
Ambiance: A Mobile Agent Platform for
End-User Programmable Ambient Systems

Reza RAZAVI a,1, Kirill MECHITOV b, Gul AGHA b, Jean-François PERROT c
aUniversity of Luxembourg, FSTC, LUXEMBOURG

bUniversity of Illinois at Urbana-Champaign, IL, USA
cUniversité Pierre et Marie Curie, LIP6, Paris, FRANCE

Abstract. We are interested in situations where multiple uncoordinated non-
professional programmer end-users want to exploit the Ambient Intelligence
(AmI) infrastructure on their own, without calling in embedded systems
programmers, in order to support their daily activities. Our goal is allowing them
to achieve this objective through on-the-fly creation and execution of high-level
programs that we call uQueries (for user-defined or ubiquitous queries). The key
challenge then is to support the cost-effective and stepwise development of uQuery
engines---systems for end-user programming and execution of uQueries. We
present a meta-level architecture that addresses this issue by leveraging Artificial
Intelligence methods that make possible the separation of uQuery representation
and reasoning concerns from those of their effective execution through model-to-
code transformation. We show that (1) interconnections between ambient devices
may be dynamically specified as control flows between high-level descriptions of
their primitive functionality, (2) specifications may be elaborated by concurrent,
uncoordinated end-users through a Web interface, and (3) they may be
automatically distributed and concurrently executed on ambient devices as a
system of mobile agents. We have created a prototype of this architecture, the
Ambiance Platform, which has allowed experimental validation of the approach
using an application scenario proposed in the state-of-the-art of relevant research
areas. This experience led us to identify important issues to be explored, including
dynamic and seamless integration of sensor and actuator nodes into the system.
Furthermore, opportunities exist for significant performance and resource use
optimization, for instance by integrating learning mechanisms into uQuery
specification, transformation and execution.

Keywords. Ambient Intelligence, Artificial Intelligence, Sensor Networks,
Macroprogramming, Adaptive Object-Models, Mobile Agents, Actor Systems

Introduction

Ambient Intelligence (AmI) envisions the ‘invisible’ incorporation into our surrounding
environment and everyday objects of billions of loosely-coupled sensing, actuating,

1 Corresponding Author: Reza Razavi, FSTC, University of Luxembourg, 6, rue

Richard Coudenhove-Kalergi, L-1359 Luxembourg, LUXEMBOURG; E-mail:
razavi@acm.org. The work communicated in this chapter has been mostly conducted
while the corresponding author was acting as principal investigator on the Åmbiance
project funded by the University of Luxembourg (2005-2006).

computing and communicating components as part of an AmI infrastructure [1, 2]. The
aim is to discover new ways of supporting and improving people's lives and enabling
new work practices. See Berger et al. [3] for a number of examples.

AmI infrastructure components such as Micro-Electro-Mechanical Systems
(MEMS), smart materials, ad hoc smart dust networks, and bio-inspired software are
being intensively researched and developed. The Cyber Assist project by Nakashima
[4] describes a fully developed example. Another key enabling technology is networks
of potentially very large numbers of wirelessly connected small, autonomous,
distributed, and low-powered computers endowed with limited processing, storage,
sensing, actuation, and communication capabilities. Such a system is called a Wireless
Sensor Network (WSN), and each sensor node a mote [5, 6].

The problem is now to write programs for the AmI infrastructure. This is no easy
task, given the complexity and dynamicity of the structures and the diversity of
potential users and their needs. Our work is concerned with situations where multiple
uncoordinated end-users need to exploit the AmI infrastructure on their own, in order
to solve problems in everyday life and to support their daily activities in different
domains. They should be able to achieve this goal by on-the-fly writing and executing
high-level programs that we call uQueries (for user-defined or ubiquitous
queries/macroprograms), without calling in specialists of embedded systems
programming. This is motivated by the diversity of functionalities that end-users
expect from the AmI infrastructure, (see Böhlen [7] for a general argument and Richard
and Yamada [8] for a typical example), further amplified by the unpredictability of the
phenomena being monitored and the potential changes in the ambient computing
infrastructure. From the critical standpoint taken by Huuskonen [9] we clearly adopt
the “Person-centric” approach. In our view, this environment calls for a number of
Artificial Intelligence techniques to be applied, notably knowledge representation and
machine learning. We shall also see that multi-agent systems likewise play an
important role as observed by Nakashima [4].

We consider an AmI infrastructure that comprises both WSNs and more traditional
computing artifacts such as PCs, gateway nodes, and handheld mobile devices
(although the issues specific to mobile devices are not dealt with in this chapter). Let
us call each hardware component an ambient node. This infrastructure is open in that
both ambient nodes and uQueries may enter and leave the computing environment
dynamically. Based on resource availability and optimization criteria, available
ambient nodes coordinate and determine their mutual application execution
responsibilities at runtime.

As a motivating example, consider a scenario from Microsoft Research [10], where
the ambient infrastructure, installed in a parking garage, comprises break beam sensors
and security camera nodes. Two ordinary end-users, namely Liz and Pablo, who work
independently, desire to use the ambient system for their own purposes. Liz is a site
manager of the garage building and is interested in collecting vehicle arrival time data.
Pablo is a security officer in the building who wants to issue tickets to speeding drivers.
We assume that the deployed system does not include ready-to-use specific
functionalities required by typical end-users such as Liz and Pablo. It should therefore
be programmed, deployed and executed by the users themselves.

In the following sections we describe an architecture that satisfies the above
requirements and provides a ubiquitous and omnipresent interactive Web-enabled
environment for programming and executing uQueries, illustrated through application
to the above example scenario.

1. Problem Statement

1.1. Inappropriateness and Complexity of Current Programming Techniques

Current system development and deployment techniques do not transfer well to
programming ambient systems. New computation models and software development
methodologies are required. Satoh observes, for instance, that “Ambient intelligence
technologies are expected to combine concepts of intelligent systems, perceptual
technologies, and ubiquitous computing.” [11].

In particular, effectively programming WSNs is difficult due to their typical
resource limitations. Moreover, sensor nodes are prone to failure (for example, if they
run out of energy), and communication between them is unreliable. Programming such
networks requires addressing those limitations. Unfortunately, current methods for
WSN programming lead developers to mix high-level concerns such as quality of
service requirements, for instance timeliness, reliability, application logic, adaptivity,
with low-level concerns of resource management, synchronization, communication,
routing, data filtering and aggregation. This makes developing software for WSNs a
costly and error-prone endeavor, even for expert programmers (see a simple illustrative
case in the next subsection).

Macroprogramming has been proposed as a technique for facilitating
programming WSNs. Macroprogramming enables the definition of a given distributed
computation as a single global specification that abstracts away low-level details of the
distributed implementation. The programming environment first automatically
compiles this high-level specification down to the relatively complex low-level
operations that are implemented by each sensor node, and then deploys and executes
these operations [12]. However, macroprogramming is of interest for specialized
embedded systems programmers, not for end-users. On the contrary, as explained
above, we are interested in situations where both the users’ requirements and the WSN
environment may be dynamic.

Thus, the key challenge is to develop uQuery engines---systems that support end-
user programming and execution of uQueries. In particular, this requires enabling
specifications by multiple concurrent and uncoordinated end-users of queries, which
may convey a complex logic (comprising control constructs and hierarchical structures).
It also requires deploying and executing such specifications in a concurrent and
resource-aware manner. This chapter presents a technique to support the cost-effective
and stepwise development of uQuery engines.

As we shall see, our approach makes a central use of a two-level multi-agent
system, together with a knowledge base about the target application domain. Adaptive
learning behavior for the agents remains to be implemented in our system.

1.2. Illustration

Consider a simple WSN application scenario where we want to detect, on demand, an
object passing through a break beam sensor. The algorithm is as follows:

1. Wait for a request from the user.
2. Perform the requested action:

2.1 Execute detectBeamEvent() primitive.
2.2 Keep checking the sensor until a change in status is detected.

3. Send the result of the detection event back to the user.

The user (programmer) is responsible for choosing the right OS and network
components, and assembling them along with the specific application logic into an
executable program. The code excerpt below presents an implementation of a simple
WSN program for the above algorithm that such a programmer could write in the nesC
language for the TinyOS sensor platform. Comment blocks denoted by /* … */
indicate additional code segments not related to application functionality.

// Detect break beam event application (code excerpt)
configuration Example {}
implementation {
 // list of application components
 components Main, ExampleM, LedsC, GenericComm, TimerC,
 Photo, CC1000ControlM;
 // statically link all components
 Main.StdControl -> GenericComm;
 Main.StdControl -> TimerC;
 Main.StdControl -> Photo;
 Main.StdControl -> ExampleM;
 ExampleM.SendMsg -> GenericComm.SendMsg[10];
 ExampleM.ReceiveMsg -> GenericComm.ReceiveMsg[10];
 ExampleM.CC1000Control -> CC1000ControlM;
 ExampleM.Timer -> TimerC.Timer[unique("Timer")];
 ExampleM.Leds -> LedsC;
 ExampleM.PADC-> Photo;
}
module ExampleM {
 /* … */
}
implementation {
 TOS_Msg msgbuf;
 uint8_t msglen, sendPending;
 volatile uint8_t ioPending;
 uint16_t ioData;

 /* … */
 // primitive function #20: detect beam event (using photo sensor)
 uint16_t detectBeamEvent();
 // I/O: convert split phase non-blocking I/O to blocking I/O
 uint16_t IO(uint16_t a, uint16_t b) __attribute__((C,spontaneous)) {
 while (ioPending) yield();
 if (a == 20) { call PADC.getData(); ioPending=1; }
 while (ioPending) yield();
 return ioData;
 }
 async event result_t PADC.dataReady(uint16_t data) {
 ioPending=0; ioData=data;
 return SUCCESS;
 }

 // Communication: receive requests for execution and send results
 void sendPacket(uint8_t *buf, uint8_t n)
 __attribute__((C,spontaneous)) {
 memcpy(msgbuf.data, buf, n);
 msglen = n;
 if (call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf)
 == SUCCESS)
 sendPending = 1;
 }
 uint8_t isSendPending() __attribute__((C,spontaneous)) {
 return sendPending;
 }
 event result_t SendMsg.sendDone(TOS_MsgPtr mp, result_t success) {
 if (!success) call Timer.start(TIMER_ONE_SHOT, 200);
 else {
 call Leds.redToggle(); sendPending = 0;
 }
 return SUCCESS;
 }

 event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr mp) {
 TOS_Msg m;
 call Leds.greenToggle();
 if ((uint8_t)mp->data[0] == 20) {
 m.data = deref(detectShadow());
 sendPacket((uint8_t *)m.data, strlen(m.data));
 }
 return mp;
 }
 event result_t Timer.fired() {
 return call SendMsg.send(TOS_BCAST_ADDR, msglen, &msgbuf);
 }

 /* … */
 // Implementation of detectBeamEvent primitive
 uint16_t detectBeamEvent() {
 int i;
 uint16_t data, avg = 0;
 ledSet(0);
 for (i = 0; i < 10; i++)
 avg += IO(2, 0);
 avg /= 10;
 while ((data = IO(2, 0)) > avg - 15) yield();
 ledSet(7);
 return list(2, newWord(20), newWord(data));
 }
}

The majority of the code is not related to the specific application domain (detecting

a break beam event) but to managing resources, communication and low-level control
flow in the WSN node. As is explained in the following sections, our approach allows
an end-user to write the same program by means of simply creating a uQuery, which
contains one step: Detect Beam Event. The executable code, corresponding to the
one illustrated above is generated by model transformation techniques (see Section 4.3,
specifically the last paragraph, and Figure 9).

The remainder of the chapter is organized as follows. Section 2 provides an
overview of our solution. Sections 3 and 4 describe and illustrate respectively the
uQuery representation and execution mechanisms. Section 5 is devoted to our end-user
programming interface. Section 6 enumerates some optimization opportunities.
Section 7 explores the related work, before concluding in Sections 8 and 9.

Web Client

uQuery Server

HTTP
request

Web
document

AmI Infrastructure

Mobile actor
code

Platform-specific
semantic data

Figure 1. High-level view of the uQuery Engine system architecture

2. Architectural Style of uQuery Engines

The key technical requirements of uQuery engines are dynamic end-user
programmability by multiple uncoordinated end-users, and automated deployment and
execution. To meet these requirements, we propose the architectural style [13] which
is illustrated by Figure 1. There are three subsystems as follows. On the top, the Web
Client subsystem is responsible for providing uncoordinated concurrent end-users with
a domain-specific Web programming interface (for Vehicle Tracking, in our example
case). At the bottom, the AmI Infrastructure subsystem provides an interface to
hardware and software platforms of the ambient nodes, in our case, mostly WSN nodes.
In the middle, the uQuery Server subsystem is responsible for representing uQueries
and processing them for execution on the AmI infrastructure.

The Web Client subsystem communicates with the uQuery Server subsystem by
standard HTTP Requests. This communication serves two main purposes: elaborating
the uQuery on the one hand, and executing it on the other hand. Accordingly, the
uQuery Server subsystem responds with dynamically generated Web documents, which
embody either the current state of the program being built, or its execution results. The
uQuery Server subsystem communicates in turn with the AmI Infrastructure subsystem
by non-standard mobile actor code bundles in text format (Scheme-like code). It
receives semantically meaningful execution results, which belong to the application
domain ontology, but in (WSN) platform-specific format. The receiver, uQuery Server
subsystem, is responsible for encoding the results into an application-specific format,
before embedding them into Web documents.

Standard Web 2.0-compliant browsers are used as Web Clients. The AmI
Infrastructure subsystem encompasses an open set of heterogeneous ambient nodes.
We impose an important constraint on the software interface of these nodes: they must
provide dynamic mobile agent code deployment and execution services. In the case of
sensor nodes, such interface is provides by platforms like ActorNet [14] and Agilla
[15]. As for the main component of this architecture, the uQuery Server subsystem, it
is designed and implemented as a meta-level object-oriented application as follows.

Dynamic Web Application Server Framework

Concurrent uQuery
Specification Framework

Concurrent uQuery Processing Framework

Object-Oriented Programming System

uQuery Execution-History
Management Framework

OS

Hardware

HTTP
Request

Web
document

Service contract
meta-repository

Domain ontology
meta-repository

uQuery
meta-repository

Figure 2. uQuery Server subsystem architecture

As we said, the uQuery Server has a double purpose of specification and execution.

Such a situation has already been studied in Software Engineering, notably by Ralph
Johnson and his colleagues under the name of adaptive object-models (AOM) [16].
Accordingly, our Server follows the architectural style of AOMs, which defines a
family of architectures for dynamically end-user programmable object-oriented
software systems. More particularly, this design belongs to the class of flow-
independent AOMs [17], where the expected behavior (here uQueries) is specified at
run-time as a high-level description of the control flow between reusable and sharable
computational entities that embody the basic application domain algorithms (for
example, for vehicle tracking). In the reminder of this chapter, we call the latter
services, following the service-oriented computing paradigm, and suggest wrapping
and representing the basic functionality provided by ambient nodes also as services.

Our design is illustrated in Figure 2, and encompasses four components and
several metadata repositories as follows. On the top, the Dynamic Web Application
Server Framework component provides the standard functions of a dynamic Web
server application, by serving HTTP requests from concurrent clients and by
dynamically generating Web documents. We use the Seaside framework
(www.seaside.st) for this purpose, which provides a high-level dynamic Web server
programming interface by reuse and extension. At the bottom, the Concurrent uQuery
Processing Framework component controls uQuery processing (transformation,
optimization, and deployment). In the middle, there are two components. The uQuery
Execution-History Management Framework component is responsible for storing and
providing an extensible interface to access the executions of uQueries, for analyzing,
rendering and visualizing results, and also for optimization purposes. This component
is not currently mature enough to be communicated here. The Concurrent uQuery
Specification Framework component is responsible for uQueries representation.

From the functional perspective, this architectural style keeps track of two types of
static and dynamic metadata: Static metadata corresponds to the knowledge acquired
and represented at built-time concerning the business ontology, and the available
services (contracts). They are read- and write-accessible by the Concurrent uQuery
Specification Framework component (see meta-repositories in Figure 2). The dynamic

metadata corresponds to the knowledge acquired at run-time concerning the user-
defined uQueries, their executions (domain objects and uQuery execution history), the
available service implementations, and ambient nodes and their resources (see Network
Directory Service in Section 6). These are read- and write-accessible by all
components, but primarily by the Concurrent uQuery Processing Framework
component (see the repositories in Figure 5). Overall, the representation and
processing of this metadata is a major role of the architectural style of uQuery engines,
specifically its knowledge level. The execution of uQueries per se is the responsibility
of the operational level.

The knowledge level representation and processing role is shared between the two
Concurrent uQuery Programming and Processing Framework components. The
processing component provides additionally a hook to the operational level execution
role, which is accomplished by AmI infrastructure node platforms (here: ActorNet).
The following sections provide more details on the design of these two major
components of the uQuery engine architectural style.

3. Concurrent uQuery Specification Framework

We now describe the design of the Concurrent uQuery Specification Framework
component for representing uQueries in our system. The processing component will be
explained in the Section 4, and the end-user programming interface in Section 5.

In [17] we describe Dart, a unique (to the best of our knowledge) method for
dynamically specifying control flow in flow-independent AOM architectures that
satisfies the requirements of support for dynamicity, end-users accessibility, as well as
extendibility and reusability by programmers, in particular for plugging specific
execution strategies (such as dynamic multi-agent distributed execution, as it is the case
here). We therefore suggest reusing Dart for representing uQueries.

Figure 3 illustrates the core design of Dart using the UML notation. A uQuery is
represented as a graph, which aggregates tasks where each task is a set of interrelated
steps. A step reifies a service request by bridging a construct with a domain object that
results from its execution. A construct specifies the computation method for that object.
The most common type of construct is the primitive construct, which reifies a low-level
primitive service request. By low-level primitive we mean a method or a library
function, which implements low-level logic, such as mathematical algorithms, and
platform-specific sensing and data processing functionality. A step referring to a
primitive construct is called a primitive step (or leaf step). Each construct refers to (or
instantiates) a contract which holds metadata about the construct. In the case of
primitive constructs, a contract incorporates the type specification, arguments, name
and a list of properties required for its execution. In order to execute a construct, we
need to make platform-specific decisions, which are delegated by each contract to the
associated execution strategy. The service repository for a uQuery engine holds these
contracts. The business ontology holds the descriptions of domain concepts, together
with their relationships and constraints. Steps hold instances of domain concepts,
domain objects, which conform to the ontology. Result and argument specifications
refer to domain concepts that define their types. Finally, to each task may be
associated one or several organizations, which determines the visual representation of
its steps. Different representations, such as list, grid and freeform, are possible since
order is irrelevant when executing Dart graphs (see the next Section).

- computation
method

- closures

- holds
instance of

- contributes

Process Conscious Product

Task Step

1

-content

*

Construct

1..1

0..1

Contract

Ontology Concept

0..1

0..*

-spec

1..1

1

-dependents0..*

Primitive

Ambient Primitive

Control Structure
-instantiates0..1

Structure

-organization 0..*

1..1

Grid Freeform

uQuery
1

*

Procedure

Execution Strategy

-policy 0..1

0..*

0..*

Signature

-type

0..1

0..*

1..1

Argument

-requires 0..*

0..*

Result

-produces 0..1

Execution Context

-holds0..11

Domain Ontology

Service Repository

Association
Generalization
Aggregation

List

Figure 3. Detailed design of the Concurrent uQuery Specification Framework component in UML

We assume that both the business ontology and the service repository for the
business domain are provided. Actually, both may be implemented as part of a single
domain ontology written in OWL (with the help of the Protégé editor), and accessed
(with the Pellet reasoner) by means of queries written in SPARQL. We further assume
that the service repository is comprehensive enough to allow all uQueries of interest to
be explicitly represented as a composition of its elements. Of course, such a repository
would greatly benefit from the advanced techniques for context representation
proposed by Dapoigny and Barlatier [18].

For illustration, consider the parking garage example from Section 1. Pablo wants
to make a uQuery to take a photo from a specific camera in a sensor network. We
assume a business ontology with one concept, Photo, and a service repository with one
contract, Capture Camera, which returns a Photo object, and a library including an
implementation of the above service (e.g., low-level nesC code for the Mica2 sensor
platform, accessible through an ActorNet interface). The representation of this simple
uQuery comprises a single task with a single Capture Camera step, which specifies a
camera sensor id as a property.

More realistic uQueries, however, require a higher degree of concurrency, control
(iterative and conditional), and nesting of tasks. For instance, consider Liz’s uQuery
that asks for a vehicle arrival time histogram for a period of two weeks. The additional
ontologies required to specify steps for this uQuery are shown in Figure 4. We denote
the return value of tasks by an upward arrow, and the “contributes” relation of Figure 3
by a dashed arrow. The entire box represents a uQuery. The boxes 2, 3 and 4 represent
tasks. The rest of the boxes represent steps. We skip describing the details of the
ontology and services required, which are outlined in the figure.

1

Liz’s query

1

Liz’s query

2

Main

2

Main

3

T1: Compute Histogram Entry

3

T1: Compute Histogram Entry

4

T2: Identify Vehicle

4

T2: Identify Vehicle

Histogram

5

Histogram

5

Plot Histogram

Histogram Entry Collection

6

Histogram Entry Collection

6

For a Period of <2 weeks> Do <T1>

Mobile Object

Estimate Motion

8

Pulse Pair 3

Average Pulse Pairs

9

Pulse 1

Detect Beam Event

12

Pulse 2

Detect Beam Event

13

Pulse 3

Detect Beam Event

14

Pulse Pair 2

Sort Edges

Pulse Pair 1

Sort Edges

10 11

Vehicle

Classify Vehicle

7

Mobile Object

Estimate Motion

8

Mobile Object

Estimate Motion

8

Pulse Pair 3

Average Pulse Pairs

9

Pulse Pair 3

Average Pulse Pairs

9

Pulse 1

Detect Beam Event

12

Pulse 1

Detect Beam Event

12

Pulse 2

Detect Beam Event

13

Pulse 2

Detect Beam Event

13

Pulse 3

Detect Beam Event

14

Pulse 3

Detect Beam Event

14

Pulse Pair 2

Sort Edges

Pulse Pair 1

Sort Edges

10 11

Pulse Pair 2

Sort Edges

Pulse Pair 1

Sort Edges

10 11

Vehicle

Classify Vehicle

7

Vehicle

Classify Vehicle

7

Vehicle

Classify Vehicle

7

Vehicle

Do <T2>

16

Histogram Entry

Create Histogram Entry

15

Vehicle

Do <T2>

16

Vehicle

Do <T2>

16

Histogram Entry

Create Histogram Entry

15

Histogram Entry

Create Histogram Entry

15

Histogram Entry

Create Histogram Entry

15

Figure 4. Representation of Liz’s uQuery by three nested and subordinate tasks, and several steps2

The corresponding uQuery, called Liz’s uQuery (1),3 is represented as three
interrelated hierarchical tasks: a main task (2), and two subordinate tasks, called T1:
Compute Histogram Entry (3) and T2: Identify Vehicle (4). The main task
has two steps: Plot Histogram (5), which returns a Histogram object to the end-user,
and the control construct For a Period Do (6) that is in charge of executing T1 for a
duration of two weeks. T1 is then subordinate to step (6), which controls its execution.
It in turn comprises two steps. The first step instantiates Create Histogram Entry
(15), which returns a Histogram Entry object (to the main task). This requires as
argument a Vehicle object, provided by the second step of T1, Do <T2> (16), which

2 Numbers in ovals are used for annotation, and are not a part of the representation.
3 In this paragraph and the 5th paragraph of Section 5, numbers between

parentheses, e.g., (1), refer to the numbered rectangles in respectively Figure 4 and
Figure 12.

nests T2 as computation method. T2 comprises several steps (7-14), whose
representation is analogous to that of the Capture Camera step described above. The
task T2 uses inputs from multiple break beam sensors to detect moving objects and
classify them as vehicles. Section 5 describes and illustrates how uQueries like this
may be specified using our Web interface.

To summarize, this uQuery representation contains occurrences of the following
kinds of steps:

• Primitive calls: designed as steps that call a primitive operation as their
computation method,

• Control structures: designed as steps that control the execution of other tasks,
such as the For a Period Do step that controls T1,

• Nested tasks: designed as steps that use a task as their computation method, e.g.,
the Do step that uses T2, and thereby simplify the specification of complex
uQueries by hierarchically modularizing them.

The syntax of Dart is recursive, i.e., steps may hierarchically point to tasks. It is

also extensible, i.e., tasks and steps may be used to extend constructs. Arbitrary control
constructs can be implemented by uQuery engine programmers using these properties,
thus extending the abstract notion of a construct in Dart. We provide by default an
abstraction called Control Construct, which has an instance variable called closures
(illustrated by the directed arrow from Control Construct to Task in Figure 3), which
keeps track of a collection of subordinate tasks whose number and semantics depend on
the desired functionality, based on the metadata held by its contract. In the case of the
For a Period Do control structure, which iteratively executes a given task for a
duration specified as a property, the closures collection holds one task, here a pointer
to T1. Its propertyValues instance variable, inherited from its superclass, holds the
duration value, i.e., 2 weeks in our example.

The representation of nested tasks is close to that of control structures. The
closure collection contains only one task, which is executed unconditionally upon
each activation of the step.

Self-sufficient
graph node

Platform-specific
semantic data

Concurrent uQuery Node Processor

Concurrent uQuery Interpreter

uQuery
graph

Application-specific
semantic data

Service contract
meta-repository

Domain ontology
meta-repository

uQuery
meta-repository

uQuery
execution-history

repository

Service
implementation

repository

Domain objects
repository

Figure 5. Concurrent uQuery Processing Framework component architecture

4. Concurrent uQueries Processing Framework

Now, we explain how uQuery graphs are concurrently executed by describing the
design of the Concurrent uQuery Processing Framework component as illustrated in
Figure 5.

We propose an interpretation mechanism coupled with a truly dynamic
deployment of independent code segments, which may interact and migrate, running on
distributed sensor nodes. Specifically, in alignment with experimental systems such as
Actalk [19], this component is designed as a framework for concurrent execution of
uQueries’ object-based representations. Specifically, we use mobile actors as the
execution model, which ensures feasibility and improves scalability by splitting
computations on appropriate nodes and merging them according to resource
availability and control flow. We separate the actor at the operational level, which is a
thread responsible for executing primitive steps, from the meta-actor at the knowledge
level, which is a thread that represent control flow through the computation, controls
the execution on a single uQuery graph node, and carries state. Moreover, our
architecture allows meta-level objects to modify their behavior in more fundamental
ways through introspection and intercession, for example, if the meta-actors are
endowed with learning mechanisms.

In our current example, a vehicle identification uQuery is decomposed in terms of
a set of meta-actors. These meta-actors control the concurrent and distributed
collection of data by actors dynamically deployed on beam and camera sensors nodes
to process and analyze the data. Note that the analysis may trigger further data
collection, or reuse previously collected data.

Subsections 4.1, 4.2, and 4.3 describe the design of three subcomponents that
implement these decisions.

4.1. Concurrent uQuery Interpreter

The Concurrent uQuery Interpreter subcomponent is responsible for concurrent
uQuery graph traversal, meta-actor creation, encoding execution results into
application-specific formats, and storing execution results and uQuery executions. It
reads uQuery graphs from the corresponding repository and updates related repositories.
In particular, uQuery enactments history and domain objects repositories are
respectively updated with uQuey executions and application-specific semantic data
(domain objects). The execution results are received in a platform-specific format, and
are encoded into application-specific formats using correspondence tables. In general,
all domain objects that result from the execution of steps in a uQuery are stored. The
final result of the execution of a uQuery corresponds to the result of the execution of
the step in the main task that is tagged as the return value.

The graph traversal algorithm is associated with meta-actor type hierarchy
illustrated in Figure 6 using the UML notation. The algorithm associates a meta-actor
to each graph node. Dart node types present in uQuery graphs, i.e., uQuery, Task and
Step are respectively mapped to uQuery Meta-Actor, Task Meta-Actor, and Step Meta-
Actor types. Each meta-actor is uniquely responsible for processing its corresponding
node. The process is initiated by creating a uQuery meta-actor, which recursively takes
charge of the creation of the other meta-actors. The underlying algorithm is described
in the next subsection. Each meta-actor is concurrently linked to the whole system
only by knowing the address (called “actor name” in Actor terminology) of its parent

meta-actor, which is the meta-actor that has created it. Each meta-actor keeps also
track of all its child meta-actors. The uQuery meta-actor has access to the whole
system of meta-actors, which is structured as a distributed connected graph (since
uQuery graphs are connected by construction). The parent of all uQuery meta-actors is
the uQuery engine, which is itself designed as a meta-actor type (see Figure 6).

The order is irrelevant in creating meta-actors. Concurrent execution of meta-
actors is allowed by construction, since the execution of Dart graph nodes is only
restricted by their data dependencies. In other words, those nodes that do not have
direct or indirect data dependencies, or have their required data available, may execute
in parallel at any time. The interpretation process for a uQuery reaches its end when all
relevant meta-actors have returned from execution (possibly with an error).

The occurrence of an error in one node may result in garbage collecting the whole
system of corresponding meta-actors and stopping the execution, or spawning a new
meta-actor for another try, for example using different resources. Algorithms for non-
intrusive, scalable distributed mobile active object garbage collection, proposed by
Wei-Jen Wang and Carlos A. Varela [20], may be considered here.

The next Subsection describes the design of meta-actors and their processing
algorithm per se.

4.2. Concurrent uQuery Node Processor

The Concurrent uQuery Node Processor subcomponent is responsible for processing a
single graph node and returning its result, when applicable. Results are provided in a
platform-specific format. Autonomous and concurrent processing of nodes is possible
since Dart graph nodes are self-sufficient. Self-sufficiency refers to the fact that each
individual service request embedded in a graph node is provided, by design, thanks to
pointers to the service contract and its argument steps, with the required knowledge
about the arguments, resources, context and method required for its execution. Meta-
actors are designed as active objects [19], executing concurrently in separate threads,
communicating and synchronizing through asynchronous message passing, specifically
for fetching the required data. They arrive to the end of their lifecycle when the
execution is terminated (either successfully or by an exception).

Abstract Meta-Actor

Step Meta-Actor

uQuery Meta-ActorTask Meta-Actor

uQuery Engine

Composite Meta-Actor

steps

Control Meta-Actor

Primitive Step Meta-Actor

Ambient Node Step Meta-Actor

Figure 6. Detailed design of the Concurrent uQuery Processing Framework component in UML

The interface of meta-actors comprises start(), body(), and stop() methods.
The body() method specifies the core function of meta-actors, which contains four
steps: (1) checking preconditions for executability, (2) initializing data structures, (3)
executing the behavior, and (4) sending an asynchronous message to the parent to
notify it of the execution result. The behavior execution step (No. 3) is specific to each
kind of meta-actor. As we have explained in [21], it may comprise a set of
sophisticated actions, including implementation matching, resource matching, decision
making and optimization, online scheduling and task allocation, marshaling, and
deployment. Specifically, meta-actors screen the runtime environment, allocate
resources, spawn other meta-actors and actors, and control the lifecycle of those actors.
Such a lifecycle, described in more detail in the next subsection, involves activation
and registration, request management, application logic, and result dissemination.

Dart graph nodes are also minimally-constrained. Minimally-constrained refers to
delaying as long as possible placing constraints necessary to execute a specific instance
of the service, in other words, the service instance does not refer to information that can
be computed or supplied to it at run-time. This characteristic, together with the
openness, resource-limitedness and error-proneness attributes of the AmI infrastructure
have motivated that sophisticated processing architecture.

At the beginning of their execution, uQuery (root) meta-actors launch a meta-actor
for their main task. The main task meta-actor continues the execution by launching
step meta-actors. A step meta-actor can only execute in two cases: (1) it is associated
to a root step, i.e., a step whose construct requires no arguments, or (2) all its effective
arguments are available. The execution strategy associated with each step is in charge
of guiding this process. uQuery and task meta-actors are designed as Composite Meta-
Actors, which provides functionality for launching a set of child meta-actors, here
respectively tasks and steps, and controlling their execution. If the construct of a step
points hierarchically to tasks and subordinate tasks, then the corresponding step meta-
actor also creates hierarchically subordinate task meta-actors. The above execution
algorithm is applied recursively to the latter.

For example, a uQuery meta-actor is created and launched for executing Liz’s
uQuery. This meta-actor launches a task meta-actor for the main task, which in turn
launches a step meta-actor for its unique root step, i.e., For a Period Do. The other
step of the main task is not executable since it needs an argument. The For a Period
Do meta-actor starts a timer to control the number of iterations. Each iteration consists
of launching a subordinate task meta-actor for executing the same task, T1. The
execution result of these meta-actors is collected and constitutes the result of the
execution of the For a Period Do step. At this point, the main task meta-actor
passes this collection to the Plot Histogram meta-actor and resumes it. In the case of
T1, there is also a unique root step, which is Do <T2>. The execution of the associated
T1 meta-actor consists of creating a subordinate T2 task meta-actor. The T1 meta-
actor sleeps then on a semaphore, waiting for the T2 meta-actor to return a Vehicle or
signal an error.

The domain objects that are expected as uQuery enactment result are basically
obtained from the execution of meta-actors in charge of primitive step nodes. The role
of the other meta-actors is essentially to control the execution flow. Primitive step
meta-actors may proceed in two ways for computing their results: interpretation or
compilation. Interpretation is used when the primitive step embodies a local function
call. In that case, the execution of that function is invoked locally, by computing and

passing the required arguments. On the fly code generation, deployment and execution
is used in the more complex case of ambient node primitive steps, which embody a
sensing or actuating service request that must be executed on an ambient node. This
process is implemented by a specialization of the current subcomponent and is
described in the next Subsection.

4.3. Ambient Node Primitive Processor

The Ambient Node Primitive Processor subcomponent is responsible for executing
ambient node primitive steps. It collects raw sensor data, transforms them into domain
objects encoded into platform-specific representations, and routes them to the uQuery
processor subcomponent.

This requires access to a platform interface that provides (1) deploying and
executing dynamically generated agent code, (2) dynamically discovering and
providing access to all sensors in the WSN, and (3) implementing the elements of the
service repository. To the best of our knowledge, the only existing system that fully
satisfies our operational level requirements is ActorNet [14]. ActorNet agents are
based on the actor model of computation [22]. The ActorNet runtime, illustrated in
Figure 7, consists of a lightweight interpreter running on each sensor node in the WSN,
along with several supporting services. The runtime enables the actors to execute,
communicate, migrate and access sensors and actuators.

Figure 8 illustrates our approach for integrating a platform such as ActorNet. First,
the actor template in Figure 9 is filled by the Code Generator module. Each Ambient
Node Primitive Meta-actor having its preconditions satisfied and being signaled,
directly or indirectly, by a returning step of the main task, can generate the code for its
associated actor, in parallel with other meta-actors. The generated code pieces are
deployed to the actor platform by the meta-actors, through the Actor Deployment
Interface (ADI). The ADI is a multithreaded server providing socket connections over
the Internet for concurrently and remotely deploying and executing actors.

Actor Deployement Service

Actor Interpreter

Garbage Collector

VM Driver

Application Level Context Switcher

Messaging Service

Communication Driver

OS (TinyOS, ContikiOS, etc.)

Hardware (Mica2, iMote, MICAz, etc.)

Mobile agent
code

Platform-specific
semantic data

Figure 7. The architecture of ActorNet, a major module of the Ambient Node Primitive Processor

subcomponent

Compact abstract
syntax tree

Actor Deployment
Interface

Code Generator

Actor code

Ambient node
primitive step

Mobile Actor Platform

Actor Messaging
Interface

Marshaled
semantic data

Platform-specific
semantic data

Figure 8. Interactions between modules involved in executing sensor primitive steps

Once deployed, the agent is parsed and transformed from a text string to a more

compact abstract syntax tree representation, more suitable to sending across low-
bandwidth wireless networks. The id of its generating meta-actor is embedded in the
actor code, enabling the actor to communicate with its associated meta-actor through
the Actor Messaging Interface. The meta-actor can sleep until it receives the actor’s
output object through the messaging interface, after the actor finishes its computation.
Arguments and return values are marshaled and unmarshaled using the information
kept by the execution strategy. In case a primitive cannot successfully complete its
computation, a failure is signaled to the relevant meta-actor, which may trigger garbage
collection for the task and its associated actors and meta-actors.

The code generator fills the template illustrated in Figure 9 in four locations: meta-
actor id on lines 5 and 11, application logic and list of arguments on line 14, and
execution location and uQuery engine server address on lines 5 and 12, respectively. In
Figure 9, semicolons ‘;’ indicate comments. Characters in italics indicate values filled
in by the code generator, as an example, for the case of the three Detect Beam
Event steps in the T2 meta-actor shown in Figure 4. As Beam Event objects are
received as results of these executions, the Extract Edge meta-actors may be
signaled concurrently, and so on.

Note that this ActorNet code segment embodies a much more compact, higher-
level specification of functionality similar to that of the NesC code in Section 1.2. One
actor is launched, and it calls the Detect Beam Event primitive (primitive function with
index 1 in line 12 Figure 9), which blocks until an event is detected. Scheme functions
are used for communication, migration and control flow, while low-level resource
management is left up to the ActorNet interpreter and the underlying services.

4.4. Complex uQueries

Now let us consider a uQuery which requires distributed coordination between
different sensors. Such a uQuery cannot be executed as a single mobile agent. For
example, Pablo wants to take a photo with a camera only when a nearby break beam
sensor is triggered. The task that represents this uQuery has two steps: detecting a
Pulse object (generated by the beam sensor) and then taking a Photo with the camera.

 1.((lambda (migrate) ; start of the actor function
 2.
 3. (seq ; sequentially execute the following:
 4.
 5. (migrate 200 111) ; migrate to the destination node
 6. ; (destination id 200 and meta-actor id
 7. ; 111 are given as parameters)
 8.
 9. (par ; create a new actor to reduce code size
10.
11. (extmsg 111 ; send result back to the meta-actor…
12. (migrate 100 ; after migrating back to the source node
13.
14. (prim 1 nil)))))) ; execute primitive function with index 1
15. ; and with an empty list of arguments
16. ; Note: the primitive is evaluated first,
17. ; then migration, then sending the message
18.
19. (lambda (adrs val) ; implementation of the migrate function
20. (callcc (lambda (cc) ; using “call with current continuation”
21. (send (list adrs cc (list quote val)))))))

Figure 9. ActorNet mobile agent dynamically created by instantiating and filling a generic agent template

For executing such uQueries in a coordinated manner, we use the argument
relation in our meta-model (see Figure 3). Whenever an argument is encountered in the
uQuery specification, the knowledge level automatically creates a dependency relation
between the meta-actors for these two steps. Meta-actors with dependencies check
whether they have all the arguments necessary to generate and execute their associated
actors. In our example, the meta-actor for capturing a Photo will be made dependent
on the Detect Beam Event meta-actor. It will be deployed and executed only when
a Pulse object is returned by the latter.

We can now consider a scenario where uncoordinated concurrent uQueries are
entered into the system by two different users, Liz and Pablo. Pablo is interested in
taking photos of Vehicles when they speed through break beam sensors. We assume
that Liz’s uQuery remains the same as in the previous section. Each uQuery is
represented independently, i.e., there is no structural relationship between uQuery
representations. In this case, the execution for each uQuery is triggered concurrently at
the knowledge level, according to the algorithm described above. This execution
procedure can be subject to optimization, as discussed below.

5. End-User Programming Web Interface

Implementing end-user programming languages that satisfy both technical and
cognitive requirements is a challenging task. This may explain why Pane and Myers
observe that, when new programming languages are designed, the findings of
Psychology of Programming (PoP) and related fields such as the Cognitive Dimensions
Framework [23] do not seem to have much impact [24].

Service Repository

Business Ontology
Concepts

Steps

Tasks

uQuery

Figure 10. A snapshot of the Web interface of our uQuery engine prototype

Dart is, on the contrary, designed taking these attributes as primary considerations.

We have chosen the spreadsheet as a basis for designing the end-user programming
features of Dart, since it is the most widely used end-user programming metaphor [25].
The two main underlying assumptions are that (1) our end-users belong to the large
category of domain experts, who are described by Bonnie A. Nardi as “having the
detailed task knowledge necessary for creating the knowledge-rich applications they
want and the motivation to get their work done quickly, to a high standard of accuracy
and completeness” [25], and (2) complex behavior can be modeled by (a) associating
operations to cells that compute objects, and (b) relating together those cells as
“operation result holders” that provide the argument to new operations.

This is how programming takes place through Dart-based end-user programming
interfaces. As illustrated by Figure 10, in the Web-enabled end-user programming
interface that we have prototyped for the case of uncoordinated end-users Liz and
Pablo, a uQuery is specified by direct manipulation techniques as a collection of tasks,
where each task comprises a set of steps. Each task frame corresponds to a sheet in the
spreadsheet paradigm. Each step plays the role of an “operation result holder”, and is
defined by specifying a call to a domain-related service, available from the service
repository. This corresponds to the cell-operation association in the spreadsheet

paradigm. It should be noted, however, that the interface in Figure 10 does not match
the traditional spreadsheet interfaces, which use a grid layout. Nevertheless, the
programming method remains consistent with the spreadsheet paradigm sketched out
above. As explained in Sections 3 and 4, steps may be graphically organized using
different visual representations, such as list (Figure 10), grid, or even freeform (like in
Figure 4), without any semantic impact.

Step specifications may refer to the expected results of previous calls, in terms of
ontology concepts. The data flow in such cases is specified by dragging the step’s
visual representation and dropping it into the instruction editing area, situated at the
bottom of the programming interface (see Figure 10). That area is then expanded with
a set of fill-in widgets, one per required argument (see Figure 11). The end-user may
then select from a menu the name of the appropriate step, and validate the modification.
For example, the two arguments of the first Sort Edge step (fourth line in the list of
steps in Figure 10) are set to Pulse_1 and Pulse_2, which refer to the names assigned
automatically to the results of steps in the first two lines of the same task. The same
method is used for modifying data flows. A more sophisticated interface may allow
specifying data flow by direct drag-and-drops (without using the editing area).

Figure 10 illustrates more specifically the specification of T2: Identify
Vehicle, which is a subordinate task and part of the Liz’s uQuery, described and
illustrated in Section 3 and Figure 4. The other tasks and steps of that uQuery may be
defined in the same way. Pablo may define its uQuery by reusing T2: Identify
Vehicle (assuming it is already defined by Liz), and creating two new tasks (see
Figure 12). A main task (2), and another subordinate task, called T3: Photograph
Speedy Vehicle (3). The latter nests a call to T2: Identify Vehicle (5). Each
time a vehicle is identified by (5), it is passed to a primitive step called Photograph
If Speedy (6), which takes a photo of the vehicle if it is speedy. This photo is then
sent back to the caller main task, as the result of the execution of (3), which stores it in
a collection and also sends it to Pablo (for example by email). This procedure repeats
forever due to the definition of the unique step of the main task. The same uQuery
may be defined in alternative ways, depending on how the service repository is
designed. For example, instead of Photograph If Speedy (6), the uQuery engine
may propose primitives like Check If Speedy and Capture Camera (described
also in Section 3), which would allow a more fine-grained definition of (6). Instead of
screenshots, we have chosen the “manual” notation of uQueries for illustrating Pablo’s
uQuery in Figure 12, since it is more compact.

Figure 11. Example of data-flow editing by the Web interface of our uQuery engine prototype

Pablo’s query

1

2

Main

3

T3: Photograph Speedy Vehicle

Photograph If Speedy

Collection of Photo

Forever Do <T3>

4

Vehicle

Do <T2>

5 6

Photo of Speedy Vehicle

Figure 12. Representation of Pablo’s uQuery by three tasks, one reused (T2: Identify Vehicle)

It is worthy to note that Dart extends the classic features of spreadsheets by
allowing the users to integrate a set of domain and task-specific built-in primitives with
relative ease, to associate any type of business object to the spreadsheet cells, and to
use that object as an argument for defining new formulas (service calls), to incorporate
user-defined functions comparable to those described in [26], and to take advantage of
a rich set of general-purpose and domain-related control structures.

Dart is designed as an abstract object-oriented framework. It was initially
implemented in Cincom VisualWorks Smalltalk [27], and used to refactor and improve
the end-user programming language of an ecological simulation system. In this case,
the end-users are experts in ecology, whose job is to model ecosystems (individual and
social behavior of animals, plants, etc.) and to observe and study the evolution of their
behavior through simulation and statistics [28]. Our new implementation of Dart is
based upon Squeak 2.8 (www.squeak.org) and Seaside 2.7 systems.

6. Optimization

The uQuery engine design presents several opportunities for optimization as follows.
Knowledge level optimizations: Our uQuery representation allows composing a

computation history for every business object by looking recursively at the constructs
and objects used in its computation. The computation history allows access to the
metadata associated with each element of the history (see Figure 3). As a result, more
complex matching algorithms can be implemented. For example, a uQuery can
compare the conditions under which the available business object has been computed,
and whether they match the requirements of the current uQuery. Incidentally,
computation histories are also useful for auditability, that is identifying precisely all
computation steps and their contexts for a given event in the system. The same feature
allows satisfying non-repudiability, by computing who has initiated which action.

Operational level optimizations: We consider also the functional specification of
queries, where the user only specifies the desired functionality without explicitly listing
all implementation details, such as the identifiers or location coordinates of sensors.

The uQuery processing engine can infer the requirements for these resources from the
static metadata associated with the uQuery and the contracts of the primitives it invokes.
We can then fill in specific sensors and other parameters matching these criteria. To
find suitable sensing resources meeting these constraints, we extend ActorNet with the
Network Directory Service (NDS), which performs network monitoring and provides
an up-to-date listing of sensor and computing resources available in the network. The
NDS is searchable by sensor type, location and other attributes, listed as name-value
pairs. Thus the uQuery engine can find appropriate sensors for a uQuery by looking at
attributes such as location and orientation. This simplifies the uQuery creation process
for the user and provides opportunities for optimizing uQuery execution, by enabling
the uQuery Engine to pick the best resources (e.g., closest, least congested, or having
the most remaining battery power) satisfying the uQuery specification.

Further, the mobility of actors allows for load balancing and resource-aware task
allocation, even as new actors are added. In the parking garage example, we can
choose, based on the current communication traffic and available computing power,
whether to move the raw break beam sensor data to a PC for processing, or to move the
vehicle detection code, as a system of mobile agents, to the sensor where the data is
generated. Also, by exposing available resources (sensors, actuators, data stores, etc.)
to the knowledge level, compatible resources may be substituted for one another at
runtime to simplify scheduling or reduce congestion.

Concurrent uQuery optimizations: Data computed in one uQuery can be reused to
satisfy requirements of another. This mechanism is based on exploiting static and
dynamic metadata maintained by the uQuery engine (see Section 2). For example, a
Vehicle object produced by one of the queries described above is associated with
dynamic metadata such as a timestamp and the detecting beam sensor’s id (see
Execution Context abstraction in Figure 3). When processing a uQuery with a step
requiring a Vehicle object as argument, e.g., Compute Histogram Entry in task T1
above, the already-computed Vehicle may be substituted instead of executing the
Identify Vehicle subtask, assuming the dynamic metadata of the object matches
the constraints within the static metadata of the uQuery. Such matching algorithms can
be implemented using an inference engine, such as NéOpus [29], which provides rule-
based reasoning in object-oriented applications. This process eliminates generating,
deploying and executing redundant actors at the operational level, with the benefit of
saving significant communication, sensing and computation resources in the WSN,
where these resources are scarce.

7. Related Work

A survey of solutions currently proposed in the literature reveals a variety of
approaches to macroprogramming WSNs: a spreadsheet approach [10], EnviroSuite [6],
a market-based approach [12], and Semantic Streams [5]. Although many of these
approaches are quite powerful, none of them provide the language abstractions required
for dynamic macroprogramming by end-users as outlined above.

For example, the spreadsheet approach uses an Excel spreadsheet to represent the
layout of nodes and insert their functionality in the spreadsheet; queries are resolved by
a logic program that generates a composition of services, where a service is a .Net
component. The approach satisfies the requirement of usability by non-programmers.
However, it is not sufficiently general: it enforces a particular naming grid-based

scheme and does not allow for the definition of arbitrary groups of nodes and
operations over such groups.

EnviroSuite proposes environmentally immersive programming, an object-based
programming model in which individual objects represent physical elements in the
external environment. In both EnviroSuite and ActorNet, actors or objects must be
created explicitly by programmers to provide a service. Behavioral specifications are
not in terms of groups of actors. Protocols to support operations over groups of objects
and protocols to implement such specifications may not be re-used.

Traditionally, WSN application development involved fairly static programming
languages, operating systems and reprogramming services, for efficiency reasons. For
example in TinyOS, the sensor network application components are written in nesC
and compiled together with the operating system code and middleware services into a
single application image, which can be uploaded to the sensor nodes using the Deluge
protocol [30] prior to program execution. This approach proves successful in achieving
its stated goal of highly efficient utilization of sparse computing resources.
Unfortunately, it is ill-suited for an open system comprising a dynamic set of diverse,
transient tasks that is the expected workload in ambient systems. If we take Deluge as
the deployment method for our target systems (where queries from multiple users, all
specified at runtime, need to be transformed into executable code, uploaded on the
deployed sensor network and executed), this results in unnecessarily transmitting a
large volume of code which has not changed (OS components, routing protocol, etc.)
along with the newly-generated application code.

Other comparable approaches include the Tenet architecture for tiered sensor
networks [31], Sensor Webs [32], and Sensor Grids [33]. A major difference from our
architecture is that we don’t attribute a priori ‘master’ and ‘mote’ roles to the
architecture components, masters being traditional artifacts having the responsibility to
control the behavior of motes. In addition, none of these architectures provide the
combination of an expressive and easy-to-use end-user programming for uQuery
specification (Dart) with a Turing-complete mobile agent language for deployment and
execution (ActorNet). Further, network flooding techniques are in general used for
dynamic code deployment, instead of fine-grained code deployment available in a
mobile agent platform like ActorNet.

Finally, P. Levis et al. [34, 35] observe that a fairly complicated action, such as
transmitting a message over the radio, could be represented as a single bytecode
instruction provided by an application-specific instruction set, and provides a
framework for implementing high-level application-specific virtual machines on motes
and for disseminating bytecode. Dart behaves, in some manner, as a framework for
developing application-specific instruction sets, and thereby allows developing uQuery
engines by reuse. Its coupling with a mobile agent language as explained in this
chapter provides it with a powerful execution facility on motes, which is more
expressive that a virtual machine such as Maté.

8. Conclusion

Ambient Intelligence technologies will enable novel applications and new work
practices in many fields. AmI will provide for the integration of real-time data into
everyday life activities, enabling real-time decision making and workflow process

definition and modification. Such dynamicity will facilitate responding to situations
more efficiently, with a higher degree of quality and end-user satisfaction.

In this chapter, we explained how dynamic uQuery programming by end-users can
be achieved for ambient systems comprising WSNs and traditional computing artifacts
such as PCs, gateway nodes and handheld mobile devices, by extending the
architectural style of Adaptive Object-Models. The resulting two-level approach to
architecting uQuery engines allows separating uQuery representation and reasoning
concerns from those of their effective execution on diverse runtime platforms through
model-to-code transformation.

The knowledge level comprises the representation of a domain ontology and a
service repository, together with the uQuery composition machinery, and implements
the rules that govern uQuery transformation, coordination and optimization. Our
approach allows for effective end-user uQuery specification and automated execution.
The uQuery representation meta-model, designed with extendibility and reusability as
primary considerations, allows uQuery engine programmers to add specific constructs
via classical object-oriented techniques. Business logic primitives are separated from
the core of the mobile agent system, facilitating addition of new domain-specific
primitives to the system.

Representations of queries are transformed to platform-specific code for ActorNet,
dynamically deployed and executed. Using ActorNet as the uQuery execution
environment provides the dynamicity of macroprogramming, while enabling load
balancing and other optimizations to take place. We thereby combine both
expressiveness of a Turing-complete language with the simplicity of a domain-related
language.

The presented meta-level and mobile-agent architecture for implementing uQuery
engines is prototyped by reusing and extending our previous work on ActorNet and its
implementation on Mica2 motes [14], and Dart implemented as an object-oriented
framework in different dialects of Smalltalk [27, 17]. This prototype is called
Ambiance Platform and employs a new implementation of Dart in Squeak. We have
further used the Seaside framework for developing the Web-enabled uQuery
programming interface of Ambiance Platform.

9. Perspectives

A number of important issues remain to be explored. These include dynamic and
seamless integration of sensor and actuator nodes, sensitivity to privacy concerns and
trustworthiness, and coherence and integrity analysis of uQueries. For example, the
computation history discussed in Section 6 allows security enforcement through
dynamic decision making about whether to execute the current step or not. Significant
optimization may also be possible, for instance by integrating learning mechanisms
into uQuery specification, transformation and execution. A first report of our ongoing
work on these topics and more particularly on dynamic global resource management
appears in [21]. Our longer term plans comprise topics such as a more robust and
scalable networking subsystem for disseminating mobile code, and reliably delivering
responses, in particular in presence of disconnections caused by mobility. For
reliability and fault-tolerance, we would like to explore the integration of techniques
for exception handling in presence of asynchronous active objects as proposed by Ch.
Dony et al. [36].

Furthermore, ambient nodes and more particularly wireless sensors, actuators and
Radio Frequency Identification (RFID) tags, allow developing digitally augmented
real-life products with better value for both the manufacturers and customers. The
distinguishing feature of these ambient products is their aptitude to smoothly
incorporate themselves into the larger context of physically augmented business
processes, by providing real-time “field” knowledge all along their lifecycle. Smart
features of ambient processes such as personalization, predication, and anticipation,
allow delivering unprecedented services to end-users and thereby increasing
significantly competitive advantages as well as customer comfort, safety, security and
satisfaction. Another application perspective of this work consists of developing
networks of collaborating ambient products to enable applications such as predictive
maintenance, reverse logistics, and ambient traceability (full lifecycle product and
process identification, authentication, location and security).

Finally, we would like to explore conditions under which domain experts could be
replaced by monitoring agents endowed with the same expertise. We plan considering
morphology-based techniques elaborated by Campagne & Cardon [37] to simulate
emotions in a robot, where so-called analysis agents are expected to control a
population of subordinate (and massively multiple) aspectual agents. These analysis
agents are supposed to possess cognitive capacities and to modify the behavior of
aspectual agents. For this purpose, the structure of aspectual agents is designed to be
changeable at runtime. Their behavior is “governed by some sort of augmented
transition network (ATN) that can be parameterized by a set of values” [37]. This is
precisely where our proposed architecture would be employed.

Acknowledgments

This work is partially funded by the University of Luxembourg, in the framework of
the Åmbiance project (R1F105K04) and NSF under grant CNS 05-09321, by ONR
under DoD MURI award N0014-02-1-0715 to UIUC. The authors would also like to
acknowledge the valuable comments and collaboration of J.-C. Augusto, F. Arbab, A.
Cardon, N. Bouraqadi, P. Bouvry, Ch. Dony, B. Foote, the late and deeply regretted V.
Ginot, R. Karmani, Ph. Krief, R. Johnson, M. Malvetti, S. Nadjm-Tehrani, D. Riehle, D.
Shapiro, S. Sundresh, and J. Yoder.

References

[1] IST Advisory Group. “Ambient Intelligence: from vision to reality - For participation in society &
business,” September 2003.

[2] Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J. and Burgelman, J-C. (eds.). “ISTAG Scenarios
for Ambient Intelligence in 2010,” IPTS-ISTAG, European Commission, 2001.

[3] Berger, M., Fuchs, F. and Pirker, M. “Ambient Intelligence – From Personal Assistance to Intelligent
Megacities,” this volume, IOS Press, 2007.

[4] Nakashima, H. “Cyber Assist Project for Ambient Intelligence,” Section 3.5.1 of this volume, IOS
Press, 2007.

[5] Whitehouse, K., Zhao, F. and Liu, J. “Semantic Streams: A Framework for Composable Semantic
Interpretation of Sensor Data,” Third European Conference on Wireless Sensor Networks, Zurich,
Switzerland, pp. 5-20, February 2006.

[6] Luo, L., Abdelzaher, F., He, T. and Stankovic, J.A. “EnviroSuite: An Environmentally Immersive
Programming Framework for Sensor Networks,” ACM Trans.on Embedded Computing Systems, 2006.

[7] Böhlen, M. “Help From Strangers - Media Arts In Ambient Intelligence Research,” this volume, IOS
Press, 2007.

[8] Richard, N. and Yamada, S. “Two Issues for an Ambient Reminding System: Context-Awareness and
User Feedback,” this volume, IOS Press, 2007.

[9] Huuskonen, P. “Run to the Hills! Ubiquitous Computing Meltdown,” this volume, IOS Press, 2007.
[10] Woo, A., Seth, S., Olson, T., Liu J. and Zhao, F. “A Spreadsheet Approach to Programming and

Managing Sensor Networks,” Fifth International Conference on Information Processing in Sensor
Networks Track on Sensor Platform, Tools and Design Methods for Networked Embedded Systems
(IPSN SPOTS), Nashville, Tennessee, USA, April 2006.

[11] Satoh, I. “Mobile Agents for Ambient Intelligence,” Ishida, T., Gasser, L., and Nakashima, H. (eds.),
Massively Multi-Agent Systems I, Lecture Notes in Artificial Intelligence, Springer Verlag, vol. 3446,
pp. 187-201, 2005.

[12] Mainland, G., Kang, L., Lahaie, S., Parkes, D.C., and Welsh, M. “Using Virtual Markets to Program
Global Behavior in Sensor Networks,” Eleventh ACM SIGOPS European Workshop, Belgium, 2004.

[13] Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R. and Stafford, J.
“Documenting Software Architectures: Views and Beyond,” Addison-Wesley Professional, ISBN:
0201703726, September 2002.

[14] Kwon, Y., Sundresh, S., Mechitov, K. and Agha, G. “ActorNet: An Actor Platform for Wireless Sensor
Networks,” Fifth International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2006) , Future University, Hakodate, Japan, May 2006.

[15] Fok, C.L., Roman, G.-C. and Lu, C. “Mobile Agent Middleware for Sensor Networks: An Application
Case Study,” Fourth International Conference on Information Processing in Sensor Networks
(IPSN'05), Los Angeles, California, pp. 382-387, April 2005.

[16] Yoder, J. W. and Johnson, R. E. “The Adaptive Object-Model Architectural Style,” Third IEEE/IFIP
Conference on Software Architecture (WICSA3), pp. 3-27, Montréal, Canada, August 2002.

[17] Razavi, R., Perrot, J.-F. and Johnson, R. E. “Dart: A Meta-Level Object-Oriented Framework for Task-
Specific, Artifact-Driven Behavior Modeling,” Sixth OOPSLA Workshop on Domain-Specific Modeling
(DSM’06), Gray, J., Tol-vanen, J.-P., Sprinkle, J. (eds.), Computer Science and Information System
Reports, Technical Reports, TR-37, University of Jyväskylä, Finland, pp. 43-55, October 2006.

[18] Dapoigny R. and Barlatier, P. “Towards a Context Theory for Context-aware systems,” this volume,
IOS Press, 2007.

[19] Briot, J.-P. “Actalk: A framework for object-oriented concurrent programming - design and
experience,” In Bahsoun,J.-P., Baba,T., Briot, J.-P., and Yonezawa, A. (eds.), Object-Oriented Parallel
and Distributed Programming, Hermès Science Publications, Paris, France, pages 209-231, 2000.

[20] Wang W.-J. and Varela, C. A. “Distributed Garbage Collection for Mobile Actor Systems: The Pseudo
Root Approach,” First International Conference on Grid and Pervasive Computing (GPC 2006),
Lecture Notes in Computer Science, Springer, vol. 3947, pp. 360-372, Taichung, Taiwan, May 2006.

[21] Mechitov, K., Razavi, R. and Agha, G. “Architecture Design Principles to Support Adaptive Service
Orchestration in WSN Applications,” ACM SIGBED Review, vol. 4, no. 3, 2007.

[22] Agha, G. “Actors: a Model of Concurrent Computation in Distributed Systems,” MIT Press, 1986.
[23] Green, T. R. G. and Petre, M. “Usability analysis of visual programming environments: a ‘cognitive

dimensions’ framework,” Journal of Visual Languages and Computing 7, 131-174, 1996.
[24] Pane, J.F., Myers, B.A. “The Influence of the Psychology of Programming on a Language Design:

Project Status Report,” Proceedings of the 12th Annual Meeting of the Psychology of Programmers
Interest Group, A.F. Blackwell and E. Bilotta (eds.), Italy: Edizioni Memoria, p. 193-205, 2000.

[25] Nardi, B.A. “A Small Matter of Programming: Perspectives on End User Computing,” MIT Press, 1993.
[26] Peyton-Jones, S., Blackwell, A. and Burnett, M. “A User-Centred Approach to Functions in Excel,”

International Conference on Functional Programming, ACM, Uppsala, Sweden, p. 165-176, 2003.
[27] Razavi, R. “Tools for Adaptive Object-Models – Adaptation, Refactoring and Reflection,” (in French:

“Outils pour les Langages d'Experts – Adaptation, Refactoring et Réflexivité”) Université Pierre et
Marie Curie, Department of Computer Science Technical Report (based on doctoral dissertation), vol.
LIP6 2002/014, 285 pages, Paris, France, November 2001.

[28] Ginot, V., Le Page, C., and Souissi, S. “A multi-agents architecture to enhance end-user individual-
based modeling,” Ecological Modeling 157, pp. 23-41, 2002.

[29] Pachet, F., and Perrot, J.-F. “Rule firing with metarules,” Sixth International Conference on Software
Engineering and Knowledge Engineering (SEKE’94), pp. 322–29, 1994.

[30] Hui, J.W. and Culler, D. “The Dynamic Behavior of a Data Dissemination Protocol for Network
Programming at Scale,” Second ACM Conference on Embedded Networked Sensor Systems
(SenSys’04), pp. 81-94, Baltimore, Maryland, November 2004.

[31] Gnawali, O., Greenstein, B., Jang, K.-Y., Joki, A., Paek, J., Vieira, M., Estrin, D., Govindan, R. and
Kohler, E. “The TENET Architecture for Tiered Sensor Networks,” Fourth ACM Conference on
Embedded Networked Sensor Systems (SenSys’06), Boulder, Colorado, November 2006.

[32] Delin, K. A., Jackson, S. P., Johnson, D. W., Burleigh, S. C., Woodrow, R. R., McAuley, J. M., Dohm,
J. M., Ip, F., Ferré, T. P.A., Rucker, D. F. and Baker, V. R. “Environmental Studies with the Sensor
Web: Principles and Practice,” Sensors 5, pp. 103-117, 2005.

[33] Lim, H. B., Teo, Y. M., Mukherjee, P., Lam, V. T., Wong, W. F. and See, S. “Sensor Grid: Integration
of Wireless Sensor Networks and the Grid,” Local Computer Networks, 2005.

[34] Levis, P. and Culler, D. “Maté: A tiny virtual machine for sensor networks,” Tenth International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOSX),
pp. 85-95, October 2002.

[35] Levis, P., Gay, D. and Culler, D. “Active sensor networks,” Second Symposium on Networked Systems
Design & Implementation (NSDI '05), Boston, MA, USA, May 2005.

[36] Dony, Ch., Urtado, Ch. and Vauttier, S. “Exception Handling and Asynchronous Active Objects: Issues
and Proposal,” Advanced Topics in Exception Handling Techniques, Lecture Notes in Computer
Science, Springer, vol. 4119, pp. 81-100, September 2006.

[37] Campagne, J. C. and Cardon, A. “Artificial emotions for robots using massive multi-agent systems,”
Social Intelligence Design International Conference (SID2003), London, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

