
/* Detect break beam event application (code excerpt) */
configuration Example {}
implementation {

// list of application components
components Main, ExampleM, LedsC, GenericComm, TimerC,

Photo, CC1000ControlM;
// statically link all components
Main.StdControl -> GenericComm;
Main.StdControl -> TimerC;
Main.StdControl -> Photo;
Main.StdControl -> ExampleM;
ExampleM.SendMsg -> GenericComm.SendMsg[10];
ExampleM.ReceiveMsg -> GenericComm.ReceiveMsg[10];
ExampleM.CC1000Control -> CC1000ControlM;
ExampleM.Timer -> TimerC.Timer[unique("Timer")];
ExampleM.Leds -> LedsC;
ExampleM.PADC-> Photo;

}

// Communication: receive requests for execution and send results
void sendPacket(uint8_t *buf, uint8_t n)
__attribute__((C,spontaneous)) {

memcpy(msgbuf.data, buf, n);
msglen = n;
if (call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf)
== SUCCESS)

sendPending = 1;
}
uint8_t isSendPending() __attribute__((C,spontaneous)) {

return sendPending;
}
event result_t SendMsg.sendDone(TOS_MsgPtr mp, result_t success) {

if (!success) call Timer.start(TIMER_ONE_SHOT, 200);
else {

call Leds.redToggle(); sendPending = 0;
}
return SUCCESS;

}
event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr mp) {

TOS_Msg m;
call Leds.greenToggle();
if ((uint8_t)mp->data[0] == 20) {

m.data = deref(detectShadow());
sendPacket((uint8_t *)m.data, strlen(m.data));

}
return mp;

}
event result_t Timer.fired() {

return call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf);
}

module ExampleM {
/* … */

}
implementation {

TOS_Msg msgbuf;
uint8_t msglen, sendPending;
volatile uint8_t ioPending;
uint16_t ioData;

/* … */

// primitive function #20: detect beam event (using photo sensor)
uint16_t detectBeamEvent();

// I/O: convert split phase non-blocking I/O to blocking I/O
uint16_t IO(uint16_t a, uint16_t b) __attribute__((C,spontaneous)) {

while (ioPending) yield();
if (a == 20) { call PADC.getData(); ioPending=1; }
while (ioPending) yield();
return ioData;

}
async event result_t PADC.dataReady(uint16_t data) {

ioPending=0; ioData=data;
return SUCCESS;

}

/* … */

// Implementation of detectBeamEvent primitive
uint16_t detectBeamEvent() {

int i;
uint16_t data, avg = 0;
ledSet(0);
for (i = 0; i < 10; i++)

avg += IO(2, 0);
avg /= 10;
while ((data = IO(2, 0)) > avg - 15) yield();
ledSet(7);
return list(2, newWord(20), newWord(data));

}
}

Wireless Sensor Networks (WSNs) WSN Programming
Benefits:
• Fine-grained sensing
• Easy deployment, no infrastructure required
• Enable new class of applications uQuery Engine

Challenges:
• Resource constraints (memory, bandwidth, energy)
• Large-scale coordination
• Combine the problems of networking, signal
processing, real-time and embedded computing

Requirements for uQuery Engines
• Targeted at end-users, not programmers
• Dynamic: deploy and change behavior at run-time
• Support concurrency inherent to ambient systems
• Multiplicity of end-users

Application Example: Break Beam Detector

State of the Art
• Programming tools focused on efficiency
• Low-level, C-based programming language (nesC)
• Lightweight, component-based OS (TinyOS)

• Supports real-time programming, sensing, concurrency
• Applications are compiled together with the OS

Macroprogramming WSNs
• Regiment, Semantic Streams, spreadsheet programming
• Do not meet requirements for uQuery Engines

We want to detect an object passing through a break beam sensor, on
request:
• Wait for a request message from the user
• Perform the requested action

• Execute detectBeamEvent() primitive
• Keep checking the sensor until a change in status is detected

• Send the result of detection back to the user

The user (programmer) is responsible for choosing the right OS and
network components, and assembling them along with the specific
application logic into an executable program.

Note the following issues with the code below.
• Static:

• Specification and linking of components at compile time
• All components are compiled into a single image deployed on the sensor

• Low-level:
• Programmer is responsible for managing: timing, communication,
memory management, error handling

• No separation of concerns:
• OS and network programming elements are inextricably linked with
business logic programming elements

Reza Razavi (PI)
University of Luxembourg
reza.razavi@uni.lu

Åmbiance Project
Autonomous Systems Group
University of Luxembourg

Open Systems Lab
University of Illinois at
Urbana-Champaign

Kirill Mechitov, Sameer Sundresh and Gul Agha
University of Illinois at Urbana-Champaign
{mechitov, sundresh, agha}@cs.uiuc.edu

event

Query 1: determine
ambient temperature
and wind conditions

Query 2: Detect and
locate deer moving
through the region

Response to Query
1: temp=65ºF
wind: SE, 3mph

Response to Query
2: Deer at (10,35)
moving NW at 5mph

How can we program this system?

Adapted from: [Boulis, 2005]

Jean-Francois Perrot
Université Pierre et Marie Curie
jean-francois.perrot@lip6.fr

Laboratoire d’Informatique de Paris 6 – CNRS
Université Pierre et Marie Curie

Mica2-Dot and Telos motes
http://research.sun.com/

Connecting together a large number of small computers with
sensing and actuating capabilities, to collectively and cost-
effectively solve problems, based on real-time data.

Ambiance: Adaptive Object Model-based
Platform for Macroprogramming Sensor Networks

StepStep

AdaptAdapt

Fetch
Load
Code

Adaptation cycleAdaptation cycle

Operational level

Knowledge level

Introspection

Intercession

Dynamically-composed
uQuery (ambient service)

Passive object

Active object

Extended AOM Architecture for Macroprogramming WSNs

Standard AOM Architecture

Domain entity types

Properties
Associations

Rules

Events

meta-data repository

Write access

Meta-data interpreter

Programmer

Expert

Object

Agent

Beam Event
Detector

OO Language

Read access

Adaptive
service
provision

AOM is a meta-data interpreter

Meta-data corresponds to data that specifies the
Programs’:
• Object-model (Structure and Behavior)
• Windows, Menus, Configuration Panel, …
• Saved as configuration data

Knowledge level
• Comprises:

• Conceptual ontology
• Behavioral ontology
• Framework for specifying queries as a composition
of services through mediation of concepts

• Assumptions:
• Completeness of the service ontology
• Acknowledgeability of the users in the domain
covered by the ontologies
• Low-level data, such as the sensor id, may be
provided by users (in the process of being relaxed)

• Keeps track of static and dynamic metadata.

Operational level
• Comprises a set of mobile agents
• The agents:

• Are defined dynamically
• Execute concurrently

• within the WSN, and
• on a single node

• Based on a formal model of
computation

• In order to be verifiable
• Actors

Open Issues with AOMs

• Have not been applied to WSNs
• Lack of standard techniques for
• WSN dynamic code generation

• Supporting concurrency
• Supporting separation of high-level control
from the execution
• Run-time optimization

Query Interpretation and Execution

The Core Design of Dart: A Reusable and Extendible
(Global) Behavior Representation Framework

Dart: Query Representation Framework

Structure of queries
• Finite directed acyclic graph
• Recursive

• Steps may hierarchically point to tasks
• Reflective

• Same set of concepts reused to extend the system

Semantics of queries
• Parallel evaluation of contributions
• Limited to their dependencies
• Different execution semantics

• Same set of concepts reused to extend the system
• Late

• value binding
• method binding

Histogram Entry Collection

For a Period of <2 weeks> Do <T1>

Histogram

Plot Histogram

Vehicle

Do <T2>

Histogram Entry

Create Histogram Entry

Vehicle

Classify Vehicle

Pulse Pair 3

Average Pulse Pairs

Pulse Pair 2

Sort Edges

Pulse 2

Detect Beam Event

11

Mobile Object

Estimate Motion

10

Pulse Pair 1

Sort Edges

Pulse 3

Detect Beam Event

Pulse 1

Detect Beam Event

12

13

1

2

4

6

9

5

3

7 7 7

8 8

Main

T1: Compute Histogram Entry

Liz’s query

T2: Identify Vehicle

Behavior

Task

Concept

Construct

Step

Contributes
Relation

Query Representation Example

Liz’s Query: compute histogram of vehicle
arrival times for a period of two weeks
Source: [Whitehouse, Liu, Zhao 2006]

Process Conscious Product

Task Step

1

-content

*

Construct

1..1

-computation method
0..1

Contract

Ontology Concept

-holds 0..1

0..*

1..1

-spec

1..1

1

-dependents0..*

Primitive

ActorNet Primitive

Control Structure
-instantiates0..1

Structure

-organization 0..* 1..1

Grid List

Behavior
1

*

Procedure

Execution Strategy

-policy 0..1

-contributes

0..*

0..*

Signature

-type

0..1

0..*

1..1

Argument

-requires 0..*

0..*

Result

-produces 0..1

0..*

1 Context

-holds0..11

Conceptual Ontology

Behavioral Ontology

1 *

1*
Association
Generalization
Aggregation

ActorNet: Implementation of the Operational Level

At the operational level, queries are executed by ActorNet
• A system of mobile, concurrently executing agents called actors
• Actor code is dynamically generated by the meta-level
• ActorNet language is extended with new keywords and services providing the
means to link the meta-level and the operational level of the Ambiance platform

ActorNet platforms are deployed on sensor nodes or PCs
• Provide resource management, scheduling, communication, migration, sensing
and actuation, etc., for actors.

Break Beam Detector Example

For the break beam detector, the meta-level will generate the code for an
actor of the Detect Beam step.
• An ActorNet agent template is provided by the execution strategy
• The Detect Beam meta-actor computes and fills in:

• the destination sensor id (for migration)
• meta-actor id (for communication)
• the primitive to be executed (for application-specific functionality)
• the arguments to the primitive (for control)

How does Ambiance satisfy the requirements of uQuery Engines?

Collaborators:

event

Query 1: determine
ambient temperature
and wind conditions

Query 2: Detect and
locate deer moving
through the region

Response to Query
1: temp=65ºF
wind: SE, 3mph

Response to Query
2: Deer at (10,35)
moving NW at 5mph

By extending the AOM model to mobile agent
computing

Adapted from: [Boulis, 2005]

The Ambiance platform supports:
• Using a WSN to serve concurrent users
• Dynamic, end-user-driven service specification
• Complex queries, comprising sensing and actuation

While meeting WSN constraints:
• Embedded, concurrent, distributed computing
• On highly resource-limited hardware components
• Work with a dynamic set of sensing resources

Actor in text form Actor Deployment Interface

multithreaded server providing socket
connections for concurrently deploying and

executing actors

Messaging Interface

Meta Actor

Actor id

Actor id

Registration + sleep

Output object

1

2

3

4

Wakeup +
reception

Primitive Processing Algorithm

Ralph Johnson,
Software Architecture
Group
University of Illinois at
Urbana-Champaign

((lambda (migrate)
; actor behavior
(seq

; migrate to destination (node 200, meta-actor id 111)
(migrate 200 111)

; migrate to source (node 100) and report result
(par (extmsg 111 (migrate 100

; perform application logic:
; detectBeamEvent() primitive (#20)
; which takes no arguments (nil)
(prim 20 nil)

)))
))

; migrate subroutine
(lambda (adrs val)

(callcc (lambda (cc)
(send (list adrs cc (list quote val)))))

)
)

ActorNet Agent code for a call to the Detect Beam Primitive

Separation of business logic primitives from
the core of the mobile agent system,
facilitates addition of new domain-specific
primitives

Hooks are provided for quality attributes,
such as:

• Security: automated supervision for security
checks

• Auditability: who has been involved in what
• Non-repudiability: who has initiated which

action

Reusability and extendibility of:
• The Ambiance Platform
• Its query representation framework

The two-level approach to architecting
uQuery Engines allows separating:

• query representation and reasoning concerns,
from

• those of their effective execution on divers
runtime platforms

• through model-to-code transformation.
Using a mobile agent system as the query

execution environment provides:
• dynamicity and concurrency of

macroprogramming, while enabling
• load balancing and other optimizations

required by the WSN environment

Web-based uQuery Engine User Interface

Uses: Seaside framework (http://www.seaside.st/)
and Squeak (http://www.squeak.org/)

Noury Bouraqadi
Computer Science Research Team.
Ecole des Mines de Douai

Christoph Dony
Université Montpellier-II
LIRMM, France

Vincent Ginot
Mobidyc Project
French National Institute for Agricultural Research

Alain Cardon
Université Pierre et Marie Curie

BioMedical Informatics
ERCIM Working Group

