@ ()
i 1
Il I| I I II Re%a Ra.zaVI (PI) UNIVERSITE Lp
B University of Luxembourg NIERKE & MARIECURIE G

Ambiance Project . .
Autonomous Systems Group ['€Za.lrazavi @Unl du

University of Luxembourg Laboratoire d’Informatique de Paris 6 - CNRS

Université Pierre et Marie Curie

Jean-Francois Perrot
Université Pierre et Marie Curie
jean-francois.perrot@Iip6.fr

Kirill Mechitov, Sameer Sundresh and Gul Agha
e " University of Illinois at Urbana-Champaign
pen Systems Lal

University of llinois at {mechitov, sundresh, agha}@cs.uiuc.edu
Urbana-Champaign

Wireless Sensor Networks (WSNs) WSN Programming

Benefits:] State of the Art
« Fine-grained sensing How can we program this system? « Programming tools focused on efficiency

+ Easy deployment, no infrastructure required oo e e » Low-level, C-based programming language (nesC)
* Enable new class of applications uQuery Engine and wind conditions ? « Lightweight, component-based OS (TinyOS)
« Supports real-time programming, sensing, concurrency

Challenges: e e ond « Applications are compiled together with the OS
« Resource constraints (memory, bandwidth, energy) theaugh fheregion .
« Large-scale coordination Emns e e : Macr_oprog ramming WSNs .
« Combine the problems of networking, signal wind: SE, 3mph event I~ * Regiment, Seman_tlc Streams, spreadsheet programming
processing, real-time and embedded computing s « Do not meet requirements for uQuery Engines
Requirements for uQuery Engines e

» Targeted at end-users, not programmers Adapted from: [Boulis, 2005] moving NW at Smph

» Dynamic: deploy and change behavior at run-time
« Support concurrency inherent to ambient systems
» Multiplicity of end-users

Connecti g together a large number of smallompters with
sensing and actuating capabilities, to collectively and cost-
effectively solve problems, based on real-time data.

Application Example: Break Beam Detector

We want to detect an object passing through a break beam sensor, on Note the following issues with the code below.

request: . . « Static:

« Wait for a request message from the user = @ ; « Specification and linking of components at compile time

« Perform the requested action g « All components are compiled into a single image deployed on the sensor
« Execute detectBeamEvent() primitive L2 e Low-level:
« Keep checking the sensor until a change in status is detected Pamadeasivi iy * Programmer is responsible for managing: timing, communication,

« Send the result of detection back to the user Mica2-Dot and Telos motes memory management, error handling

hitp:iresearch.sun.com/ * No separation of concerns:

The user (programmer) is responsible for choosing the right OS and
network components, and assembling them along with the specific
application logic into an executable program.

/* Detect break beam event application (code excerpt) */
configuration Example {}
implementation {
// list of application components
components Main, ExampleM, LedsC, GenericComm, TimerC,
Photo, CC1000ControlM;
// statically link all components
Main.StdControl -> GenericComm;
Main.StdControl -> TimerC;
Main.StdControl -> Photo;
Main.StdControl -> ExampleM;
ExampleM.SendMsg -> GenericComm.SendMsg[10];
ExampleM.ReceiveMsg -> GenericComm.ReceiveMsg[10];
ExampleM.CC1000Control -> CC1000ControlM;
ExampleM.Timer -> TimerC.Timer[unique("Timer™)];
ExampleM.Leds -> LedsC;
ExampleM.PADC-> Photo;
3

module ExampleM {
/* ./

implementation {
TOS_Msg msgbuf;
uint8_t msglen, sendPending;
volatile uint8_t ioPending;
uintl6_t ioData;

/* ./

// primitive function #20: detect beam event (using photo sensor)
uintl6_t detectBeamEvent();

// 1/0: convert split phase non-blocking 1/0 to blocking 1/0
uintl6_t 10(uintl6_t a, uintl6_t b) __ attribute__((C,spontaneous)) {
while (ioPending) yield(Q);
if (a == 20) { call PADC.getData(); ioPending=1; }
while (ioPending) yield(Q);
return ioData;

async event result_t PADC.dataReady(uintl6_t data) {
ioPending=0; ioData=data;
return SUCCESS;

* OS and network programming elements are inextricably linked with
business logic programming elements

// Communication: receive requests for execution and send results
void sendPacket(uint8_t *buf, uint8_t n)
__attribute__((C,spontaneous)) {

memcpy(msgbuf.data, buf, n);

msglen = n;

if (call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf)

== SUCCESS)

sendPending = 1;

uint8_t isSendPending() _ attribute__ ((C,spontaneous)) {
return sendPending;
3
event result_t SendMsg.sendDone(TOS_MsgPtr mp, result_t success) {
if (Isuccess) call Timer.start(TIMER_ONE_SHOT, 200);
else {
call Leds.redToggle(); sendPending = 0;

3
return SUCCESS;
3
event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr mp) {
TOS_Msg m;
call Leds.greenToggle();
it ((uint8_t)mp->data[0] == 20) {
m.data = deref(detectShadow());
sendPacket((uint8_t *)m.data, strlen(m.data));

return mp;

event result_t Timer.fired() {
return call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf);

VAl 4

// Implementation of detectBeamEvent primitive
uintl6_t detectBeamEvent() {

int i;

uintl6_t data, avg = 0;

ledSet(0);

for (i = 0; i < 10; i++)

avg += 10(2, 0);

avg /= 10;

while ((data = 10(2, 0)) > avg - 15) yieldQ);

ledSet(7);

return list(2, newWord(20), newWord(data));

Amblance: Adaptive Object Model-based
Platform for Macroprogramming Sensor Networks

Standard AOM Architecture

AOM is a meta-data interpreter Meto-data terpreter Open Issues with AOMs

Read access

meta-data repository

Meta-data corresponds to data that specifies the

Programs’: 00 tanwees

 Have not been applied to WSNs
Adaptive « Lack of standard techniques for

« Object-model (Structure and Behavior) | ~"7tmomooopemmoe- B e Pii’;‘:;f:n * WSN dynamic code generation
» Windows, Menus, Configuration Panel, ... Programmer Associations * Supporting concurrency
- - Events H H H -
 Saved as configurationdata ~ |eeemmeeeoeoo o " f SUpgtlthmg setparatlon of high-level control
Werite access rom the execution
o - * Run-time optimization

Extended AOM Architecture for Macroprogramming WSNs

Knowledge level Step) Fetch Operational level
» Comprises: N « Comprises a set of mobile agents
« Conceptual ontology £ * The agents:

« Behavioral ontology Knowledge level
« Framework for specifying queries as a composition
of services through mediation of concepts

» Assumptions:
« Completeness of the service ontology

« Are defined dynamically

Adapt) « Execute concurrently
» within the WSN, and

« on asingle node
« Based on a formal model of

Adaptation cycle

Active object

« Acknowledgeability o_f the users in the domain Intercession Passive object computation
covered by the ontologies _ Introspection « In order to be verifiable
* Low-level data, such as the sensor id, may be « Actors
provided by users (in the process of being relaxed)
« Keeps track of static and dynamic metadata. Operational level
namically-composed
Query (ambient service)
Query Interpretation and Execution
Dart: Query Representation Framework Query Representation Example
Structure of queries :)
0.5 depencens * Finite directed acyclic graph 2. = —— Behavior
[Froess Conscious Product « Recursive l [EF——— ‘ [o 4]

Ty M |

« Steps may hierarchically point to tasks
« Reflective Task
e « Same set of concepts reused to extend the system f@—‘
s c:l:w::ml:m i Step
_ e Semantics of queries T
NV « Parallel evaluation of contributions
) o + Limited to their dependencies Concept
’ « Different execution semantics ~ Construct

-produces.

« Same set of concepts reused to extend the system

-requires

0.1

—_ At « L ate ; .
P o + value binding 7 Contributes
1.1 1. L 0 i z z) Relation
» method binding [[e [e
[oeectsemeen | [| [oesseameen |
The Core Design of Dart: A Reusable and Extendible = oo
(Global) Behavior Representation Framework oy

Liz’s Query: compute histogram of vehicle

arrival times for a period of two weeks
Source: [Whitehouse, Liu, Zhao 2006]

Collaborators: = Mines b
de Douai .
i Christoph Dony "
CN:OU"Y Etiou;a_qadl R - Université Montpellier-11 .
omputer Science Research Team. LIRMM, France
- Ecole des Mines de Douai Ralph Johnson,
B i v Software Architecture
- Group
P INA University of Illinois at
UNIVERSITE, _ Urbana-Champaign
prerre s Mamie CURIE c’&s . :
BioMedical Informatics . Vincent Ginot
ERCIM Working Group Alain Cardon Mobldhyc Pr_OJecIt . P icul | h
Université Pierre et Marie Curie French National Institute for Agricultural Researcl
ActorNet: Implementation of the Operational Level Primitive Processing Algorithm
At the operational level, queries are executed by ActorNet
« A system of mobile, concurrently executing agents called actors /A,—d\ @
« Actor code is dynamically generated by the meta-level l _/ |
E—

 ActorNet language is extended with new keywords and services providing the
means to link the meta-level and the operational level of the Ambiance platform ()
Meta Actor Actor Deployment Interface

Wakeup + multithreaded server providing socket

reception connections for concurrently deploying and
executing actors

= A
v . ¥ Registration + sleep
RS

R s Farwaoder

~— y D /—\
O QL; . \A-d/ Messaging Tnterface

ActorNet platforms are deployed on sensor nodes or PCs
« Provide resource management, scheduling, communication, migration, sensing .
and actuation, etc., for actors. ActorNet Agent code for a call to the Detect Beam Primitive

((lambda (migrate)
; actor behavior

(seq
; migrate to destination (node 200, meta-actor id 111)
(migrate 200 111)
Break Beam Detector Example
i ; migrate to source (node 100) and report result
For the break beam detector, the meta-level will generate the code for an (par (extmig 111 (Tigraye 1?0)
; perform application logic:
actor of the Detect Beam Step-' . . ; detectBeamEvent() primitive (#20)
« An ActorNet agent template is provided by the execution strategy ; which talf?S no arguments (nil)
« The Detect Beam meta-actor computes and fills in: » (prim 20 nil)
« the destination sensor id (for migration) »
* meta-actor id (for communication) : migrate subroutine
« the primitive to be executed (for application-specific functionality) (lambda (adrs val)
. (callcc (lambda (cc)
« the arguments to the primitive (for control)

(send (list adrs cc (list quote val)))))

How does Ambiance satisfy the requirements of uQuery Engines?
The Ambiance platform supports:

« Using a WSN to serve concurrent users By extending the AOM model to mobile agent S‘iﬁgrgg&no%ftﬁgsr;] nggﬁé%%gﬂ?g%'tg%es from
« Dynamic, end-.user-drlve_n.serwce _specnflcatlon _ ot Loeremie computing facilitates addition of new domain-specific
« Complex queries, comprising sensing and actuation and wind conditions

primitives
While meeting WSN constraints:

» Embedded, concurrent, distributed computing Hooks are provided for quality attributes,

« On highly resource-limited hardware components ; such _as: N _

« Work with a dynamic set of sensing resources R'T_'?:Iffig'f% : . fﬁggﬁ'sty: automated supervision for security
The two-level approach to architecting « Auditability: who has been involved in what
uQuery Engines allows separating: « Non-repudiability: who has initiated which
« query representation and reasoning concerns, action

from
Adapted fronf

« those of their effective execution on divers

Reusability and extendibility of:
runtime platforms

« The Ambiance Platform

« through model-to-code transformation. e * Its query representation framework

Using a mobile agent system as the query e e
execution environment provides: ~

« dynamicity and concurrency of :
macroprogramming, while enabling Web-based uQuery Engine User Interface

» load balancing and other optimizations Uses: Seaside framework (http://www.seaside.st/)
required by the WSN environment and Squeak (http://www.squeak.org/)

