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Abstract. We are interested in situations where multiple uncoordinated non-
professional programmer end-users want to exploit the Ambient Intelligence 
(AmI) infrastructure on their own, without calling in embedded systems 
programmers, in order to support their daily activities.  Our goal is allowing them 
to achieve this objective through on-the-fly creation and execution of high-level 
programs that we call uQueries (for user-defined or ubiquitous queries).  The key 
challenge then is to support the cost-effective and stepwise development of uQuery 
engines---systems for end-user programming and execution of uQueries.  We 
present a meta-level architecture that addresses this issue by leveraging Artificial 
Intelligence methods that make possible the separation of uQuery representation 
and reasoning concerns from those of their effective execution through model-to-
code transformation.  We show that (1) interconnections between ambient devices 
may be dynamically specified as control flows between high-level descriptions of 
their primitive functionality, (2) specifications may be elaborated by concurrent, 
uncoordinated end-users through a Web interface, and (3) they may be 
automatically distributed and concurrently executed on ambient devices as a 
system of mobile agents.  We have created a prototype of this architecture, the 
Ambiance Platform, which has allowed experimental validation of the approach 
using an application scenario proposed in the state-of-the-art of relevant research 
areas.  This experience led us to identify important issues to be explored, including 
dynamic and seamless integration of sensor and actuator nodes into the system.  
Furthermore, opportunities exist for significant performance and resource use 
optimization, for instance by integrating learning mechanisms into uQuery 
specification, transformation and execution.  

Keywords. Ambient Intelligence, Artificial Intelligence, Sensor Networks, 
Macroprogramming, Adaptive Object-Models, Mobile Agents, Actor Systems 

Introduction 

Ambient Intelligence (AmI) envisions the ‘invisible’ incorporation into our surrounding 
environment and everyday objects of billions of loosely-coupled sensing, actuating, 
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computing and communicating components as part of an AmI infrastructure [1, 2].  The 
aim is to discover new ways of supporting and improving people's lives and enabling 
new work practices. See Berger et al. [3] for a number of examples. 

AmI infrastructure components such as Micro-Electro-Mechanical Systems 
(MEMS), smart materials, ad hoc smart dust networks, and bio-inspired software are 
being intensively researched and developed.  The Cyber Assist project by Nakashima 
[4] describes a fully developed example.  Another key enabling technology is networks 
of potentially very large numbers of wirelessly connected small, autonomous, 
distributed, and low-powered computers endowed with limited processing, storage, 
sensing, actuation, and communication capabilities.  Such a system is called a Wireless 
Sensor Network (WSN), and each sensor node a mote [5, 6].  

The problem is now to write programs for the AmI infrastructure.  This is no easy 
task, given the complexity and dynamicity of the structures and the diversity of 
potential users and their needs.  Our work is concerned with situations where multiple 
uncoordinated end-users need to exploit the AmI infrastructure on their own, in order 
to solve problems in everyday life and to support their daily activities in different 
domains.  They should be able to achieve this goal by on-the-fly writing and executing 
high-level programs that we call uQueries (for user-defined or ubiquitous 
queries/macroprograms), without calling in specialists of embedded systems 
programming.  This is motivated by the diversity of functionalities that end-users 
expect from the AmI infrastructure, (see Böhlen [7] for a general argument and Richard 
and Yamada [8] for a typical example), further amplified by the unpredictability of the 
phenomena being monitored and the potential changes in the ambient computing 
infrastructure.  From the critical standpoint taken by Huuskonen [9] we clearly adopt 
the “Person-centric” approach.  In our view, this environment calls for a number of 
Artificial Intelligence techniques to be applied, notably knowledge representation and 
machine learning.  We shall also see that multi-agent systems likewise play an 
important role as observed by Nakashima [4]. 

We consider an AmI infrastructure that comprises both WSNs and more traditional 
computing artifacts such as PCs, gateway nodes, and handheld mobile devices 
(although the issues specific to mobile devices are not dealt with in this chapter).  Let 
us call each hardware component an ambient node.  This infrastructure is open in that 
both ambient nodes and uQueries may enter and leave the computing environment 
dynamically.  Based on resource availability and optimization criteria, available 
ambient nodes coordinate and determine their mutual application execution 
responsibilities at runtime.  

As a motivating example, consider a scenario from Microsoft Research [10], where 
the ambient infrastructure, installed in a parking garage, comprises break beam sensors 
and security camera nodes.  Two ordinary end-users, namely Liz and Pablo, who work 
independently, desire to use the ambient system for their own purposes. Liz is a site 
manager of the garage building and is interested in collecting vehicle arrival time data.  
Pablo is a security officer in the building who wants to issue tickets to speeding drivers.  
We assume that the deployed system does not include ready-to-use specific 
functionalities required by typical end-users such as Liz and Pablo.  It should therefore 
be programmed, deployed and executed by the users themselves.   

In the following sections we describe an architecture that satisfies the above 
requirements and provides a ubiquitous and omnipresent interactive Web-enabled 
environment for programming and executing uQueries, illustrated through application 
to the above example scenario. 



1. Problem Statement 

1.1. Inappropriateness and Complexity of Current Programming Techniques 

Current system development and deployment techniques do not transfer well to 
programming ambient systems.  New computation models and software development 
methodologies are required.  Satoh observes, for instance, that “Ambient intelligence 
technologies are expected to combine concepts of intelligent systems, perceptual 
technologies, and ubiquitous computing.” [11].   

In particular, effectively programming WSNs is difficult due to their typical 
resource limitations.  Moreover, sensor nodes are prone to failure (for example, if they 
run out of energy), and communication between them is unreliable.  Programming such 
networks requires addressing those limitations.  Unfortunately, current methods for 
WSN programming lead developers to mix high-level concerns such as quality of 
service requirements, for instance timeliness, reliability, application logic, adaptivity, 
with low-level concerns of resource management, synchronization, communication, 
routing, data filtering and aggregation.  This makes developing software for WSNs a 
costly and error-prone endeavor, even for expert programmers (see a simple illustrative 
case in the next subsection).   

Macroprogramming has been proposed as a technique for facilitating 
programming WSNs.  Macroprogramming enables the definition of a given distributed 
computation as a single global specification that abstracts away low-level details of the 
distributed implementation.  The programming environment first automatically 
compiles this high-level specification down to the relatively complex low-level 
operations that are implemented by each sensor node, and then deploys and executes 
these operations [12].  However, macroprogramming is of interest for specialized 
embedded systems programmers, not for end-users.  On the contrary, as explained 
above, we are interested in situations where both the users’ requirements and the WSN 
environment may be dynamic.  

Thus, the key challenge is to develop uQuery engines---systems that support end-
user programming and execution of uQueries.  In particular, this requires enabling 
specifications by multiple concurrent and uncoordinated end-users of queries, which 
may convey a complex logic (comprising control constructs and hierarchical structures).  
It also requires deploying and executing such specifications in a concurrent and 
resource-aware manner.  This chapter presents a technique to support the cost-effective 
and stepwise development of uQuery engines. 

As we shall see, our approach makes a central use of a two-level multi-agent 
system, together with a knowledge base about the target application domain. Adaptive 
learning behavior for the agents remains to be implemented in our system. 

 
 
 
 
 
 



1.2. Illustration  

Consider a simple WSN application scenario where we want to detect, on demand, an 
object passing through a break beam sensor. The algorithm is as follows:  

1. Wait for a request from the user. 
2. Perform the requested action: 

2.1 Execute detectBeamEvent() primitive. 
2.2 Keep checking the sensor until a change in status is detected. 

3. Send the result of the detection event back to the user. 
 

The user (programmer) is responsible for choosing the right OS and network 
components, and assembling them along with the specific application logic into an 
executable program.  The code excerpt below presents an implementation of a simple 
WSN program for the above algorithm that such a programmer could write in the nesC 
language for the TinyOS sensor platform.  Comment blocks denoted by /* … */ 
indicate additional code segments not related to application functionality. 
 

// Detect break beam event application (code excerpt) 
configuration Example {} 
implementation { 
 // list of application components 
 components Main, ExampleM, LedsC, GenericComm, TimerC, 
  Photo, CC1000ControlM; 
 // statically link all components 
 Main.StdControl -> GenericComm; 
 Main.StdControl -> TimerC; 
 Main.StdControl -> Photo; 
 Main.StdControl -> ExampleM; 
 ExampleM.SendMsg -> GenericComm.SendMsg[10]; 
 ExampleM.ReceiveMsg -> GenericComm.ReceiveMsg[10]; 
 ExampleM.CC1000Control -> CC1000ControlM; 
 ExampleM.Timer -> TimerC.Timer[unique("Timer")]; 
 ExampleM.Leds -> LedsC; 
 ExampleM.PADC-> Photo; 
} 
module ExampleM { 
 /* … */ 
} 
implementation { 
 TOS_Msg msgbuf; 
 uint8_t msglen, sendPending; 
 volatile uint8_t ioPending; 
 uint16_t ioData; 
  
 /* … */ 
 // primitive function #20: detect beam event (using photo sensor) 
 uint16_t detectBeamEvent(); 
 // I/O: convert split phase non-blocking I/O to blocking I/O 
 uint16_t IO(uint16_t a, uint16_t b) __attribute__((C,spontaneous)) { 
  while (ioPending) yield(); 
  if (a == 20) { call PADC.getData(); ioPending=1; } 
  while (ioPending) yield(); 
  return ioData; 
 } 
 async event result_t PADC.dataReady(uint16_t data) { 
  ioPending=0; ioData=data; 
  return SUCCESS; 
 } 



 // Communication: receive requests for execution and send results 
 void sendPacket(uint8_t *buf, uint8_t n)  
                                    __attribute__((C,spontaneous)) { 
  memcpy(msgbuf.data, buf, n); 
  msglen = n; 
  if (call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf) 
   == SUCCESS) 
   sendPending = 1; 
 } 
 uint8_t isSendPending() __attribute__((C,spontaneous)) { 
  return sendPending; 
 } 
 event result_t SendMsg.sendDone(TOS_MsgPtr mp, result_t success) { 
  if (!success) call Timer.start(TIMER_ONE_SHOT, 200); 
  else { 
   call Leds.redToggle(); sendPending = 0; 
  } 
  return SUCCESS; 
 } 
 
 event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr mp) { 
  TOS_Msg m; 
  call Leds.greenToggle(); 
  if ((uint8_t)mp->data[0] == 20) { 
   m.data = deref(detectShadow()); 
   sendPacket((uint8_t *)m.data, strlen(m.data)); 
  } 
  return mp; 
 } 
 event result_t Timer.fired() { 
  return call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf); 
 } 
  
 /* … */ 
 // Implementation of detectBeamEvent primitive 
 uint16_t detectBeamEvent() { 
  int i; 
  uint16_t data, avg = 0;  
  ledSet(0); 
  for (i = 0; i < 10; i++) 
   avg += IO(2, 0); 
  avg /= 10; 
  while ((data = IO(2, 0)) > avg - 15) yield(); 
  ledSet(7); 
  return list(2, newWord(20), newWord(data)); 
 } 
} 

 
The majority of the code is not related to the specific application domain (detecting 

a break beam event) but to managing resources, communication and low-level control 
flow in the WSN node.  As is explained in the following sections, our approach allows 
an end-user to write the same program by means of simply creating a uQuery, which 
contains one step: Detect Beam Event.  The executable code, corresponding to the 
one illustrated above is generated by model transformation techniques (see Section 4.3, 
specifically the last paragraph, and Figure 9). 

The remainder of the chapter is organized as follows.  Section 2 provides an 
overview of our solution.  Sections 3 and 4 describe and illustrate respectively the 
uQuery representation and execution mechanisms.  Section 5 is devoted to our end-user 
programming interface. Section 6 enumerates some optimization opportunities.  
Section 7 explores the related work, before concluding in Sections 8 and 9.  
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Figure 1. High-level view of the uQuery Engine system architecture 

 
 

2. Architectural Style of uQuery Engines 

The key technical requirements of uQuery engines are dynamic end-user 
programmability by multiple uncoordinated end-users, and automated deployment and 
execution.  To meet these requirements, we propose the architectural style [13] which 
is illustrated by Figure 1.  There are three subsystems as follows.  On the top, the Web 
Client subsystem is responsible for providing uncoordinated concurrent end-users with 
a domain-specific Web programming interface (for Vehicle Tracking, in our example 
case).  At the bottom, the AmI Infrastructure subsystem provides an interface to 
hardware and software platforms of the ambient nodes, in our case, mostly WSN nodes.  
In the middle, the uQuery Server subsystem is responsible for representing uQueries 
and processing them for execution on the AmI infrastructure. 

The Web Client subsystem communicates with the uQuery Server subsystem by 
standard HTTP Requests.  This communication serves two main purposes: elaborating 
the uQuery on the one hand, and executing it on the other hand.  Accordingly, the 
uQuery Server subsystem responds with dynamically generated Web documents, which 
embody either the current state of the program being built, or its execution results.  The 
uQuery Server subsystem communicates in turn with the AmI Infrastructure subsystem 
by non-standard mobile actor code bundles in text format (Scheme-like code).  It 
receives semantically meaningful execution results, which belong to the application 
domain ontology, but in (WSN) platform-specific format.  The receiver, uQuery Server 
subsystem, is responsible for encoding the results into an application-specific format, 
before embedding them into Web documents.  

Standard Web 2.0-compliant browsers are used as Web Clients.  The AmI 
Infrastructure subsystem encompasses an open set of heterogeneous ambient nodes.  
We impose an important constraint on the software interface of these nodes: they must 
provide dynamic mobile agent code deployment and execution services.  In the case of 
sensor nodes, such interface is provides by platforms like ActorNet [14] and Agilla 
[15].  As for the main component of this architecture, the uQuery Server subsystem, it 
is designed and implemented as a meta-level object-oriented application as follows. 
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Figure 2. uQuery Server subsystem architecture 

 
 
As we said, the uQuery Server has a double purpose of specification and execution. 

Such a situation has already been studied in Software Engineering, notably by Ralph 
Johnson and his colleagues under the name of adaptive object-models (AOM) [16]. 
Accordingly, our Server follows the architectural style of AOMs, which defines a 
family of architectures for dynamically end-user programmable object-oriented 
software systems.  More particularly, this design belongs to the class of flow-
independent AOMs [17], where the expected behavior (here uQueries) is specified at 
run-time as a high-level description of the control flow between reusable and sharable 
computational entities that embody the basic application domain algorithms (for 
example, for vehicle tracking).  In the reminder of this chapter, we call the latter 
services, following the service-oriented computing paradigm, and suggest wrapping 
and representing the basic functionality provided by ambient nodes also as services.  

Our design is illustrated in Figure 2, and encompasses four components and 
several metadata repositories as follows.  On the top, the Dynamic Web Application 
Server Framework component provides the standard functions of a dynamic Web 
server application, by serving HTTP requests from concurrent clients and by 
dynamically generating Web documents.  We use the Seaside framework 
(www.seaside.st) for this purpose, which provides a high-level dynamic Web server 
programming interface by reuse and extension.  At the bottom, the Concurrent uQuery 
Processing Framework component controls uQuery processing (transformation, 
optimization, and deployment).  In the middle, there are two components.  The uQuery 
Execution-History Management Framework component is responsible for storing and 
providing an extensible interface to access the executions of uQueries, for analyzing, 
rendering and visualizing results, and also for optimization purposes.  This component 
is not currently mature enough to be communicated here.  The Concurrent uQuery 
Specification Framework component is responsible for uQueries representation.  

From the functional perspective, this architectural style keeps track of two types of 
static and dynamic metadata:  Static metadata corresponds to the knowledge acquired 
and represented at built-time concerning the business ontology, and the available 
services (contracts).  They are read- and write-accessible by the Concurrent uQuery 
Specification Framework component (see meta-repositories in Figure 2).  The dynamic 



metadata corresponds to the knowledge acquired at run-time concerning the user-
defined uQueries, their executions (domain objects and uQuery execution history), the 
available service implementations, and ambient nodes and their resources (see Network 
Directory Service in Section 6).  These are read- and write-accessible by all 
components, but primarily by the Concurrent uQuery Processing Framework 
component (see the repositories in Figure 5).  Overall, the representation and 
processing of this metadata is a major role of the architectural style of uQuery engines, 
specifically its knowledge level.  The execution of uQueries per se is the responsibility 
of the operational level.   

The knowledge level representation and processing role is shared between the two 
Concurrent uQuery Programming and Processing Framework components.  The 
processing component provides additionally a hook to the operational level execution 
role, which is accomplished by AmI infrastructure node platforms (here: ActorNet).  
The following sections provide more details on the design of these two major 
components of the uQuery engine architectural style.  

3. Concurrent uQuery Specification Framework 

We now describe the design of the Concurrent uQuery Specification Framework 
component for representing uQueries in our system.  The processing component will be 
explained in the Section 4, and the end-user programming interface in Section 5. 

In [17] we describe Dart, a unique (to the best of our knowledge) method for 
dynamically specifying control flow in flow-independent AOM architectures that 
satisfies the requirements of support for dynamicity, end-users accessibility, as well as 
extendibility and reusability by programmers, in particular for plugging specific 
execution strategies (such as dynamic multi-agent distributed execution, as it is the case 
here).  We therefore suggest reusing Dart for representing uQueries.  

Figure 3 illustrates the core design of Dart using the UML notation.  A uQuery is 
represented as a graph, which aggregates tasks where each task is a set of interrelated 
steps.  A step reifies a service request by bridging a construct with a domain object that 
results from its execution.  A construct specifies the computation method for that object.  
The most common type of construct is the primitive construct, which reifies a low-level 
primitive service request.  By low-level primitive we mean a method or a library 
function, which implements low-level logic, such as mathematical algorithms, and 
platform-specific sensing and data processing functionality.  A step referring to a 
primitive construct is called a primitive step (or leaf step).  Each construct refers to (or 
instantiates) a contract which holds metadata about the construct.  In the case of 
primitive constructs, a contract incorporates the type specification, arguments, name 
and a list of properties required for its execution.  In order to execute a construct, we 
need to make platform-specific decisions, which are delegated by each contract to the 
associated execution strategy.  The service repository for a uQuery engine holds these 
contracts.  The business ontology holds the descriptions of domain concepts, together 
with their relationships and constraints.  Steps hold instances of domain concepts, 
domain objects, which conform to the ontology.  Result and argument specifications 
refer to domain concepts that define their types.  Finally, to each task may be 
associated one or several organizations, which determines the visual representation of 
its steps.  Different representations, such as list, grid and freeform, are possible since 
order is irrelevant when executing Dart graphs (see the next Section).  
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Figure 3. Detailed design of the Concurrent uQuery Specification Framework component in UML 

 

 

We assume that both the business ontology and the service repository for the 
business domain are provided.  Actually, both may be implemented as part of a single 
domain ontology written in OWL (with the help of the Protégé editor), and accessed 
(with the Pellet reasoner) by means of queries written in SPARQL. We further assume 
that the service repository is comprehensive enough to allow all uQueries of interest to 
be explicitly represented as a composition of its elements.  Of course, such a repository 
would greatly benefit from the advanced techniques for context representation 
proposed by Dapoigny and Barlatier [18]. 

For illustration, consider the parking garage example from Section 1.  Pablo wants 
to make a uQuery to take a photo from a specific camera in a sensor network.  We 
assume a business ontology with one concept, Photo, and a service repository with one 
contract, Capture Camera, which returns a Photo object, and a library including an 
implementation of the above service (e.g., low-level nesC code for the Mica2 sensor 
platform, accessible through an ActorNet interface). The representation of this simple 
uQuery comprises a single task with a single Capture Camera step, which specifies a 
camera sensor id as a property. 

More realistic uQueries, however, require a higher degree of concurrency, control 
(iterative and conditional), and nesting of tasks.  For instance, consider Liz’s uQuery 
that asks for a vehicle arrival time histogram for a period of two weeks.  The additional 
ontologies required to specify steps for this uQuery are shown in Figure 4.  We denote 
the return value of tasks by an upward arrow, and the “contributes” relation of Figure 3 
by a dashed arrow.  The entire box represents a uQuery. The boxes 2, 3 and 4 represent 
tasks.  The rest of the boxes represent steps.  We skip describing the details of the 
ontology and services required, which are outlined in the figure. 
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Figure 4. Representation of Liz’s uQuery by three nested and subordinate tasks, and several steps2 

 

 

The corresponding uQuery, called Liz’s uQuery (1),3 is represented as three 
interrelated hierarchical tasks: a main task (2), and two subordinate tasks, called T1: 
Compute Histogram Entry (3) and T2: Identify Vehicle (4).  The main task 
has two steps: Plot Histogram (5), which returns a Histogram object to the end-user, 
and the control construct For a Period Do (6) that is in charge of executing T1 for a 
duration of two weeks.  T1 is then subordinate to step (6), which controls its execution.  
It in turn comprises two steps.  The first step instantiates Create Histogram Entry 
(15), which returns a Histogram Entry object (to the main task).  This requires as 
argument a Vehicle object, provided by the second step of T1, Do <T2> (16), which 
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3  In this paragraph and the 5th paragraph of Section 5, numbers between 

parentheses, e.g., (1), refer to the numbered rectangles in respectively Figure 4 and 
Figure 12. 



nests T2 as computation method.  T2 comprises several steps (7-14), whose 
representation is analogous to that of the Capture Camera step described above.  The 
task T2 uses inputs from multiple break beam sensors to detect moving objects and 
classify them as vehicles.  Section 5 describes and illustrates how uQueries like this 
may be specified using our Web interface.  

To summarize, this uQuery representation contains occurrences of the following 
kinds of steps: 

• Primitive calls: designed as steps that call a primitive operation as their 
computation method, 

• Control structures: designed as steps that control the execution of other tasks, 
such as the For a Period Do step that controls T1, 

• Nested tasks: designed as steps that use a task as their computation method, e.g., 
the Do step that uses T2, and thereby simplify the specification of complex 
uQueries by hierarchically modularizing them. 

 
The syntax of Dart is recursive, i.e., steps may hierarchically point to tasks.  It is 

also extensible, i.e., tasks and steps may be used to extend constructs.  Arbitrary control 
constructs can be implemented by uQuery engine programmers using these properties, 
thus extending the abstract notion of a construct in Dart.  We provide by default an 
abstraction called Control Construct, which has an instance variable called closures 
(illustrated by the directed arrow from Control Construct to Task in Figure 3), which 
keeps track of a collection of subordinate tasks whose number and semantics depend on 
the desired functionality, based on the metadata held by its contract.  In the case of the 
For a Period Do control structure, which iteratively executes a given task for a 
duration specified as a property, the closures collection holds one task, here a pointer 
to T1.  Its propertyValues instance variable, inherited from its superclass, holds the 
duration value, i.e., 2 weeks in our example. 

The representation of nested tasks is close to that of control structures.  The 
closure collection contains only one task, which is executed unconditionally upon 
each activation of the step. 
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Figure 5. Concurrent uQuery Processing Framework component architecture 



4. Concurrent uQueries Processing Framework 

Now, we explain how uQuery graphs are concurrently executed by describing the 
design of the Concurrent uQuery Processing Framework component as illustrated in 
Figure 5. 

We propose an interpretation mechanism coupled with a truly dynamic 
deployment of independent code segments, which may interact and migrate, running on 
distributed sensor nodes.  Specifically, in alignment with experimental systems such as 
Actalk [19], this component is designed as a framework for concurrent execution of 
uQueries’ object-based representations.  Specifically, we use mobile actors as the 
execution model, which ensures feasibility and improves scalability by splitting 
computations on appropriate nodes and merging them according to resource 
availability and control flow.  We separate the actor at the operational level, which is a 
thread responsible for executing primitive steps, from the meta-actor at the knowledge 
level, which is a thread that represent control flow through the computation, controls 
the execution on a single uQuery graph node, and carries state.  Moreover, our 
architecture allows meta-level objects to modify their behavior in more fundamental 
ways through introspection and intercession, for example, if the meta-actors are 
endowed with learning mechanisms.  

In our current example, a vehicle identification uQuery is decomposed in terms of 
a set of meta-actors.  These meta-actors control the concurrent and distributed 
collection of data by actors dynamically deployed on beam and camera sensors nodes 
to process and analyze the data.  Note that the analysis may trigger further data 
collection, or reuse previously collected data.   

Subsections 4.1, 4.2, and 4.3 describe the design of three subcomponents that 
implement these decisions. 

4.1. Concurrent uQuery Interpreter 

The Concurrent uQuery Interpreter subcomponent is responsible for concurrent 
uQuery graph traversal, meta-actor creation, encoding execution results into 
application-specific formats, and storing execution results and uQuery executions.  It 
reads uQuery graphs from the corresponding repository and updates related repositories.  
In particular, uQuery enactments history and domain objects repositories are 
respectively updated with uQuey executions and application-specific semantic data 
(domain objects).  The execution results are received in a platform-specific format, and 
are encoded into application-specific formats using correspondence tables.  In general, 
all domain objects that result from the execution of steps in a uQuery are stored.  The 
final result of the execution of a uQuery corresponds to the result of the execution of 
the step in the main task that is tagged as the return value.  

The graph traversal algorithm is associated with meta-actor type hierarchy 
illustrated in Figure 6 using the UML notation.  The algorithm associates a meta-actor 
to each graph node.  Dart node types present in uQuery graphs, i.e., uQuery, Task and 
Step are respectively mapped to uQuery Meta-Actor, Task Meta-Actor, and Step Meta-
Actor types.  Each meta-actor is uniquely responsible for processing its corresponding 
node.  The process is initiated by creating a uQuery meta-actor, which recursively takes 
charge of the creation of the other meta-actors.  The underlying algorithm is described 
in the next subsection.  Each meta-actor is concurrently linked to the whole system 
only by knowing the address (called “actor name” in Actor terminology) of its parent 



meta-actor, which is the meta-actor that has created it.  Each meta-actor keeps also 
track of all its child meta-actors.  The uQuery meta-actor has access to the whole 
system of meta-actors, which is structured as a distributed connected graph (since 
uQuery graphs are connected by construction).  The parent of all uQuery meta-actors is 
the uQuery engine, which is itself designed as a meta-actor type (see Figure 6).  

The order is irrelevant in creating meta-actors.  Concurrent execution of meta-
actors is allowed by construction, since the execution of Dart graph nodes is only 
restricted by their data dependencies.  In other words, those nodes that do not have 
direct or indirect data dependencies, or have their required data available, may execute 
in parallel at any time.  The interpretation process for a uQuery reaches its end when all 
relevant meta-actors have returned from execution (possibly with an error).   

The occurrence of an error in one node may result in garbage collecting the whole 
system of corresponding meta-actors and stopping the execution, or spawning a new 
meta-actor for another try, for example using different resources.  Algorithms for non-
intrusive, scalable distributed mobile active object garbage collection, proposed by 
Wei-Jen Wang and Carlos A. Varela [20], may be considered here.  

The next Subsection describes the design of meta-actors and their processing 
algorithm per se.  

4.2. Concurrent uQuery Node Processor  

The Concurrent uQuery Node Processor subcomponent is responsible for processing a 
single graph node and returning its result, when applicable.  Results are provided in a 
platform-specific format.  Autonomous and concurrent processing of nodes is possible 
since Dart graph nodes are self-sufficient.  Self-sufficiency refers to the fact that each 
individual service request embedded in a graph node is provided, by design, thanks to 
pointers to the service contract and its argument steps, with the required knowledge 
about the arguments, resources, context and method required for its execution.  Meta-
actors are designed as active objects [19], executing concurrently in separate threads, 
communicating and synchronizing through asynchronous message passing, specifically 
for fetching the required data.  They arrive to the end of their lifecycle when the 
execution is terminated (either successfully or by an exception). 
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Figure 6. Detailed design of the Concurrent uQuery Processing Framework component in UML 



The interface of meta-actors comprises start(), body(), and stop() methods.  
The body() method specifies the core function of meta-actors, which contains four 
steps: (1) checking preconditions for executability, (2) initializing data structures, (3) 
executing the behavior, and (4) sending an asynchronous message to the parent to 
notify it of the execution result. The behavior execution step (No. 3) is specific to each 
kind of meta-actor.  As we have explained in [21], it may comprise a set of 
sophisticated actions, including implementation matching, resource matching, decision 
making and optimization, online scheduling and task allocation, marshaling, and 
deployment.  Specifically, meta-actors screen the runtime environment, allocate 
resources, spawn other meta-actors and actors, and control the lifecycle of those actors.  
Such a lifecycle, described in more detail in the next subsection, involves activation 
and registration, request management, application logic, and result dissemination. 

Dart graph nodes are also minimally-constrained.  Minimally-constrained refers to 
delaying as long as possible placing constraints necessary to execute a specific instance 
of the service, in other words, the service instance does not refer to information that can 
be computed or supplied to it at run-time.  This characteristic, together with the 
openness, resource-limitedness and error-proneness attributes of the AmI infrastructure 
have motivated that sophisticated processing architecture. 

At the beginning of their execution, uQuery (root) meta-actors launch a meta-actor 
for their main task.  The main task meta-actor continues the execution by launching 
step meta-actors.  A step meta-actor can only execute in two cases: (1) it is associated 
to a root step, i.e., a step whose construct requires no arguments, or (2) all its effective 
arguments are available.  The execution strategy associated with each step is in charge 
of guiding this process.  uQuery and task meta-actors are designed as Composite Meta-
Actors, which provides functionality for launching a set of child meta-actors, here 
respectively tasks and steps, and controlling their execution.  If the construct of a step 
points hierarchically to tasks and subordinate tasks, then the corresponding step meta-
actor also creates hierarchically subordinate task meta-actors.  The above execution 
algorithm is applied recursively to the latter.  

For example, a uQuery meta-actor is created and launched for executing Liz’s 
uQuery.  This meta-actor launches a task meta-actor for the main task, which in turn 
launches a step meta-actor for its unique root step, i.e., For a Period Do.  The other 
step of the main task is not executable since it needs an argument.  The For a Period 
Do meta-actor starts a timer to control the number of iterations.  Each iteration consists 
of launching a subordinate task meta-actor for executing the same task, T1.  The 
execution result of these meta-actors is collected and constitutes the result of the 
execution of the For a Period Do step.  At this point, the main task meta-actor 
passes this collection to the Plot Histogram meta-actor and resumes it. In the case of 
T1, there is also a unique root step, which is Do <T2>.  The execution of the associated 
T1 meta-actor consists of creating a subordinate T2 task meta-actor.  The T1 meta-
actor sleeps then on a semaphore, waiting for the T2 meta-actor to return a Vehicle or 
signal an error. 

The domain objects that are expected as uQuery enactment result are basically 
obtained from the execution of meta-actors in charge of primitive step nodes.  The role 
of the other meta-actors is essentially to control the execution flow.  Primitive step 
meta-actors may proceed in two ways for computing their results: interpretation or 
compilation.  Interpretation is used when the primitive step embodies a local function 
call.  In that case, the execution of that function is invoked locally, by computing and 



passing the required arguments.  On the fly code generation, deployment and execution 
is used in the more complex case of ambient node primitive steps, which embody a 
sensing or actuating service request that must be executed on an ambient node.  This 
process is implemented by a specialization of the current subcomponent and is 
described in the next Subsection. 

4.3. Ambient Node Primitive Processor  

The Ambient Node Primitive Processor subcomponent is responsible for executing 
ambient node primitive steps.  It collects raw sensor data, transforms them into domain 
objects encoded into platform-specific representations, and routes them to the uQuery 
processor subcomponent.   

This requires access to a platform interface that provides (1) deploying and 
executing dynamically generated agent code, (2) dynamically discovering and 
providing access to all sensors in the WSN, and (3) implementing the elements of the 
service repository.  To the best of our knowledge, the only existing system that fully 
satisfies our operational level requirements is ActorNet [14].  ActorNet agents are 
based on the actor model of computation [22].  The ActorNet runtime, illustrated in 
Figure 7, consists of a lightweight interpreter running on each sensor node in the WSN, 
along with several supporting services.  The runtime enables the actors to execute, 
communicate, migrate and access sensors and actuators.   

Figure 8 illustrates our approach for integrating a platform such as ActorNet.  First, 
the actor template in Figure 9 is filled by the Code Generator module.  Each Ambient 
Node Primitive Meta-actor having its preconditions satisfied and being signaled, 
directly or indirectly, by a returning step of the main task, can generate the code for its 
associated actor, in parallel with other meta-actors.  The generated code pieces are 
deployed to the actor platform by the meta-actors, through the Actor Deployment 
Interface (ADI).  The ADI is a multithreaded server providing socket connections over 
the Internet for concurrently and remotely deploying and executing actors.   
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Figure 8. Interactions between modules involved in executing sensor primitive steps 

 

 
Once deployed, the agent is parsed and transformed from a text string to a more 

compact abstract syntax tree representation, more suitable to sending across low-
bandwidth wireless networks.  The id of its generating meta-actor is embedded in the 
actor code, enabling the actor to communicate with its associated meta-actor through 
the Actor Messaging Interface.  The meta-actor can sleep until it receives the actor’s 
output object through the messaging interface, after the actor finishes its computation.  
Arguments and return values are marshaled and unmarshaled using the information 
kept by the execution strategy.  In case a primitive cannot successfully complete its 
computation, a failure is signaled to the relevant meta-actor, which may trigger garbage 
collection for the task and its associated actors and meta-actors. 

The code generator fills the template illustrated in Figure 9 in four locations: meta-
actor id on lines 5 and 11, application logic and list of arguments on line 14, and 
execution location and uQuery engine server address on lines 5 and 12, respectively. In 
Figure 9, semicolons ‘;’ indicate comments. Characters in italics indicate values filled 
in by the code generator, as an example, for the case of the three Detect Beam 
Event steps in the T2 meta-actor shown in Figure 4.  As Beam Event objects are 
received as results of these executions, the Extract Edge meta-actors may be 
signaled concurrently, and so on.   

Note that this ActorNet code segment embodies a much more compact, higher-
level specification of functionality similar to that of the NesC code in Section 1.2.  One 
actor is launched, and it calls the Detect Beam Event primitive (primitive function with 
index 1 in line 12 Figure 9), which blocks until an event is detected.  Scheme functions 
are used for communication, migration and control flow, while low-level resource 
management is left up to the ActorNet interpreter and the underlying services. 

4.4. Complex uQueries 

Now let us consider a uQuery which requires distributed coordination between 
different sensors.  Such a uQuery cannot be executed as a single mobile agent.  For 
example, Pablo wants to take a photo with a camera only when a nearby break beam 
sensor is triggered.  The task that represents this uQuery has two steps: detecting a 
Pulse object (generated by the beam sensor) and then taking a Photo with the camera.  



 1.(  (lambda (migrate)  ; start of the actor function 
 2. 
 3.   (seq     ; sequentially execute the following: 
 4. 
 5.     (migrate 200 111)  ; migrate to the destination node 
 6.     ;   (destination id 200 and meta-actor id 
 7.     ;   111 are given as parameters) 
 8. 
 9.     (par    ; create a new actor to reduce code size 
10. 
11.       (extmsg 111   ; send result back to the meta-actor… 
12.         (migrate 100  ; after migrating back to the source node 
13. 
14.          (prim 1 nil)))))) ; execute primitive function with index 1 
15.     ; and with an empty list of arguments 
16.                            ; Note: the primitive is evaluated first,  
17.                            ; then migration, then sending the message 
18. 
19.   (lambda (adrs val)  ; implementation of the migrate function 
20.     (callcc (lambda (cc)  ; using “call with current continuation” 
21.       (send (list adrs cc (list quote val))))))) 

 
Figure 9. ActorNet mobile agent dynamically created by instantiating and filling a generic agent template 

 

 

For executing such uQueries in a coordinated manner, we use the argument 
relation in our meta-model (see Figure 3).  Whenever an argument is encountered in the 
uQuery specification, the knowledge level automatically creates a dependency relation 
between the meta-actors for these two steps.  Meta-actors with dependencies check 
whether they have all the arguments necessary to generate and execute their associated 
actors.  In our example, the meta-actor for capturing a Photo will be made dependent 
on the Detect Beam Event meta-actor.  It will be deployed and executed only when 
a Pulse object is returned by the latter. 

We can now consider a scenario where uncoordinated concurrent uQueries are 
entered into the system by two different users, Liz and Pablo.  Pablo is interested in 
taking photos of Vehicles when they speed through break beam sensors.  We assume 
that Liz’s uQuery remains the same as in the previous section.  Each uQuery is 
represented independently, i.e., there is no structural relationship between uQuery 
representations.  In this case, the execution for each uQuery is triggered concurrently at 
the knowledge level, according to the algorithm described above.  This execution 
procedure can be subject to optimization, as discussed below. 

5. End-User Programming Web Interface 

Implementing end-user programming languages that satisfy both technical and 
cognitive requirements is a challenging task.  This may explain why Pane and Myers 
observe that, when new programming languages are designed, the findings of 
Psychology of Programming (PoP) and related fields such as the Cognitive Dimensions 
Framework [23] do not seem to have much impact [24]. 
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Figure 10. A snapshot of the Web interface of our uQuery engine prototype 

 
 
Dart is, on the contrary, designed taking these attributes as primary considerations.  

We have chosen the spreadsheet as a basis for designing the end-user programming 
features of Dart, since it is the most widely used end-user programming metaphor [25].  
The two main underlying assumptions are that (1) our end-users belong to the large 
category of domain experts, who are described by Bonnie A. Nardi as “having the 
detailed task knowledge necessary for creating the knowledge-rich applications they 
want and the motivation to get their work done quickly, to a high standard of accuracy 
and completeness” [25], and (2) complex behavior can be modeled by (a) associating 
operations to cells that compute objects, and (b) relating together those cells as 
“operation result holders” that provide the argument to new operations.  

This is how programming takes place through Dart-based end-user programming 
interfaces.  As illustrated by Figure 10, in the Web-enabled end-user programming 
interface that we have prototyped for the case of uncoordinated end-users Liz and 
Pablo, a uQuery is specified by direct manipulation techniques as a collection of tasks, 
where each task comprises a set of steps.  Each task frame corresponds to a sheet in the 
spreadsheet paradigm.  Each step plays the role of an “operation result holder”, and is 
defined by specifying a call to a domain-related service, available from the service 
repository.  This corresponds to the cell-operation association in the spreadsheet 



paradigm.  It should be noted, however, that the interface in Figure 10 does not match 
the traditional spreadsheet interfaces, which use a grid layout.  Nevertheless, the 
programming method remains consistent with the spreadsheet paradigm sketched out 
above.  As explained in Sections 3 and 4, steps may be graphically organized using 
different visual representations, such as list (Figure 10), grid, or even freeform (like in 
Figure 4), without any semantic impact. 

Step specifications may refer to the expected results of previous calls, in terms of 
ontology concepts.  The data flow in such cases is specified by dragging the step’s 
visual representation and dropping it into the instruction editing area, situated at the 
bottom of the programming interface (see Figure 10).  That area is then expanded with 
a set of fill-in widgets, one per required argument (see Figure 11).  The end-user may 
then select from a menu the name of the appropriate step, and validate the modification.  
For example, the two arguments of the first Sort Edge step (fourth line in the list of 
steps in Figure 10) are set to Pulse_1 and Pulse_2, which refer to the names assigned 
automatically to the results of steps in the first two lines of the same task.  The same 
method is used for modifying data flows.  A more sophisticated interface may allow 
specifying data flow by direct drag-and-drops (without using the editing area). 

Figure 10 illustrates more specifically the specification of T2: Identify 
Vehicle, which is a subordinate task and part of the Liz’s uQuery, described and 
illustrated in Section 3 and Figure 4.  The other tasks and steps of that uQuery may be 
defined in the same way.  Pablo may define its uQuery by reusing T2: Identify 
Vehicle (assuming it is already defined by Liz), and creating two new tasks (see 
Figure 12).  A main task (2), and another subordinate task, called T3: Photograph 
Speedy Vehicle (3).  The latter nests a call to T2: Identify Vehicle (5).  Each 
time a vehicle is identified by (5), it is passed to a primitive step called Photograph 
If Speedy (6), which takes a photo of the vehicle if it is speedy.  This photo is then 
sent back to the caller main task, as the result of the execution of (3), which stores it in 
a collection and also sends it to Pablo (for example by email).  This procedure repeats 
forever due to the definition of the unique step of the main task.  The same uQuery 
may be defined in alternative ways, depending on how the service repository is 
designed. For example, instead of Photograph If Speedy (6), the uQuery engine 
may propose primitives like Check If Speedy and Capture Camera (described 
also in Section 3), which would allow a more fine-grained definition of (6).  Instead of 
screenshots, we have chosen the “manual” notation of uQueries for illustrating Pablo’s 
uQuery in Figure 12, since it is more compact. 

 
 
 
 
 
 
 
 
 
Figure 11. Example of data-flow editing by the Web interface of our uQuery engine prototype 
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Figure 12. Representation of Pablo’s uQuery by three tasks, one reused (T2: Identify Vehicle) 

 

It is worthy to note that Dart extends the classic features of spreadsheets by 
allowing the users to integrate a set of domain and task-specific built-in primitives with 
relative ease, to associate any type of business object to the spreadsheet cells, and to 
use that object as an argument for defining new formulas (service calls), to incorporate 
user-defined functions comparable to those described in [26], and to take advantage of 
a rich set of general-purpose and domain-related control structures. 

Dart is designed as an abstract object-oriented framework.  It was initially 
implemented in Cincom VisualWorks Smalltalk [27], and used to refactor and improve 
the end-user programming language of an ecological simulation system.  In this case, 
the end-users are experts in ecology, whose job is to model ecosystems (individual and 
social behavior of animals, plants, etc.) and to observe and study the evolution of their 
behavior through simulation and statistics [28].  Our new implementation of Dart is 
based upon Squeak 2.8 (www.squeak.org) and Seaside 2.7 systems. 

6. Optimization 

The uQuery engine design presents several opportunities for optimization as follows.   
Knowledge level optimizations: Our uQuery representation allows composing a 

computation history for every business object by looking recursively at the constructs 
and objects used in its computation.  The computation history allows access to the 
metadata associated with each element of the history (see Figure 3).  As a result, more 
complex matching algorithms can be implemented.  For example, a uQuery can 
compare the conditions under which the available business object has been computed, 
and whether they match the requirements of the current uQuery.  Incidentally, 
computation histories are also useful for auditability, that is identifying precisely all 
computation steps and their contexts for a given event in the system.  The same feature 
allows satisfying non-repudiability, by computing who has initiated which action.  

Operational level optimizations:  We consider also the functional specification of 
queries, where the user only specifies the desired functionality without explicitly listing 
all implementation details, such as the identifiers or location coordinates of sensors.  



The uQuery processing engine can infer the requirements for these resources from the 
static metadata associated with the uQuery and the contracts of the primitives it invokes.  
We can then fill in specific sensors and other parameters matching these criteria.  To 
find suitable sensing resources meeting these constraints, we extend ActorNet with the 
Network Directory Service (NDS), which performs network monitoring and provides 
an up-to-date listing of sensor and computing resources available in the network.  The 
NDS is searchable by sensor type, location and other attributes, listed as name-value 
pairs.  Thus the uQuery engine can find appropriate sensors for a uQuery by looking at 
attributes such as location and orientation.  This simplifies the uQuery creation process 
for the user and provides opportunities for optimizing uQuery execution, by enabling 
the uQuery Engine to pick the best resources (e.g., closest, least congested, or having 
the most remaining battery power) satisfying the uQuery specification.  

Further, the mobility of actors allows for load balancing and resource-aware task 
allocation, even as new actors are added.  In the parking garage example, we can 
choose, based on the current communication traffic and available computing power, 
whether to move the raw break beam sensor data to a PC for processing, or to move the 
vehicle detection code, as a system of mobile agents, to the sensor where the data is 
generated.  Also, by exposing available resources (sensors, actuators, data stores, etc.) 
to the knowledge level, compatible resources may be substituted for one another at 
runtime to simplify scheduling or reduce congestion. 

Concurrent uQuery optimizations:  Data computed in one uQuery can be reused to 
satisfy requirements of another.  This mechanism is based on exploiting static and 
dynamic metadata maintained by the uQuery engine (see Section 2). For example, a 
Vehicle object produced by one of the queries described above is associated with 
dynamic metadata such as a timestamp and the detecting beam sensor’s id (see 
Execution Context abstraction in Figure 3).  When processing a uQuery with a step 
requiring a Vehicle object as argument, e.g., Compute Histogram Entry in task T1 
above, the already-computed Vehicle may be substituted instead of executing the 
Identify Vehicle subtask, assuming the dynamic metadata of the object matches 
the constraints within the static metadata of the uQuery.  Such matching algorithms can 
be implemented using an inference engine, such as NéOpus [29], which provides rule-
based reasoning in object-oriented applications.  This process eliminates generating, 
deploying and executing redundant actors at the operational level, with the benefit of 
saving significant communication, sensing and computation resources in the WSN, 
where these resources are scarce.  

7. Related Work 

A survey of solutions currently proposed in the literature reveals a variety of 
approaches to macroprogramming WSNs: a spreadsheet approach [10], EnviroSuite [6], 
a market-based approach [12], and Semantic Streams [5]. Although many of these 
approaches are quite powerful, none of them provide the language abstractions required 
for dynamic macroprogramming by end-users as outlined above.  

For example, the spreadsheet approach uses an Excel spreadsheet to represent the 
layout of nodes and insert their functionality in the spreadsheet; queries are resolved by 
a logic program that generates a composition of services, where a service is a .Net 
component.  The approach satisfies the requirement of usability by non-programmers.  
However, it is not sufficiently general: it enforces a particular naming grid-based 



scheme and does not allow for the definition of arbitrary groups of nodes and 
operations over such groups. 

EnviroSuite proposes environmentally immersive programming, an object-based 
programming model in which individual objects represent physical elements in the 
external environment. In both EnviroSuite and ActorNet, actors or objects must be 
created explicitly by programmers to provide a service. Behavioral specifications are 
not in terms of groups of actors. Protocols to support operations over groups of objects 
and protocols to implement such specifications may not be re-used.  

Traditionally, WSN application development involved fairly static programming 
languages, operating systems and reprogramming services, for efficiency reasons.  For 
example in TinyOS, the sensor network application components are written in nesC 
and compiled together with the operating system code and middleware services into a 
single application image, which can be uploaded to the sensor nodes using the Deluge 
protocol [30] prior to program execution.  This approach proves successful in achieving 
its stated goal of highly efficient utilization of sparse computing resources.  
Unfortunately, it is ill-suited for an open system comprising a dynamic set of diverse, 
transient tasks that is the expected workload in ambient systems.  If we take Deluge as 
the deployment method for our target systems (where queries from multiple users, all 
specified at runtime, need to be transformed into executable code, uploaded on the 
deployed sensor network and executed), this results in unnecessarily transmitting a 
large volume of code which has not changed (OS components, routing protocol, etc.) 
along with the newly-generated application code. 

Other comparable approaches include the Tenet architecture for tiered sensor 
networks [31], Sensor Webs [32], and Sensor Grids [33].  A major difference from our 
architecture is that we don’t attribute a priori ‘master’ and ‘mote’ roles to the 
architecture components, masters being traditional artifacts having the responsibility to 
control the behavior of motes.  In addition, none of these architectures provide the 
combination of an expressive and easy-to-use end-user programming for uQuery 
specification (Dart) with a Turing-complete mobile agent language for deployment and 
execution (ActorNet).  Further, network flooding techniques are in general used for 
dynamic code deployment, instead of fine-grained code deployment available in a 
mobile agent platform like ActorNet.  

Finally, P. Levis et al. [34, 35] observe that a fairly complicated action, such as 
transmitting a message over the radio, could be represented as a single bytecode 
instruction provided by an application-specific instruction set, and provides a 
framework for implementing high-level application-specific virtual machines on motes 
and for disseminating bytecode. Dart behaves, in some manner, as a framework for 
developing application-specific instruction sets, and thereby allows developing uQuery 
engines by reuse.  Its coupling with a mobile agent language as explained in this 
chapter provides it with a powerful execution facility on motes, which is more 
expressive that a virtual machine such as Maté.  

8. Conclusion 

Ambient Intelligence technologies will enable novel applications and new work 
practices in many fields.  AmI will provide for the integration of real-time data into 
everyday life activities, enabling real-time decision making and workflow process 



definition and modification. Such dynamicity will facilitate responding to situations 
more efficiently, with a higher degree of quality and end-user satisfaction. 

In this chapter, we explained how dynamic uQuery programming by end-users can 
be achieved for ambient systems comprising WSNs and traditional computing artifacts 
such as PCs, gateway nodes and handheld mobile devices, by extending the 
architectural style of Adaptive Object-Models.  The resulting two-level approach to 
architecting uQuery engines allows separating uQuery representation and reasoning 
concerns from those of their effective execution on diverse runtime platforms through 
model-to-code transformation.   

The knowledge level comprises the representation of a domain ontology and a 
service repository, together with the uQuery composition machinery, and implements 
the rules that govern uQuery transformation, coordination and optimization. Our 
approach allows for effective end-user uQuery specification and automated execution.  
The uQuery representation meta-model, designed with extendibility and reusability as 
primary considerations, allows uQuery engine programmers to add specific constructs 
via classical object-oriented techniques.  Business logic primitives are separated from 
the core of the mobile agent system, facilitating addition of new domain-specific 
primitives to the system. 

Representations of queries are transformed to platform-specific code for ActorNet, 
dynamically deployed and executed.  Using ActorNet as the uQuery execution 
environment provides the dynamicity of macroprogramming, while enabling load 
balancing and other optimizations to take place.  We thereby combine both 
expressiveness of a Turing-complete language with the simplicity of a domain-related 
language. 

The presented meta-level and mobile-agent architecture for implementing uQuery 
engines is prototyped by reusing and extending our previous work on ActorNet and its 
implementation on Mica2 motes [14], and Dart implemented as an object-oriented 
framework in different dialects of Smalltalk [27, 17].  This prototype is called 
Ambiance Platform and employs a new implementation of Dart in Squeak.  We have 
further used the Seaside framework for developing the Web-enabled uQuery 
programming interface of Ambiance Platform.  

9. Perspectives 

A number of important issues remain to be explored.  These include dynamic and 
seamless integration of sensor and actuator nodes, sensitivity to privacy concerns and 
trustworthiness, and coherence and integrity analysis of uQueries.  For example, the 
computation history discussed in Section 6 allows security enforcement through 
dynamic decision making about whether to execute the current step or not.  Significant 
optimization may also be possible, for instance by integrating learning mechanisms 
into uQuery specification, transformation and execution.  A first report of our ongoing 
work on these topics and more particularly on dynamic global resource management 
appears in [21].  Our longer term plans comprise topics such as a more robust and 
scalable networking subsystem for disseminating mobile code, and reliably delivering 
responses, in particular in presence of disconnections caused by mobility.  For 
reliability and fault-tolerance, we would like to explore the integration of techniques 
for exception handling in presence of asynchronous active objects as proposed by Ch. 
Dony et al. [36]. 



Furthermore, ambient nodes and more particularly wireless sensors, actuators and 
Radio Frequency Identification (RFID) tags, allow developing digitally augmented 
real-life products with better value for both the manufacturers and customers.  The 
distinguishing feature of these ambient products is their aptitude to smoothly 
incorporate themselves into the larger context of physically augmented business 
processes, by providing real-time “field” knowledge all along their lifecycle.  Smart 
features of ambient processes such as personalization, predication, and anticipation, 
allow delivering unprecedented services to end-users and thereby increasing 
significantly competitive advantages as well as customer comfort, safety, security and 
satisfaction.  Another application perspective of this work consists of developing 
networks of collaborating ambient products to enable applications such as predictive 
maintenance, reverse logistics, and ambient traceability (full lifecycle product and 
process identification, authentication, location and security).  

Finally, we would like to explore conditions under which domain experts could be 
replaced by monitoring agents endowed with the same expertise.  We plan considering 
morphology-based techniques elaborated by Campagne & Cardon [37] to simulate 
emotions in a robot, where so-called analysis agents are expected to control a 
population of subordinate (and massively multiple) aspectual agents.  These analysis 
agents are supposed to possess cognitive capacities and to modify the behavior of 
aspectual agents.  For this purpose, the structure of aspectual agents is designed to be 
changeable at runtime. Their behavior is “governed by some sort of augmented 
transition network (ATN) that can be parameterized by a set of values” [37]. This is 
precisely where our proposed architecture would be employed. 
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