now show how to transform an LTLC model checking probleto afeasibility
checking problem and use it to prove the decidability of LTinGdel checking. If the
horizon constrainH is satisfied then the system arrives at a steady state pstep
onward and the atomic propositions of the specification beroonstants. Otherwise,
the system simply is not a model of the specificatior [§ satisfied, then for > Hy,

MU, xQO),tE Xy & Mu,x(0),tE ¥, (5)
M, u,x(0),tE ¢ U¢ & M,u,x(0),tE ¢,
M9 u’X(0)9t ': WRQS < M9 u’X(0)9t I: ¢'
The use of normal form for timed variables and the fact thatsystem arrives at a
steady state enable us to remove all the temporal operatonsiTLC specifications.

Figure 3 shows an algorithm to remove all temporal operatbas LTLC formula that
is equivalent to the original formula H is satisfied.

Theorem1l. MEH -y © MEH — £(,0).



HORN
if(y is T) return T
if(y is F) return F
if(y is an AP) return c(y,t)
if(y is —¢) return —f(¢4,t)
if(y is ¢vn) return £(¢,t) VvV £(,t)
if(y is ¢ A1) return £(¢p,t) A £(,1)

if(y is X¢)
if(t > Hy) return f(¢,t)
else return f(¢,t+1)

if(y is ¢UM
if(t > Hy) return f(,t)
else return f(n,t) vV ( £(¢,t) A £, t+1) )
if(y is ¢R1)
if(t > Hy) return f£(,t)
else return ( £(¢,t) A £(p,t) ) vV C £(n,t) A £, t+1) )

Fig. 3. Functionf removes all temporal operators from an LTLC formula

Outline of proof: We prove the equivalence by induction on the structuraldféd LC
formulay. The induction base arg, F, and the atomic propositions which can easily
proved. Induction steps on the logical connectives can begat by the definitions of

f and the quintuple satisfaction relatign Induction steps on the temporal connectives
can be proved using the equivalence relations

YUp=¢V W AXYUY), (6)
YRp=WAP)V(SAX(YRY)),

the steady state relation of equation (5), and the definitfofi about thex formula.
We divide the induction step on temporal operators in twesalefore time reaches
the steady state horizon, where we use the equivalencmre(@), and after the steady
state, where we use the equation (5).

|

Theorem 2. Model checking LTLC formulasH —  isdecidable.

Proof. Given an LTLC formulay with an implicit output horizorHy, we can get a
formula¢ = £(y,0), which is equivalent ta, for the runs wherd is true. Because
¢ does not have any temporal operators, we can transform iidqiriztive Normal
Form (DNF) whose satisfiability can be checked by checkiregstitisfiability of each
conjunctive subformula. The subformula is a conjunctiodireéar equalities and in-
equalities in the normal form. Thus, the satisfiability o€legubformula is equivalent
to the feasibility of linear constraints which can be chetkg linear programming.
Becausep has only finite number of conjunctive subformulas and lingagramming
can be done in finite number of steps, LTLC model checking csdddle.

|



System dynamics

pitch angle X(t+1) = A-x(t)+B-u(t)
, rotor angle y(t) = C-x(t) + D - u(t),

i

ertical axis

where

orizontal axis 0.9680 -0.0005-0.0010
A=1{00980 1 0
-0.0888 09790 09981
0.6171
B = 00311 ,c:[001], D=0.

0.9457

Fig. 4. A helicopter diagram and its discrete time dynamics.

Note that in LTLC model checking we do not make transitionstates explicitly.
Instead, we transform the atomic propositions &fedent times into normal form. In
model checking hybrid systems, one of théfidulties is the uncountably large state
space. LTLC model checking addresses th&addlilty in this framework. Thus, at any
moment we can partition the state space into at {238t equivalent classes which are
not further distinguishable b&P.

Although the method described in this section is intuitiveen converted to a DNF,
the number of conjunctive subformulas of an LTLC formula gaow exponentially in
terms of the output horizoHy. For example, the conjunctive subformulasmfa v b)
have/\t'li’) (a(t) | b(t)), where | is a choice operator. Thus, the number of conjunctive
terms is 2¥*1 and with largeHy model checking becomes practically impossible. For-
tunately, however, there are many common terms in the cotijgnsubformulas. If
infeasibility is found in the common terms then we can skipatting all of the terms
with the common infeasible terms. To leverage this compriat benefit, we build a
Buichi automaton [3] which can be thought as a generatoreo€timjunctive subterms.
Each path of lengtidy of the Biichi automaton is a conjunctive subformula. We can
check the feasibility of common prefixes together and skigdanumber of redundant
checks.

5 Experiment

In this section we illustrate how LTLC model checking can bediin controlling linear
systems. The example system is a helicopter at near hoved spigure 4 shows a dia-
gram of the example helicopter and its dynamics equatidms hElicopter is composed
of a body (fuselage) and a main rotor whose angle to the bodyrigontrol variable.
The angle between the body and the horizontal plane is capilteldangle (nose down
is positive). The speed of the helicopteiirf Figure 4) is defined at the center of mass.
In this example we consider only the horizontal componeihefvelocity vector. The
angle between the rotor plane and the direction of body Iedabtor angle. The atti-
tude (pitch anglea, and pitch ratgr = pa) and the speed/ of a helicopter can be
controlled by changing the rotor anglgr).



B S g B S g

# System description # Control objective description
system: specification:
const pi = 3.141592; # when to bring the system to a steady state
const rmin = -pi*20/180, rmax = -rmin, # and when to stop changing input
rrmax = pi*10/180; output horizon: 25;
const A = [ 0.9608, -0.0005, -0.0010; input horizon: 24;
0.0980, 1, 0;
-0.0888, ©.9790, 0.9981 ], # rotor angle constraints
B=1[0.6171; 0.0311; 0.9457 ]; rp®(t): dr(t) >= rmin;

rpl(t): dr(t) <= rmax;
# System variables

# x: pitch rate, pitch angle, speed # rotor angular rate constraints
# dr: rotor angle rrO(t): dr(t+l) - dr(t) <= rrmax;
# v: speed rri(t): dr(t+l) - dr(t) >= -rrmax;
var x[3]: state,
dr: input, # initial state
v: output; # pitch rate and angle are both 0
x0(t): x[0](V) = 0;
# System dynamics equation x1(t): x[1](t) = 0;
Xx=A* X +B * dr;
v =1[0, 0, 1] * x; # initial and finial vehicle speed
vi(t): v(t) = 2; #initial speed

vs(t): v(t+16) = 0; #stop at 1.6 sec
vr(t): v(t) >= 5; #finial speed

# negated control objective
' [0 Crp® /\ rpl /\ rr® /\ rrl)
# physical constraints
/\ x0 /\ x1 # initial state
/\ vi # initial speed
/N (1 vs \/ <> [1 vr)
# either stop or speedup
s

Fig. 5. LTLC specification for the experiment.

Our system model for the helicopterM = (U, Y, X, A, B, C, D), whereld = {dr},
Y = {v}, X = {pr, pa, v}, and the system dynamics equation is given in Figure 4. We
obtain the discrete time dynamics by sampling a continuimis dynamics equations
in [8] at a sampling rate of 10 samples per sec. We also congigesical constraints to
the control variable (the rotor angle) to make the systememealistic: its maximum
and minimum angles are20° and -20° respectively, and its maximum and minimum
angular rates are100°/sec and -100°/ sec respectively.

Figure 5 shows a model and specification description writteur LTLC checker [1].
It has two main components: a system description block tbgins withsystem: tag
and a specification block that begins withecification: tag. One can define scalar
or matrix constants and type annotated variables in thigkbldsing the constants and
the variables system dynamics equations are finally definéds block. Note that the
LHS of the dynamics equations are a state variable or an budpiable.



The specification block begins with the implicit horizon stmaints. The output
horizonHy and the input horizotdu are first defined in this block as can be seen in
Figure 5. Optional definitions of atomic propositions fallthe horizon constraints.
A definition of an atomic proposition has its name with a tinegiable and a linear
constraint. A constraint is a comparison between lineartipations of input, output,
and state variables. Also, each variable is associatedtithe expression. In Figure 5,
rp0 andrpl describe the physical limits of the rotor angle, an@andrr1 describe the
limits of the rotor angular rate. The next two constrax@sandxl1 are about the state
variablex (pitch rate and pitch angle). We use these equalities toifgpae initial
condition.

The last part of LTLC checker description is an LTLC formuging the previously
defined atomic propositions. Usually, the topmost operatdhe LTLC specification
is the negation operator because we want to model check teioe of our control
objective.

Now, suppose that the helicopter is flying at the speed g2oand there is another
vehicle approaching to it. In order to avoid collision we dde stop the helicopter
within 1.6 sec or accelerate it to a speed faster thariseowithin 2.5 sec. We want to
know whether this control objective is achievable and i§ipbssible we want to know
the input sequence also.

The subformulax0 A x1 is about the initial state condition: the helicopter'diadi
pitch rate and pitch angle are both zero. Note that an LTL@fda without any tempo-
ral operator is about the initial step (at time 0). The sutmidac(rpOArpLArrOArrl)
means that the physical constraints on the rotor contrclarays imposed. The always
operatom ensures the binding of the time variable of inequalities actdal time dur-
ing the process of model checking. Note the time expredsid®iin vs(t). Because the
first time index ofvs(t) is 16, the formulaavs means that the helicopter stops from 1.6
sec onward. The formul A (Ovs v ¢oOvr) specifies that a vehicle initially flying at 2
m/sec speed stops within 1.6 sec or speeds up to a speed fastér misec within 2.5
sec. Note how easily and intuitively the goal is expresseldlinC. Even this simple

disjunctive form of goal would be very fiicult to write by hand.
The model checking result is:

result: F

state= [ -0.000 0.600 2.000 1°T

input[0]=[ -0.349 -0.349 -0.237 -0.063 0.112 0.286 0.349 0.349 0.175 0.287
0.113 0.000 0.000 -0.157 -0.332 -0.157 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 1

In the model checking resultésult: F’ means that the helicopter is not the model of
the negated specification. In other words, there is an lisiizde and a sequence of input
that drive the system to meet the original control objecti® a counter example the
model checker prints out the initial state and the sequeho®at. Thus, by applying
the input sequence in that order, the system will arrive geady state with all the
control objectives satisfied.

Figure 6 shows the result of applying the computed input eostystem from the
computed initial state. In the second graph of Figure 6, tilil dine is the control
input, the dashed line is the resulting pitch rate, and thieddshed line is the resulting
pitch angle of the helicopter. Notice thef@irence that the input sequence in the counter



speed (m/sec)

I
0 2 4 6 8 10 12 14 16 18
time (0.1xsec)

50 - : — input (deg)
— — pitch rate (deg/sec)
— - pitch angle (deg)

Il
0 2 4 6 8 10 12 14 16 18
time (0.1xsec)

Fig. 6. Transitions of the model system driven by the computed input

example is in radian whereas the graph is plotted in degree Fhis graph we can see
that the physical constraints on the rotor angle and its langate are always satisfied.
The first graph of Figure 6 shows the helicopter’s speed. §haph also shows the
vehicle’s pitch attitude and the rotor angle at the same itmeeder to give more insight

into the dynamics of the system. Note that the vertical exihié speed of the vehicle
not the elevation. This graph shows how the vehicle cometomwithin 1.6 sec and

the input also becomes constant from that moment.

6 Discussions

We developed a temporal logic called LTLC for specifyinggedies of linear systems
and its model checking algorithm. LTLC model checking isidable if we control
the system to arrive at a steady state within a specified tnoriglthough the implicit
steady state constraints prevent LTLC model checking freimguarbitrary input, many
practical interest for the system require these consgalffiLC can also be used to
explicitly describe complex control objectives. A sequernd control input that can
achieve the control objective can be computed in the pradfas®del checking.

The use oftexp in atomic propositions makes writing specification easy ista-
itive. Also, texp extends the expressiveness of LTLC such that some propegiaot
be expressed without it. Thutexp can be regarded as a special temporal operator.
However, on the other hand, its use can obscure the defimtistate and requires a re-
finementin semantics. An interpretationtefp can be done in two layers: the first layer
is a path determined by the choice of initial state and injlnétsecond layer consists of
the parallel compositions of reordered sequences of thefpaeachtexp sampled at
texp(t).



As far as assuring system stability goes, the minimum boanéhput horizorHu
and output horizomdy are well known in predictive control literature [4]. In geaka
short horizon results in large input variation, which is desirable from a control per-
spective, whereas long horizon slows down the model chggkiocess. Also, the LTLC
model checking for control described in this paper is fordaal open loop control. If
the linear system model is not accurate or if there are sgmsiise or disturbances, the
actual system output will deviate from the computed one &mdt corrected properly,
the specification may be violated. A solution to these proislés to introduce a closed
loop feedback control mechanism. The feedback control @pbe easily achieved
by computing a new control input at every step with an updatete estimation as is
commonly practiced in Receding Horizon Predictive Congtieme [4].

We believe, LTLC can be used as a high level abstraction twadl ¢an hide the
complexities of the underlying physical systems. We ald@be that composing the
abstractions to define higher level abstractions will benaartant technique for han-
dling the scalability problem in large systems.
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