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Abstract—Software development in wireless sensor networks
has traditionally focused on stand-alone applications stati-
cally linked with the operating system code, and relying on
fixed models for scheduling, synchronization, and resource
allocation. Middleware services and network protocols, are
usually considered to be part of the operating system. As the
number of available WSN platforms and operating systems
grows, and the emergence of cyber-physical systems results
in the creation of networks of hetrogeneous devices (sensor
nodes, microcontrollers, mobile devices, etc.), portability and
interoperation emerge as major considerations in the software
development process. We propose breaking the tight integra-
tion between middleware services and the operating system.
We demonstrate how adopting a service-oriented computing
approach to WSN middleware services improves portability
and enables the creation of heterogeneous sensor networks
and cyber-physical systems. The adoption of a service-oriented
architecture does not necessarily translate into a significant loss
of performance. An extremely light-weight and flexible method
for local and remote service interaction is proposed.

Keywords-middleware, wireless sensor networks, service-
oriented architecture

I. INTRODUCTION

Current practice considers wireless sensor networks
(WSNs) and cyber-physical systems (CPS) in the context of
a single static application, e.g., a network for target tracking,
environment monitoring, or structural control. This model
of software development, together with the small scale of
most experimental WSN deployments, has led to the design
of middleware services that are highly efficient but often
tightly coupled and customized to a particular application or
operating system. This practice hampers service portability
and reuse, such as when a data aggregation service is
designed to work only with a specific routing protocol or
a time synchronization serivce is tied to a particular radio
driver.

Moreover, most WSN research has focused on networks
made up of homogeneous devices—those using the same
hardware platform and operating system. Unlike traditional
wireless sensor networks, the CPS environment can be a
large-scale distributed system comprising a mix of low-
power embedded computing devices, sensing and actuation
elements, networked mobile devices, and general-purpose
computing and network platforms. One of the principal
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challenges of computer science research in cyber-physical
systems is to find ways of creating scalable, robust, and
efficient software capable of operating in this environment.

Application development is particularly challenging due
to the lack of software engineering tools and programming
languages commonly used in modern large-scale software
development. Due to resource constraints and efficiency
requirements, low-level C programming remains the dom-
inant application development method in this domain [1].
Even small modifications to existing codebases currently
require significant embedded software development skills
and familiarity with the inner workings of the operating
system to which the service is coupled.

As WSN and CPS deployments become more numerous
and their scale increases, we envision these systems becom-
ing an open computing platform used concurrently by multi-
ple applications, or performing different and uncoordinated
activities within the context of a single, complex application,
while sharing a network of heterogeneous devices. Highly
efficient middleware services customized to each application
or integrated with the low-level device drivers become less
attractive, as common functionality is needlessly replicated,
and incompatibilities between different versions of the same
service can arise. In our view, these requirements imply the
need for a software architecture that provides a looser cou-
pling between middleware, OS, and applications, and among
the services themselves. This must still be accomplished in
a resource-efficient manner suitable to low-power embedded
devices.

In this paper, we consider applications that make use
of a number of general network-wide middleware services
such as routing, localization, and time synchronization, in a
cyber-physical system comprised of heterogeneous embed-
ded devices. In order to accommodate the vast collection
of services and protocols already developed by the em-
bedded systems and WSN communities, we adopt a very
broad definition of what constitutes a middleware service,
concerning ourselves only with their interfaces to applica-
tions, operating systems, and other services, and not their
internal semantics or implementation method. Specifically,
we propose a service composition-based architecture for
networked embedded systems, based on the principles of
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service-oriented computing (SOC), with the goals of facili-
tating large-scale application development, fostering greater
portability and reuse, and enabling global, network-wide
optimization rather than application- and OS-specific local
optimization, of portable middleware services.

By dissociating middleware services from the application
context and from the underlying operating system, we give
up some possible performance advantages due to explicit
customization and tight coupling, although by applying
certain design and implementation techiques, the overhead
costs can be minimial. In return, we provide a more scalable
software development process, support for multiple concur-
rent applications, and the possibility of developing portable
middleware and applications across a range of embedded
computing platforms.

This research is motivated in large part by the authors’
experience with the development of a modular application
framework for the Illinois Structural Health Monitoring
Project [2], as well as the installation and maintenance
of over 100 sensors in the course of a three year long
structural health monitoring (SHM) deployment [3]. The
same codebase was later adapted to real-time monitoring
and structural control. Due to the size and complexity
of the application and middleware code in this project,
issues of programmability, adaptivity, and fault tolerance
of dominated the development process, as opposed to the
more traditional WSN considerations of energy efficiency
and low-level performance optimizaiton.

The remainder of the paper is organized as follows.
First, we motivate the need for this software development
approach with a concrete example in Section II. Next, we
briefly review related work on service-oriented architecture
in Section III, and propose a service-oriented architecture for
portable WSN middleware in Sections IV. Section V then
describes a dynamic service composition-based architecture
implementing these principles. Section VI concludes the

paper.
II. MOTIVATION

Let us identify precisely the issues with the current
approach to developing a portable middleware service for
a network of heterogeneous devices, and examine an alter-
native approach. Consider as an example an implementation
of a multi-modal data acquisition service in a heterogeneous
cyber-physical system consisting of three types of devices:
1) low-power sensors, 2) more powerful and fully-featured
sensor nodes, and 3) sensor-actuator hybrid nodes acting as
embedded controllers. A specific instance of such a CPS
would be a wireless network for structural health monitoring
and control of civil infrastructure such as buildings and
bridges (Figure 1). Its operation involves periodic collection
of data from a multitude of sensors of different modalities
and at different timescales. Once collected, the data can be
processed and transferred among the nodes for a variety
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Figure 1.
with several concurrently executing independent tasks: sensing, distributed
processing, hierarchical data aggregation, and energy harvesting.

A heterogeneous CPS for structural monitoring and control,

of purposes: long-term monitoring, damage detection, and
active damping (structural control).

As stand-alone components, low-power sensors used for
acquiring data at low sampling rates (e.g., temperature,
humidity, strain) are typically running on ‘“bare metal”
microcontrollers, without the support of an operating system.
They are highly tailored to their specific functionality and
can be extremely efficient. Fully-featured general purpose
sensor platforms, such as Imote2 or Telos motes, most often
make use of a WSN-specific, event driven operating system
such as TinyOS, SOS, or Contiki. Embedded sensor-actuator
devices, due to the hard real-time requirements of control
algorithms, normally rely on an embedded RTOS such as
FreeRTOS or Keil RTX.

Thanks to the standardization of low-power radios on the
IEEE 802.15.4 specification, all of these devices can be part
of the same wireless network and exchange packets with
each other with little difficulty. However, at the the task
scheduling and device driver level, these three systems differ
greatly, and would share little code in common.

When middleware services, such as the data acquisition
service, are tightly integrated with the operating system,
as is commonly the case today, porting them between
platforms with different operating systems is a significant
undertaking. On the other hand, if the core logic of the
service is implemented to well-defined application- and OS-
level interfaces, only comparatively small changes to the
driver interface are necessary to port the service between
these platforms.

In our example, the data acquisition service serves two
purposes: to collect sensor data and possibly some meta-
information (timestamps, sensor channel or modality, sam-
pling frequency, scaling factors, etc.), and to make the data
available upon request at any later time to any node in the
network. If the data acquisition service is tightly integrated



typedef struct {

uint32_t size; // number of elements in ’data’
float scale; // ADC scale
float offset; // ADC offset
float freg; // sampling frequency
intl6_t =xdata; // raw ADC data

} channel_data_t;

typedef struct {
uint32_t size; // number of elements in ’data’
uint32_t block; // samples per timestamped block
uint32_t high32; // high 32 bits of 1lst timestamp
uint32_t xlow32; // low 32 bits of timestamps

} timestamp_data_t;

typedef struct {
uint32_t node;
channel_data_t channels[MAX_SENSOR_CHANNELS];
timestamp_data_t timestamps;

} sensor_data_t;

Figure 2. Example of a portable, self-describing data structure in C for
storing multi-modal sensor data. The data structure contains descriptive
meta-data (origin node, sampling rate, scaling factors) alongside the sensor
values and timestamps.

with the operating system, the former functionality is likely
to be a part of the sensor driver interface for specific sensors.
If it is tightly integrated with the application, the latter
functionality is likely to be mixed with application logic.

Let us consider an alternative implementation of the
data acquisition service, with well-defined interfaces for
interaction with the application and the OS. The design of
the service centers around a portable and space-efficient data
structure for storing and transporting the sensor data and
meta-information (Figure 2). This data structure must store
the sensor data itself as well as additional semantic data
describing where and how the sensor readings were acquired.

An example of the extra information contained in the
data structure would be a flexible and efficient timestamping
method: storing a timestamp for every k samples. If the sam-
pling rate is known to be constant, only the first timestamp is
necessary to fully define the data acquisition timing, k£ = 1.
If the sampling rate is highly irregular, each sample must
be timestamped £ = N, where N is the total number of
samples. If the sampling rate (or the clock) is subject to
drift periodic timestamps every several samples are needed
to compensate for this, 1 < k < N.

The external interface to the service then comprises four
methods:

1) Setting up data acquisition: start time, number of
samples, frequency, sensor channel, etc.

2) Low-level sensor access.

3) Notification of data availability.

4) Local or remote access to the acquired data.

Only item 2 is likely to be highly platform-dependent, as
sensor interfaces vary a great deal between sensor platforms,
operating systems, and sensor types. An event-driven OS
and an RTOS with support for task priorities and blocking
would have very different implementations of a driver for the
same sensor. Additionally, sensor interfaces can differ a great
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deal from each other. For instance, some analog-to-digital
converters (ADCs) require manually requesting each sample,
such that the CPU and the operating system timers are
responsible for the sampling rate. Others have internal clocks
that control sample acquisition timing, and only trigger an
interrupt for the OS to handle when a sample or a block of
samples is available. This part of the service would have to
be re-implemented specifically for each platform. However,
the other parts of the interface are largely or completely
platform-independent. Applications and other middleware
services can be written to the semantics of these interfaces,
even if the specific syntax of service invocation differs from
platform to platform. The sensor data structure acts as an
abstraction layer between the two phases of the service: data
generation (filling in the structure) and data access.

We consider well-defined interfaces and self-describing
data structures containing semantic metadata to be the keys
to the creation of highly portable middleware in wireless sen-
sor networks. In our experience, service interaction through
such interfaces and data structures does not constitute a
significant fraction of the system’s overall resource usage,
even on low-power sensor nodes. Efficiency of low-level
device drivers and application-level data processing algo-
rithms dominate performance and energy consumption of
the system. With this in mind, service-oriented architecture
becomes a sensible option for CPS software development.

In the next section, briefly review the principles of service-
oriented architecture, and then propose a lightweight SOA
for portable WSN middleware services, which can provide
this type of functionality with minimal overhead.

III. SERVICE-ORIENTED ARCHITECTURE

With the exponential growth in available computing power
over the last 50 years, the complexity of computer software
has likewise increased dramatically. Advances in the fields
of programming language design and software engineering
allow application developers to deal with this complexity
by dividing the software system into smaller, manageable
parts. Notably, object-oriented programming, which encap-
sulates data together with the methods used to operate
on it, and component-based software architecture, which
proposes building applications as a composition of self-
contained computing components, have been instrumental to
the design and development of large-scale software systems.
Expanding on this idea, service-oriented architecture (SOA)
has recently been proposed as a way to bring this design
philosophy to building dynamic, heterogeneous distributed
applications spanning the Internet [4], [5], [6].

Services, in SOA terminology, are self-describing soft-
ware components in an open distributed system. The de-
scription of a service, called a contract or an interface, lists
its inputs and outputs, explains the provided functional-
ity, and describes non-functional aspects of execution [7].
Different applications can be built from the same set of



services depending on how they are linked and on the
execution context [8]. This approach makes for dynamic,
highly adaptive services and applications that can be ported
between platforms with relative ease, without the need to
revisit and adapt the logic of each service for a particular
application/OS combination.

SOA design principles apply in the cyber-physical systems
context as well as on the Internet. Such systems often
consist of numerous independent nodes, each an embedded
computing platform with a processor, memory, and a radio
transmitter. As such, CPS applications are by definition
distributed and thus require communication and coordination
for parts of the application running on different nodes.
SOA has been proposed to address the inherent problems
in designing complex and dynamic CPS applications [9].
Building an application from a set of well-defined services
moves much of the complexity associated with embedded
distributed computing to the underlying middleware. This
approach also fosters reuse and adaptability, as services for
a given application domain can be employed by a multitude
of applications.

Perhaps more importantly, SOA provides for a sepa-
ration of concerns in application development. That is,
application designers can focus on the high-level logic
of their application, service programmers can concentrate
on the implementation of the services in their application
domain, and systems programmers can provide middleware
services (reliable communication, time synchronization, data
aggregation, etc.) that enable the services to interact for a
particular platform. In cyber-physical systems, which are
often tailored to application- and context-specific require-
ments, it especially important for the high-level design of
the application and the domain-specific algorithms used by
the services to be separated from the low-level infrastructure
necessary to make the system work.

IV. ARCHITECTURE OVERVIEW

Our proposed architecture leverages the concept of dy-
namic service composition to support portable application
and middleware development for open WSN systems. We
adopt a two-level architecture, separating the two major
concerns: that of controlling the execution process, including
strategic decision making and adaptation, and that of the
execution itself. First, we restate our formulation of the
problem more formally.

We consider applications specified in terms of a composi-
tion of calls to middleware service interfaces, and we refer
to the service interface specification as a contract and each
invocation of a service a service request. To facilitate the use
of a large number of pre-existing middleware services and
network protocols within our architecture, we choose not to
constrain the model of a service’s behavior, e.g., whether it is
distributed, centralized, single-threaded, etc. Since services
and applications need to interact and coordinate, however,
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Figure 3. Two-level architecture for controlling active objects. Execution
control, coordination, and quality of service considerations are separated
from base-level operational functionality.

we fix a model for their interaction. We use the Actor
model of computation [10] to represent service interfaces
connecting services to each other and to the application.
Thus, services are used by our system as if they were
implemented as actors: concurrent active objects interacting
via asynchronous message passing. We distinguish between
the actors representing the service itself from meta-actors,
which supervise deployment and execution of the services,
providing for service configuration, adaptation, and non-
functional requirements (Figure 3).

Responsibilities of the meta-actor include controlling the
lifecycle of a service (instantiation, starting, stopping and
disposing of the service) and interaction with other services.
Note that once the appropriate services are instantiated,
certain interactions can happen directly between base-level
actors, rather than through their corresponding meta-actors.
Such interaction then occurs through the actor interface
specified in the service contract. Only interactions through
actor interfaces are mediated by our architecture; any side
effects are not captured by this model.

We further assume the existence of a functional ser-
vice composition language, where service requests are self-
sufficient and minimally constrained. The service compo-
sition language is functional in that (1) the control flow
between service requests is partially ordered and driven by
data dependencies, and (2) it allows for a recursive graph
traversal to autonomously process each service request in the
specification. Self-sufficiency refers to the fact that each in-
dividual service request is provided with the required knowl-
edge about the arguments, resources, context and method
required for its execution. Minimally constrained refers to
delaying as long as possible placing constraints necessary
to execute a specific instance of the service, in other words,
the service instance does not refer to information that can
be computed or supplied to it at run-time.

We strive for an extremely lightweight, low overhead
implementation of SOA. For local interactions, the cost of



a service invocation should not be significantly more than
just one function call. For remote interactions, the remote
method invocation should be implemented to piggyback on
normal data transfers that would occur in any case to provide
the base functionality, adding only minimal overhead to the
transmission. It should also be noted that most services we
consider for this framework provide high level distributed
middleware or application-level functionality (e.g., data ag-
gregation, time synchronization, multi-hop routing, etc.),
with more low-level OS tasks (timers and interrupts, memory
management, scheduling) being left to the underlying system

for the sake of efficiency.

V. SOA IMPLEMENTATION

We propose a dynamic service composition framework
as an extension of an existing static component-based sys-
tem. A collection of cutomizable middleware services and
data processing components has been developed as part
of the Illinois SHM Project [3], [11] for the structural
health monitoring application domain. This customizable
framework for building SHM has attracted a community of
computer scientists and civil engineers from over 70 research
groups [2], resulting in the development of numerous SHM
algorithms, middleware components, and network protocols.
Complete applications can be assembled by customizing
and statically linking these parametrized components via
their nesC interfaces [1]. In order to replace the static
linking of the components with a meta-actor based SOA
implementation, we need to introduce a flexible and light-
weight service invocation mechnism.

Given an application comprising a composition of middle-
ware service requests represented as outlined in the previous
section, its execution consists of a mutually recursive service
instantiation and invocation process. This results in a system
of distributed interacting meta-actors responsible for han-
dling the interaction among the services. Execution proceeds
concurrently and asynchronously as the preconditions for the
invocation of each service request are satisfied. We call this
process self-mediated execution.

Let us now focus on the role of the meta-actors in
this process. Fig. 4 highlights the governing behavior of
a meta-actor in processing service requests. These meta-
objects are dynamic, they have the capability to observe
the base-level actors and the environment (introspection),
and to customize their own behavior by analyzing these
observations (intercession), as seen in Figure 3.

Due to service request self-sufficiency, each meta-actor
can decide how, where and when to execute its associated
service functionality. We now explain the function of each
component of this architecture and their interactions.

Deciding how to execute the service request involves

matching a service instance to a suitable service interface,

and then finding the resources required by that service.
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Figure 4.  Self-mediated execution architecture for middleware services.
The meta-actor acts as a remote governor of the base-level actor.
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This component finds all service instances that match
the constraints of a given service request. This is done
by querying the contract repository and filtering the results
according to the constraints specified in the service request.

Likewise, the resource matching component finds all
suitable resources (sensors, data stores, etc.) for a given
service instance. Matching algorithms used by this service
depend on the resource description language employed by
the system. Several methods are available for indexing a
dynamic set of geographically distributed resources, includ-
ing a yellow pages service, tuple spaces and actor spaces.
Caching and prefetching techniques can make the process
more efficient, eliminating the need to scour the network
for each query. Due to the location-dependent nature of most
WSN computations, we expect most queries to be limited

geographically, in most cases to the same node, avoiding
the need to flood the network even in cases when cached
information is unavailable.

Instantiation and Invocation: The meta-actor also
needs to decide where to execute the service request. For
the sake of efficiency, instantiation and invocation are treated
separately. As such, service instantiation—potentially a long
process—can start early, while the invocation is delayed
by the scheduling component until the necessary resources
become available. Given a list of possible resources and
implementations, this component chooses which implemen-
tation/resource combination best fits the application require-
ments or system performance considerations. The output
of this service is a platform-specific executable code seg-
ment, along with a list of its required resources, which
dictate where in the WSN the service must be located.
This component comprises the core of the self-mediated
execution approach. Choosing an appropriate option from
a list of resources and service implementations is critical to
efficiently executing composite service-based applications.
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Scheduling: Next the meta-actor decides when to ex-
ecute the service request. This is accomplished by the
scheduling and task allocation component. The goal of this
component is to decide when the service instance can be
deployed and executed. If the resources required by the
service instance are not immediately available, its execution
is postponed, along with all services that depend on it.
Shared resources requiring exclusive access, e.g., certain
types of sensors and actuators, must be scheduled globally,
since service implementations may not be aware of each
other. An up-to-date resource use schedule is provided to the
decision making and optimization component to facilitate the
selection of less-utilized resources whenever possible, and a
repository of active services is maintained to keep track of
all service instances currently deployed in the system. This
is also used by the implementation matching component
to check if an already-deployed component may satisfy a
service request.

Argument and Output Handling: Finally, the service
request is ready to be invoked on the target service. This
step includes marshaling and remote invocation. The mar-
shaling component packages the service request for trans-
port and execution on the destination platform, using the
invocation component. The method is platform-dependent.
In our system, this involves wrapping the service invoca-
tion parameters together with the raw argument data to
be transferred. In the case of service requests with no or
small-sized arguments, the entire request data can fit into a
single network packet. The service request is then handed
off directly to the base level actor interface to invoke the
selected service instance. From this point onward, the service
instance interfaces via its actor interface with its meta-actor
and with other services in the system by means of asyn-
chronous message passing. Asynchronous messaging is used
both to deliver computation results and error notifications
from the executing services and to deliver control messages
from the meta-actor. In the case of both sender and receiver
residing on the same node, the message passing can be
short-circuited as simply a function call by means of an
optimization techinque such as a continuation passing style
(CPS) transform.

VI. CONCLUSION

Our research aims to improve programmability of
complex cyber-physical systems by separating context-
independent application logic and platform-independent
functionality of middleware services from the low-level im-
plementation details that are specific to a particular platform
or operating system. The means to accomplish this is a
dynamic and lightweight service-oriented architecture for
portable WSN middleware services. We believe that the
design principles and architecture defined in this paper will
lead to greater portability and code reuse in many sensor
network and cyber-physical system services and protocols.
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The success of this approach depends on the possibility
to efficiently implement the service interfaces and data
interchange formats on low-power embedded systems. We
consider performance optimization of the service-oriented
architecture for WSN middleware to be an important open
topic for future research.
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