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We describe an efficient decentralized algorithm to monitor the execution of a distributed program
in order to check for violations of safety properties. The monitoring is based on formulas written
in PT-DTL, a variant of past time linear temporal logic that we define. PT-DTL is suitable for
expressing temporal properties of distributed systems. Specifically, the formulas of PT-DTL are
relative to a particular process and are interpreted over a projection of the trace of global states
that represents what that process is aware of. A formula relative to one process may refer to
the local states of other processes through remote expressions and remote formulas. In order to
correctly evaluate remote expressions, we introduce the notion of knowledge vector and provide
an algorithm which keeps a process aware of other processes’ local states, if those states may
affect the validity of a monitored PT-DTL formula. Both the logic and the monitoring algorithm
are illustrated through a number of examples. Finally, we describe our implementation of the
algorithm in a tool called DIANA.

Categories and Subject Descriptors: D.Bdffware Engineering]: Software/Program Verification; D.2.5§ft-
ware Engineering]: Testing and Debugging

General Terms: Verification
Additional Key Words and Phrases: Actors, Distributed systems, Decentralized analysis, Runtime
monitoring, Happens-before relation, Knowledge vector, Vector clock.

1. INTRODUCTION

Software errors arise from a number of different problemashsas incorrect or incomplete
specifications, coding errors, and faults and failures éenltrdware, operating system or
network. Model checking [E. M. Clarke et al. 1999] is an imaot technology which is
finding increasing use as a means of reducing software efttmfortunately, despite im-
pressive recent advances, the size of systems for whichlroleeking is feasible remains
rather limited. This weakness is particularly critical retcontext of distributed systems:
concurrency and asynchrony result in inherent non-detesmithat significantly increases
the number of states to be analyzed. As a result, most sysiddels continue to use test-
ing as the major means to identify bugs in their implemeaotesti

There are, however, two problems with software testingstFiesting is generally done
in anad hocmanner: the software developer must hand translate théreemgnts into
specific dynamic checks on the program state. Second, testagge is often rather limited,
covering only some execution paths. To mitigate the firsbjam, software often includes
dynamic checks on a system'’s state in order to identify @mislat run-time. Recently,
there has been some interest in run-time verification andtororg [Havelund and Rosu

Lpart of the work reported in this paper was presented at2i& International Conference on Software
Engineering (ICSE’'04) [Sen et al. 2004a].
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2004; Sokolsky and Viswanathan 2003] techniques, whickigeoa little more rigor in
testing by automatically synthesizing monitors from folsyecifications. These monitors
may then be deployed off-line for debugging or on-line fondmically checking that
safety properties are not being violated during systemugict

Unfortunately, testing or runtime monitoring of distribdtsystems involves consider-
able overhead: for every event (sending of a message, megei¥a message, or a local
state update), each process sends a message about th@eveentral monitor. The cen-
tral monitor constructs and analyzes a computation lafBedadjlu and Marzullo 1993]
of the global states out of the collected events. Passingages to a central monitor at
every event and constructing a global computation lattidech can be exponential in size
in the number of events, leads to severe communication amguiation overhead. In the
present work, we argue that distributed systems may betif§cmonitored at runtime
against formally specified safety requirementsitsgributing the task of monitoringmong
the processes involved in the distributed computation. fiBscBve monitoring, we mean
not only linear efficiency, but also decentralized moniigrivhere few or no additional
messages need to be passed for monitoring purposes.

We introduce an epistemic temporal logic for distributedwledge and illustrate the
expressiveness of this logic by means of several examplesthéh show how efficient
distributed monitors can automatically be synthesizethfrequirements specified in this
logic. Finally, we present a software system implementimggroposed techniques, as a
development and monitoring framework for distributed egst applications, called 1B
ANA. To use DANA, a user must provide an application together with the forpafdty
properties that he or she wants monitorediARA automatically synthesizes code for
monitoring the specified requirements and weaves apptepriatrumentation code into
the given application. As soon as a safety violation is riagehy any of the local monitors
at runtime, user-provided recovery code can be executatictite is intended to bring the
system back to a safe state by, for example, rebooting ileaseg its resources.

The work presented in this paper was stimulated by the obagervthat, in distributed
systems, it is generally impractical to monitor requiretsaxpressed in classical temporal
logics. For example, consider a system of mobile nodes irchvbne mobile node may
request a certain value from another node. On receivingdhaest, the second node
computes the value and returns it. An important requirenrerstiuch a system is that
no node receives a reply from a node to which it has not prelyossued a request. It
is easy to see that Linear Temporal Logic (LTL) would not beracfical specification
language for any reasonably sized collection of nodes. ®Li$, we would need to
collect consistent snapshots of the global system; a dentmaitor would then check the
snhapshots for possible violations of the property by caréig) all possible interleavings of
events that are allowed by the distributed computation. dpstem of thousands of nodes,
collecting such a global snapshots would be prohibitiverédger, the number of possible
interleavings to be considered would be large even if pawéechniques such as partial
order reduction are used. To address the above difficultyjefiaepast-time distributed
temporal logic(PT-DTL). Using PT-DTL, one can check/monitor a global property such
as the one above by checking/monitoring a local propertaei @ode.

The work presented in this paper brings at least three majoiributions. First, we
define a simple but expressive logic to specify safety ptogsein distributed systems.
Second, we provide an algorithm to synthesize decentthirmmnitors for safety properties
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that are expressed in the logic. Finally, we describe thédampntation of a tool (DANA)
that is based on this technique.

The paper is organized as follows. Section 2 gives some atotyy examples and in-
formally introduces,T-DTL. Section 3 and Section 4 give the preliminaries. SecBo
formally introducesPT-DTL. In Section 6, we describe the algorithm that undertas
implementation. Section 7 briefly describes the implem@nalong with initial experi-
mentation.

2. MOTIVATING EXAMPLES

Let us assume an environment in which a nedeay send a message to a nédequesting

a certain value. The node on receiving the request, computes the value and sendskit ba
to a. There can be many such nodes, any pair can be involved inastreimsaction, but
suppose that a crucial property to enforce is that no nodeives a reply from another
node to which it had not issued a request earlier. One carkahecglobal property by
having one local monitor on each node, which monitors a sipgbperty. For example,
nodea monitors “if ¢ has received a value then it must be the case that previaushei
past ab the following held:b has computed the value anduzd request was made for that
value in the past”. This is precisely and concisely exprfsethepT-DTL formula:

@, (receivedValue — @Q,(¢(computedValue A @Q,(OrequestedValue))))

Note that we read® as “at”, @, F is the value off" in the most recent local state bthat
the current process is aware of, ahdlenotes the formula was true sometime in the past.
Like in [Sen et al. 2004b]Q is allowed to take any set of processes as a subscript tagethe
with a universal or an existential quantifier; therefaeg, becomes “syntactic sugar” for
Q@yypy (or for @5y,1). Monitoring the above formula involves sending no addiéibmes-
sages — it involves inserting only a few bits of informatiohieh are piggybacked on the
messages that are already being passed in the computatiisrefficiency provides a sub-
stantial improvement over what is required to monitor folasuwvritten in classical LTL.

Moreover, we introduceemote expressionsi PT-DTL to refer to numerical values
depending on the state of a remote process. For example cagsromay monitor the
property: “if my alarm has been set then it must be the casdhbalifference between my
temperature and the temperature at proéesceeded the allowed value”:

Q,(alarm — ¢ ((myTemp — @Q,otherTemp) > allowed))

@potherTemp iS a remote expression that is subtracted from the locabvafitiy Temp.

An example of a safety property that may be useful in the ctiofean airplane software
is: “if my airplane is landing then the runway allocated by #irport matches the one that
| am planning to use”. This property may be expresseriD TL as follows:

Q@airp1ane(landing — (runway = (QairpercallocRunway)))

Another example considers monitoring a correctness remugnt in a leader-election
algorithm. The key requirement for leader election is tlnetré is at-most one leader.
If there are 3 processes, sayb, ¢, andstate is a variable in each process that can have
valuesleader, loser, candidate, sleep, then we can write the property at every process
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as: “if a leader is elected then if the current process is@dethen, to its knowledge, none
of the other processes is a leader”. We can formalize thisirement as the following
PT-DTL formula at process:

@, (leaderElected —
(state = leader — (@,(state # leader) A Q.(state # leader)))

We can write similar formulas with respect tcandc. Given an implementation of the
leader election problem, one can monitor each formulalpctlevery process. If violated
then clearly the leader election implementation is inazirre

Note that the above formula assumes that the name of evecggsanvolved in leader
election is known a priori. Moreover, the size of the formdipends on the number of
processes. In a distributed system involving a large nurob@rocesses, writing such
a large formula may be impractical. The problem becomes ewvare important in an
evolvingdistributed system (new processes are created and dedtiggamically) where
one may not know the name of processes beforehand. To adiekia difficulty, as already
mentioned, we use a set of indices instead of a single indtheioperator@. The set of
indices denoting a set of processes can be represented cihnipea predicate on indices.
For example, in the above formula, instead of referring thgaocess by its name, we can
refer to the set of all remote processes by the predicate and use this set as a subscript
to the operatof:

@;(leaderElected — (state = leader — Qyyj|;+;)(state # leader)))

3. DISTRIBUTED SYSTEMS

A distributed system is a collection of processe$p;, ..., p,), each with its own local
state. The local state of a process is given by the valuescbtuits variables. Note
that there are no global or shared variables. Processes aoicate with each other using
asynchronous messages whose order of arrival is indetatenimhe computation of each
process is abstractly modelled by a se¢weéntsand a distributed computation is specified
by a partial orde on the events. There are three types of events:

(1) internal events change the local state of a process;
(2) sendevents occur when a process sends a message to anothespaockes
(3) receiveevents occur when a message is received by a process.

Let E; denote the set of events of procegssind letE denote J, E;. Now, < C E x E'is
defined as follows:

(1) e < ¢’ if e ande’ are events of the same process am@dppens immediately befoeé

(2) e < €' if eis the send event of a message at some process the corresponding
receive event of the message at the recipient process.

The partial order< is the transitive closure of the relatien This partial order captures
the causalityrelation between events. The structure described by (E, <) is called a
distributed computatiomnd we assume an arbitrary but given distributed comput&tio
Further,< is the reflexive and transitive closure af

As an illustration, in Fig. 1¢11 < ea3, €12 < eas3, andej; < egs. HOwever,eis #eos.
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Fig. 1. Sample Distributed Computation

Fore € E, we definele %' {¢/ | ¢ < e}, thatis,|e is the set of events that causally
precede:. Fore € E;, we can think of| e as the local state gf; when the evernt has just
occurred. This state contains the history of events of aktg@sses that causally precede

We extend the definition of, < and < to local states such thake < | iff e < ¢/,

le < |e'iff e < €,and|e < | iff e < ¢/. We denote the set of local states of a process

p; by LS; def {le | e € E;} and letLS def U, LS;. We use the symbols;, s/, s, ...

to represent the local states of procgssWe also assume that the local stateof each
proces®; associates values to some local variablgsand thats; (v) denotes the value of
a variablev € V; in the local state; at procesg;.

We use the notatiof@; (s;) to refer to the latest state of procgssthat the procesg;
knows while in states;. Formally, if @;(s;) = s; thens; € LS; ands; < s; and for all
si e LS, if s; < s; thens; < s;. For example, in Figure @, (|es3) = |e12. Note that if
t=7 then@j(si) = S;.

4. PAST TIME LINEAR TEMPORAL LOGIC (PT-LTL)

Past-time Linear Temporal Logie(-LTL) [Manna and Pnueli 1992; 1995] has been used
in [Havelund and Rosu 2002; Kim et al. 2001; Sen et al. 2003xpress, monitor and
predict violations of safety properties of software systeithe syntax oPT-LTL is:

F :=true|false |a € A|~F | Fop F propositional
| OF | OF |LF |FSF temporal

whereop are standard binary operators, V, —, and«<. ®F should be read as “previ-
ously”, & F as “eventually in the pastT1F as “always in the past’} SF» as “F} since
Fy". The logic is interpreted on a finite sequence of statesama If p = s152... 5,

is a run then we lep; denote the prefix rum;ss...s; for eachl < i < n. The
semantics of the different operators is given in Table I. Emample, the formula
[((action A ®—action) — (—stop S start)) states that wheneverct i on starts
to be true, it is the case that ar t was true at some point in the past and since steop
was never true: in other words, the action is taken only wihiéesystem is active. Notice
that the semantics of “previously” is given as if the tracanbounded in the past and sta-

tionary in the first event. In runtime monitoring, we star firocess of monitoring from
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p | true for all p,
p [~ false for all p,

pEa iff @ holds in the stats,,,

pEF iff p = I,

p E Fyop Fy iff p |= Fy and/or/implies/iffp = F5, whenopisA/V [ — [ <,
pEGF iff o = F,wherep’ =p,_1ifn>1landy =pifn=1,
pEOF iff p; = F for somel < i <n,

p EQF iff p; = Fforall <i<n,

pEFLSF, |ff pj = Fyforsomel < j <nandp; = F;forall j <i<mn,

Table . Semantics afT-LTL

the point that the first event is generated and we continuetororg for as long as events
are generated.

Although PT-LTL is interpreted over a linear execution trace, in dmited systems a
computation is a partial order which may have several ptessiitearizations. Therefore,
monitoring a distributed computation requires monitoraigpossible linear traces that
may be obtained from a partial order. Unfortunately, the benof linearizations of a
partial order may be exponential in the length of the compartaand thus monitoring
a PT-LTL formula may become easily intractable. A major conitibn of this paper
is to extendPT-LTL so that we can reason about a distributed property usirlg local
monitoring. We describe this extension next.

5. PAST TIME DISTRIBUTED TEMPORAL LOGIC

AlthoughpPT-LTL works well for a single process, once we have more preggteracting
with each other we need to reason about the state of remotegm®s. Since practical
distributed systems are usually asynchronous and thewbsgibbal state of the system
is not available to processes, the best thing that each procestodato reason about the
global state that it iss aware of

We define Past-Time Distributed Temporal Logre{DTL) by extendingPT-LTL to
express safety properties of distributed message pasgitgnss. Specifically, we add a
pair of epistemic operatoras in [Ramanujam 1996], writtem, whose role is to evaluate
an expression or a formula in thest known statef a set of remote processes. We call such
an expression or a formul@mote A remote expression or formula may contain nested
epistemic operators and refer to variables that are local temote process. By using
remote expressions, in addition to remote formulas, a tarigss of desirable properties of
distributed systems may be specified without sacrificingeffieiency of monitoring.

For example, consider the simple local property at a prope#isat if « is true in the
current local state gf; then3 must be true at the latest state of processf whichp; is
aware of. This property will be written formally inT-DTL as@; (o« — @;3). However,
referring to remote formulas only ot sufficient to express a broad range of useful global
properties such as “at process the value ofr in the current state is greater than the value
of y at procesp; in the latest causally preceding state.” The reason wedntre the novel
epistemic operators on expressions is that it is crucialet@tile to also refer tgalues
of expressions in remote local states. For example, theeptyppbove can be formally
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specified as theT-DTL formula@;(x > @;y) at proces®; whereQ;y is the value ofy
at procesp; thatp; is aware of.

The intuition underlyingeT-DTL is that each process is associated with local temporal
formulas which may refer to the global state of the distedusystem. These formulas
are required to be valid at the respective processes durdigtrébuted computation. A
distributed computation satisfies the specification whkthallocal formulas are shown to
satisfy the computation.

5.1 Syntax

From now on, we will only considerT-DTL formulas associated to, @ocal to, individual
processes. We call such formulas associated to prggestormulasand letF;, F/, ...
denote them. Further, we introduGexpressionas expressions that are local to a process
p; and letg;, &/, ... denote them. Informally, afrexpression is an expression over the
global state of the system that processs currently aware of. Local predicates én
expressions form the atomic propositions on which the teaipgormulas are built.

We add theepistemic operator$dy ;F; and @5 F; which is true if at all (or some,
respectively) processgsin the set/, F;; holds. Similarly, we add the epistemic operator
@;¢&; which returns the set of-expressiong; for all processeg in the setJ. The sets
J can be expressed compactly using predicates gvdfor example,J can be the sets
{j|j#a}or{j|client(j)}. The following gives the formal syntax ef-DTL, where
¢ andj are names of any process (not necessarily distinct):

F .= @ze
F; == true | false | P(&;) | —F; | F; op F; propositional
| OF; | OF; | OF; | F; S F; temporal
| Qy;F; | Q35 F; epistemic
&= clu| f(&) functional
| @s¢; epistemic
& o= (&, &)

A top-level PT-DTL formula F' is always of the form@; F; implying that it is always
specified local to a process. The infix operaipmay be a binary propositional operator
suchas\,Vv,— or=. The term{i stands for a tuple of expressions on proggsJ he term
P(&) is a (computable) predicate over the tugjeand f(&) is a (computable) function
over the tuple. For exampl# may be<, <,>, > = and f may be+, —, /, . Variables
v; belongs to the séft; which contains all the local state variables of proggs€onstants
such ad), 1, 3.14 are represented by c’, c1, . . ..

The expressiom;¢; is syntactic sugar fozlem (Qy;,£;), where the functiorlem takes
a set containing a single expression and returns that esipresSimilarly,@; F; is syntac-
tic sugar for eithery ;, F; or @3¢5, F (they are equivalent).

5.2 Semantics

The semantics afT-DTL is a natural extension ofT-LTL with the intuitive behavior for
the epistemic operators. The atomic proposition®BLTL are replaced by predicates
over tuples of expressions. Table Il formally gives the satica of each operator ¢fT-
DTL. (C, s;)[@s¢;] is the set of values of the expressigrin the states; = @;(s;) which

is the latest state of procegsfor eachj € J of which procesg; is aware of. We assume
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that expressions are properly typed. Typically, theseﬁymmld bei nt eger,
strings. We assume that;, s/, s/

. € LS; ands;, s’

L’17" J’]"’

C,s; E true for all s;

C,s; £ false for all s;

C,si E P&, ... iff P((C,s:)[&],---,(C,s:)[E]) = true
C,Si ': —F, iff C,Si b& Fl

€ LS;. Notice that
as inPT-LTL, the meaning of the “previously” operator on the inititate of each process
reflects the intuition that the execution trace is unbouridéde past andtationary

C,s; E OF; iff if 3s, s < s; thenC,s; = F; elseC,s; = F;
C,si E OF; iff 3s; . s, < s; andC, s, )= F;
C,s; = UF; n‘szz%Fforalls <8
C,s; = F; S F] if 3s; . l\szandCs = F]

andvs! . s, < s < s; impliesC, s/ = F;
C,Si): @VJFJ‘ iff Vj(jEJ)HC,SJ ): FjWhereSj:@j(Si)
C,s; ): @EIJFj iff Hj . (] € J) N C,Sj ): Fj Wheresj = @7(81)
(C, s:)[vi] = s;(v;), thatis, the value ob; in s;
(Casi)ﬂcz]] =¢;
(C, SZ)[[f(gla <o 751’)]] = f((cv Sl)[[gl]]v KRR (C7 Sl)[[d]])
(C,si)[@s&;] ={(C,5))[&] | s =Q;(si) nje T}

Table Il. Semantics afT-DTL

5.3 Examples

To illustratePT-DTL, we consider a few relatively simple examples. The fassample
is concerned withmajority vote The desired property, “if the resolution is accepted then
more than half of the processes say yes”, can be stated as:

@;(accepted — sum(@{j| jis any procesdvote))) >n/2)

where a process storésn a local variablevote if it is in favor of the resolution, an@
otherwise;sum is a function that takes as argument a set of values and setfueir sum.

A second example is a safety property that a server mustysatisase it reboots itself:
“the server accepts the command to reboot only after knowtiageach client is inactive
and aware of the warning about pending reboot.” The propsrypressed as theerver
local formula below which contains nested epistemic opesat

rebootAccepted — A ;.. (Qciient(inactive A QgeryerrebootWarning))
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6. MONITORING ALGORITHM FOR PT-DTL

We next describe a technique to automatically synthesiteiesft distributed monitors
for safety properties of distributed systems expressedHBTL. We assume that one or
more processes are associated withDTL formulas that must be satisfied by the dis-
tributed computation. The synthesized monitodistributed in the sense that it consists
of separatelpcal monitorsrunning on each process. A local monitor may attach addition
information to an outgoing message from the correspondioggss. This information can
subsequently be extracted by the monitor on the receivitig without changing the un-
derlying semantics of the distributed program. The key igwigrinciples in the design of
this technique are as follows:

—A local monitor should be fast, so that monitoring can be damime;

—A local monitor should have little memory overhead, in garfr, it shouldhot need to
store the entire history of events on a process; and

—The number of messages that need to be sent between probasses purpose of
monitoring should be minimal.

In this section, when we refer to a remote expression or ftame mean one which
occurs in any of the monitoreei-DTL formulas.

6.1 Knowledge Vectors

Consider the problem of evaluating a remgtexpression@;¢; at procesy;. A naive
solution is that process; simply piggybacks the value @f; with every message that it
sends out. The recipient procesgscan extract this value and use it as the valu@gf;.
However, this approach is problematic: recall that mességenp; could reacty; in an
arbitrary order: because the arrival order of two messages from the same sender,
is indeterminate, more recent values may be overwrittenlddyrones. To keep track of
the causal history, or in other words the most recent knogded/e add an event number
corresponding to the local history sequenceg aat the time expressions were sent out in
messages. Stale information in a reordered message segag¢hen simply discarded.

Causal ordering can be effectively accomplished by usinguaay called KiowL-
EDGEVECTORWith an entry for any process participating in the distributed computa-
tion. Knowledge vectors are motivated and inspired by vedticks [Fidge 1988; Mattern
1989]. LetKV[j] denote the entry for procegs on a vectorK'V. KV[j] contains the
following fields:

—The sequence number of the last event seen,atenoted byK 1]j].seg;
—A set of valuesK V[j].values storing the valueg-expressions angHformulas.

Each procesp; keeps a local KOwLEDGEVECTORdenoted byK'V;. The monitor of
process; attaches a copy ok V; with every outgoing message. We denote the copy
by KV,,. The algorithm for the update of MOWLEDGEVECTOR K'V; at proces9; is as
follows:

(1) [internal]: update KV;[i]. Evaluateeval(&;,s;) and eval(F;,s;) (see Subsec-
tion 6.2) for each@;¢; and @y F; (or Qg F;), respectively, and store them in the
setK V;[i].values;

(2) [send m]: KV;[i].seq — KV;[i].seq + 1. SendKV; with m asKV,,;
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C,Si ': OF; = C,Si ): F;or (E'S; . S; < 8; andC,S; ': @Fl)
C,si = OF, = C,s = F,and@s,.s; <s;impliesC, s, = [IF;)
C,s; ): FZSF/ =0C,s; ): F;l or

(C,s; = Fyand3s, . s, < s; andC, s, = F;SF})

Table Ill. Recursive Semantics ef-DTL

(3) [receivem]: for all 4, if KV,,[j].seq > KV;[j].seq thenKV;[j] — KV,,[j], thatis,
KV;[jl.seq — KVp,[j]-seq,
KV;[j]-values < KV, [j].values.
Evaluateeval(¢;, s;) andeval(F;, s;) for eachQ;¢; and@y, F; (or Q3 F;), respec-
tively, and store them in the sé&tV;[i].values.

We call this the NOWLEDGEV ECTORalgorithm. Informally, K V;[j].values contains
the latest values that, has forj-expressions of-formulas. Therefore, for the value of a
remote expression or formula of the forf@y¢; or @y ; F; (or @55 F;), procesy; can just
use the entry corresponding o or F; in the setK'V;[j].values. Note that the sequence
number needs to be incremented only when sending messa¢escofrectness of the
algorithm can be stated as the following proposition.

PrRoPOSITION 6.1. For any processp; and any j, the entry for&; or F; in
KV;[j].values contains the value o ;¢; or Q; F;, respectively.

The initial values for all the variables in a distributed gram may be found either
by a static analysis of the program or by a distributed brasdat the beginning of the
computation. Thus, it is assumed that each propessas the complete knowledge of the
initial values of remote expressions for all processes.s&éhalues are used to initialize
the entriesK'V;[j].values in the KNOWLEDGEV ECTOROf p; for all 5.

6.2 Monitoring a Local PT-DTL Formula

The monitoring algorithm for & -DTL formula is similar in spirit to that for an ordinary
PT-LTL formula described in [Sen et al. 2003]. The key diffezeris that we allow remote
expressions and remote formulas whose values and valié@yectively, need to be trans-
ferred from the remote process to the current process. QiecENOWLEDGEV ECTORIS
properly updated, the local monitor can compute the booladue of the formula to be
monitored, by recursively evaluating the boolean valueamheof its subformulas in the
current state. To do so, it may also use the boolean valuas&drsnulas evaluated in the
previous state and the values of remote expressions andadonmulas.

The functioneval is defined next.eval takes advantage of the recursive nature of the
temporal operators (see Table Ill) to calculate the booladure of a formula in the current
state in terms of (a) its boolean value in the previous stadie(l) the boolean value of its
subformulas in the current state. The functap(Z;) returns the operator of the formula
F;, binary(op(F;)) returnstrue if op(F;) is binary,unary(op;)) returnstrue if op(F;) is
unary,left(£;) returns the left subformula df;, right(F;) returns the right subformula of
F; whenop(F;) is binary, andsubformulaf;) returns the subformula df; otherwise. The
variable index represents the index of a subformula.
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array now; array pre; int index;

boolean eval(Formula F;, State s;){
if binary(op(F;)) then{
lval — eval(left(F;), s:);
rval — eval(right(F;), s:); }
else if unary(op(F;)) then
val — eval(subformula(F;), s;);
index < 0;
case(op(F;)) of{
true : return true; false : return false;
P(&) : return P(eval(&:, 1), ..., eval(&], s:)));
op : return rval op lval; = : return not val;
S : now[index] — (pre[indez] and lval) or rval;
return now[index++];
O : now[index] <« pre[index] and val;
return now[index++|;
& : nowlindex] «— pre[index] or val;
return now[index++];
© : nowindex] < val; return pre[index++];
Qu, Fj : return A ;_; F; where value oft’; is looked up fromK V; [j]. values;
@z, Fj : return \/,_ ; F; where value off’; is looked up fromK'V;[j]. values;

}
}

where the global arragre contains the boolean values of all subformulas in the ptesvio
state that will be required in the current state, while ttabgl arraynow, after the evalua-
tion of eval will contain the boolean values of all subformulas in therent state that may
be required in the next state. Note that tlesvarray’s value is set in the functi@val The
functionevalon expressions is defined next.

value eval(Expression ¢;, State s;){
case(&;) of{
v;: return s;(v;); ¢ return c¢;;
fEd, ... € return f(eval(E},s:),. .., eval(€F,s,));
Q@;¢&): return {&; | j € J} where value ot is looked up fromK V;[j].values;
}
}
Note that the functioreval cannot be used to evaluate the boolean value of a formula at
the first event, as the recursion handles the easel in a different way. We define the
functioninit to handle this special case as implied by the semanties-®&f TL in Tables
Il and Ill on one event traces.

boolean init(Formula F;, State s;){
if binary(op(F;)) then{
lval «— init(left(F;, s:));
rval «— init(right(F;, s;)); }
else if unary(op(F;)) then
val «— init(subformula(F;, s;));
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index «— 0;
case(op(F3;)) of{
true : return true; false : return false;
P(&) : return P(eval(&i, si), . . ., eval(&], s:)));
op : return rval op lval; - : return not val;
S : nowlindex] « rval; return now[indez++;
[, ©,® : nowlindex] < val; return nowlindex++];

}
}

For apT-DTL formula@, F;, we callp; the ownerof that formula. At the owner process,
we evaluatd-; using theewal function after every internal or receive event, and theigass
nowto pre. This is done after the KOWLEDGEV ECTORIs correspondingly updated after
the event. If the evaluation df; at procesg; is false then we report a warning that the
formula@; F; has been violated. The time and space complexity of thigitggo at every
event is©(mn), wherem is the size of the original local formula andis the number of
processes involved in the distributed computation.

The evaluation of a formul&@y ;F; (or @3;F}) or an expressio® ;&; requires the
computation of the sef at runtime. If the elements of the set depend on the dynamic
behavior of the program, then every knowledge vector nezdsdintain the value of the
formulaF; or of the expressiof ;¢; for every procesg involved in the computation. This
implies that the size of the knowledge vector is linear inrthenber of the processes in the
system. However, if the set can be determined syntactically before the program starts,
knowledge vector needs only to maintain the values offthef @ ;¢; for the processes in
the setJ. In particular, if a formula is of the form@, F,,, wherea is some unique process
in the system, a knowledge vector only needs to maintainniry &,,. This implies that
the size of a knowledge vector can be independent o the nuoflibe processes in the
system if all the subformulas havir@ operator at the top are of the form; F; or @ ;¢;.
This particular case was the one presented in [Sen et ala2004

6.3 Example

To illustrate the monitoring algorithm, we consider a sienpkample where all the subfor-
mulas with the epistemic operat@r at the top are of the form®; F; or @ ;¢;. Consider
three processep;, p» andps. p; has a local variable whose initial value is 5p, has a
local variabley with initial value 7, and the formula to be monitoredas(y > @;z).
An example computation is shown in Figure 2.

There is only one formula to monitor with a single occurreatan@ operator, namely
@; 2. Hence, the KOWLEDGEV ECTORhas a single entry which correspondgto More-
over, since the only remote expression to be tracked §V[1].values simply stores the
value ofz. In the figure, next to each event, we shéiW1] at that instant for that pro-
cess.KV[1] is graphically displayed by a stack of two numbers, the topioer showing
KV[1].seq and the bottom number showing the valuefor

The computation starts off with the initial valuesof= 5 andy = 7. All processes
know the initial value ofc, hence theK'V[1].values for each process has value 5. Itis easy
to see that the monitored formuld(y > @;x) holds initially atp,. Subsequently, ai;
there is an internal event; which setse = 9 and update® 1 [1].values correspondingly.
Proces®, then sends a messageztpwith a copy of its currentV. Another internal
evente,3 causest to be set to 6. Procegs again sends a message, this time4pwith
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P3e

y=7 E
) >~
~23
y=3
(violation)

x=5
P1

<— KVJ[1].seq
<«— KV[1].values
Fig. 2. Monitoring of@s[)(y > @) atpe

the updated{ V. Proces®s updates itV and sends this on the message it sendgs to

At processps, the message sent Ipy happens to arrive earlier than the message from
p1. Therefore, at eventy;, on receiving the message frgiy, proces%s is able to update
its K V'to the one sent at eveet,. The monitor ap, again evaluates the property and finds
that it still holds. The message sentgyfinally arrives ats, but the K'V piggybacked on
is ignored as it has a small&fV[1].seq than K'V3[1].seq. The monitor correctly continues
to declare the property valid. However, another internahéatp, causes the value of
to drop to3, at which point the monitor detects a property violation.

7. THE DIANA TOOL

We have implemented the above technique as a tool, calletiND (Distributed
ANAlysis). The architecture of ANA is illustrated in Figure 3. DANA is publicly avail-
able and can be downloaded front:t p: // f sl . cs. ui uc. edu/ di ana/ . Both DIANA
and the framework under which it operates are written in Java

7.1 Actors

A number of formalisms can be used to reason about distdbsystems, the most nat-
ural one being Actors [Agha 1986; Agha et al. 1997]. Actors amodel of distributed
reactive objects and have a built-in notion of encapsufatiod interaction, making them
well suited to represent evolution and coordination betwageracting components in dis-
tributed applications. Conceptually, an actor encapsslatstate, a thread of control, and a
set of procedures which manipulate the state. Actors coatéiby asynchronously send-
ing messages to each another. In the actor framework, abdigtd system consists of
different actors communicating through messages. Thasg ik an actor for each process
in the system.

In the implementation, each type of actor (or process) iotihby a Java class that
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Distributed
Program in
Java

[ Specification ] Instrumentation
Module

Compile i

Bytecode

i
[

Monitoring
Module

Instrumented _
Bytecode Monitorimpl

Execute PN :
Monitor
4.—.4—> ---------------------------------

Program Execution

Fig. 3. The Architecture of DANA

extends a base cladst or . This base class implements a message queue and provides the
methodsend for asynchronous message sending. Each actor object esexsi separate
process. The state of an actor is represented by the fieldeafava class. Each Java
class also contains a setmifibl i ¢ methods that can be invoked in response to messages
received from other actors. A system level actor caletorManagertakes a message
and transfers it to the message queue of the target actotafidet actor takes an available
message from the message queue and invokes the methodmeeritithe message. While
processing a message, an actor may send messages to atrerieissage sending, being
asynchronous, never blocks an actor. However, an actokblbthere is no message in its
message queue. An actor can create other actors by callpgc@bmethodtr eat e and

pass the name of the actor to other actors through messageasdlime that each actor
has a uniqgue name, which is the name of the correspondinggsodhe name is passed
as a string at the time creation of an actor. The system iglizi¢d by theActorManager
object that creates all the actors in the system and staresxcution of the system.

7.2 Distributed Monitors in DIANA

The user of DANA specifies a set afT-DTL formulas to be monitored in a special file.
With every formula, the user can also associata@ion which is a piece of Java code to
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be invoked when the formula is violated.

As Figure 3 shows, the core of IBNA consists of two modules: aimstrumenta-
tion module and amonitoring library. The instrumentation module takes the specifica-
tion file and the distributed program written in the aboverfeavork and creates a Java
classMoni t or | mpl that implements a local monitor for each actor (or proce3sje
Moni t or | npl class contains a field representing an array of knowledgtore¢ one
knowledge vector for each monitored formula) and a set ohodd to update the knowl-
edge vectors according to theskwLEDGEV ECTORalgorithm. An instance of knowledge
vector is constructed from the classes provided by the rmong library. The instrumenta-
tion module automatically instruments the distributedgpaonat the bytecode levéafter
compilation) to associate an instance of the cMssi t or | npl with every actor at run-
time. It also inserts code to every actor so that it invokedatal monitor (i.e. calls the
appropriate methods of the instanceMbfni t or | npl class associated with it) whenever
it modifies a field variable (internal event), sends a messaigavokes a method (receive
event).

We handle an event corresponding to the creation of an actospecial way. For every
creation of new actor, the instrumentation tool insertsectal initialize the knowledge
vectors of the newly created actor (child actor) with thewlsalge vectors of the actor
(parent actor) creating the new actor. This is because @@t®in the parent actor, before
creating the new actor, causally precede any event in tte atiior.

7.3 Test Cases

We implemented the following voting algorithm:CGhai r process asks for vote on a res-
olution from NV voters named/ot er ;, Voters, ..., Voter y,whereN is initial-
ized to an arbitrary but fixed positive number. We assumettiggprocesses are connected
in a tree shaped network with ti@hai r at the root of the tree and the voters at different
nodes. Each voter randomly decides if it wants to vote forgairest the resolution, and
correspondingly stores 1 or 0 in a local state variable daite e. The voter then sends its
decision to its immediate parent in the tree. The parengctdithe votes and sends the sum
of its vote and its progenies’ votes to its immediate par€heChai r process collects all
the votes and rejects the resolution only if half or more rteve rejected. We monitor
the following safety property athai r:

@Chair(rejeCt - (Sum(@{Voteriﬁe[l..N]}(VOte)) < N/Q))

The property was found to be violated in several runs: at satex nodes, the voter sent
the sum of its progenies’ votes without adding its own votkisTesulted in the rejection
of the resolution when it should have been accepted.

We have also tested a vector clock [Fidge 1988; Mattern 18i8@Fithm implemented in
the framework presented in this section. The algorithm wgdémented as part of global
snapshot and garbage collection algorithm. In this algorjteach process is assumed to
have a local vector clocK that it updates according to the standard vector clock dhgor
[Fidge 1988] whenever there is an internal event, a sendt@rea receive event. The
safety property that the algorithm must satisfy is that,vaing proces®;: “all entries of
the local vector clock must be greater than or equal to thal lector clock in a causally
latest preceding state of any other process,” expressén dsliowingi-formula:
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Q;(B(V > max(Qgjjiein.apyV)))

whereV > V'’ when every entry i/ is greater than or equal to the corresponding entry
in V', and the functiomax takes a set of vectors as argument and returns a vector whose
every entry is the maximum of the corresponding entries ®ftttors in the set. Another
safety property states that “at every procgsthei-th entry in its local vector clock must

be strictly greater than thieth entry of the local vector clock of any other process”. sThi
can be expressed as the followiirtprmula:

Q;(E(V[i] > max(Qgjjjep.ny Vi)

The second property was found to be violated in some conmipotatiue to a bug caused
by failure to increment théth entry of the local vector clock of procegswhen receiving
events.

These simple examples illustrate the practical utility gmeaver of PT-DTL and the
monitoring tool DANA based on it.

8. RELATED WORK

Many researchers have proposed temporal logics to reasom@istributed systems. Most
of these logics are inspired by the classic work of Aumannniaan 1976] and Halpern
et al. [Fagin et al. 1995] on knowledge in distributed systems. hagshiet al. define a
knowledge temporal logic interpreted over a message sequararts in a distributed sys-
tem [Meenakshi and Ramanujam 2000] and develop methodsddelhshecking formulas
in this logic. Our communication primitive was in part insgd by this work, but we allow
arbitrary expressions and atomic propositions over esas in their logic.

Another closely related work is that of Penczek [Penczek02@®enczek and Am-
broszkiewicz 1999] which defines a temporal logic of causaMkedge. Knowledge op-
erators are provided to reason about the local history obagss, as well as about the
knowledge it acquires from other processes. However, ipradmkeep the complexity of
model checking tractable, Penczek does not allow the rpsfinausal knowledge opera-
tors. Interestingly, the nesting of causal knowledge dpesaloes not add any complexity
to our algorithm for monitoring.

Leucker investigates linear temporal logic interpretedraestricted labeled partial or-
ders called Mazurkiewicz traces [Leucker 2002]. An ovewvdd distributed linear time
temporal logics based on Mazurkiewicz traces is given byagéianjaret al. in [Thia-
garajan and Walukiewicz 1997]. [Alur et al. 1995] introds@etemporal logic of causality
(TLC) which is interpreted over causal structures correspt to partial order execu-
tions of a distributed system. They use both past and fuiare bperators and give a
model checking algorithm for the logic.

In recent years, there has been considerable interest fimeunerification [Havelund
and Rosu 2004; Sokolsky and Viswanathan 2003]. Have&irad. [Havelund and Rosu
2002] give algorithms for synthesizing efficient monitoos $afety properties. Seat al.
[Sen et al. 2003] develop techniques for runtime safetyyaigafor multithreaded programs
and introduce the tool JM¥EX. Some other runtime verification systems include JPaX from
NASA Ames [Havelund and Rosu 2001] and UPENN’s Mac [Kim e@al01].
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9. CONCLUSION AND FUTURE WORK

This work represents the first step in effective distributezthitoring. The work presented
here suggests a number of problems that require furthesineseThe logic itself could be
made more expressive so that it expresses not only safégidauiveness properties. One
difficulty is that software developers are reluctant to u@enfl notations. A partial solu-
tion may be to merge the present work with a more expressigdepamgrammer friendly
monitoring temporal logic such asaELE [Barringer et al. 2004]. A complementary ap-
proach is to develop visual notations and synthesizing teadpogic formulas from such
notations. There may also be the possibility of learningnigias based on representative
scenarios.

An interesting avenue of future investigation that our wetlggests is what we call
Knowledge-based Aspect-Oriented Programmingnowledge-based Aspect-Oriented
Programming is a meta-programming discipline that is blgtdor distributed applica-
tions. In this programming paradigm, appropriate actimesagsociated with each safety
formula; these actions are taken whenever the formula lateid to guide the program and
avoid catastrophic failures.
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