
Abstract
Wireless Sensor Networks (WSNs) are a key ena-
bling technology for Ambient Intelligence.
Macroprogramming has been proposed as a tech-
nique for facilitating programming WSNs, but cur-
rent solutions do not provide the combination of
dynamicity and query specification that would be
useful to domain experts. We have implemented
the first query engine which provides both these
features. Our system leverages AI methods such as
multiagent systems and sophisticated meta-level
knowledge representation techniques to keep track
of the domain knowledge and to enable adaptation
in query processing. Such adaptations include dy-
namic representations, transformations, optimiza-
tions and deployment strategies translating queries
into a system of automatically generated mobile ac-
tors in a WSN.

Keywords: Sensor Networks, Macroprogramming, Mobile
Agents, Actor Systems.

1 Motivation and Problem Statement
The infrastructure for Ambient Intelligence (AmI) [IST,
2003] will include a massive deployment in everyday envi-
ronments of Wireless Sensor Networks (WSNs) consisting
of autonomous, spatially distributed, tiny, low-powered
computers, endowed with communication, sensing and ac-
tuating capabilities [Whitehouse et al., 2006; Luo et al.,
2006]. To realize this vision, WSNs must provide an omni-
present interactive environment. Our goal is to support the
exploitation of an AmI infrastructure by ordinary end-users,
not embedded systems programmers.

Macroprogramming has been proposed as a technique for
facilitating programming WSNs. Macroprogramming en-
ables the specification of a given distributed computation as
a single global specification that abstracts away low-level
distribution. The programming environment first automati-
cally compiles this high-level specification into the rela-
tively complex low-level operations that are implemented
by each sensor node, and then deploys and executes these
operations [Mainland et al., 2004].

As explained in [Razavi et al., 2006a], we are interested
in situations where both the users’ requirements and the
WSN environment may be dynamic. This goal matches the
diversity of functionalities that end-users need from the am-
bient infrastructure, further amplified by the unpredictability
of the phenomena being monitored and the potential
changes in the ambient computing infrastructure. We de-
velop a high-level language which supports WSN macro-
programs called uQueries. A uQuery is represented and
executed using uQuery Engines. Thus the key challenge is
to support the cost-effective and stepwise development of
uQuery Engines. In particular, this requires enabling
uQuery specifications by multiple concurrent and uncoordi-
nated end-users. It also requires deploying and executing
such specifications in a parallel and resource-efficient man-
ner which ensures interoperability with other uQuery en-
gines.

In this paper, we focus primarily on representation (Sec-
tion 3) and execution of uQueries (Section 4). uQueries
result in a system of dynamically created meta-actors which
generate actors that are concurrently deployed on a WSN.
The meta-actors coordinate to control the execution of these
actors on a mobile agent system. Due to limited space, we
do not address our implementation of the end-user Web
interface for uQueries.

As a motivating example, consider a scenario proposed
by Microsoft Research [Woo et al., 2006]: a parking garage
has been wired with break beam sensors and security cam-
eras. Two ordinary end-users, namely Liz and Pablo, work-
ing independently, desire to use the ambient system for their
own goals. Liz is a site manager of the garage building and
is interested in collecting vehicle arrival time data. Pablo is
a security officer in the building who wants to issue tickets
to speeding drivers. In the remainder of this paper, we will
use this example to illustrate our system.

2 Meta-level uQuery Engine Architecture
A key challenge is to dynamically transform high-level
specifications of the users’ queries into low-level executable
code for WSNs. We need a truly dynamic deployment of
independent code segments, which may interact and mi-
grate, running on distributed sensor nodes. This is facilitated
by a meta-level architecture for uQuery Engine.

Dynamic Macroprogramming of Wireless Sensor Networks with Mobile Agents

Reza Razavi
University of Luxembourg
FSTC, LUXEMBOURG

razavi@acm.org

Kirill Mechitov, Gul Agha
University of Illinois at Urbana-

Champaign, IL, USA.
{mechitov, agha}@cs.uiuc.edu

Jean-François Perrot
Université Pierre et Marie Curie

LIP6, Paris, FRANCE
jean-francois.perrot@lip6.fr

2.1 Knowledge Level Support
The knowledge level keeps track of the domain knowledge
and controls query processing (representing, transforming,
optimizing and deploying). Specifically, it tracks two types
of metadata: Static metadata consisting of uQuery represen-
tations and the business ontology, and Dynamic metadata
consisting of the contextual information (including com-
puted domain objects) obtained from uQuery execution.

-dependents

-argument

-holds
-instantiates

-computation method

Task Step
1..*

Construct

1..1

Contract

Domain Concept

0..1 0..*

1..1

-spec1..1

0..*

0..1

0..1

Execution Strategy

-policy

1..1

uQuery

1..*

0..*

-contributes 0..*

Service Repository

-holds1..*
Business Ontology

-holds1..*

1 *

1*
Association
Generalization
Aggregation

Figure 1: uQuery representation meta-model

In [Razavi et al., 2006b] we describe Dart, the first repre-
sentation meta-model that satisfies requirements of dy-
namicity, end-users accessibility, as well as extendibility
and reusability by programmers. Figure 1 illustrates Dart
using the UML notation. A uQuery is represented as an ag-
gregation of tasks, where each task is a set of interrelated
steps. When a step is executed, it produces a domain object.
A construct specifies the computation method for that ob-
ject. A step bridges a construct with the concept of that
object. The most common type of construct is the primitive
construct, which reifies a function call. Each construct re-
fers to (or instantiates) a contract which holds meta-data
about the construct. In the case of primitive constructs, a
contract incorporates the type specification, arguments,
name and a list of properties required for its execution. The
service repository for a uQuery Engine holds these con-
tracts. The business ontology holds the domain concepts,
together with their relationships and constraints. In order to
execute a construct, we need to make platform-specific de-
cisions, which are delegated to the execution strategy.

We assume that both the business ontology and the ser-
vice repository are given. We further assume a comprehen-
sive service repository which enables all interesting uQue-
ries to be explicitly represented as a composition of its ele-
ments.

2.2 Operational Level Support
At the operational level, we require that fine-grained mobile
agent applications can be executed on resource-limited, real-
time distributed systems. The mobile agent platform is re-
sponsible for:
• Deploying and executing actor code dynamically gen-

erated at runtime,
• Dynamically discovering and providing access to all

sensors in the WSN, and
• Implementing the elements of the service repository.

1. ((lambda (migrate) ; main function
2. (seq
3. (migrate ; migrate to destination
4. 200 ; destination id
5. 111) ; meta-actor id
6. (par (extmsg ; send result back to source
7. 111 ; meta-actor id
8. (migrate
9. 100 ; source id
10. (prim ; execute primitive
11. 1 ; primitive index in library
12. nil)) ; list of arguments (empty)
13.))))
14. (lambda (adrs val) ; migrate function
15. (callcc (lambda (cc) (send (list adrs cc
16. (list quote val)))))))

Figure 2: Filled mobile agent code template.

To the best of our knowledge, the only existing system
which satisfies our operational level requirements is Actor-
Net [Kwon et al., 2006]. ActorNet agents are based on the
actor model of computation [Agha, 1986]. The ActorNet
runtime consists of an interpreter running on each sensor
node in the WSN along with several supporting services.
The runtime enables the actors to execute, communicate,
migrate and access sensors and actuators.

The uQuery execution procedure fills a template for an
ActorNet agent (see Figure 2). The template contains four
areas to be filled by the code generator:
• Meta-actor id on lines 5 and 7,
• Application logic on lines 10-12,
• List of arguments on line 12, and
• Execution location and uQuery Engine server address

on lines 4 and 9, respectively.

In Section 4.2, we explain how this template is used by

the knowledge level when executing uQueries.

3 uQuery Representation
We now describe the method for representing uQueries in
our system. The execution procedure will be explained in
the Section 4.

Consider the parking garage example from Section 1.
Pablo wants to make a uQuery to take a photo from a spe-
cific camera in a sensor network. We assume a business
ontology with one concept, Photo, and a service repository

with one contract, Capture Camera, which returns a Photo
object, and a library including an implementation of the
above service (e.g. in nesC for the Mica2 sensor platform).
The representation of this simple uQuery comprises a single
task with a single Capture Camera step, which specifies a
camera sensor id as a property.

More realistic uQueries, however, require a higher degree
of concurrency, control (iterative and conditional), and nest-
ing of tasks. For instance, consider Liz’s query that asks for
a vehicle arrival time histogram for a period of two weeks.
The additional ontologies required to specify steps for this
uQuery are shown in Figure 3. We denote the return value
of tasks by an upward arrow, and the “contributes” relation
of Figure 1 by a dashed arrow. The entire box represents a
uQuery. The boxes 2, 3 and 4 represents tasks. The rest of
the boxes represent steps. Due to shortage of space, we skip
the details of the ontology and services required.

Figure 3: Representation of Liz’s query by three tasks (Num-
bers in ovals are used here for annotation, and are not a part of
the query representation).

The corresponding uQuery, called Liz’s query (1),1 is
represented as three interrelated hierarchical tasks: a main

1 In this paragraph, numbers between parentheses, e.g., (1), re-
fer to the numbered rectangles in the Figure 3.

task (2), and two subordinate tasks, called T1: Compute
Histogram Entry (3) and T2: Identify Vehicle (4). The
main task has two steps: Plot Histogram (5), which returns
a Histogram object to the user, and the control construct For
a Period Do (6) that is in charge of executing T1 for a dura-
tion of two weeks. T1 is then subordinate to step (6), which
controls its execution. It in turn comprises two steps. The
first step instantiates Create Histogram Entry (15), which
returns a Histogram Entry object (to the main task). This
requires as argument a Vehicle object, provided by the sec-
ond step of T1, Do <T2> (16), which nests T2 as computation
method. T2 comprises several steps (7-14), whose represen-
tation is analogous to that of the Capture Camera step de-
scribed above. The task T2 uses inputs from multiple break
beam sensors to detect moving objects and classify them as
vehicles.

To summarize, this uQuery representation contains occur-
rences of the following kinds of steps:
• Primitive calls: designed as steps that call a primitive

as their computation method,
• Control structures: designed as steps that control the

execution of other tasks, such as the For a Period
Do step that controls T1,

• Nested tasks: designed as steps that use a task as their
computation method, e.g., the Do step that uses T2,
simplify the specification of complex uQueries by hi-
erarchically modularizing them.

The syntax of Dart is recursive, i.e., steps may hierarchi-
cally point to tasks. It is also extensible, i.e., tasks and steps
may be used to extend constructs. Arbitrary control con-
structs can be implemented by uQuery Engine programmers
using these properties, thus extending the abstract notion of
a construct in Dart. We provide by default an abstraction
called Control Construct, which has an instance variable
called closures, which keeps track of a collection of subor-
dinate tasks whose number and semantics depend on the
desired functionality, based on the meta-data held by its
contract. In the case of the For a Period Do control struc-
ture, which iteratively executes a given task for a duration
specified as a property, the closures collection holds one
task, here a pointer to T1. Its propertyValues instance vari-
able, inherited from its superclass, holds the duration value,
i.e., 2 weeks in our example.

The representation of nested tasks is close to that of con-
trol structures. The closure collection contains only one
task, which is executed unconditionally upon each activa-
tion of the step.

4 Concurrent Execution of uQueries
We now explain how the above representations are concur-
rently executed by our system. We separate the actor at the
operational level, which is a thread and associated code ac-
tually executed as a mobile agent, from the meta-actor at the
knowledge level, which is a thread that controls the genera-
tion of code and execution of the actor, based on the meta-
data contained in the query representation. Once deployed,

1

Liz’s query

1

Liz’s query

2

Main

2

Main

3

T1: Compute Histogram Entry

3

T1: Compute Histogram Entry

4

T2: Identify Vehicle

4

T2: Identify Vehicle

Histogram

5

Histogram

5

Plot Histogram

Histogram Entry Collection

6

Histogram Entry Collection

6

For a Period of <2 weeks> Do <T1>

Mobile Object

Estimate Motion

8

Pulse Pair 3

Average Pulse Pairs

9

Pulse 1

Detect Beam Event

12

Pulse 2

Detect Beam Event

13

Pulse 3

Detect Beam Event

14

Pulse Pair 2

Sort Edges

Pulse Pair 1

Sort Edges

10 11

Vehicle

Classify Vehicle

7

Mobile Object

Estimate Motion

8

Mobile Object

Estimate Motion

8

Pulse Pair 3

Average Pulse Pairs

9

Pulse Pair 3

Average Pulse Pairs

9

Pulse 1

Detect Beam Event

12

Pulse 1

Detect Beam Event

12

Pulse 2

Detect Beam Event

13

Pulse 2

Detect Beam Event

13

Pulse 3

Detect Beam Event

14

Pulse 3

Detect Beam Event

14

Pulse Pair 2

Sort Edges

Pulse Pair 1

Sort Edges

10 11

Pulse Pair 2

Sort Edges

Pulse Pair 1

Sort Edges

10 11

Vehicle

Classify Vehicle

7

Vehicle

Classify Vehicle

7

Vehicle

Classify Vehicle

7

Vehicle

Do <T2>

16

Histogram Entry

Create Histogram Entry

15

Vehicle

Do <T2>

16

Vehicle

Do <T2>

16

Histogram Entry

Create Histogram Entry

15

Histogram Entry

Create Histogram Entry

15

Histogram Entry

Create Histogram Entry

15

the agent system interprets the actor code and starts its exe-
cution. When an actor sends a message, such as the return
value, to the uQuery Engine, the messaging interface signals
the meta-actor waiting on messages from this actor and de-
livers the message.

4.1 uQueries and Tasks
Execution of uQueries, tasks and steps is controlled by cor-
responding meta-actors. Meta-actors are also implemented
as actors, executing concurrently in separate threads, com-
municating and synchronizing through asynchronous mes-
sage passing. The API of meta-actors comprises start(),
body(), and stop() methods. body() specifies the core
function of the meta-actor, in fours steps:

• Checking preconditions for executability,
• Initializing data structures,
• Executing the behavior,
• Sending an asynchronous message to the parent to

notify the execution result.
The behavior execution step is specific to each kind of

meta-actor. uQuery meta-actors start with launching a
meta-actor for their main task. The main task meta-actor
then continues the execution by launching step meta-actors.
A step meta-actor can only execute in two cases: (1) it is
associated to a root step, i.e., a step whose construct re-
quires no arguments, or (2) all its effective arguments are
available. The execution strategy associated with each step
is in charge of guiding this process.

uQuery and task meta-actors are designed as Composite
Meta-actors, which provides functionality for launching a
set of child meta-actors, here respectively tasks and steps,
and controlling their execution. If the construct of a step
points hierarchically to tasks and subordinate tasks, then, the
corresponding step meta-actor creates also hierarchically
subordinate task meta-actors. The above execution algo-
rithm is applied recursively to the latter.

For example, a uQuery meta-actor is created and
launched for executing Liz’s query. This meta-actor
launches a task meta-actor for the main task, which in turn
launches a step meta-actor for its unique root step, i.e., For
a Period Do. The other step of the main task is not execu-
table since it needs an argument. The For a Period Do
meta-actor starts a timer to control the number of iterations.
Each iteration consists of launching a subordinate task meta-
actor for executing the same task, T1. The execution result
of these meta-actors is collected and constitutes the result of
the execution of the For a Period Do step. At this point,
the main task meta-actor passes this collection to the Plot
Histogram meta-actor and resumes it.

In the case of T1, there is also a unique root step, which is
Do <T2>. The execution of the associated T1 meta-actor
consists of creating a subordinate T2 task meta-actor. The
T1 meta-actor sleeps then on a semaphore, waiting for T2
meta-actor to return a Vehicle or signals an error.

4.2 Low-level Primitives
By low-level primitives we mean services implemented by
the library available at the operational level (ActorNet in our
case). Such services provide access to platform-specific
sensing and data processing functionality. Executing steps
that instantiate primitives requires dynamically generating
and deploying actor code to the WSN.

 The actor template (see Figure 2) is filled by the meta-
actors as the steps of the graph data structure for each task
are traversed. Each step meta-actor which has its precondi-
tions satisfied and has been signaled, directly or indirectly,
by a returning step of the main task, can generate the code
for its associated actor, in parallel with other meta-actors.

The resulting actors, in text form, are deployed to the
WSN by the meta-actors, through the Actor Deployment
Interface (ADI). The ADI is a multithreaded server provid-
ing socket connections over the Internet for concurrently
and remotely deploying and executing actors. The id of its
generating meta-actor is included in the actor code, enabling
the actor to communicate with its associated meta-actor
through the Actor Messaging Interface. The meta-actor can
sleep until it receives the actor’s output object through the
messaging interface, after the actor finishes its computation.
Arguments and return values are marshaled and unmar-
shaled using the information kept by the Execution Strategy.
In case a primitive cannot successfully complete its compu-
tation, a failure is signaled to the relevant meta-actor, which
may trigger garbage collection for the task and its associated
actors and meta-actors

For example, the T2 meta-actor concurrently generates
and deploys on the ActorNet platform mobile actor code for
the three Detect Beam Event steps shown is Figure 3. As
Beam Event objects are received, the Extract Edge meta-
actors may be signaled concurrently, and so on.

4.3 Complex uQueries
Now let us consider a query which requires distributed co-
ordination between different sensors. Such a query cannot
be executed as a single mobile agent. For example, Pablo
wants to take a photo with a camera only when a nearby
break beam sensor is triggered. The task that represents this
query has two steps: detecting a Pulse object and then taking
a Photo.

For executing such queries in a coordinated manner, we
use the argument relation in our meta-model. Whenever an
argument is encountered in the query specification, the
knowledge level automatically creates a dependency rela-
tion between the meta-actors for these two steps. Meta-
actors with dependencies check whether they have all the
arguments necessary to generate and execute their associ-
ated actors. In our example, the meta-actor for capturing a
Photo will be made dependent on the Detect Beam Event
meta-actor. It will be deployed and executed only when a
Pulse object is returned by the latter.

We can now consider a scenario where uncoordinated
concurrent queries are entered into the system by two differ-
ent users, Liz and Pablo. Pablo is interested in taking pho-
tos of Vehicles when they speed through break beam sen-

sors. We assume that Liz’s query remains the same as in the
previous section. Each query is represented independently,
i.e., there is no structural relationship between query repre-
sentations. In this case, the execution for each query is trig-
gered concurrently at the knowledge level, according to the
algorithm described above. This execution procedure can be
subject to optimization, as discussed below.

5 Optimization
The uQuery Engine design presents several opportunities for
optimization. First, in the case of concurrent queries, data
computed in one query can be reused to satisfy requirements
of another. This mechanism is based on exploiting static
and dynamic metadata (see Section 2.1).

For example, a Vehicle object produced by one of the
queries described above contains dynamic metadata such as
a timestamp and the detecting beam sensor’s id. When
processing a query with a step requiring a Vehicle object as
argument, e.g., Compute Histogram Entry in task T1 above,
the already-computed Vehicle may be substituted instead of
executing the Identify Vehicle subtask, assuming the
dynamic metadata of the object matches the constraints
within the static metadata of the query. Such matching al-
gorithms can be implemented using an inference engine,
such as NéOpus [Pachet and Perrot, 1994], which provides
rule-based reasoning in object-oriented applications. The
benefit of this process is to save significant communication,
sensing and computation resources in the WSN, where these
resources are scarce, since redundant actors are not gener-
ated, deployed and executed at the operational level.

Secondly, our query representation allows computing a
computation history for every business object by looking
recursively at the constructs and objects used in its computa-
tion. The computation history allows access to the metadata
associated with each element of the history. As a result,
more complex matching algorithms can be implemented.
For example, a query can compare the conditions under
which the available business object has been computed, and
whether they match the requirements of the current query.
Incidentally, computation histories are also useful for
auditability, that is identifying precisely all computation
steps and their contexts for a given event in the system. The
same feature allows satisfying non-repudiability, i.e., by
computing who has initiated which action.

As another optimization opportunity, we consider the
functional specification of queries, where the user only
specifies the desired functionality without explicitly listing
all implementation details, such as the identifiers or location
coordinates of sensors. The query processing engine can
infer the requirements for these resources from the static
metadata associated with the query and the contracts of the
primitives it invokes. We can then fill in specific sensors
and other parameters matching these criteria. In order to
find suitable sensing resources meeting these constraints, we
extend ActorNet with the Network Directory Service (NDS),
which performs network monitoring and provides an up-to-
date listing of sensor and computing resources available in
the network. The NDS is searchable by sensor type, loca-

tion and other attributes, listed as name-value pairs. Thus
the query engine can find appropriate sensors for a query by
looking at attributes such as location and orientation. This
simplifies the query creation process for the user and pro-
vides opportunities for optimizing query execution, by ena-
bling the uQuery Engine to pick the best resources (e.g.,
closest, least congested, or having the most remaining bat-
tery power) satisfying the query specification.

Finally, at the operational level, the mobility of actors al-
lows for load balancing and resource-aware task allocation,
even as new actors are added. In the parking garage exam-
ple, we can choose, based on the current communication
traffic and available computing power, whether to move the
raw break beam sensor data to a PC for processing, or to
move the vehicle detection code, as a system of mobile
agents, to the sensor where the data is generated. Also, by
exposing available resources (sensors, actuators, data stores,
etc.) to the knowledge level, compatible resources may be
substituted for one another at runtime to simplify scheduling
or reduce congestion.

6 Related Work
A survey of solutions currently proposed in the literature
reveals a variety of approaches to macroprogramming
WSNs: a spreadsheet approach [Woo et al., 2006], Enviro-
Suite [Luo et al., 2006], a market-based approach [Mainland
et al., 2004], and Semantic Streams [Whitehouse et al.,
2005]. Although many of these approaches are quite power-
ful, none of them provide the language abstractions required
for dynamic macroprogramming by end-users as outlined
above.

For example, the spreadsheet approach uses an Excel
spreadsheet to represent the layout of nodes and insert their
functionality in the spreadsheet; queries are resolved by a
logic program that generates a composition of services,
where a service is a .Net component. The approach satisfies
the requirement of usability by non-programmers. How-
ever, it is not sufficiently general: it enforces a particular
naming grid-based scheme and does not allow for the defini-
tion of arbitrary groups of nodes and operations over such
groups.

EnviroSuite proposes environmentally immersive pro-
gramming, an object-based programming model in which
individual objects represent physical elements in the exter-
nal environment. In both EnviroSuite and ActorNet, actors
or objects must be created explicitly by programmers to
provide a service. Behavioral specifications are not in terms
of groups of actors. Protocols to support operations over
groups of objects and protocols to implement such specifi-
cations may not be re-used.

Traditionally, WSN application development involved
fairly static programming languages, operating systems and
reprogramming services, for efficiency reasons. For exam-
ple in TinyOS, the sensor network application components
are written in nesC and compiled together with the operating
system code and middleware services into a single applica-
tion image, which can be uploaded to the sensor nodes using
the Deluge protocol [Hui and Culler, 2004] prior to program

execution. This approach proves successful in achieving its
stated goal of highly efficient utilization of sparse comput-
ing resources. Unfortunately, it is ill-suited for an open sys-
tem comprising a dynamic set of diverse, transient tasks that
is the expected workload in ambient systems. If we take
Deluge as the deployment method for our target systems
(where queries from multiple users, all specified at runtime,
need to be transformed into executable code, uploaded on
the deployed sensor network and executed), this results in
unnecessarily transmitting a large volume of code which has
not changed (OS components, routing protocol, etc.) along
with the newly-generated application code.

7 Conclusion
Ambient Intelligence technologies will enable novel appli-
cations and new work practices in many fields. AmI will
provide for the integration of real-time data into business
processes, enabling real-time decision making and business
process definition and modification. Such dynamicity will
facilitate responding to situations more efficiently, with a
higher degree of quality and end-user satisfaction.

In this paper, we explained how dynamic macropro-
gramming by end-users can be achieved for ambient sys-
tems such as WSNs. The two-level approach to architecting
the query engine allows separating query representation and
reasoning concerns from those of their effective execution
on diverse runtime platforms through model-to-code trans-
formation. The knowledge level comprises the representa-
tion of a domain ontology and a service repository, together
with the uQuery composition machinery, and implements
the rules that govern uQuery transformation, coordination
and optimization. Our system allows for effective end-user
query specification and automated execution. The query
representation meta-model, designed with extendibility and
reusability as primary considerations, allows uQuery engine
programmers to add specific constructs via classical object-
oriented techniques. Business logic primitives are separated
from the core of the mobile agent system, facilitating addi-
tion of new domain-specific primitives to the system.

Representations of queries are transformed to platform-
specific code for ActorNet, dynamically deployed and exe-
cuted. Using ActorNet as the query execution environment
provides dynamicity of macroprogramming, while enabling
load balancing and other optimizations to take place.

The presented meta-level architecture for implementing
uQuery Engines is prototyped by reusing and extending our
previous work on ActorNet and its implementation on
Mica2 motes [Kwon et al., 2006], and Dart implemented as
an object-oriented framework in different dialects of Small-
talk [Razavi et al., 2006]. This prototype is called Ambi-
ance Platform and uses a new implementation of Dart in
Squeak (http://www.squeak.org/). We further use the Sea-
side framework (www.seaside.st) for the dynamic Web-
enabled uQueries programming interface of Ambiance.

A number of important issues remain to be explored.
These include dynamic and seamless integration of sensor
and actuator nodes, sensitivity to privacy concerns and
trustworthiness, and analyzing coherence and integrity of

uQueries. For example, the computation history discussed in
Section 5 allows security enforcement through dynamic
decision making about whether to execute the current step
or not. Furthermore, significant optimization may be possi-
ble, for instance by integrating learning mechanisms into
query specification, transformation and execution.

Acknowledgments
This work is partially funded by the University of Luxem-
bourg, in the framework of the Åmbiance project
(R1F105K04) and NSF under grant CNS 05-09321, by
ONR under DoD MURI award N0014-02-1-0715 to UIUC.
The authors would also like to acknowledge the valuable
collaboration of F. Arbab, A. Cardon, N. Bouraqadi, P.
Bouvry, Ch. Dony, V. Ginot, R. Kumar, R. Johnson, M.
Malvetti, S. Nadjm-Tehrani, D. Riehle, S. Sundresh, and J.
Yoder.

References
[Agha, 1986] Agha, G.: “Actors: a Model of Concurrent Computation

in Distributed Systems”. MIT Press, 1986.

[Hui and Culler, 2004] Hui, J.W. and Culler, D.: “The Dynamic Be-
havior of a Data Dissemination Protocol for Network Program-
ming at Scale.” In SenSys’04, pp. 81-94, 2004.

[IST, 2003] IST Advisory Group. Ambient intelligence: from vision to
reality, September 2003.

[Kwon et al., 2006] Kwon, Y., Sundresh, S., Mechitov, K., Agha, G.:
“ActorNet: An Actor Platform for Wireless Sensor Networks.” In
AAMAS, 2006.

[Luo et al., 2006] Luo, L., Abdelzaher, F., He, T., Stankovic, J.A.:
“EnviroSuite: An Environmentally Immersive Programming
Framework for Sensor Networks.” ACM Transaction on Embed-
ded Computing Systems, 2006.

[Mainland et al., 2004] Mainland, G., Kang, L., Lahaie, S., Parkes,
D.C., and Welsh, M.: “Using Virtual Markets to Program Global
Behavior in Sensor Networks.” 11th ACM SIGOPS European
Workshop, Belgium, 2004.

[Pachet and Perrot, 1994] Pachet F, Perrot JF.: “Rule firing with meta-
rules.” In SEKE’94. pp. 322–29, 1994.

[Razavi et al., 2006a] Razavi, R., Mechitov, K., Sundresh, S., Agha,
G., Perrot, J.-F.: Ambiance: Adaptive Object Model-based Plat-
form for Macroprogramming Sensor Networks. Poster session ex-
tended abstract. OOPSLA 2006 Companion. Portland, Oregon,
USA (2006).

 [Razavi et al., 2006b] Razavi, R., Perrot, J.-F., Johnson, R.: Dart: A
Meta-Level Object-Oriented Framework for Task-Specific, Arti-
fact-Driven Behavior Modeling. In Proceedings of DSM’06, Port-
land, Oregon, USA. ISBN 951-39-2631-1, pp 43-55, 2006.

 [Whitehouse et al., 2006] Whitehouse, K., Zhao, F. and Liu, J.: “Se-
mantic Streams: A Framework for Composable Semantic Interpre-
tation of Sensor Data.” In EWSN’06, Switzerland, pp. 5-20, 2006.

[Woo et al., 2006] Woo, A., Seth, S., Olson, T., Liu J., and Zhao, F.:
“A Spreadsheet Approach to Programming and Managing Sensor
Networks.” In IPSN SPOTS, 2006.

