
Architecture Design Principles to Support Adaptive Service
Orchestration in WSN Applications

Kirill Mechitov
University of Illinois at
Urbana-Champaign

Urbana, IL, USA

mechitov@cs.uiuc.edu

Reza Razavi
University of Luxembourg

FSTC, Luxembourg

razavi@acm.org

Gul Agha
University of Illinois at
Urbana-Champaign

Urbana, IL, USA

agha@cs.uiuc.edu

Abstract
Our goal is to facilitate the development of sensor net-

work applications in an open system, where applications
arrive and leave dynamically and execute concurrently.
We identify design principles that govern the creation of
these systems, such as having a network-wide programming
model, late binding and global resource management. In
accordance with these principles, we assume that an appli-
cation is modeled as a composite service, and propose an
architecture for its adaptive orchestration on a WSN. Adap-
tivity here refers to automatic runtime selection of service
implementations and network resources to execute the appli-
cation specification in a resource-efficient and context-aware
manner.

1 Introduction
Current practice considers wireless sensor networks

(WSNs) in the context of a single application,e.g., a WSN
for target tracking or a WSN for environment monitoring.
This model of application development, together with the
small scale of most experimental sensor network deploy-
ments, has led to the design of middleware services that are
highly efficient but often tightly coupled or customized to a
particular application. This practice hampers service porta-
bility and reusability, such as when a data aggregation ser-
vice is designed to work only with a specific routing proto-
col.

Some recent work has proposed supporting several con-
current applications on a sensor network [13]. As WSN de-
ployments become more numerous and their scale increases,
we envision sensor networks becoming acomputing plat-
form used concurrently by multiple users and multiple ap-
plications for different and uncoordinated activities. For in-
stance, as illustrated in Fig. 1, middleware services should
be shared among unrelated applications. In this context, effi-
cient customized middleware services specific to each appli-
cation are a poor solution, as common functionality is need-
lessly replicated.

In our view, these requirements imply the need for a soft-
ware architecture that provides a looser coupling between
services and applications, and among the services them-
selves, in a resource-efficient and context-aware manner. We
consider applications that make use of a number of general
middleware services, such as routing, localization, and time

Figure 1. Middleware services are shared among con-
currently executing applications, resulting in a many-to-
many relationship between applications and services.

synchronization. In order to accommodate the vast collec-
tion of services and protocols already developed by the sen-
sor network community, we adopt a very broad definition of
a middleware service, concerning ourselves only with their
interfaces to applications and other services and not their
internal semantics or implementation method. Specifically,
we propose a dynamic service composition-based architec-
ture for WSN applications, based on the principle ofself-
mediated execution, with the dual goals of facilitating large-
scale application development and enabling global, network-
wide optimization, rather than application-focused localop-
timization of the constituent middleware services. Our ap-
proach is based on postponing the binding of applications
to specific network resources and implementations of mid-
dleware services from design- or compile-time to the run-
time.Appropriate service implementations are chosen at run-
time and deployed on demand.

By dissociating middleware services from the application
context and from each other, we give up some possible per-
formance advantages due to explicit customization and tight
coupling. In return, we provide a more scalable software
development process, support for multiple concurrent appli-
cations, and the possibility of global resource management
across applications.

The remainder of the paper is organized as follows. Sec-
tion 2 states our overall design principles. Sections 3 and 4



then describe a dynamic service composition-based architec-
ture implementing these principles and Section 5 illustrates
its use. Section 6 discusses the properties of our architecture,
and Section 7 relates it to other work in this area.

2 Design Principles
Service- and component-based architectures are widely

used, providing greater ease and scalability to the software
design and implementation process. We aim to apply the
same approach to the sensor network domain, adapting to
its unique limitations and requirements. We identify the fol-
lowing key principles for the design of scalable, resource-
efficient WSN applications as a composition of middleware
services:

1. Network-wide programming model.The sensor net-
work is treated as a collaborative distributed computing
platform. Applications are specified as a collection of
network-wide tasks and not as a unique program image
per sensor node.

2. Sharing and reuse.Multiple uncoordinated applica-
tions and middleware services need to coexist in the
network without prior knowledge of each other, There-
fore, both network resources requiring exclusive access
(sensors, actuators, etc.) and middleware services are
shared among several applications. Resource manage-
ment cannot be relegated to each application individu-
ally, it must be performed globally.

3. Late binding. Application specification is sufficiently
flexible to allow run-time adaptivity in selecting the ser-
vices and resources to be used. We do not know in
advance which services or resources will be used by
which application, or when. Postponing the choice of
which service or resource best fits the application opens
up more opportunities for optimization.

In the following section we present a service composition-
based software architecture that follows from these design
principles.

3 Architecture Overview
Our architecture leverages the concept of dynamic service

composition to support application development for open
WSN systems. We adopt a two-level architecture, separat-
ing the two major concerns: that of controlling the execution
process, including strategic decision making and adaptation,
and that of the execution itself. First, we restate our assump-
tions about the problem more formally.

3.1 Assumptions
We consider applications specified in terms of a compo-

sition of calls to middleware service interfaces, and we refer
to the service interface specification as acontractand each
call to a service aservice request. A repository of available
services for a given WSN or application domain is provided.

To facilitate the use of a large number of pre-existing mid-
dleware services within our architecture, we choose not to
constrain the model of a service.s behavior,e.g., whether it is
distributed, centralized, single-threaded,etc. Since services
and applications need to interact and coordinate, however,

we fix a model for their interaction. We use the Actor model
of computation [1] to represent service interfaces connecting
services to each other and to the application. Thus, services
are used by our system as if they were implemented asac-
tors: concurrent active objects interacting via asynchronous
messaging. We distinguish between the actors representing
the service itself frommeta-actors, which are control threads
supervising deployment and execution of the services.

Responsibilities of the meta-actor include controlling the
lifecycle of a service (deploying, starting, stopping and dis-
posing of the service) and interaction with other services.
Note that once the appropriate services are deployed, they
may choose to interact directly, rather than through their cor-
responding meta-actors. Interaction then occurs through the
actor interface specified in the service contract. Only inter-
actions through actor interfaces are mediated by our archi-
tecture; any side effects are not captured by this model.

We further assume the existence of a functional ser-
vice composition language, where service requests areself-
sufficientand minimally constrained. The service compo-
sition language is functional in that (1) the control flow be-
tween service requests is partially ordered and driven by data
dependencies, and (2) it allows for a recursive graph traversal
to autonomously process each service request in the specifi-
cation. Self-sufficiency refers to the fact that each individ-
ual service request is provided with the required knowledge
about the arguments, resources, context and method required
for its execution. Minimally constrained refers to delaying
as long as possible placing constraints necessary to execute
a specific instance of the service, in other words, the service
instance does not refer to information that can be computed
or supplied to it at run-time.

The last requirement is a fine-grained runtime code de-
ployment method, such as a mobile agent system like Actor-
Net [7] or Agilla [5].

3.2 Example
Consider how a typical localization service request is rep-

resented in our architecture. To be self-sufficient, the con-
tract includes a reference its execution method, e.g., a com-
piled library implementation of the localization algorithm,
the type of sensors used, such as distance measuring or angle
of arrival, and data types for the output (locations and error
intervals). To be minimally constrained, it must not specify
a deployment location (node ids) or method (a specific range
measurement service), referring instead to the contracts in
the repository. Execution-specific information is filled inat
run-time based on the specified constraints.

4 Architecture Components
Given an application comprising a composition of mid-

dleware service requests represented in such manner, its exe-
cution consists of a self-decomposition and self-deployment
process. This results in a system of distributed interacting
meta-actors responsible for handling the interaction among
the services. Execution proceeds concurrently and asyn-
chronously as the preconditions for the deployment of each
service request are satisfied. We call this processself-
mediated execution.



Figure 2. Self-mediated execution architecture for mid-
dleware services.

Let us now focus on the role of the meta-actors in this
process. Fig. 4 highlights the governing behavior of a meta-
actor in processing service requests. Due to service request
self-sufficiency, each meta-actor can decidehow, whereand
whento execute its associated service. We now explain the
function of each component of this architecture and their in-
teractions.

4.1 Choice of Implementation
Deciding how to execute the service request involves

matching a particular service implementation to an interface
from the service contract repository, and then finding the net-
work resources required by that implementation.

Implementation Matching.
This component finds all implementations that match the

constraints of a given service request. For example, we might
search for implementations of a ranging service with a Mea-
sureDistance method that also satisfy a maximum distance
constraint. This is done by querying the contract repository
and filtering the results according to the constraints specified
in the service request. Pattern matching or a linear constraint
solver may be used to filter the available service implemen-
tations.

Resource Matching.
Likewise, the resource matching component finds all suit-

able resources for a given service implementation. Matching
algorithms used by this service depend on the resource de-
scription language employed by the system. Several meth-
ods are available for indexing a dynamic set of geographi-
cally distributed resources, including a yellow pages service,
tuple spaces and actor spaces. For instance, if tuple spaces
are used, sensor nodes entering the system can publish their
resource descriptions in the tuple space, and the resource
matching component performs a search in the form of pattern
matching [2]. Caching and prefetching techniques can make
the process more efficient, eliminating the need to scour the
network for each query. Due to the location-dependent na-
ture of most WSN computations, we expect most queries to
be limited geographically, avoiding the need to flood the net-
work even in cases when cached information is unavailable.

4.2 Location and Deployment
Second, the meta-actor needs to decidewhereto execute

the service request. For the sake of efficiency, deployment
and invocation are treated separately. As such, code deploy-
ment starts as soon as possible, while the invocation is de-
layed by the scheduling component until the necessary re-
sources become available.
Decision Making and Optimization.

Given a list of possible resources and implementations,
this component chooses which implementation/resource
combination best fits the application requirements or system
performance considerations. The output of this service is a
platform-specific executable code segment, along with a list
of its required resources, which dictate where in the WSN
the service must be located. This component comprises the
core of the self-mediated execution approach. Choosing an
appropriate option from a list of resources and service im-
plementations is critical to efficiently executing composite
service-based applications.
Deployment.

This component is responsible for transporting the exe-
cutable code segment to the destination platform, thereby
making the service available to other services and applica-
tions. If an implementation of the service is already avail-
able at the destination platform, the code deployment step
is skipped entirely, and the service request is sent to the de-
ployed service.

4.3 Scheduling
Third, the meta-actor decideswhento execute the service

request. This is accomplished by the scheduling and task
allocation component.
Online Scheduling and Task Allocation.

The goal of this component is to decide when the service
instance can be deployed and executed. If the resources re-
quired by the service instance are not immediately available,
its execution is postponed, along with all services that de-
pend on it. Shared resources requiring exclusive access,e.g.,
certain types of sensors and actuators, must be scheduled
globally, since service implementations may not be aware
of each other. An up-to-date resource use schedule is pro-
vided to the decision making and optimization component
to facilitate the selection of less-utilized resources whenever
possible, and a repository of active services is maintainedto
keep track of all service instances currently deployed in the
system. This is also used by the implementation matching
component to check if an already-deployed component may
satisfy a service request.

4.4 Invocation and Execution
Finally, the service request is ready to be deployed and ex-

ecuted on the target platform. This step includes marshaling
and remote invocation.
Marshaling.

The marshaling component packages the service request
for transport and deployment on the destination platform,
using the deployment component. The method is platform-
dependent. In our system, this involves wrapping the service



invocation code in a mobile agent, which can move to the
destination node without relying on an external routing ser-
vice.

The service request is then handed off directly to the
run-time environment to launch or query the selected imple-
mentation of the service. From this point onward, the ser-
vice instance interfaces via its actor interface with its meta-
actor and with other services in the WSN by means of asyn-
chronous message passing, implemented by the communica-
tion component. Asynchronous messaging is used both to
deliver computation results and error notifications from the
executing services and to deliver control messages from the
meta-actor.

5 Illustration
We now demonstrate how a sensor network application

can be executed by our self-mediated execution architecture.
As an example, we consider a distributed target tracking ser-
vice similar to one proposed by Liuet al. [8].

Distributed target tracking is one of the canonical prob-
lems in sensor networks. Target tracking algorithms typi-
cally consist of detecting a signal emitted by the target, iden-
tifying or classifying the target by its type or signature, and
once detected and classified, keeping track of its position as
it changes over time. We assume that the tracking application
is provided to us as a composition of Signal Detection, Target
Classification and Track Maintenance application-level ser-
vices, along with Localization, Time Synchronization, Rout-
ing and Group Formation middleware services, whose de-
pendency graph is shown in Fig. 5. In this figure, Forever Do
and For All Nodes Do are special control constructs, which
are executed entirely by meta-actors.

Let us look at how this composite service is deployed and
executed. In response to a request, the self-mediated execu-
tion architecture creates a meta-actor for the composite ser-
vice, and recursively for its individual subcomponents, made
possible due to the functional nature of the service composi-
tion (see Section 3.1).

Consider a request to the Signal Detection service, which
is the first service instance ready to execute, due to having
no dependencies. The target tracking service meta-actor re-
quests to deploy a Signal Detection service on all nodes in
the network. The Signal Detection service contract specifies
that it needs a certain type of sensor, say a magnetometer, to
detect the target. The resource and implementation matching
components will locate a suitable implementation by pattern
matching the request with service and resource descriptions.

At this point we have an executable code segment that is
ready to be transported to the destination node. After the
scheduling process is completed, the service request is also
marshaled and transported. This in effect creates a platform-
specific relocatable executable.

The only resource used by the Signal Detector service is
the magnetometer; however, since multiple uncoordinated
applications may be concurrently executing on the WSN,
the magnetometer at the target node may currently be in use
by another service. It is the responsibility of the scheduling
component of the architecture to control its invocation time,
such that the required resource is available prior to request

Figure 3. Composite target tracking application repre-
sented as a service dependency graph.

deployment. This means that the Signal Detector service
request may be blocked from deployment until the magne-
tometer at its destination node becomes available.

Now consider a scenario where after the target tracking
service starts executing, an intrusion detection application
enters the system, ready to be executed. It is also represented
as a composition of services, and happens to rely on the same
target tracking service in its computation. However, its spec-
ification contains additional constraints on the Target Classi-
fication service,e.g., requiring a higher confidence threshold
before a target is positively identified.

Due to our design choices (dynamicity and late binding),
we have an opportunity for run-time optimization. When
this new application starts the self-mediated execution pro-
cess, the implementation matching service lists the instances
of the already-deployed services as matching the requested
service contracts. This is suitable for Signal Detection and
Track Management services, but the Target Classification
service will fail a constraint check. With negligible incre-
mental deployment cost, the former two service instances
will be reused by the system and linked to a newly instanti-
ated Target Classification service instance meeting the more
stringent requirements of the new application.

6 Discussion
To summarize our approach, applications represented as

a functional composition of services with well-defined in-
terfaces are executed in a concurrent and distributed man-
ner by the self-mediated execution architecture. Service im-
plementations fitting application requirements are found and
deployed on demand, sharing or reusing already-deployed
implementations whenever possible. Invocation requests to
these services are also generated on demand. Let us first ad-
dress the benefits of taking this approach to building WSN
applications.

6.1 Benefits
Late binding of service implementations and network re-

sources is a key distinguishing feature of our architecture.
By postponing the explicit identification of methods and re-
sources until the point when they are actually used, we avoid



the problem ofoverspecification. Overspecification occurs
when the programmer implicitly or explicitly supplies con-
straints on execution beyond what is strictly necessary to
specify the desired behavior. Sampling a sensor at agiven
node within a region of interest, where sampling a sensor at
anynode within that region would have been sufficient is an
example of overspecification. With late binding, we post-
pone the decision-making process as to which method or re-
source to employ from design-time to run-time, thus allow-
ing the scheduler or optimizer components more freedom.

We also argue that service abstraction, a reusable service
composition machinery, and fine-grained code deployment
and execution allow creating more dynamic, maintainable
and customizable applications for WSNs. Code mobility
also enables predictive behavior or system-directed load bal-
ancing: a service may decide to move from one node to an-
other to better achieve its goal, or to do so more efficiently.

6.2 Requirements
Our self-mediated execution architecture requires the ap-

plication specification to be provided in the form of a compo-
sition of service descriptions. This specification may or may
not be immediately executable, as not all elements are fully
specified. For example, the composition may not contain a
reference to a specific Target Classification service imple-
mentation, but rather to a Target Classification service con-
tract. It is up to the mediated execution architecture to iden-
tify an appropriate implementation or resources matching the
contract.

We require all composable services to conform to such a
contract specification. This translates to a substantial amount
of work on the service designer’s part to supply a sufficiently
rich service contract to turn an existing middleware service
into a composable service usable by our architecture. For-
tunately, the transition process can be facilitated by starting
with a very rigid constraint on the interface (e.g., it is only us-
able by the service it was originally designed for) and grad-
ually relaxing it as a more comprehensive service contract is
constructed.

The dynamic service deployment and execution process
relies on the availability of a fine-grained code deployment
method for the WSN, meaning that it should be possible to
deploy a service to a single node or to a subset of nodes in
the network at runtime.

6.3 Feasibility
We have a prototype implementation of an architecture

supporting a subset of the described functionality in the con-
text of dynamic application deployment on WSNs for Am-
bient Intelligence applications, calledAmbiance[10]. This
system reuses Dart [11] at its knowledge level, which is an
example of a service composition framework in alignment
with our design principles, for both representing applications
and supporting the self-mediated execution process. Addi-
tionally, Dart supports creating intuitive Web interfacesfor
interactive specification of applications by multiple uncoor-
dinated end-users at run-time. At the operational level, Am-
biance deploys the ActorNet mobile agent platform. The in-
teractions between these two levels conform to the logical

architecture described in prior sections.
Our architecture makes use of a service composition

framework, online resource scheduling and task alloca-
tion algorithms, fine-grained runtime code deployment, and
implementation- and resource-matching methods. Several
approaches to these tasks have been proposed:

An extensive body of distributed resource scheduling and
task allocation research is available from the real-time and
parallel processing communities, and may be applied to the
WSN domain given allowances for limited bandwidth, mem-
ory and processing capabilities and high likelihood of fail-
ures of typical sensor nodes.

Mobile agent platforms such as ActorNet and Agilla [7,
5] or virtual machine-based code migration systems such as
Melete [13] satisfy our requirement for a fine-grained run-
time code deployment method.

We consider the Decision Making and Optimization com-
ponent to be one of the most challenging aspects in the im-
plementation of our architecture. While a simple heuristic-
based approach is sufficient for a prototype implementation,
achieving efficient resource utilization is vital to making
WSNs a suitable platform for deploying large, concurrent
applications. Developing novel algorithms for this task isan
important direction for future research. We believe that the
clean separation of request processing and execution aspects
in our architecture facilitates the integration of these compo-
nents.

6.4 Potential Applications
We see a number of application opportunities for this ar-

chitecture. In [10], we have described a possible application
to a query processing engine for end-user defined concurrent
queries integrating with sensor networks.

Another promising possibility is sensor-rich business pro-
cesses, where sensors are attached to “smart items,” and the
interactions between these items is modeled within the busi-
ness process. The goal then consists of enabling the execu-
tion on the sensor nodes of that part of the business logic. For
example, in a safety process, smart chemical containers col-
laboratively ensure continuous compliance with certain stor-
age regulations. Any violation of these rules results in local
alerts, as well as reporting to the back-end systems [4].

Such processes are considered to increase visibility, en-
able real-time decision making and business process adjust-
ment, and thus allow responding to situations more effi-
ciently, with a higher degree of quality and end-user satisfac-
tion. They also allow for management by exception, where
the relocated processes only notify the back-end system of
extraordinary situations, increasing scalability and speed of
detecting situations that require action (avoiding latency of
control loop), and does not require a constant connection to
the back-end [12].

7 Related Work
The Melete system provides a method for concur-

rently executing uncoordinated applications in a sensor net-
work [13]. Melete applications are written in the TinyScript
language and executed by a virtual machine on an arbitrary



subset of nodes in the network. We propose a more com-
prehensive method of executing concurrent applications in
WSNs, which allows global resource management and a
higher level of optimization. In fact, Melete may be used
as part of our architecture, acting as the code deployment
method for service instances.

The Tenet architecture enables service composition for
multi-tiered applications incorporating WSNs [6]. Most of
the coordination and processing functionality is relegated to
more powerful tiers, while the WSN nodes are used primar-
ily to retrieve sensor data. Our approach differs in that we
treat the sensor network as a collaborative distributed com-
puting platform. By associating asynchronously interacting,
autonomous actors to service instances on sensor nodes we
make possiblein situcollaborative problem solving.

The SONGS architecture and programming model con-
siders sensor network applications as a composition of se-
mantic services [9]. Semantic services are a type of semantic
data transformation functions, and do not correspond to what
we call services in this paper. We are interested in facilitating
composition of less structured infrastructure and middleware
services, a vast quantity of which has already been developed
for wireless sensor networks.

The European-funded project Collaborative Business
Items (CoBIs) [3, 4] is also concerned with in situ process-
ing and coordination for embedded devices, while integrat-
ing them in the context of higher-level business processes.

8 Perspectives
An expanded version of the current architecture proto-

type [10, 11] is under development. The primary focus is
on incorporating the decision making and optimization com-
ponents. This includes a study of which aspects of low-level
service optimization and control decision can be external-
ized.

We believe that the design principles and architecture
defined in this paper have wider implications beyond the
adaptive execution of composite middleware services in
WSNs. We are specifically interested in coordination be-
haviors within the WSN as well as its relation to outside
platforms and applications. We are thus investigating the
scalability of our architecture in the context of complex hi-
erarchical scientific and business processes running in a per-
vasive computing environment, which also includes sensor
networks.

9 Acknowledgments
This work is partially funded by the University of

Luxembourg in the framework of the Ambiance project
(R1F105K04), by NSF under grant CNS 05-09321 and by
ONR under DoD MURI award N0014-02-1-0715 to UIUC.
The authors would also like to acknowledge the valuable col-
laboration of A. Cardon, N. Bouraqadi, P. Bouvry, Ch. Dony,
V. Ginot, R. Kumar, R. Johnson, M. Malvetti, T. Odenwald,
J.-F. Perrot, D. Riehle, S. Sundresh, and J. Yoder.

10 References
[1] G. Agha.Actors: A Model of Concurrent Computation

in Distributed Systems. MIT Press, 1986.

[2] N. Carriero and D. Gelernter. Linda in context.Com-
munications of the ACM, 32(4):444–458, 1989.

[3] L. W. F. Chaves, J. Anke, L. M. S. de Souza, and
J. Muller. Service lifecycle management infrastructure
for smart items. InMidSens’06, November 2006.

[4] C. Decker, P. Spiess, L. M. sa de Souza, M. Beigl, and
Z. Nochta. Coupling enterprise systems with wireless
sensor nodes: Analysis, implementation, experiences
and guidelines. InPervasive Technology Applied @
PERVASIVE, May 2006.

[5] C. L. Fok, G.-C. Roman, and C. Lu. Mobile agent
middleware for sensor networks: An application case
study. In4th International Conference on Information
Processing in Sensor Networks (IPSN’05), pages 382–
387, April 2005.

[6] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek,
M. Vieira, D. Estrin, R. Govindan, and E. Kohler. The
TENET architecture for tiered sensor networks. In
ACM Conference on Embedded Networked Sensor Sys-
tems (SenSys), November 2006.

[7] Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha. Ac-
torNet: An actor platform for wireless sensor networks.
Technical Report UIUCDCS-R-2005-2595, University
of Illinois at Urbana-Champaign, 2005.

[8] J. Liu, J. Liu, J. Reich, P. Cheung, and F. Zhao. Dis-
tributed group management for track initiation and
maintenance in target localization applications. In2nd
International Workshop on Information Processing in
Sensor Networks (IPSN), 2003.

[9] J. Liu and F. Zhao. Towards semantic services for
sensor-rich information systems. InInternational
Workshop on Broadband Advanced Sensor Networks
(Basenets 2005), October 2005.

[10] R. Razavi, K. Mechitov, G. Agha, and J.-F. Perrot. Dy-
namic macroprogramming of wireless sensor networks
with mobile agents. In2nd Workshop on Artificial In-
telligence Techniques for Ambient Intelligence, January
2007.

[11] R. Razavi, J.-F. Perrot, and R. Johnson. Dart: A
meta-level object-oriented framework for task-specific,
artifact-driven behavior modeling. InProceedings of
DSM’06, pages 43–55, 2006.

[12] P. Spiess, H. Vogt, and H. Jutting. Integrating sensor
networks with business processes. InReal-World Sen-
sor Networks Workshop at ACM MobiSys, June 2006.

[13] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun. Sup-
porting concurrent applications in wireless sensor net-
works. In4th International Conference on Embedded
Networked Sensor Systems (SenSys), pages 139–152,
2006.


