
LTLC: Linear Temporal Logic for Control

YoungMin Kwon and Gul Agha

1 Microsoft Corp.
ykwon4@cs.uiuc.edu

2 Department of Comptuer Science
University of Illinois at Urbana Chamapaign

agha@cs.uiuc.edu

Abstract. Linear systems are one of the most commonly used models to rep-
resent physical systems. Yet, only few automated tools havebeen developed to
check their behaviors over time. In this paper, we propose a linear temporal logic
for specifying complex properties of discrete time linear systems. The proposed
logic can also be used in a control system to generate controlinput in the pro-
cess of model checking. Although, developing a full feedback control system is
beyond the scope of this paper, authors believe that a feedback loop can be easily
introduced by adopting the receding horizon scheme of predictive controllers. In
this paper we explain the syntax, the semantics, a model checking algorithm, and
an example application of our proposed logic.

1 Introduction

Linear systems have been widely used as mathematical modelsfor physical systems
because they can accurately represent the actual systems despite their simple structure.
Thus, not surprisingly, many control systems are developedbased on this simple math-
ematical model. In designing a control system, one of the fundamental questions about
the system is thecontrollability of the system: whether we can drive the system from
any state to any state [8]. Nowadays, with the popular use of versatile digital controllers,
control systems can perform ever complex tasks and so becomethe requirements. In
this challenging environment, one may want to know more thanthe traditional notion
of controllability. For example, in a vehicle control system, we want to know, whether
the vehicle can maintain certain speed even though we cannotkeep accelerate it for
longer than a duration to prevent overheating. The traditional controllability does not
address this type of problem. Also, this seemingly simple problem has too many cases
to be checked by hand: feasible set of state at each step depends on its past computa-
tional path – whether we accelerate or not at the current stepaffects the feasible set of
state after the duration.

One obvious problem here is that we need a way to describe the complex require-
ments. Combinations of linear constraints can be a buildingblock for the description:
conjunctions of linear constraints define a convex region inthe state space of the system
and any arbitrary regions can be described by union or complements of them. However,
these combinations of constraints can be too complex to generate or to modify by hand
for nontrivial requirements. In this paper, we propose a logic, calledLinear Temporal

Logic for Control (LTLC) on linear systems to describe the requirements in a highly
abstract manner. LTLC uses logical and temporal operators to combine the constraints
so that the complex path-dependent behaviors can be easily expressed. The usefulness
of LTLC is not limited to checking the refined notion of controllability: it can also be
used to compute a sequence of control input that can obtain control objectives.

Temporal logics like LTL, CTL, and CTL* are initially developed to specify behav-
iors of concurrent systems and later they are introduced to model checking [11, 6, 7].
Because their reasoning process is automated, model checking has been widely used in
verifying complex hardware and software systems. However,the models of these log-
ics are finite state machines whereas the model of LTLC is a linear system which has
uncountably many states. Thus, in order to introduce these logics to linear systems we
need different ways of expressing the states and different model checking algorithms.
There has been approaches to address the problems of specifying and model checking
in infinite state spaces. For example, Alur and Dill developed timed automaton, which
is a finite state automaton with finite number of real valued clocks associated with the
states, to model hybrid systems [2]. A decidability result for LTL model checking on
controllable linear systems has been reported where a control system defined on a space
of grid blocks bisimilar to the original linear system is built to divide the uncountable
state space into finite partitions [12]. This result is extended to build a framework for de-
signing controllers [13]. In iLTL, properties of Discrete Time Markov Chains (DTMC)
are specified in the form of inequalities about expected rewards [10]. In iLTL the set of
atomic propositions partitions the uncountableprobability mass function (pmf) space
into a finite number of equivalent classes. Although these approaches address the un-
countable state space problem, none of these approaches address the question: “Given a
system and a requirement, is there an initial state and a sequence of input that can drive
the system to satisfy the specification?”

From the perspective of automatic control,Model Predictive Control (MPC) has
similarity with our approach. MPC is an optimal control method minimizing a cost
function of the error between the predicted output and the reference and of the energy
to change the system state [4, 5]. One of the merits of MPC is that because it computes
the predicted output it can follow non-constant referenceswhile satisfying other phys-
ical constraints. The key idea in the success of MPC is the useof finite input/output
horizons where the input and output to and from the system become constant. These
finite horizons enable us to express the output of the system in terms of a finite se-
quence of input. This conversion removes the dependency between input and output
defined by the system dynamics equation during the optimization process. In LTLC
model checking we adopt the key idea of MPC: adopt the input/output horizons and re-
move the input/output dependencies from the model checking process. However, unlike
MPC wherealways enforced constraints are hard coded in the controller in theform of
quadratic programming, LTLC provides a high level abstraction logic to generate com-
plex sets of constraints. Note that this hard coded control objectives are difficult gener-
ate or modify because of the lack of the abstractions. Note that LTLC model checking
can also be used to compute a sequence of control input to satisfy a complex control
objective described in LTLC: a counter example of the negated control objective is a
sequence of input that will satisfy the original goal.

2 Discrete Linear Time Invariant System Model

Our system model is a Discrete Linear Time Invariant System which can be represented
by a seven-tupleM = (U, Y, X, A, B, C, D), whereU = {u1, . . . , unu} is a set
of inputs,Y = {y1, . . . , yny} is a set of outputs,X = {x1, . . . , xnx} is a set of states, and
A ∈ IRnx×nx, B ∈ IRnx×nu, C ∈ IRny×nx, and D∈ IRny×nu are system matrices that describe
the difference equations for the dynamics of the system. Our model describes a Multiple
Input and Multiple Output (MIMO) system which hasnu inputs andny outputs.

In this paper, we overload the definitions ofui, yi, and xi with the functionsui :
IN → IR, yi : IN → IR, andxi : IN → IR that map discrete timet to the value of input,
output, and state at that time. We also define the following vector functions:

u : IN → IRnu×1 such thatu(t)i = ui(t), for i = 1, . . . , nu,
y : IN → IRny×1 such thaty(t)i = yi(t), for i = 1, . . . , ny,
x : IN → IRnx×1 such thatx(t)i = xi(t), for i = 1, . . . , nx,

where the subscripti of a vector is theith element of the vector.
The relations among input, output, and state functions are given by the following

difference equations.

x(t + 1) = A · x(t) + B · u(t), (1)

y(t) = C · x(t) + D · u(t).

Note that in the first difference equation, the next statex(t + 1) is solely determined by
the current statex(t) and the current inputu(t). Thus, while inputs do not change, if two
consecutive states remains the same, then the system is in a steady state from then on.
That is, ifx(t + 1) = x(t) andu(t + i) = u(t) for i ≥ 0 thenx(t + j) = x(t) for j ≥ 0.

Given an inputu and an initial statex(0), we can compute the state and the output
of the system at timet as follows by recursively applying the equation (1).

x(t) = At · x(0)+
t−1
∑

i=0

At−i−1 · B · u(i), (2)

y(t) = C · x(t) + D · u(t).

3 Linear Temporal Logic for Control (LTLC)

In this section, we describe the syntax and the semantics of LTLC. LTLC has the same
temporal and logical operators asLinear Temporal Logic (LTL). However, LTLC has
different ways of describing atomic propositions than conventional LTL. A commonly
used model for LTL is a Kripke structure [9] which is a finite state automaton with a
set of atomic propositions associated with each state. In LTLC, with its uncountable
state model, atomic propositions are given as a predicate function of states: equalities
or inequalities about linear combinations of input, output, and state variables. With this
form of atomic propositions, we can easily describe many useful properties of physical
systems.

3.1 Syntax

The syntax of an LTLC formulaψ is as follows:

ψ : : = T | F | ap

¬ψ | ψ ∨ φ | ψ ∧ φ | ψ→ φ | ψ↔ φ

X ψ | ψ U φ | ψ R φ | � ψ | ^ ψ,

ap(t) : : = c1 · v1(texp1) + · · · + cn · vn(texpn) Z d,

whereap is an atomic proposition,texpi is a polynomial of variablet, c1, . . . , cn, andd
are real numbers,v ∈ U∪Y∪X is one of input, output, or state variables, andZ is one
of { <, ≤, >, ≥, = }.

As MPC enforces input and outputhorizon constraints, LTLC also enforces them.
Note that they are not just constraints but an important control objective as well: drive
the system to a steady state in finite time horizon. These constraints may restrict the
scope of LTLC model checking but they play crucial roles in deriving the decidability
result of Theorem 2. Also those computational paths pruned by these constraints are less
interesting from an automatic control perspective: we are interested in those sequences
of input that will drive the system to a steady state rather than arbitrary sequences of
input. LetHy be an output horizon when the system arrives a steady state and Hu be
an input horizon (Hu ≤ Hy) from which the inputs to the system do not change. This
horizon constraint can be expressed as follows:

nx
∧

i=1

xi(Hy + 1) = xi(Hy) ∧
nu
∧

i=1

ui(Hu + j) = ui(Hu) for j > 0. (3)

The texp of LTLC is a polynomial of time variablet. The use oftexp enriches the
expressiveness of LTLC such that some formula cannot be expressed otherwise. For
example, in Pharmacokinetics, an instruction like take medicine at every three hours
can be easily expressed in LTLC as:always (dose(3 · t + 0) > 0 and dose(3 · t + 1) =
0) and dose(3 · t + 2) = 0). However, improper use oftexp can hamper the steady
state constraints (3). Thus, we assume that all non-constant texp for state and output
variables,texp(t) ≥ Hy for t ≥ Hy and that all non-constanttexp for input variables,
texp(t) ≥ Hu for t ≥ Hu, wheretexp(t) is the value oftexp at timet.

3.2 Semantics

An LTLC formula has atomic propositions, logical connectives,¬, ∨, ∧, →, and↔,
and temporal connectivesX , U , R , � , and^ . An atomic proposition of LTLC is a
linear constraint on time-indexed variables (input, output, and state variables) with a
comparatorZ. The meaning of an atomic proposition at any given timet is whether the
linear constraint at timetexp(t) satisfies the usual meaning ofZ. Note that the value of
state variables and the output variables can be rewritten interms of an initial state and
a sequence of inputs as can be seen in equation (2).

The meaning of logical operators¬,∨, and∧ are:¬ψ is true if and only ifψ is false,
ψ∨φ is true if and only ifψ orφ is true, andψ∧φ is true if and only ifψ andφ are both

M,u, x(0), t |= T
M,u, x(0), t 6|= F
M,u, x(0), t |=

∑

i ci · vi(texpi) Z d ⇔
∑

i ci · vi(texpi(t)) Z d
M,u, x(0), t |= ¬ψ ⇔ M,u, x(0), t 6|= ψ
M,u, x(0), t |= ψ ∧ φ ⇔ M,u, x(0), t |= ψ andM,u, x(0), t |= φ
M,u, x(0), t |= ψ ∨ φ ⇔ M,u, x(0), t |= ψ orM,u, x(0), t |= φ
M,u, x(0), t |= X ψ ⇔ M,u, x(0), t + 1 |= ψ
M,u, x(0), t |= ψ U φ ⇔ there is j ≥ 0 such thatM,u, x(0), t + j |= φ and

M,u, x(0), t + i |= ψ for i = 0, . . . , j − 1
M,u, x(0), t |= ψ R φ ⇔ for all i ≥ 0 if M,u, x(0), t + j 6|= ψ for 0 ≤ j < i then

M,u, x(0), t + i |= φ.

Fig. 1. Quintuple satisfaction relation|=.

true. The meaning of implies (→) is ψ → φ ⇔ ¬ψ ∨ φ and that of equivalent (↔) is
ψ↔ φ ⇔ ψ→ φ ∧ φ→ ψ.

The meaning of temporal operatorsX , U , and R are:X ψ is true if and only ifψ is
true at the next step,ψ U φ is true if and only ifφ eventually becomes true and before
φ becomes trueψ is true, andψ R φ is true if and only ifφ is true whileψ is false and
if ψ becomes true thenφ is true until that moment. The meaning of� ψ is alwaysψ is
true which is equivalent toF R ψ and the meaning of̂ ψ is eventuallyψ becomes true
which is equivalent toT U ψ.

Formally, the semantics of LTLC formula is defined by a binarysatisfaction relation
|= ⊂ M× ψ. In order to help explain the binary satisfaction relation|=, we overload the
symbol and define a quintuple satisfaction relation|=⊂ M× (IN → IRnu)× IRnx × IN ×ψ
which is described in Figure 1. For simplicity we writeM |= ψ for (M, ψ) ∈ |= and
M, u, x(0), t |= ψ for (M, u, x(0), t, ψ) ∈ |=.

The quintuple satisfaction relation is about a single path:whether a sequence of
transitions from an initial state by a sequence of input satisfies the given LTLC formula.
Using the definition of the quintuple satisfaction relation, the binary satisfaction relation
|= is defined as:

M |= ψ⇔M, u, x(0), 0 |= ψ for all u, x(0).

The binary satisfaction relation is about all paths: whether the transitions from all initial
states by all sequences of input satisfy the quintuple satisfaction relation.

In order to bring more insight into the syntax, the semantics, and usages of LTLC
we explain the following example about drug administration. In Pharmacokinetics, drug
concentrations in our body is often modeled as linear systems.

Example 1. Suppose that there is a patient who has disease in his lung. Inorder to cure
the disease certain level of drug concentration (say, 5 mg/l) should be maintained in the
lung for certain period of time (say, 3 hour). However, because this drug is toxic to liver,
its concentration at the liver should not exceed certain level (say, 3 mg/l). Also, in order
to increase absorption of the drug, it should be taken after dining, or say, every 4 hours.
As a final condition, the drug should be cleared from the body eventually.

Let dose be the dose of medicine,liver is the concentration of the drug at the liver,
andlung is the concentration of the drug at the lung.

The constraint that the drug should be taken at every 4 hours can be written as
� (dose(4 · t + 1) = 0 ∧ dose(4 · t + 2) = 0 ∧ dose(4 · t + 3) = 0). In this formula
thealways operator� providest from 0 to infinity. A similar but different formula is:
� (dose(t) > 0→ (dose(t + 1) = 0∧ dose(t + 2) = 0∧ dose(t + 3) = 0)). This formula
can be read as, once he took the medicine he shouldn’t take it again within 4 hours.
Similarly, the drug concentration constraint in the liver can be written as�(liver(t) < 3).

The goal, the condition about the drug concentration in the lung can be written as
^ (lung(t) > 5∧ X lung(t) > 5∧ X X lung(t) > 5). Note that theeventually operator̂
ensures that the condition should happen.

The last clearance condition can be written as:^� (lung(t) = 0∧ liver(t) = 0). Note
that the combined operatorŝ� specify properties at a steady state.

Finally, we can express the whole problem in LTLC as follows:

� (dose(4 · t + 1) = 0∧ dose(4 · t + 2) = 0∧ dose(4 · t + 3) = 0)

∧ � (liver(t) < 3)

∧ ^ (lung(t) > 5∧ X lung(t) > 5∧ X X lung(t) > 5)

∧ ^ � (lung(t) = 0∧ liver(t) = 0).

4 Model Checking

In this section, we describe an LTLC model checking algorithm. We first transform vari-
ables at different times into normal form, which is a fixed length coefficient vector. We
then remove all temporal operators from the specification using the horizon constraints.
Finally, we prove the decidability of LTLC model checking.

4.1 Converting timed variables to a normal form

The atomic propositions of LTLC are equality or inequality constraints about linear
combinations of input, output, or state variables. These variables are related to others
by the system dynamics equation (1). In this section we convert these timed variables
into a normal form so that the dependencies among variables are eliminated during the
model checking process. This is a standard technique in MPC to compute an optimal
solution [4, 5]. In Section 3.1 we described the steady stateconstraint of LTLC. This
constraint not only is a useful control objective but also makes LTLC model checking
decidable. The constraint also plays a key role in defining the normal form explained
below.

Let ty be min(t,Hy) and lettu andiu be min(t,Hu) and min(i,Hu) respectively. If
the steady state constraint (3) is satisfied then the system dynamics equation (2) can be
rewritten as:

x(t) = Aty · x(0)+
ty−1
∑

i=0

Aty−i−1 · B · u(iu), (4)

y(t) = C · x(t) + D · u(tu).

For a constant c:

c(c, t) j =

{

c if j = 1
0 otherwise

For an input variableui(t):

c(u, t) j =

{

1 if j = 1+ nx + nu · tu + i
0 otherwise

For a state variablexi(t):

c(x, t)1 = 0
c(x, t)1+ j =

(

Aty
)

i j for 1 ≤ j ≤ nx
c(x, t)1+nx+ j·nu+k =























0 if j > ty − 1
(

Aty− j−1 · B
)

ik
else if j < Hu

(

Σ
ty−1
j′= j A

j′ · B
)

ik
else if j = Hu

for 0 ≤ j ≤ Hu, 1 ≤ k ≤ nu

For an output variableyi(t):

c(y, t)1 = 0
c(y, t)1+ j =

(

C · Aty
)

i j for 1 ≤ j ≤ nx
c(y, t)1+nx+ j·nu+k =

{

c′(y, t) j·nu+k + Dik if j = min(Hu, ty)
c′(y, t) j·nu+k otherwise

for 0 ≤ j ≤ Hu,1 ≤ k ≤ nu, where
c′(y, t) j·nu+k =























0 if j > ty − 1
(

C · Aty− j−1 · B
)

ik
else if j < Hu

(

Σ
ty−1
j′= jC · A

j′ · B
)

ik
else if j = Hu

Fig. 2. The conversion functionc.

Note that in equation (4),x(t) or y(t) at any timet can be expressed in terms ofx(0) and
u(i) for i = 0, . . . ,Hu. Let v be a vector of these variables defined as:

v = [1, x1(0), . . . , xnx(0), u1(0), . . . , unu(0), . . . , u1(Hu), . . . , unu(Hu)]T .

Then, the normal form for a variablez(t) is a coefficient vector, sayz, such thatz(t) =
z · v, wherez is one of input, output, or state variables. The conversion functionc:
(U ∪ Y ∪ X ∪ IR) × IN → IR1+nx+nu·(Hu+1) is defined in Figure 2. For simplicity, we
overload the functionc : (U∪Y∪X∪IR)× IN → IR1+nx+nu·(Hu+1) with c : AP× IN → AP
as follows.

c(c1 · v1(texp1) + · · · + cn · vn(texpn) Z d, t) =

(c1 · c(v1, texp1(t)) + · · · + cn · c(vn, texpn(t)) − c(d, 0)) · v Z 0.

With the normal form

c1 · v1(texp1(t)) + · · · + cn · vn(texpn(t)) Z d ⇔

c(c1 · v1(texp1) + · · · + cn · vn(texpn) Z d, t).

The horizon constraint (3) can be written in LTLC formula as follows:

H :
nx
∧

i=1

(xi(Hy + 1) = xi(Hy)) ∧
nu
∧

i=1

� (ui(Hu + t) = ui(Hu))

Thus, given an LTLC formulaψ we implicitly meanH → ψ.

4.2 Model checking as a feasibility checking

Before we explain the details of model checking algorithm, we first show an exam-
ple that illustrates how to convert an LTLC model checking problem into a feasibility
checking problem.

Example 2. Let a linear systemM be

(

{u}, {y}, {x1, x2},

[

1 1
2 1

]

,

[

2
1

]

, [1 1] , 0
)

, an atomic

propositiona(t) bey(t) < 3, horizon constraints beHu = 2 andHy = 2, and suppose
that we want to find an initial state and a sequence of input such thatH ∧ X a ∧ X X a.

For this problem, we do LTLC model checking for the systemM against a specifi-
cationψ : H → ¬(X a ∧ X X a). Note that any counter example ofM |= ψ satisfies the
original goal. In practice, we search foru(t) andx(0) such thatM, u, x(0), 0 |= ¬ψ. That
is,

M, u, x(0), 0 |= H ∧ X a ∧ X X a

⇔



















u(t + 2) = u(2) for t ≥ 0∧ (input horizon constraint)
x1(2) = x1(3)∧ x2(2) = x2(3)∧ (output horizon constraint)
y(1) < 3∧ y(2) < 3 (X a ∧ X X a)

⇔
[0, 4, 3, 4, 3, 2] · v = 0 ∧ [0, 6, 2, 6, 3, 1] · v = 0 ∧

[−3, 3, 2, 3, 0, 0] · v < 0 ∧ [−3, 7, 5, 7, 3, 0] · v < 0 ,

wherev is [1, x1(0), x2(0), u(0), u(1), u(2)]. Thus,

M 6|= ψ⇔

{

v :
[0, 4, 3, 4, 3, 2] · v = 0 ∧ [0, 6, 2, 6, 3, 1] · v = 0 ∧

[−3, 3, 2, 3, 0, 0] · v < 0 ∧ [−3, 7, 5, 7, 3, 0] · v < 0

}

, ∅.

Note that the emptiness ofv can be checked by linear programming and any feasiblev
is the counter example that we are seeking.

We now show how to transform an LTLC model checking problem into a feasibility
checking problem and use it to prove the decidability of LTLCmodel checking. If the
horizon constraintH is satisfied then the system arrives at a steady state fromHy step
onward and the atomic propositions of the specification become constants. Otherwise,
the system simply is not a model of the specification. IfH is satisfied, then fort ≥ Hy,

M, u, x(0), t |= X ψ⇔M, u, x(0), t |= ψ, (5)

M, u, x(0), t |= ψ U φ⇔M, u, x(0), t |= φ,

M, u, x(0), t |= ψ R φ⇔M, u, x(0), t |= φ.

The use of normal form for timed variables and the fact that the system arrives at a
steady state enable us to remove all the temporal operators from LTLC specifications.
Figure 3 shows an algorithm to remove all temporal operatorsof an LTLC formula that
is equivalent to the original formula ifH is satisfied.

Theorem 1. M |= H → ψ ⇔ M |= H → f(ψ, 0).

f(ψ,t) {

if(ψ is T) return T

if(ψ is F) return F

if(ψ is an AP) return c(ψ, t)
if(ψ is ¬φ) return ¬f(φ,t)

if(ψ is φ ∨ η) return f(φ,t) ∨ f(η,t)

if(ψ is φ ∧ η) return f(φ,t) ∧ f(η,t)

if(ψ is X φ)

if(t ≥ Hy) return f(φ,t)

else return f(φ,t+1)

if(ψ is φ U η)

if(t ≥ Hy) return f(η,t)

else return f(η,t) ∨ (f(φ,t) ∧ f(ψ,t+1))

if(ψ is φ R η)

if(t ≥ Hy) return f(η,t)

else return (f(φ,t) ∧ f(η,t)) ∨ (f(η,t) ∧ f(ψ,t+1))

}

Fig. 3. Functionf removes all temporal operators from an LTLC formulaψ.

Outline of proof: We prove the equivalence by induction on the structural treeof LTLC
formulaψ. The induction base areT , F , and the atomic propositions which can easily
proved. Induction steps on the logical connectives can be proved by the definitions of
f and the quintuple satisfaction relation|=. Induction steps on the temporal connectives
can be proved using the equivalence relations

ψ U φ ≡ φ ∨ (ψ ∧ X (ψ U φ)), (6)

ψ R φ ≡ (ψ ∧ φ) ∨ (φ ∧ X (ψ R φ)),

the steady state relation of equation (5), and the definitionof f about theX formula.
We divide the induction step on temporal operators in two cases: before timet reaches
the steady state horizon, where we use the equivalence relation (6), and after the steady
state, where we use the equation (5).

Theorem 2. Model checking LTLC formulas H → ψ is decidable .

Proof. Given an LTLC formulaψ with an implicit output horizonHy, we can get a
formulaφ = f(ψ, 0), which is equivalent toψ, for the runs whereH is true. Because
φ does not have any temporal operators, we can transform it to Disjunctive Normal
Form (DNF) whose satisfiability can be checked by checking the satisfiability of each
conjunctive subformula. The subformula is a conjunction oflinear equalities and in-
equalities in the normal form. Thus, the satisfiability of each subformula is equivalent
to the feasibility of linear constraints which can be checked by linear programming.
Becauseφ has only finite number of conjunctive subformulas and linearprogramming
can be done in finite number of steps, LTLC model checking is decidable.

rotor

horizontal axis

ve
rt

ic
al

 a
xi

s

pitch angle

rotor angle

v

System dynamics

x(t + 1) = A · x(t) + B · u(t)

y(t) = C · x(t) + D · u(t),

where

A =





















0.9680 −0.0005−0.0010
0.0980 1 0
−0.0888 0.9790 0.9981





















,

B =





















0.6171
0.0311
0.9457





















, C =
[

0 0 1
]

, D = 0.

Fig. 4. A helicopter diagram and its discrete time dynamics.

Note that in LTLC model checking we do not make transitions ofstates explicitly.
Instead, we transform the atomic propositions at different times into normal form. In
model checking hybrid systems, one of the difficulties is the uncountably large state
space. LTLC model checking addresses the difficulty in this framework. Thus, at any
moment we can partition the state space into at most|2AP| equivalent classes which are
not further distinguishable byAP.

Although the method described in this section is intuitive,when converted to a DNF,
the number of conjunctive subformulas of an LTLC formula cangrow exponentially in
terms of the output horizonHy. For example, the conjunctive subformulas of� (a ∨ b)
have

∧Hy
t=0 (a(t) | b(t)), where | is a choice operator. Thus, the number of conjunctive

terms is 2Hy+1 and with largeHy model checking becomes practically impossible. For-
tunately, however, there are many common terms in the conjunctive subformulas. If
infeasibility is found in the common terms then we can skip checking all of the terms
with the common infeasible terms. To leverage this computational benefit, we build a
Büchi automaton [3] which can be thought as a generator of the conjunctive subterms.
Each path of lengthHy of the Büchi automaton is a conjunctive subformula. We can
check the feasibility of common prefixes together and skip large number of redundant
checks.

5 Experiment

In this section we illustrate how LTLC model checking can be used in controlling linear
systems. The example system is a helicopter at near hover speed. Figure 4 shows a dia-
gram of the example helicopter and its dynamics equations. The helicopter is composed
of a body (fuselage) and a main rotor whose angle to the body isour control variable.
The angle between the body and the horizontal plane is calledpitch angle (nose down
is positive). The speed of the helicopter (v in Figure 4) is defined at the center of mass.
In this example we consider only the horizontal component ofthe velocity vector. The
angle between the rotor plane and the direction of body is called rotor angle. The atti-
tude (pitch anglepa, and pitch ratepr = ṗa) and the speed (v) of a helicopter can be
controlled by changing the rotor angle (dr).

#######################################

System description

system:

const pi = 3.141592;

const rmin = -pi*20/180, rmax = -rmin,

rrmax = pi*10/180;

const A = [0.9608, -0.0005, -0.0010;

0.0980, 1, 0;

-0.0888, 0.9790, 0.9981],

B = [0.6171; 0.0311; 0.9457];

System variables

x: pitch rate, pitch angle, speed

dr: rotor angle

v: speed

var x[3]: state,

dr: input,

v: output;

System dynamics equation

x = A * x + B * dr;

v = [0, 0, 1] * x;

#######################################

Control objective description

specification:

when to bring the system to a steady state

and when to stop changing input

output horizon: 25;

input horizon: 24;

rotor angle constraints

rp0(t): dr(t) >= rmin;

rp1(t): dr(t) <= rmax;

rotor angular rate constraints

rr0(t): dr(t+1) - dr(t) <= rrmax;

rr1(t): dr(t+1) - dr(t) >= -rrmax;

initial state

pitch rate and angle are both 0

x0(t): x[0](t) = 0;

x1(t): x[1](t) = 0;

initial and finial vehicle speed

vi(t): v(t) = 2; #initial speed

vs(t): v(t+16) = 0; #stop at 1.6 sec

vr(t): v(t) >= 5; #finial speed

negated control objective

! ([] (rp0 /\ rp1 /\ rr0 /\ rr1)

physical constraints

/\ x0 /\ x1 # initial state

/\ vi # initial speed

/\ ([] vs \/ <> [] vr)

either stop or speedup

);

Fig. 5. LTLC specification for the experiment.

Our system model for the helicopter isM = (U,Y,X,A,B,C,D), whereU = {dr},
Y = {v}, X = {pr, pa, v}, and the system dynamics equation is given in Figure 4. We
obtain the discrete time dynamics by sampling a continuous time dynamics equations
in [8] at a sampling rate of 10 samples per sec. We also consider physical constraints to
the control variable (the rotor angle) to make the system more realistic: its maximum
and minimum angles are+20 ◦ and -20◦ respectively, and its maximum and minimum
angular rates are+100◦/sec and -100◦/sec respectively.

Figure 5 shows a model and specification description writtenin our LTLC checker [1].
It has two main components: a system description block that begins withsystem: tag
and a specification block that begins withspecification: tag. One can define scalar
or matrix constants and type annotated variables in this block. Using the constants and
the variables system dynamics equations are finally defined in this block. Note that the
LHS of the dynamics equations are a state variable or an output variable.

The specification block begins with the implicit horizon constraints. The output
horizonHy and the input horizonHu are first defined in this block as can be seen in
Figure 5. Optional definitions of atomic propositions follow the horizon constraints.
A definition of an atomic proposition has its name with a time variable and a linear
constraint. A constraint is a comparison between linear combinations of input, output,
and state variables. Also, each variable is associated witha time expression. In Figure 5,
rp0 andrp1 describe the physical limits of the rotor angle, andrr0 andrr1 describe the
limits of the rotor angular rate. The next two constraintsx0 andx1 are about the state
variablex (pitch rate and pitch angle). We use these equalities to specify an initial
condition.

The last part of LTLC checker description is an LTLC formula using the previously
defined atomic propositions. Usually, the topmost operatorof the LTLC specification
is the negation operator because we want to model check the negation of our control
objective.

Now, suppose that the helicopter is flying at the speed of 2 m/sec and there is another
vehicle approaching to it. In order to avoid collision we need to stop the helicopter
within 1.6 sec or accelerate it to a speed faster than 5 m/sec within 2.5 sec. We want to
know whether this control objective is achievable and if it is possible we want to know
the input sequence also.

The subformulax0 ∧ x1 is about the initial state condition: the helicopter’s initial
pitch rate and pitch angle are both zero. Note that an LTLC formula without any tempo-
ral operator is about the initial step (at time 0). The subformula�(rp0∧ rp1∧ rr0∧ rr1)
means that the physical constraints on the rotor control arealways imposed. The always
operator� ensures the binding of the time variable of inequalities andactual time dur-
ing the process of model checking. Note the time expressiont+16 in vs(t). Because the
first time index ofvs(t) is 16, the formula�vs means that the helicopter stops from 1.6
sec onward. The formulavi ∧ (�vs ∨ ^�vr) specifies that a vehicle initially flying at 2
m/sec speed stops within 1.6 sec or speeds up to a speed faster than 5 m/sec within 2.5
sec. Note how easily and intuitively the goal is expressed inLTLC. Even this simple
disjunctive form of goal would be very difficult to write by hand.

The model checking result is:

result: F

state= [-0.000 0.000 2.000]ˆT

input[0]=[-0.349 -0.349 -0.237 -0.063 0.112 0.286 0.349 0.349 0.175 0.287

0.113 0.000 0.000 -0.157 -0.332 -0.157 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000]

In the model checking result ‘result: F’ means that the helicopter is not the model of
the negated specification. In other words, there is an initial state and a sequence of input
that drive the system to meet the original control objective. As a counter example the
model checker prints out the initial state and the sequence of input. Thus, by applying
the input sequence in that order, the system will arrive at a steady state with all the
control objectives satisfied.

Figure 6 shows the result of applying the computed input to the system from the
computed initial state. In the second graph of Figure 6, the solid line is the control
input, the dashed line is the resulting pitch rate, and the dot-dashed line is the resulting
pitch angle of the helicopter. Notice the difference that the input sequence in the counter

0 2 4 6 8 10 12 14 16 18
−2

−1

0

1

2

3

4

sp
ee

d
(m

/s
ec

)

time (0.1xsec)

0 2 4 6 8 10 12 14 16 18

−50

0

50

time (0.1xsec)

input (deg)
pitch rate (deg/sec)
pitch angle (deg)

Fig. 6. Transitions of the model system driven by the computed input.

example is in radian whereas the graph is plotted in degree. From this graph we can see
that the physical constraints on the rotor angle and its angular rate are always satisfied.
The first graph of Figure 6 shows the helicopter’s speed. Thisgraph also shows the
vehicle’s pitch attitude and the rotor angle at the same timein order to give more insight
into the dynamics of the system. Note that the vertical axis is the speed of the vehicle
not the elevation. This graph shows how the vehicle comes to stop within 1.6 sec and
the input also becomes constant from that moment.

6 Discussions

We developed a temporal logic called LTLC for specifying properties of linear systems
and its model checking algorithm. LTLC model checking is decidable if we control
the system to arrive at a steady state within a specified horizon. Although the implicit
steady state constraints prevent LTLC model checking from using arbitrary input, many
practical interest for the system require these constraints. LTLC can also be used to
explicitly describe complex control objectives. A sequence of control input that can
achieve the control objective can be computed in the processof model checking.

The use oftexp in atomic propositions makes writing specification easy andintu-
itive. Also, texp extends the expressiveness of LTLC such that some properties cannot
be expressed without it. Thus,texp can be regarded as a special temporal operator.
However, on the other hand, its use can obscure the definitionof state and requires a re-
finement in semantics. An interpretation oftexp can be done in two layers: the first layer
is a path determined by the choice of initial state and input;the second layer consists of
the parallel compositions of reordered sequences of the path for eachtexp sampled at
texp(t).

As far as assuring system stability goes, the minimum bound for input horizonHu
and output horizonHy are well known in predictive control literature [4]. In general a
short horizon results in large input variation, which is notdesirable from a control per-
spective, whereas long horizon slows down the model checking process. Also, the LTLC
model checking for control described in this paper is for an ideal open loop control. If
the linear system model is not accurate or if there are sensing noise or disturbances, the
actual system output will deviate from the computed one and,if not corrected properly,
the specification may be violated. A solution to these problems is to introduce a closed
loop feedback control mechanism. The feedback control loopcan be easily achieved
by computing a new control input at every step with an updatedstate estimation as is
commonly practiced in Receding Horizon Predictive Controlscheme [4].

We believe, LTLC can be used as a high level abstraction tool that can hide the
complexities of the underlying physical systems. We also believe that composing the
abstractions to define higher level abstractions will be an important technique for han-
dling the scalability problem in large systems.

References

1. LTLC Checker:http://osl.cs.uiuc.edu/˜ykwon4/cgi/LTLC.html.
2. R. Alur and D.L. Dill. A theory of timed automata. InTheoretical Computer Science, volume

126, pages 183–235, 1994.
3. J.R. Büchi. On a decision method in restricted second order arthmetic. InProc. of the Int.

Conf. on Logic, Methodology and Philosophy of Science, pages 1–11. Stanford University
Press, 1960.

4. D.W. Clarke, C. Mohtai, and P. Tuffs. Generalized predictive control. InAutomatica, vol-
ume 23, pages 137–160, 1987.

5. D.W. Clarke and R. Scattolini. Constrained receding-horizon predictive control. InIEE Proc.
Part D, volume 138, pages 347–354, 1991.

6. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. InLogic of programs. LNCS 131, Springer-Verlag, 1981.

7. E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logics specification: A practical approach. InProc. 10th Int. ACM
Symposium on Principles of Programming Languages, pages 117–126, 1983.

8. Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini. Feedback Control of Dynamic
Systems. Addison Wesley, 3rd edition, 1994.

9. G.E. Hughes and M.J. Creswell.Introduction to Modal Logic. Methuen, 1997.
10. YoungMin Kwon and Gul Agha. Linear inequality LTL (iLTL): A model checker for discrete

time markov chains. InInternational Conference on Formal Engineering Methods, pages
194–208. LNCS 3308, 2004.

11. Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. InProc of 12th ACM Symposium on Principles of Programming
Languages, pages 97–107, 1985.

12. Paulo Tabuada and George J. Papas. Model checking LTL over controllable linear systems
is decidable. InHybrid Systems: Computation and Control:6th International Workshop,
volume LNCS 2623/2003, pages 498–513. Springer Berlin/ Heidelberg, 2003.

13. Paulo Tabuada and George J. Papas. Linear time logic control of discrete-time linear systems.
In IEEE Transictions on Automatic Control, volume 51, pages 1862–1877, 2006.

