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.eduAbstra
t. We present a theory of may testing for asyn
hronous 
al
uliwith lo
ality and no name mat
hing. Lo
ality is a non-interferen
e prop-erty that is 
ommon in systems based on obje
t-paradigm. Con
urrentlanguages su
h as Join and Pi
t disallow name mat
hing, whi
h is akin topointer 
omparison in imperative languages, to provide for an abstra
t se-manti
s that would allow useful program transformations. May testing iswidely a
knowledged to be an e�e
tive notion for reasoning about safetyproperties. We provide a tra
e-based 
hara
terization of may testing forversions of asyn
hronous �-
al
ulus with lo
ality and no name mat
hing,whi
h greatly simpli�es establishing equivalen
es between pro
esses. Wealso exploit the 
hara
terization to provide a 
omplete axiomatizationfor the �nitary fragment of the 
al
uli.1 Introdu
tionExperien
e with applying the �-
al
ulus [10℄ to distributed systems has shownthat it is ne
essary to make additional ontologi
al 
ommitments. Spe
i�
ally,variants of �-
al
ulus with asyn
hrony, lo
ality, and absen
e of name mat
hinghave re
eived wide attention re
ently [2, 4, 7, 9℄. Asyn
hronous message passingis more 
ommon in distributed systems than syn
hronous 
ommuni
ation thatis assumed primitive in the �-
al
ulus. The dis
ipline of lo
ality, whi
h disallowsa pro
ess from re
eiving messages targeted to a name previously re
eived by thepro
ess, is typi
al in systems based on an obje
t paradigm [1℄. Name mat
hing isanalogous to pointer 
omparison in imperative languages; disallowing it enables
ertain performan
e optimizations. In fa
t, name 
omparisons are disallowed by
on
urrent languages su
h as Pi
t [12℄. In any 
ase, 
omparing names is rarelyuseful in programming; the behavior observed while 
ommuni
ating at a nameis all that matters and not the spe
i�
 name used for 
ommuni
ation. A variantof the �-
al
ulus that embodies these three features is L� [9℄.We develop a theory of may testing for two sub
al
uli of asyn
hronous �-
al
ulus [3℄: one with only lo
ality, 
alled L�=, and the other with both lo
alityand no name mat
hing, 
alled L�. May testing [11℄ is a spe
i�
 instan
e ofthe general notion of behavioral equivalen
e where two pro
esses are said to beequivalent if they have the same su

ess properties in all 
ontexts. A 
ontext in



may testing 
onsists of an observing pro
ess that runs in parallel and intera
tswith the pro
ess being tested, and su

ess is de�ned as the observer signaling aspe
ial event. The non-determinism in exe
ution may give rise to di�erent runs.A pro
ess is said to pass a test proposed by an observer, if there exists a runthat leads to a su

ess. By viewing a su

ess as something bad happening, maytesting 
an be used for reasoning about safety properties.Be
ause the de�nition of may testing involves a universal quanti�
ation over
ontexts, it is very diÆ
ult to prove equivalen
es dire
tly from the de�nition. Atypi
al approa
h to 
ir
umvent the problem, is to �nd an alternate 
hara
teri-zation of the equivalen
e, whi
h involves only the pro
esses being 
ompared. Weprovide an alternate 
hara
terization of may testing in L�= and L�. The 
har-a
terizations are tra
e based, and dire
tly build on the known 
hara
terizationfor asyn
hronous �-
al
ulus [3℄. In fa
t, we generalize the usual de�nition of maytesting to a parameterized version, where the parameter determines the set ofobservers that is used to de
ide the order.Our se
ond result is to provide 
omplete axiomatizations of �nitary L�=and L� (for pro
esses with no repli
ation). The axiomatizations highlight thedi�eren
es that arise due to lo
ality and la
k of name mat
hing. In additionto laws that are true for asyn
hronous �-
al
ulus, we obtain laws that are trueonly in the presen
e of lo
ality and the absen
e of name mat
hing. Further, theinferen
e rules for parameterized may testing generalize the ones for the usualmay testing. Complete proofs of lemmas and theorems 
an be found in [13℄.2 The Cal
ulus L�=We assume an in�nite set of names N , and let u; v; w; x; y; z; : : : range over N .The set of pro
esses, ranged over by P;Q;R, is de�ned by the following restri
ted�-
al
ulus grammar.P := 0 j xy j x(y):P j P jP j (�x)P j [x = y℄P j !x(y):PThe name x is said to be the subje
t of the output xy and the input x(y):P .The lo
ality property is enfor
ed by requiring that for every subterm of the formx(y):P , the bound name y does not o

ur as the subje
t of an input in P .For a tuple ~x, we denote the set of names o

urring in ~x by f~xg. We write ~x; ~yfor the result of appending ~y to ~x. We let ẑ range over f;; fzgg. The term (�ẑ)Pis (�z)P if ẑ = fzg, and P otherwise. The fun
tions for free names, bound namesand names, fn(:), bn(:) and n(:), of a pro
ess, and alpha equivalen
e on pro
essesare de�ned as usual. We use the usual de�nition and notational 
onvention forname substitutions, and let � range over them. Name substitution on pro
essesis de�ned modulo alpha equivalen
e with the usual renaming of bound namesto avoid 
aptures. We write P� and x� to denote the result of applying � to Pand x respe
tively.We use an early style labeled transition system for the operational seman-ti
s (see table 1). The transition system is de�ned modulo alpha-equivalen
eon pro
esses in that alpha-equivalent pro
esses have the same transitions. The



INP: x(y):P xz�! Pfz=yg OUT: xy xy�! 0PAR: P1 ��! P 01P1jP2 ��! P 01jP2 bn(�) \ fn(P2) = ; COM: P1 xy�! P 01 P2 xy�! P 02P1jP2 ��! P 01jP 02RES: P ��! P 0(�y)P ��! (�y)P 0 y =2 n(�) OPEN: P xy�! P 0(�y)P x(y)�! P 0 x 6= yCLOSE: P1 x(y)�! P 01 P2 xy�! P 02P1jP2 ��! (�y)(P 01jP 02) y =2 fn(P2)REP: P j!P ��! P 0!P ��! P 0 MATCH: P ��! P 0[x = x℄P ��! P 0Table 1. An early style labeled transition system for L�=.symmetri
 versions of COM, CLOSE, and PAR are not shown. Transition labels,whi
h are also 
alled a
tions, 
an be of �ve forms: � (a silent a
tion), xy (freeoutput of a message with target x and 
ontent y), x(y) (bound output), xy (freeinput of a message) and x(y) (bound input). The relation x(y)�! is de�ned by theadditional rule P x(y)�! Q if P xy�! Q and y =2 fn(P ). We denote the set of allvisible (non-�) a
tions by L, let � range over L, and let � range over all thea
tions. The fun
tions fn(:); bn(:) and n(:) are de�ned on L the usual way. As auniform notation for free and bound a
tions we adopt the following 
onventionfrom [3℄: (;)xy = xy, (fyg)xy = x(y), and similarly for input a
tions. We de�nea 
omplementation fun
tion on L as (ŷ)xy = (ŷ)xy, (ŷ)xy = (ŷ)xy.We let s; r; t range over L�. The fun
tions fn(:); bn(:) and n(:) are extended toL� the obvious way. Complementation on L is extended to L� the obvious way.Alpha equivalen
e over tra
es is de�ned as expe
ted, and alpha-equivalent tra
esare not distinguished. From now on, only normal tra
es s 2 L� that satisfy thefollowing hygiene 
ondition are 
onsidered: if s = s1:�:s2, then (n(s1)[ fn(�))\bn(�:s2) = ;. For an a
tion � and a set of tra
es S we de�ne �:S = f�:sjs 2 Sg.We use =) to denote the re
exive transitive 
losure of ��!, and �=) todenote =) ��!=). For s = l:s0 we use P s�! Q to denote P l�! s0�! Q, andsimilarly P s=) Q to denote P l=) s0=) Q. We write P s=) if P s=) Q for someQ, and similarly for P s�! and P ��!. We say P exhibits the tra
e s if P s=).We now instantiate the testing framework [5℄ on L�=. In fa
t, by extendingthe notion of lo
ality, we 
onsider a generalized version of may testing thatsupports en
apsulation. We de�ne a parameterized may preorder <��, where onlyobservers that do not listen on names in � are used to de
ide the order. The set ofnames � 
an be interpreted as being \owned" by the pro
ess being tested, in thatany testing 
ontext is assumed to have only the 
apability of sending messagesto these names. The reader may note that <�; is the usual may preorder.



(L1) s1:(ŷ)s2 � s1:(ŷ)xy:s2 if (ŷ)s2 6= ?(L2) s1:(ŷ)(�:xy:s2) � s1:(ŷ)xy:�:s2 if (ŷ)(�:xy:s2) 6= ?(L3) s1:(ŷ)s2 � s1:(ŷ)xy:xy:s2 if (ŷ)s2 6= ?(L4) s1:xw:(s2fw=yg) � s1:x(y):s2Table 2. A preorder relation on tra
es.De�nition 1 (may testing). Observers are pro
esses that 
an emit a spe
ialmessage ��. We let O range over the set of observers. We say O a

epts a tra
es if O s:��=). For P;O, we say P may O if P jO ��=). Let r
p(P ) be the set of allfree names in P that o

ur as the subje
t of an input in P . For any given � wesay P <�� Q if for every O su
h that r
p(O)\� = ;, P may O implies Q may O.We say P '� Q if P <�� Q and Q <�� P . Note that <�� is re
exive and transitive,and '� is an equivalen
e relation. utThe larger the parameter of a preorder, the smaller the observer set that isused to de
ide the order. Hen
e if �1 � �2, we have P <��1 Q implies P <��2 Q.However, P <��2 Q need not imply P <��1 Q. For instan
e, 0 'fxg xx, but only0 <�; xx and xx =<�; 0. Similarly, xx 'fx;yg yy, but xx =<�; yy and yy =<�; xx.However, P <��2 Q implies P <��1 Q if fn(P ) [ fn(Q) � �1.Theorem 1. Let �1 � �2. Then P <��1 Q implies P <��2 Q. Further, if fn(P )[fn(Q) � �1 then P <��2 Q implies P <��1 Q. utWe now build on the tra
e-based 
hara
terization of may testing for asyn-
hronous �-
al
ulus presented in [3℄ to obtain a 
hara
terization of may testingin L�=. We note that L�= is a proper sub
al
ulus of the 
al
ulus in [3℄, i.e.every L�= term is also an asyn
hronous �-
al
ulus term, and the transition sys-tems of the two 
al
uli mat
h on the 
ommon terms. Following is a summaryof the alternate 
hara
terization of may testing in asyn
hronous �-
al
ulus. Toavoid in�nitary bran
hing, a transition system with syn
hronous inputs insteadof asyn
hronous inputs is used. To a

ount for asyn
hrony, the tra
e semanti
sis modi�ed using a tra
e preorder � that is de�ned as the re
exive transitive
losure of the laws shown in table 2. The notation (ŷ)� is extended to tra
es asfollows. (ŷ)s = 8>><>>:s if ŷ = ; or y 62 fn(s)s1:x(y):s2 if ŷ = fyg and there are s1; s2; x s.t.s = s1:xy:s2 and y 62 fn(s1) [ fxg? otherwiseThe may preorder <�; in asyn
hronous �-
al
ulus is then 
hara
terized as: P <�;Q if and only if P s=) implies Q r=) for some r � s.The intuition behind the preorder is that if an observer a

epts a tra
e s, thenit also a

epts any tra
e r � s. Laws L1-L3 
apture asyn
hrony, and L4 
aptures



the inability to mismat
h names. Laws L1 and L2 state that an observer 
annotfor
e inputs on the pro
ess being tested. Sin
e outputs are asyn
hronous, thea
tions following an output in a tra
e exhibited by an observer need not be
ausally dependent on the output. Hen
e the observer's outputs 
an be delayeduntil a 
ausally dependent a
tion (L2 ), or dropped if there are no su
h a
tions(L1 ). Law L3 states that an observer 
an 
onsume its own outputs unless thereare subsequent a
tions that depend on the output. Law L4 states that withoutmismat
h an observer 
annot dis
riminate bound names from free names, andhen
e 
an re
eive any name in pla
e of a bound name. The intuition behind thetra
e preorder is formalized in the following lemma. We note that, sin
e L�= isa sub
al
ulus of asyn
hronous �-
al
ulus, the lemma also holds for L�=.Lemma 1. If P s=), then r � s implies P r=). utMay testing in L�= is weaker than in asyn
hronous �-
al
ulus. This is be-
ause the lo
ality property redu
es the number of observers that 
an be used totest pro
esses. For example, the following two pro
esses are distinguishable inasyn
hronous �-
al
ulus but equivalent in L�=.P = (�x)(!x(z):0jxxjyx) Q = (�x)(!x(z):0jyx)The observer O = y(z):z(w):�� 
an distinguish P and Q in asyn
hronous �-
al
ulus, but is not a valid L�= term as it violates lo
ality. In fa
t, no L�= term
an distinguish P and Q, be
ause the message xx is not observable.To a

ount for lo
ality we need to 
onsider only the tra
es that 
orrespondto intera
tion between L�= pro
esses. Note that the transition system does notby itself a

ount for lo
ality. For instan
e, in 
ase of the example above, we haveP yx�! xx�! although the message xx is not observable. To 
ounter this de�
ien
y,we de�ne the notion of well-formed tra
es.De�nition 2. For a set of names � and tra
e s we de�ne r
p(�; s) indu
tivelyasr
p(�; �) = � r
p(�; s:(ŷ)xy) = r
p(�; s) r
p(�; s:(ŷ)xy) = r
p(�; s) [ ŷWe say s is �-well-formed if s = s1:(ŷ)xy:s2 implies x =2 r
p(�; s1). We say s iswell-formed if it is ;-well-formed. utOnly �-well-formed tra
es 
orrespond to an intera
tion between a pro
essand an L�= observer O su
h that r
p(O) \ � = ;. We are now ready to give thealternate 
hara
terization of <�� in L�=.De�nition 3. We say P �� Q, if for every �-well-formed tra
e s, P s=) im-plies there is r � s su
h that Q r=). utTo prove the 
hara
terization, we de�ne an observer O(s) for a well-formedtra
e s, su
h that P may O(s) implies P r=) for some r � s. This 
onstru
tionis the same as the one used for asyn
hronous �-
al
ulus [3℄.



De�nition 4 (
anoni
al observer). For a tra
e s, we de�ne O(s) as follows:O(�) def= �� O((ŷ)xy:t) def= (�ŷ)(xyjO(t))O(x(y):t) def= x(y):O(t) O(xy:s) def= x(u):[u = y℄O(s) u fresh utNote that well-formedness of s guarantees that O(s) is an L�= term. Further-more, it is easy to show that if s is �-well-formed, then r
p(O(s)) \ � = ;. Sin
ethe 
anoni
al observer 
onstru
tions mat
h and L�= is a sub
al
ulus of asyn-
hronous �-
al
ulus, the following lemma proved for asyn
hronous �-
al
ulus [3℄,also holds in L�=.Lemma 2. For a well-formed tra
e s, O(s) r:��=) implies r � s. utTheorem 2 proves the equivalen
e of <�� and�� in L�=. The proof is similarto that of Theorem 3 in Se
tion 3.Lemma 3. Let � be a set of names where r
p(O) \ � = ;. Then P jO ��=) 
anbe unzipped into P s=) and O s:��=) for some s that is �-well-formed. utTheorem 2. P <�� Q if and only if P �� Q. ut3 The Cal
ulus L�We now investigate the e�e
t of la
k of name mat
hing 
apability. The rules intable 1 ex
ept the MATCH rule, 
onstitute the transition system for L�.The la
k of name mat
hing 
apability further weakens may testing equiva-len
e. For example, the pro
esses (�u)(xujxu) and (�u; v)(xujxv) are equivalentin L�, but not in L�=. For the alternate 
hara
terization of P <�� Q, it is toostringent to require that for any tra
e s that P exhibits, Q exhibits a singletra
e r su
h that any observer a

epting s also a

epts r. In fa
t, there existL� pro
esses P and Q su
h that P <�� Q, and if P exhibits s, then Q exhibitsdi�erent tra
es to satisfy di�erent observers that a

ept s. For instan
e, letP = xu1jyu1ju1(w):ww whi
h 
an exhibit s = xu1:yu1:u1(w):ww. The followingL� observers a

ept s.O1 = (�w)(x(u):y(v):uwjw(v):��)O2 = (�w)(x(u):y(v):vwjw(v):��)O3 = (�w)(x(u):y(v):u1wjw(v):��)O4 = (�w)(x(u):y(v):(vvjuu) j u1(z):u1(z):u1w j w(v):��)Now, the pro
ess Q = (�v)(v(z):v(z0):(xzjyz0)jvu1jvu2j !u2(z):u1z j u1(w):ww)
an satisfyO1 with r1 = xu1:yu2:u1(w):ww O2 with r2 = xu2:yu1:u1(w):wwO3 with r1 or r2, and O4 with r4 = xu1:yu2:u2u2:u1u2:u1(w):ww



but 
annot exhibit a single tra
e that 
an satisfy all four observers. In fa
t, itis the 
ase that P <�; Q. Intuitively, although unlike P , Q always exports twodi�erent names at x and y, for ea
h possible data
ow pattern of the re
eivednames inside an observer that P satis�es, Q exhibits a 
orresponding tra
e that
an lead the observer to a su

ess.For the alternate 
hara
terization, we de�ne templates whi
h are a spe
ialkind of tra
es that 
an be used to represent data
ows in an observer. A templateis a tra
e in whi
h all outputs are bound. The binding relation between argu-ments of outputs and their subsequent free o

urren
es, represents the relevantdependen
ies between the output argument that is re
eived by an observer andits subsequent use in the observer's 
omputation. For a tra
e s and set of names�, we de�ne a set T (s; �) that has a template for ea
h possible data
ow in a
omputation O s:��=) with r
p(O) \ � = ;. Further, if t represents the data
ow ina 
omputation O s:��=), then it will be the 
ase that O t:��=). Thus, if an observera

epts a tra
e s, then it also a

epts a template in T (s; �). This template 
on-stru
tion essentially 
aptures the e�e
t of la
k of mat
h operator. We will showthat P <�� Q if and only if for every �-well-formed tra
e s that P exhibits andfor ea
h t 2 T (s; �), Q exhibits some r � t.Following is an informal des
ription of how the set T (s; �) 
an be obtained.Due to the la
k of name mat
hing 
apability, an observer 
annot fully dis
rim-inate between free inputs. Therefore, a pro
ess 
an satisfy an observer O thatexhibits O s:��=), by repla
ing free input arguments in s with any name as long asit is able to a

ount for 
hanges to the subsequent 
omputation steps that de-pend on the repla
ed name. Spe
i�
ally, suppose O s:��=) abbreviates the following
omputation: O s1=) O0 xy�! O1 �1�! O2 �2�! � � �On �n�! ���!Be
ause of the lo
ality property, the name y re
eived in the input may be usedonly in output terms of O1. We 
all su
h o

urren
es of y as dependent on theinput. During subsequent 
omputation, these output terms may appear eitheras an output a
tion or are 
onsumed internally. In the latter 
ase, y may bethe target of the internal 
ommuni
ation, or the argument whi
h in turn maygenerate further output terms with dependent o

urren
es of y. Therefore, O 
ando the following 
omputation when y in the input is repla
ed with an arbitraryname w: O s1=) O0 (ŵ)xw�! O1 
1�! O2 
2�! � � �On 
n�! ���!where 
i is obtained from �i as follows. If �i is an output a
tion, then 
i isobtained from �i by substituting dependent o

urren
es of y with w. If �i is aninternal delivery of a message yz with target y being a dependent o

urren
e,there are two possibilities. If z is a private name, then 
i = w(z):yz and thesubsequent bound output �j (j > i) that exports z for the �rst time (if any), is
hanged to a free output. If z is not a private name, then 
i = wz0:yz0, where z0



is w when z is a dependent o

urren
e of y and z otherwise. For all other 
ases,
i = �i. Note that, if w is fresh, the input of w 
ould be a bound input.Clearly, any 
omputation obtained by repeated appli
ation of the above 
on-stru
tion 
an be performed by O. In parti
ular, if we always repla
e free inputswith bound inputs, we will eventually obtain a 
omputation in whi
h all inputsare bound and the 
onstru
tion 
an not be applied any further. Let O t:��=) ab-breviate a 
omputation thus obtained. The tra
e t is a template that expli
itlyrepresents all dependen
ies between re
eived names (bound input arguments)and subsequent 
omputation steps (subsequent free o

urren
es of the argu-ment). The set T (s; �) 
onsists of all the templates that 
an be obtained bythis 
onstru
tion starting from arbitrary 
omputations of the form O s:��=) withr
p(O) \ � = ;.We now formalize the ideas presented above, leading to a dire
t indu
tivede�nition of T (s; �). Let O s1=) xy�! O1 s2=) ���! We �rst 
onsider the simple 
asewhere y =2 r
p(O1). Due to lo
ality, in the 
omputation following input xy, there
annot be an internal message delivery with y as the target. Therefore, the fol-lowing 
omputation is possible. O s1=)(ŵ)xw�! O01 s02=) ���! where s02 is obtained froms2 by renaming dependent o

urren
es of y in output a
tions to w. Spe
i�
ally,it does not involve exposing internal a
tions that use dependent o

urren
es ofy. When the 
omputation steps above are not known, all we 
an say about s02is that it is obtained from s2 by renaming some o

urren
es of y. Similarly, O01is obtained from O1 by renaming some o

urren
es of y in output terms. Theserelations are formalized in De�nition 5 and Lemma 4.De�nition 5 (random output substitution). For � = f~u=~vg we de�ne ran-dom output substitution (from now on just random substitution) on pro
ess P ,denoted by P [�℄, modulo alpha equivalen
e as follows. We assume bn(P )\f~vg =fn(P )� \ bn(P ) = ;. For a name x we de�ne x[�℄ = fx; x�g.0[�℄ = f0g (x(y):P )[�℄ = fx(y):P 0 j P 0 2 P [�℄g(xy)[�℄ = fx0y0 j x0 2 x[�℄; y0 2 y[�℄g (P jQ)[�℄ = fP 0jQ0 j P 0 2 P [�℄; Q0 2 Q[�℄g((�x)P )[�℄ = f(�x)P 0 j P 0 2 P [�℄g (!x(y):P )[�℄ = f!x(y):P 0 j P 0 2 P [�℄gRandom substitution on tra
es is de�ned modulo equivalen
e as follows. We as-sume bn(s) \ f~vg = fn(s)� \ bn(s) = ;.�[�℄ = f�g ((ŷ)xy:s)[�℄ = f(ŷ)xy:s0js0 2 s[�℄g(x(y):s)[�℄ = fx0(y):s0jx0 2 x[�℄; s0 2 s[�℄g(xy:s)[�℄ = fx0y0:s0jx0 2 x[�℄; y0 2 y[�℄; s0 2 s[�℄gWe will use [~u=~v℄ as a short form for [f~u=~vg℄. utLemma 4. If P s=), P 0 2 P [w=y℄, and y =2 r
p(P ), then P 0 s0=) for somes0 2 s[w=y℄. utNow, suppose y 2 r
p(O1). Then, in the 
omputation O s1=) xy�! O1 s2=) ���!
ertain internal transitions may involve a message with a dependent o

urren
e of



y as the target. Then, the following 
omputation whi
h exposes su
h transitionsis also possible O s1=)(ŵ)xw�! O01 s02=) ���! where s02 is obtained from s2 by notonly renaming all dependent o

urren
es of y in output transitions to w, butalso exposing ea
h internal message delivery with a dependent o

urren
e of yas the message target. If the 
omputation steps are not known, we 
an only says02 is obtained from some r 2 s2[w=y℄ by exposing arbitrary number of internaltransitions at any point in r. The relation between s2 and s02 is formalized inDe�nition 6 and Lemma 5. To a

ount for the situation where an exposed pairof a
tions (ẑ)wz:yz export a private name z, we need the following fun
tion ontra
es. [ŷ℄s = 8>><>>:s if ŷ = ; or y 62 n(s)s1:xy:s2 if ŷ = fyg and there are s1; s2; x s.t.s = s1:x(y):s2 and y 62 n(s1) [ fxg? otherwiseDe�nition 6. For a tra
e s and a pair of names w; y, the set F (s; w; y) is thesmallest set 
losed under the following rules:1. � 2 F (�; w; y)2. (v̂)uv:s0 2 F ((v̂)uv:s; w; y) if s0 2 F (s; w; y)3. (v̂)uv:s0 2 F ((v̂)uv:s; w; y) if s0 2 F (s; w; y)4. (ẑ)wz:yz:[ẑ℄s0 2 F (s; w; y) if s0 2 F (s; w; y) and [ẑ℄s0 6= ?Note that s 2 F (s; w; y). For a set of tra
es S, we de�ne F (S;w; y) = [s2SF (s; w; y).utLemma 5. If P s=) and P 0 2 P [w=y℄, then P 0 s0=) for some s0 2 F (s[w=y℄; w; y).utFor a tra
e s and a set of names �, we say s is �-normal, if s is normal and� \ bn(s) = ;. Now, let O be an arbitrary observer su
h that r
p(O) \ � = ;.Suppose O s1=) xy�! O1 s2=) ���!where s1:xy:s2 is �-normal. If y 2 � or y is the argument of a bound input ins1, then by lo
ality y =2 r
p(O1). Otherwise, sin
e O is arbitrary, it is possiblethat y 2 r
p(O1). From this observation, we have that for an arbitrary observerO su
h that r
p(O) \ � = ;, if O a

epts the �-normal tra
e s1:xy:s2, thenO also a

epts s1:(ŵ)xw:s02 where w is an arbitrary name and s02 2 s2[w=y℄ ify 2 � or y is the argument of a bound output in s1, and s02 2 F (s2[w=y℄; w; y)otherwise. T (s; �) is pre
isely the set of all tra
es with no free outputs, that 
anbe obtained by repeated appli
ation of this reasoning. T (s; �) is formally de�nedin De�nition 7.De�nition 7. For a tra
e s and a set of names �, the set of templates T (s; �)is de�ned modulo alpha equivalen
e as follows. We assume that s is �-normal.1. � 2 T (�; �).



2. (ŷ)xy:s0 2 T ((ŷ)xy:s; �) if s0 2 T (s; �)3. x(y):s0 2 T (x(y):s; �) if s0 2 T (s; � [ fyg)4. x(w):s0 2 T (xy:s; �) if w fresh, s0 2 T (s00; � [ fwg); ands00 2 � s[w=y℄ if y 2 �F (s[w=y℄; w; y) if y =2 �The reader may 
he
k that if t 2 T (s; �), then s � t using only L3 and L4. utLemma 6. If P s=) and � \ r
p(P ) = ;, then there is t 2 T (s; �) su
h thatP t=). utLemma 7 states that template 
onstru
tion in De�nition 7 preserves �-well-formedness.Lemma 7. If s is �-well-formed then every t 2 T (s; �) is �-well-formed. utWe are now ready to give the alternate 
hara
terization of <�� in L�.De�nition 8. We say P �� Q if for every �-well-formed tra
e s, P s=) impliesfor ea
h t 2 T (s; �) there is r � t su
h that Q r=). utFor t 2 T (s; �), where s is a �-well-formed tra
e, let O(t) be the 
anoni
alobserver as de�ned in De�nition 4. By Lemma 7, sin
e s is �-well-formed t isalso �-well-formed. Hen
e O(t) satis�es the lo
ality property, and r
p(O(t)) \� = ;. Further, sin
e t is a template, the 
ase t = xy:t0 does not arise in the
onstru
tion of the observer. Hen
e O(t) is an L� term. Sin
e L� is a sub
al
ulusof asyn
hronous �-
al
ulus, Lemma 1 holds for L�. Further, sin
e the 
anoni
alobserver 
onstru
tion is un
hanged, the following lemma (whi
h is a weakerversion of Lemma 2) holds for L�.Lemma 8. For t 2 T (s; �), where s is a �-well-formed tra
e, O(t) r:��=) impliesr � t. utLemma 3 holds for L� with formally the same proof. Now, we are ready toprove that �� is an alternate 
hara
terization of <��.Theorem 3. P <�� Q if and only if P �� Q.Proof. (if) Let P �� Q and P may O for an observer O su
h that r
p(O)\ � =;. From P may O we have P jO ��=). By Lemma 3, this 
omputation 
an beunzipped into P s=) and O s:��=) for some �-well-formed tra
e s. From Lemma 1and 6 we dedu
e there is a t0 2 T (s:��; �) su
h that r0 � t0 implies O r0=).It is easy to show that t0 2 T (s:��; �) implies t0 = t:�� for some t 2 T (s; �).From P �� Q, there is a tra
e r � t su
h that Q r=). Moreover, r � t impliesr:�� � t:�� = t0. Therefore, O r:��=). We 
an zip this with Q r=) to obtainQjO ��=), whi
h means Q may O.



(only if): Let P <�� Q and P s=) where s is �-well-formed. We have toshow for every t 2 T (s; �) there is a tra
e r � t su
h that Q r=). It is easyto show that if t 2 T (s; �), then O(t) s:��=). This 
an be zipped with P s=) toget P jO(t) ��=), that is P may O(t). From P <�� Q, we have Q may O(t) andtherefore QjO(t) ��=). This 
an be unzipped into Q r=) and O(t) r:��=). FromLemma 8, it follows that r � t. utFor �nitary pro
esses we 
an obtain a simpler 
hara
terization based on amodi�ed version of De�nition 7 as given below.De�nition 9. For a tra
e s and a set of names �, the set Tf (s; �) is de�nedindu
tively using the �rst three rules of De�nition 7 and the following two.4 x(w):s0 2 Tf (xy:s; �) if y 2 �; w fresh, s0 2 Tf (s00; �[fwg); and s00 2 s[w=y℄5 xy:s0 2 Tf (xy:s; �) if y =2 �; and, s0 2 Tf (s; �) utThe main di�eren
e from De�nition 7 is that output arguments y that are notin � are not 
onverted to bound arguments. A

ording to rule 4 of De�nition 7,su
h 
onversions introdu
e arbitrary number of pairs of input/output a
tions.But, sin
e the length of tra
es that a �nite pro
ess 
an exhibit is bounded,the only way the pro
ess 
an exhibit a tra
e r � t for ea
h of the resultingtemplates, is by emitting the same name y, so that L4 and L3 
an be applied toannihilate some of these input/output pairs. The following lemma helps formalizethis observation.Lemma 9. For a tra
e s, a set of names �, and a pre�xed 
losed set R of tra
eswith bounded length, if for every t 2 T (s; �) there exists r 2 R su
h that r � t,then for every tf 2 Tf (s; �) there exists r 2 R su
h that r � tf . utUsing this lemma, we 
an show that for �nitary pro
esses we 
an use Tf (s; �)in De�nition 8 instead of T (s; �). The resulting 
hara
terization is equivalentto the earlier one for the following reason. Suppose P s=) implies, for everyt 2 T (s; �), there exists r � t su
h that Q r=). Then, let R be the set of alltra
es that Q exhibits. Note that R is pre�x 
losed. Further, sin
e Q is �nite,there is a bound on the length of tra
es in R. By Lemma 9, for every tf 2 Tf (s; �),there exists r � tf su
h that Q r=). Conversely, suppose P s=) implies that forevery t 2 Tf (s; �) there exists r � t su
h that Q r=). It is easy to verify thatfor every t 2 T (s; �) there exists a tf 2 Tf (s; �) su
h that tf � t, where therelation 
an be derived using only L3 and L4. From transitivity of �, it followsthat P s=) implies for every t 2 T (s; �) there exists r � t su
h that Q r=).4 An Axiomatization of Finitary L�= and L�We �rst give a sound and 
omplete proof system for <�� for the �nitary fragmentof L�, i.e. for L� pro
esses that do not use repli
ation. A simple adaptation of



the proof system gives us one for �nitary L�=. The proof system 
onsists of thelaws given in table 3 and the rules for re
exivity and transitivity. For a �niteindex set I , we use the ma
ro Pi2I Pi to denote, (�u)((ji2Iu(u):Pi)juu) for ufresh if I 6= ;, and 0 otherwise. For an index set that is a singleton, we omit I andsimply writePP instead ofPi2I P . We let the variable G range over pro
essesof form Pi2I Pi. We write Pi2I Pi +Pj2J Pj to denote Pk2I℄J Pk. We writev as a shorthand for v;, and = for =;. Random input substitution on pro
essesP [w=y℄i is de�ned similar to random output substitution (De�nition 5), ex
eptthat only the o

urren
es of y at the subje
t of input pre�xes in P are randomlysubstituted with w.I1 if P v� Q and r
p(R) \ � = ;, then (�x)P v��fxg (�x)Q, P jR v� QjR.I2 if for ea
h z 2 fn(P;Q) Pfz=yg v� Qfz=yg then x(y):P v� x(y):QI3 if for ea
h i 2 I Pi v�Pj2J Qij thenPi2I Pi v�Pi2I;j2J QijI4 if �1 � �2 and P v�1 Q then P v�2 Q.A1 G+G = G A3 P j0 = P A5 (P jQ)jR = P j(QjR)A2 G v G+G0 A4 P jQ = QjPA6 Let G =Pi2I �i:Pi and G0 =Pj2J �0j :P 0j where ea
h�i (resp. �0j) does not bind free names of G0 (resp. G). ThenGjG0 =Pi2I �i:(PijG0) +Pj2J �0j :(GjP 0j )A7 (�x)(Pi2I Pi) =Pi2I(�x)PiA8 (�x)(P jQ) = P j(�x)Q x =2 n(P )A9 (�x)(xyj�:P ) = �:(�x)(xyjP ) x =2 n(�)A10 (�x)(xyjx(z):P ) = (�x)(Pfy=zg)A11 (�x)(y(z):P ) = � y(z):(�x)P if x 6= y; x 6= z0 if x = yA12 xyjPi2I Pi =Pi2I(xyjPi) I 6= ;A13 �:Pi2I Pi =Pi2I �:Pi I 6= ;A14 P =PPA15 x(y):(uvjP ) v uvjx(y):P y 6= u; y 6= vA16 Pfy=zg v xyjx(z):PA17 x(u):y(v):P v y(v):x(u):P u 6= y; u 6= vA18 x(y):(xyjP ) v P y =2 n(P )A19 (�x)P v Pfy=xgA20 If x 2 �, w 6= x and w 6= y, thenxyjz(w):P v�P z(w):(xyjP ) +P z(w):P +PQ, where Q = �Pfy=wg if x = z0 otherwiseA21 xyjP v� (�w)(xwjPP 02P [w=y℄i P 0) w fresh, y 2 �.Table 3. Inferen
e rules and axioms for L�.



While axioms A1 to A19 all hold in asyn
hronous �-
al
ulus [3℄, axioms A20and A21 are unique to L�. A20 
aptures the fa
t that a message targeted to aname that an environment is prohibited from listening to, 
annot es
ape to theenvironment. The axiom states that there are only two ways su
h a message 
anbe handled in the next transition step: it 
an be 
onsumed internally or delayedfor later. The axiom also a

ounts for delaying the message forever by in
ludingdropping of the message as one of the possibilities. As an appli
ation of thisaxiom, if x 2 �, we 
an prove xy v� 0 as follows. For w fresh,xy v� xyj(�w)(w(w):0) (A3 ;A11 ; I1 )v� (�w)(xyjw(w):0) (A8 )v� (�w)(Pw(w):0 +Pw(w):xy +P 0) (A20 ; I1 )v� P(�w)(w(w):0) +P(�w)w(w):xy +P(�w)0 (A7 )v� 0 (A1 ;A11 ;A14 ; I3 )Axiom A21 
aptures the e�e
t of la
k of mat
h operator. It is dire
tly moti-vated from rule 4 of De�nition 9 for template 
onstru
tion.The inferen
e rules extend the rules for asyn
hronous �-
al
ulus to handleparameterization of the may preorder. In fa
t, the rules for asyn
hronous �-
al
ulus presented in [3℄ 
an be obtained by setting � = ; in I1, I2 and I3. I4 is anew rule that is motivated by Theorem 1. We make a few remarks about I1 whi
his signi�
antly di�erent from its analogue for asyn
hronous �-
al
ulus. First,using xy vfxg 0 (proved above) and I1, we get (�x)xy v (�x)0, and by axiomA19 we have (�x)0 v 0. Therefore, (�x)xy v 0. Note the use of the ability to
ontra
t the parameter � of the may preorder after applying a restri
tion. Se
ond,the following example illustrates the ne
essity of the side 
ondition r
p(R)\� = ;for 
omposition: xy <�fxg 0 but not xyjx(y):yy <�fxg x(y):yy, for the LHS 
ansatisfy the observer y(u):�� and the RHS 
an not.The soundness of rules I1-I4 
an be easily proved dire
tly from De�nition 1.We only show the argument for I1, whi
h is given in Lemma 10. Soundness ofaxioms A1-A21 is easy to 
he
k. For A1-A19, whenever P v Q, we have P s=),implies Q r=) su
h that r � s. For A20, both LHS and RHS exhibit the same�-well-formed tra
es. Proof of soundness of axiom A21 is more involved, and isestablished in Lemma 10. The reader 
an verify that A20 and A21 would also besound as equalities. For instan
e, the 
onverse of A21 
an be shown using A19,A1, and I1.Lemma 10.1. If P <�� Q and r
p(R) \ � = ;, then (�x)P <���fxg (�x)Q, P jR <�� QjR.2. For y 2 � and w fresh, xyjP <�� (�w)(xwjPP 02P [w=y℄i P 0). utWe prove that the laws presented 
onstitute a 
omplete proof system for�nite pro
esses, i.e. for �nite pro
esses P;Q, P v� Q if P <�� Q. Inspired by thealternate 
hara
terization, the proof relies on existen
e of 
anoni
al forms forpro
esses.



De�nition 10. If s is a template, then we 
all s a 
otemplate. Thus, a 
otem-plate is a tra
e with no free inputs. If s is well-formed, we say s is 
owell-formed.1. For a 
owell-formed 
otemplate s, the pro
ess e(s) is de�ned indu
tively asfollows. e(�) def= 0 e(xy:s0) def= xyje(s0)e(x(y):s0) def= (�y)(xyje(s0)) e(x(y):s0) def= x(y):e(s0)Note that 
owell-formedness of s implies that e(s) is an L� term. From nowon we follow the 
onvention that whenever we write e(s) it is impli
it that sis a 
owell-formed 
otemplate.2. The pro
ess Ps2S e(s), for a set of tra
es S, is said to be in 
anoni
al form.utThe proof of 
ompleteness relies on the following four lemmas. The �rstlemma states that every pro
ess has an equivalent 
anoni
al form.Lemma 11. For a pro
ess P there is a 
anoni
al form C su
h that P = C. utLemma 12. (1) If e(s) r=), then e(r) v e(s). (2) If s � r then e(r) v e(s). utThe proofs of the two lemmas above are formally the same as the proofsof the 
orresponding lemmas for asyn
hronous �-
al
ulus [3℄. This is be
ause,the proofs of P = C and e(r) v e(s) 
onstru
ted using the proof system of [3℄,
an be transformed into proofs in our proof system. This 
laim is justi�ed bythe following three observations. First, every L� term is also an asyn
hronous�-
al
ulus term. Se
ond, starting from L� terms, every term that appears in theproofs of [3℄ is also an L� term. (Note that any summation that appears is �niteand 
an be interpreted as our ma
ro.) Finally, every axiom and inferen
e ruleused in their proof is derivable in our proof system.Lemma 13. Let R 
ontain all the 
owell-formed 
otemplates r su
h that e(s) r=)and r is �-well-formed. Then e(s) v� Pr2R e(r). utLemma 14. e(s) v� Pt2Tf (s;�) e(t). utNote that the summations in the two lemmas above are �nite be
ause R andTf (s; �) are �nite modulo alpha equivalen
e. For instan
e, �niteness of R is adire
t 
onsequen
e of the following two observations. For every r 2 R, we havefn(r) � fn(e(s)), and sin
e e(s) is a �nite pro
ess, the length of tra
es in R isbounded. We are now ready to establish the 
ompleteness of the proof system.Theorem 4. For �nite L� pro
esses P;Q and a set of names �, P v� Q if andonly if P <�� Q.



Proof. The only-if part follows from the soundness of laws in table 3. We provethe if part. By Lemma 11 and soundness of the proof system, without loss ofgenerality, we 
an assume that both P and Q are in 
anoni
al form, i.e. P isof form Ps2S1 e(s) and Q is of form Ps2S2 e(s). Using Lemma 13, and lawsI3, A1, we get P v� Pr2R e(r), where R is the set of �-well-formed 
owell-formed 
otemplates that P exhibits. Using Lemma 14 and laws I3, A1, we havePr2R e(r) v� Pt2T e(t), where T = [r2RTf (r; �). Note that sin
e every r 2 Ris a 
otemplate, so is every t 2 T . Let t 2 T . Then t 2 Tf (r; �) for some �-well-formed r that P exhibits. Using the 
hara
terization of may preorder based onTf (r; �), we have P <�� Q implies there is s0 � t su
h that Q s0=). It follows thatfor some s 2 S2, e(s) s0=). Sin
e Q s0=), by lo
ality, s0 is 
owell-formed. From thefa
ts that s0 � t and t is a 
otemplate, it follows that s0 is a 
otemplate. Thenby Lemma 12.2 and law I4, e(t) v� e(s0). Further, by Lemma 12.1 and law I4,e(s0) v� e(s). Hen
e by transitivity of v�, we have e(t) v� e(s). Sin
e t 2 T isarbitrary, using laws I3, A1, and A2, we dedu
e Pt2T e(t) v� Ps2S2 e(s). Theresult follows from transitivity of v�. utWe obtain a 
omplete proof system for L�= by dropping axiom A21 andadding the following two for the mat
h operator: [x = x℄P = P , and [x = y℄P = 0if x 6= y. Completeness of the resulting proof system 
an be established by simplemodi�
ations to the proofs above.5 Related WorkWe have provided an alternate 
hara
terization of a parameterized version ofmay testing for asyn
hronous variants of �-
al
ulus with lo
ality and no namemat
hing. We have exploited the 
hara
terizations to obtain 
omplete axioma-tizations of the may preorder for �nitary fragments of the 
al
uli. Our resultsextend the ones obtained by Boreale, De Ni
ola, and Pugliese for asyn
hronous�-
al
ulus [3℄. We now 
ompare our work with other related resear
h.Hennessy and Rathke [6℄ study typed versions of three behavioral equiva-len
es, namely may and must equivalen
es, and barbed 
ongruen
e in a typed�-
al
ulus where the type system allows names to be tagged with input/output
apabilities. In the typed 
al
ulus, one 
an express pro
esses that sele
tivelydistribute di�erent 
apabilities on names. The lo
ality property is a spe
ial 
asein whi
h only the output 
apability on names 
an be passed. A novel labeledtransition system is de�ned over 
on�gurations whi
h are pro
ess terms withtwo typed environments, one that 
onstrains the pro
ess and the other the envi-ronment. It is shown that the standard de�nitions of tra
e and a

eptan
e sets[5℄ de�ned over the new transition system 
hara
terize may and must preordersrespe
tively. In 
omparison to our work, the typed 
al
ulus of Hennessy andRathke is syn
hronous and is equipped with name mat
hing, whereas L�= isasyn
hronous, and L� is asyn
hronous with no name mat
hing. Further, L�=has no 
apability types and hen
e we obtain a simpler 
hara
terization of maytesting for it, whi
h is based on the usual early style labeled transition system.



Finally, we have also a given an axiomatization of may testing, whi
h is notpursued by Hennessy and Rathke.There have been extensive investigations of bisimulation-based behavioralequivalen
es on L� and related variants of �-
al
ulus, whi
h are properly 
on-tained in may testing whi
h is tra
e based. Merro and Sangiorgi [9℄ investigatebarbed 
ongruen
e in L�, and show that a variant of asyn
hronous early bisim-ulation provides an alternate 
hara
terization for the 
ongruen
e. Boreale andSangiorgi [4℄ study typed barbed equivalen
e for typed (syn
hronous) �-
al
uluswith 
apability types and no name mat
hing, and show that the equivalen
e is
hara
terized by a typed variant of bisimulation. Merro [8℄ 
hara
terizes barbed
ongruen
e in the more restri
ted setting of asyn
hronous �-
al
ulus with noname mat
hing (no 
apability types, and no lo
ality in parti
ular). He de�nessynonymous bisimulation and shows that it 
hara
terizes barbed 
ongruen
e inthis setting.Referen
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A AppendixThe stru
tural 
ongruen
e relation on L� pro
esses � is the smallest 
ongruen
ethat is 
losed under the following rules.1. P j0 � P , P jQ � QjP , and P j(QjR) � (P jQ)jR2. (�x)0 � 0, (�x)(�y)P � (�y)(�x)P , and P j(�x)Q � (�x)(P jQ) if x =2 fn(P ).3. !P � P j!P .It is the 
ase that stru
turally 
ongruent pro
esses have the same transitions,i.e. if P ��! Q, P � P 0 and Q � Q0 then P 0 ��! Q0. Stru
tural 
ongruen
e rulesfor L�= 
ontain the additional rule: [x = x℄P � P .Proof of Theorem 1: Let P <��1 Q. Suppose P may O and r
p(O) \ �2 = ;.Sin
e �1 � �2, we have r
p(O)\�1 = ;. Then sin
e P <��1 Q, we have Q may O.Hen
e P <��2 Q.Let fn(P )[ fn(Q) � �1 and P <��2 Q. Suppose P may O and r
p(O)\�1 = ;.We have to show Q may O. Let f~xg = r
p(O). Then, we have r
p((�~x)O) = ;.Sin
e fn(P ) \ f~xg = ;, we have P j(�~x)O � (�~x)(P jO). From this, RES rule,and P jO ��=), we dedu
e P j(�~x)O ��=), i.e. P may (�~x)O. Now, sin
e P <��2 Qwe have Q may (�~x)O. From fn(Q) \ f~xg = ; we have (�~x)(QjO) � Qj(�~x)O.It follows that (�~x)(QjO) ��=), and hen
e QjO ��=). 2Lemma 15. Let P s=). Then s = s1:(ŷ)xy:s2 implies x 2 r
p(r
p(P ); s1).Proof: Suppose P s1=) P1 (ŷ)xy�! P2 s2=). We observe that P1 (ŷ)xy�! if and only ifx 2 r
p(P1). So we are done if we show that r
p(P1) � r
p(r
p(P ); s1). This 
anshown by a simple indu
tion on s using the lo
ality property. 2Proof of Lemma 3: The sequen
e P jO ��=) 
an be unzipped into P s=) andO s:��=) for some tra
e s. While unzipping, we 
an 
hoose bound names su
hthat bn(s) \ r
p(O) = ;. To show that s is �-well-formed, we show that if s =s1:(ŷ)xy:s2, then x =2 r
p(�; s1). By applying Lemma 15 to O s:��=) we dedu
ethat x 2 r
p(r
p(O); s1). If x 2 r
p(O), then x =2 r
p(�; s1) be
ause �\ r
p(O) =bn(s1) \ r
p(O) = ;. If x =2 r
p(O), then x must be the bound argument of anoutput in s1, whi
h again implies x =2 r
p(�; s1). Therefore, s is �-well-formed.2Lemma 16. If P 00 2 P0[w=y℄, then1. P0 (v̂)uv�! P1 and w =2 v̂ implies there is P 01 2 P1[w=y℄ su
h that P 00 (v̂)uv�! P 01.2. P0 (v̂)uv�! P1 and w 62 v̂ implies there is P 01 2 P1[w=y℄ su
h that P 00 ��! P 01where for some u0 2 u[w=y℄ and v0 2 v[w=y℄� = �u0v0 if v̂ = ;u0(v) otherwise



3. P0 ��! P1 implies one of the following;(a) There is P 01 2 P1[w=y℄ su
h that P 00 ��! P 01.(b) P1 � (�ẑ)Q, w; y =2 ẑ, and there is P 01 2 Q[w=y℄ su
h that P 00 (ẑ)wz:yz�! P 01.Proof of Lemma 16.1: Sin
e we work modulo alpha equivalen
e on pro
ess,without loss of generality we may assume the hygiene 
ondition w; y =2 bn(P0).The proof is by indu
tion on the derivation of P0 (v̂)uv�! P1. For the base 
ase, wehave P0 = u(z):Q, P1 = Qfv=zg, the last derivation step is an appli
ation of INPrule, and v̂\ fn(P0) = ;. By hygiene 
ondition z 6= w; y. Let P 00 2 P0[w=y℄. ThenP 00 = u(z):Q0 for some Q0 2 Q[w=y℄. By INP rule we have, u(z):Q0 uv�! Q0fv=zg.Sin
e w =2 v̂ it follows that u(z):Q0 (v̂)uv�! Q0fv=zg. Now, sin
e z 6= w; y, we haveQ0fv=zg 2 Qfv=zg[w=y℄ and the lemma follows.For the indu
tion step, there are three 
ases.1. P0 = Q0jR, P1 = Q1jR, and the last derivation step is an appli
ation ofPAR rule: PAR: Q0 (v̂)uv�! Q1Q0jR (v̂)uv�! Q1jR v̂ \ fn(R) = ;Then P 00 = Q00jR0 for some Q00 2 Q0[w=y℄ and R0 2 R[w=y℄. By indu
tionhypothesis we have Q00 (v̂)uv�! Q01 for some Q01 2 Q1[w=y℄. From w =2 v̂ andv̂\fn(R) = ;we dedu
e v̂\fn(R0) = ;. Then by PAR rule we haveQ00jR0 (v̂)uv�!Q01jR0, and the lemma follows from the fa
t that Q01jR0 2 P1[w=y℄.2. P0 = (�z)Q0, P1 = (�z)Q1 and the last derivation step is an appli
ation ofRES rule: RES: Q0 (v̂)uv�! Q1(�z)Q0 (v̂)uv�! (�z)Q1 z =2 fu; vgBy the hygiene 
ondition, we have z 6= w; y. Then P 00 = (�z)Q00 for someQ00 2 Q0[w=y℄. By indu
tion hypothesis, Q00 (v̂)uv�! Q01 for some Q01 2 Q1[w=y℄.Then by RES rule we have (�z)Q00 (v̂)uv�! (�z)Q01, and the lemma follows fromthe fa
t that (�z)Q01 2 P1[w=y℄.3. P0 =!Q0, P1 = Q1 and the last derivation step is an appli
ation of REP rule:REP: Q0j!Q0 (v̂)uv�! Q1!Q0 (v̂)uv�! Q1Then P 00 =!Q00 for some Q00 2 Q0[w=y℄. Sin
e Q00j!Q00 2 (Q0j!Q0)[w=y℄, byindu
tion hypothesis we have Q00j!Q00 (v̂)uv�! Q01 for some Q01 2 Q1[w=y℄. Thenby REP rule we have !Q00 (v̂)uv�! Q01, and the lemma follows. 2Proof of Lemma 16.2: Sin
e we work modulo alpha equivalen
e on pro
ess,without loss of generality we may assume the hygiene 
ondition w; y =2 bn(P0).



The proof is by indu
tion on the derivation of P0 (v̂)uv�! P1. There are two base
ases.1. P0 = uv, P1 = 0 and the last derivation step is an appli
ation of OUT rule.OUT: uv uv�! 0Then P 00 = u0v0 for some u0 2 u[w=y℄ and v0 2 v[w=y℄. By OUT rule we haveu0v0 u0v0�! 0, and the lemma follows.2. P0 = (�v)Q0, P1 = Q1 and the last derivation step is an appli
ation ofOPEN rule. OPEN: Q0 uv�! Q1(�v)Q0 u(v)�! Q1 u 6= vBy hygiene 
ondition, we have v 6= w; y. Then P 00 = (�v)Q00 for some Q00 2Q0[w=y℄. By indu
tion hypothesis Q00 u0v0�! Q01 for some u0 2 u[w=y℄, v0 2v[w=y℄, and Q01 2 Q1[w=y℄. Further, sin
e y 6= v we have v0 = v, and sin
ew 6= v we have u0 6= v. Then by RES rule we have (�v)Q00 u0(v)�! Q01, and thelemma follows.For the indu
tion step there are three 
ases.1. P0 = Q0jR, P1 = Q1jR, and the last derivation step is an appli
ation ofPAR rule. PAR: Q0 (v̂)uv�! Q1Q0jR (v̂)uv�! Q1jR v̂ \ fn(R) = ;Then P 00 = Q00jR0 for some Q00 2 Q0[w=y℄ and R0 2 R[w=y℄. By indu
tionhypothesis, Q00 ��! Q01 for some Q01 2 Q1[w=y℄ and � as stated in thelemma. We have bn(�) = v̂. From w =2 v̂ and v̂ \ fn(R) = ; we dedu
ebn(�) \ fn(R0) = ;. Then by PAR rule Q00jR0 ��! Q01jR0, and the lemmafollows from the fa
t that Q01jR0 2 P1[w=y℄.2. P0 = (�z)Q0, P1 = (�z)Q1, and the last derivation step is an appli
ation ofRES rule: RES: Q0 (v̂)uv�! Q1(�z)Q0 (v̂)uv�! (�z)Q1 z 6= u; vBy hygiene 
ondition we have z 6= w; y. Then P 00 = (�z)Q00 for some Q00 2Q0[w=y℄. By indu
tion hypothesis, Q00 ��! Q01 for some Q01 2 Q1[w=y℄ and� as stated in the lemma. Further sin
e z =2 fw; y; u; vg we have z =2 n(�).Then by RES rule we have (�z)Q00 ��! (�z)Q01, and the lemma follows fromthe fa
t that (�z)Q01 2 P1[w=y℄.3. P0 =!Q0, P1 = Q1 and the last derivation step is an appli
ation of REP rule:REP: Q0j!Q0 (v̂)uv�! Q1!Q0 (v̂)uv�! Q1



Then P 00 =!Q00 for some Q00 2 Q0[w=y℄. Sin
e Q00j!Q00 2 (Q0j!Q0)[w=y℄, byindu
tion hypothesis we have Q00j!Q00 ��! Q01 for some Q01 2 Q1[w=y℄ and� as stated in the lemma. Then by REP rule we have !Q00 ��! Q01, and thelemma follows. 2Proof of Lemma 16.3: Sin
e we work modulo alpha equivalen
e on pro-
ess, without loss of generality we may assume the hygiene 
ondition w; y =2bn(P0; P1). The proof is by indu
tion on derivation of P0 ��! P1. There are twobase 
ases depending on the last derivation step.1. P0 = Q0jR0, P1 = Q1jR1 and the last derivation step isCOM: Q0 uv�! Q1 R0 uv�! R1Q0jR0 ��! Q1jR1Then P 00 = Q00jR00 for someQ00 2 Q0[w=y℄ andR00 2 R0[w=y℄. By Lemma 16.2,Q00 u0v0�! Q01 for some Q01 2 Q1[w=y℄, u0 2 u[w=y℄ and v0 2 v[w=y℄. There aretwo sub
ases.(a) u0 = u: Sin
e random substitution on pro
esses does not 
hange inputpre�xes, it follows that R00 uv0�! R01, R01 2 R1[w=y℄. Using COM we haveQ00jR00 ��! Q01jR01. Then 
ondition 1 of lemma holds with P 01 = Q01jR01.(b) u0 = w: Then u = y. Sin
e random substitution on pro
esses does not
hange input pre�xes, it follows that R00 yv0�! R01, R01 2 R1[w=y℄. Then byPAR rule we have P 00 = Q00jR00 wv0�! Q01jR00 yv0�! Q01jR01. Then 
ondition 2of lemma holds with z = v0 and ẑ = ;, Q = Q1jR1, and P 01 = Q01jR01.2. P0 = Q0jR0, P1 = (�v)(Q1jR1) and the last derivation step isCLOSE: Q0 u(v)�! Q1 R0 uv�! R1Q0jR0 ��! (�v)(Q1jR1) v =2 fn(R0)Then P 00 = Q00jR00 for some Q00 2 Q0[w=y℄ and R00 2 R0[w=y℄. By hygiene
ondition v 6= w; y. Then by Lemma 16.2, we have Q00 u0(v)�! Q01 for someQ01 2 Q1[w=y℄ and u0 2 u[w=y℄. There are two sub
ases.(a) u0 = u: Sin
e random substitution on pro
esses does not 
hange inputpre�xes, it follows that R00 uv�! R01, R01 2 R1[w=y℄. From v 6= w; y andv =2 fn(R0) we dedu
e v =2 fn(R00). Using COM we have Q00jR00 ��!(�v)(Q01jR01). Then 
ondition 1 of lemma holds with P 01 = (�v)(Q01jR01).(b) u0 = w: Then u = y. Sin
e random substitution on pro
esses does not
hange input pre�xes, it follows that R00 yv�! R01, R01 2 R1[w=y℄. Fromv 6= w; y and v =2 fn(R0) we dedu
e v =2 fn(R00). Then by PAR rule wehave P 00 = Q00jR00 w(v)�! Q01jR00 yv�! Q01jR01. Then 
ondition 2 of the lemmaholds with z = v and ẑ = fvg, Q = Q1jR1, and P 01 = Q01jR01.



For the indu
tion step, there are three 
ases.1. P0 = Q0jR, P1 = Q1jR, and the last derivation step is an appli
ation ofPAR rule: PAR: Q0 ��! Q1Q0jR ��! Q1jRThen P 00 = Q00jR0 for some Q00 2 Q0[w=y℄ and R0 2 R[w=y℄. By indu
tionhypothesis we have two 
ases.(a) Q00 ��! Q01 for some Q01 2 Q1[w=y℄. Then by PAR rule, P 00 = Q00jR0 ��!Q01jR0 and 
ondition 1 of the lemma holds with P 01 = Q01jR0.(b) Q1 � (�ẑ)S, w; y =2 ẑ, Q00 (ẑ)wz:yz�! S0 for some S0 2 S[w=y℄. Withoutloss of generality we may assume ẑ \ fn(R) = ;. Then P1 � (�ẑ)(SjR),and ẑ \ fn(R0) = ;. Then by PAR rule P 00 = Q00jR0 (ẑ)wz:yz�! S0jR0. Then
ondition 2 of the lemma holds.2. P0 = (�v)Q0, P1 = (�v)Q1 and the last derivation step is an appli
ation ofRES rule: RES: Q0 ��! Q1(�v)Q0 ��! (�v)Q1By hygiene 
ondition, we have v 6= w; y. Then P 00 = (�v)Q00 for some Q00 2Q0[w=y℄. By indu
tion hypothesis we have two 
ases.(a) Q00 ��! Q01 for some Q01 2 Q1[w=y℄. Then by RES rule, (�v)Q00 ��!(�v)Q01 and 
ondition 1 of the lemma holds with P 01 = (�v)Q01.(b) Q1 � (�ẑ)S, w; y =2 ẑ, Q00 (ẑ)wz:yz�! S0 for some S0 2 S[w=y℄. Without lossof generality we may assume v =2 ẑ. There are two sub
ases:{ v = z. Then ẑ = ;. Then byOPEN rule P 00 � (�v)Q00 w(v):yv�! S0. Then
ondition 2 of the lemma holds with z = v, ẑ = fvg, P1 � (�v)S andP 01 = S0.{ v 6= z: Then by RES rule P 00 � (�v)Q00 (ẑ)wz:yz�! (�v)S0. Then 
ondi-tion 2 of the lemma holds with P1 � (�ẑ)(�v)S and P 01 = (�v)S0.3. The 
ase where the last derivation step is an appli
ation of REP rule isstraightforward. 2Proof of Lemma 4: Sin
e we work modulo alpha equivalen
e on tra
es we 
anassume the hygiene 
ondition bn(s) \ fw; yg = ;. Proof is by indu
tion on thenumber of steps in the transition sequen
e abbreviated by P s=). The base 
aseis obvious by letting s0 = � and the fa
t that � 2 �[w=y℄. For the indu
tion step,suppose P s=) 
an be written as P ��! P1 r=). There are three 
ases dependingon �:1. P (v̂)uv�! P1: Due to lo
ality, r
p(P1) � r
p(P ). By Lemma 16.1, P 0 (v̂)uv�! P 01for some P 01 2 P1[w=y℄. Let �0 = (v̂)uv.



2. P (v̂)uv�! P1: We have r
p(P1) � r
p(P )[ v̂. Sin
e by hygiene 
ondition y =2 v̂,we have y =2 r
p(P1). By Lemma 16.2, P 0 �0�! P 01 for some P 01 2 P1[w=y℄ and�0 is � as stated in Lemma 16.2.3. P ��! P1: By lo
ality y =2 r
p(P1). Now, we apply Lemma 16.3. Fromy =2 r
p(P ) and P 0 2 P [w=y℄ we dedu
e y =2 r
p(P 0). It follows that only the�rst 
ase of Lemma 16.3 applies, be
ause in the se
ond 
ase y is used as thesubje
t of an input a
tion whi
h implies y 2 r
p(P 0). Therefore, P 0 ��! P 01for some P 01 2 P1[w=y℄.In all 
ases, y =2 r
p(P1). Then by indu
tion hypothesis, P 01 r0=) where r0 2r[w=y℄. The result follows from the observation that in 
ases 1 and 2, �0:r0 2(�:r)[w=y℄, and in 
ase 3, r0 2 r[w=y℄ = s[w=y℄. 2Proof of Lemma 5: Sin
e we work modulo alpha equivalen
e on tra
es we
an assume bn(s) \ fw; yg = ;. Proof is by indu
tion on the number of stepsin transition sequen
e P s=). The base 
ase is obvious with s0 = � be
ause� 2 F (�[w=y℄; w; y). For the indu
tion step, suppose P s=) 
an be written asP ��! P1 r=). We have three 
ases:1. P (v̂)uv�! P1: Sin
e w =2 v̂, by Lemma 16.1, there is P 01 2 P1[w=y℄ su
h thatP 0 (v̂)uv�! P 01. By indu
tion hypothesis P 01 r0=) for some r0 2 F (r[w=y℄; w; y).By letting s0 = (v̂)uv:r0, we have s0 2 F ((v̂)uv:r[w=y℄; w; y) = F (s[w=y℄; w; y)and the lemma follows.2. P (v̂)uv�! P1: Sin
e w =2 v̂, by Lemma 16.2, there is P 01 2 P1[w=y℄ su
h thatP 0 ��! P 01 where for some u0 2 u[w=y℄ and v0 2 v[w=y℄� = �u0v0 if v̂ = ;u0(v) otherwiseBy indu
tion hypothesis P 01 r0=) for some r0 2 F (r[w=y℄; w; y). By lettings0 = �:r0, we have s0 2 F (�:r[w=y℄; w; y) = F (s[w=y℄; w; y) and the lemmafollows.3. P ��! P1: Then r = s. By Lemma 16.3 we have two 
ases:(a) There is P 01 2 P1[w=y℄ su
h that P 0 ��! P 01. By indu
tion hypothesis,P 01 s0=) for some s0 2 F (s[w=y℄; w; y). The lemma follows from P 0 s0=).(b) P1 � (�ẑ)Q1, w; y =2 ẑ, and there is P 01 2 Q1[w=y℄ su
h that P 0 (ẑ)wz�! yz�!P 01. From w; y =2 ẑ we have (�ẑ)P 01 2 ((�ẑ)Q1)[w=y℄. By indu
tion hy-pothesis, (�ẑ)P 01 s00=) for some s00 2 F (s[w=y℄; w; y). It is easy to showthat P 01 [ẑ℄s00=). The lemma follows from (ẑ)wz:yz:[ẑ℄s00 2 F (s[w=y℄; w; y)and P 0 (ẑ)wz�! yz�![ẑ℄s00=). 2



Lemma 17. If P xy�! P1 and w =2 fn(P ), then there is P 01 2 P1[w=y℄ su
h thatP x(w)�! P 01.Proof: Sin
e we work modulo alpha equivalen
e on pro
esses, without loss ofgenerality we may assume the hygiene 
ondition w =2 bn(P ). The proof is byindu
tion on the derivation of P xy�! P1. For the base 
ase, we have P = x(z):Q,P1 = Qfy=zg, and the last derivation step is an appli
ation of INP rule. Then, byINP rule and w =2 fn(P ), we have x(z):Q x(w)�! Qfw=zg. Furthermore, by lo
ality,z o

urs only in output terms in Qfw=zg. Therefore, Qfw=zg 2 Qfy=zg[w=y℄,from whi
h the lemma follows.For the indu
tion step, there are three 
ases.1. P = QjR, P1 = Q1jR, and the last derivation step is an appli
ation of PARrule: PAR: Q xy�! Q1QjR xy�! Q1jRFrom w =2 fn(P ), it follows that w =2 fn(Q) and w =2 fn(R). Sin
e w =2 fn(Q),by indu
tion hypothesis we have Q x(w)�! Q01 for some Q01 2 Q1[w=y℄. Then,sin
e w =2 fn(R), by PAR rule we have QjR x(w)�! Q01jR. By letting P 01 = Q01jR,the lemma follows from Q01jR 2 P1[w=y℄.2. P = (�z)Q, P1 = (�z)Q1 and the last derivation step is an appli
ation ofRES rule: RES: Q xy�! Q1(�z)Q xy�! (�z)Q1 z =2 fx; ygBy hygiene 
ondition w 6= z and hen
e w =2 fn(Q). Then by indu
tion hypoth-esis, Q x(w)�! Q01 for some Q01 2 Q1[w=y℄. Now, sin
e z =2 fx;wg, by RES rulewe have (�z)Q x(w)�! (�z)Q01, and the lemma follows from (�z)Q01 2 P1[w=y℄.3. P =!Q, P1 = Q1 and the last derivation step is an appli
ation of REP rule:REP: Qj!Q xy�! Q1!Q xy�! Q1Sin
e w =2 fn(Qj!Q), by indu
tion hypothesis, Qj!Q x(w)�! Q01 for some Q01 2Q1[w=y℄. Then by REP rule we have !Q x(w)�! Q01, and the lemma follows. 2Proof of Lemma 6: Sin
e we work modulo alpha equivalen
e on tra
es, we as-sume s is �-normal. The proof is by indu
tion on the number of � transitions andthe number of steps in the transition sequen
e P s=) ordered lexi
ographi
ally.Base 
ase is easy with t = �. For the indu
tion step, we 
an write P ��! P1 r=).Now, there are four 
ases based on �.1. � = � : By lo
ality, r
p(P1) � r
p(P ), and hen
e � \ r
p(P1) = ;. Further,r = s and the lemma follows from indu
tion hypothesis.



2. � = (ŷ)xy : From �-normality of s, we have ŷ \ � = ;. Sin
e r
p(P1) �r
p(P ) [ ŷ, we have � \ r
p(P1) = ;. Now, r is �-normal and by indu
tionhypothesis, there exists r0 2 T (r; �) su
h that P1 r0=). The lemma followsfrom (ŷ)xy:r0 2 T (s; �).3. � = x(y) : By lo
ality, (� [ fyg) \ r
p(P1) = ;. Furthermore, r is (� [ fyg)-normal. By indu
tion hypothesis, there exists r0 2 T (r; � [ fyg) su
h thatP1 r0=). The lemma follows from x(y):r0 2 T (s; �).4. � = xy : Let w be fresh, that is w =2 fn(P ) [ n(s) [ �. By Lemma 17, thereis P 01 2 P1[w=y℄ su
h that P x(w)�! P 01. Be
ause of lo
ality, r
p(P 01) � r
p(P )and therefore (� [ fwg) \ r
p(P 01) = ;. We have two sub
ases:{ y 2 �: Then y =2 r
p(P ) and by lo
ality y =2 r
p(P1). Then by Lemma 4,P 01 r00=) for some r00 2 r[w=y℄. From the proof of Lemma 4, it is 
learthat the 
omputation P 01 r00=) has the same number of � transitions and
omputation steps as P1 r=).{ y =2 �: Then by Lemma 5, P 01 r00=) for some r00 2 F (r[w=y℄; w; y). Fromthe proof of Lemma 5, it is 
lear that if the number of � transitions inP 01 r00=) is not less than that in P1 r=), then both 
omputations haveexa
tly the same number of steps.In either 
ase, without loss of generality we may assume r00 is (� [ fwg)-normal. Then by indu
tion hypothesis, P 01 r0=) for some r0 2 T (r00; �[ fwg).The lemma follows from x(w):r0 2 T (s; �). 2Lemma 18. Let s be �-well-formed. Then for y =2 � all tra
es in F (s; x; y) are�-well-formed.Proof: Let r 2 F (s; x; y). We prove by indu
tion on the derivation of r, thatr is �-well-formed. The base 
ase where r = � 2 F (�; x; y) is obvious. For theindu
tion step there are three 
ases one for ea
h rule of De�nition 6.1. s = (v̂)uv:s0, r = (v̂)uv:r0 and r0 2 F (s0; x; y). Suppose r = (v̂)uv:r1:(ŵ)zw:r2.Now, s0 is �-well-formed, and by indu
tion hypothesis r0 is �-well-formed.Then we have z =2 r
p(r1; �) = r
p((v̂)uv:r1; �). Hen
e r is �-well-formed.2. s = (v̂)uv:s0, r = (v̂)uv:r0 and r0 2 F (s0; x; y). Suppose r = (v̂)uv:r1:(ŵ)zw:r2.Now, s0 is (� [ v̂)-well-formed. Then by indu
tion hypothesis r0 is (� [ v̂)-well-formed. Then z =2 r
p(r1; � [ v̂) = r
p((v̂)uv:r1; �). Further, sin
e s is�-well-formed, u =2 �. Hen
e r is �-well-formed.3. r = (ŵ)xw:yw:[ŵ℄r0, for some r0 2 F (s; x; y). Let r = (ŵ)xw:yw:[ŵ℄(r1:(v̂)uv:r2).Sin
e [ŵ℄r0 6= ?, we have r = (ŵ)xw:yw:([ŵ℄r1):(v̂)uv:r02 for some r02. Now,by indu
tion hypothesis r0 is �-well-formed. Then u =2 r
p(r1; �). Sin
e [ŵ℄r1
hanges only the �rst bound input with argument w in r1 (if any), it followsthat r
p(r1; �) = r
p([ŵ℄r1; �) = r
p((ŵ)xw:yw:[ŵ℄r1). Now, sin
e y =2 �, we
on
lude that r is �-well-formed. 2



Proof of Lemma 7: We prove by indu
tion on derivation of r 2 T (s; �) thatr is �-well-formed. The base 
ase � 2 T (�; �) is obvious. For the indu
tion stepthere are four 
ases.1. s = (ŷ)xy:s0, r = (ŷ)xy:r0 and r0 2 T (s0; �). Suppose r = (ŷ)xy:r1:(v̂)uv:r2.Now s0 is �-well-formed, and by indu
tion hypothesis r0 is �-well-formed.Then we have u =2 r
p(r1; �) = r
p((ŷ)xy:r1; �). Hen
e r is �-well-formed.2. s = x(y):s0, r = x(y):r0 and r0 2 T (s0; �[fyg). Suppose r = x(y):r1:(v̂)uv:r2.Now, s0 is � [ fyg-well-formed, and by indu
tion hypothesis r0 is �-well-formed. Then we have u =2 r
p(r1; � [ fyg) = r
p(x(y):r1). Further, sin
e sis �-well-formed x =2 �. Hen
e r is �-well-formed.3. s = xy:s0, y 2 �, r = x(w):r0 for some w fresh and r0 2 T (r00; � [ fwg) forsome r00 2 s0[w=y℄. Now s0 is �-well-formed. Sin
e s is normal y =2 bn(s0).From this, and the fa
ts that w is fresh and random substitution on tra
esdoes not 
hange output a
tions, we have r00 is �-well-formed. Moreover, sin
ew is fresh we also have r00 is � [ fwg-well-formed. By indu
tion hypothesisr0 is � [ fwg-well-formed. Further, sin
e s is �-well-formed we have x =2 �.We 
on
lude r is �-well-formed.4. s = xy:s0, y =2 �, r = x(w):r0 for some w fresh and r0 2 T (r00; �) for somer00 2 F (s0[w=y℄; w; y). Now, s0 is �-well-formed, and by the argument in
ase 3 we have r00 is � [ fwg-well-formed. By Lemma 18, r0 is � [ fwg-well-formed. Further, sin
e s is �-well-formed we have x =2 �. We 
on
lude r is�-well-formed. 2Lemma 19. (ŷ)xy:r � x(w):s implies r � sfy=wg.Proof: By indu
tion on the derivation of (ŷ)xy:r � x(w):s. 2Lemma 20. r � s1:s2 implies r = r1:r2 for some r1 � s1.Proof: By indu
tion on the derivation of r � s1:s2. 2From now on, we use the following notation. For two sets of tra
es R and S,we say R � S, if for every s 2 S there is r 2 R su
h that r � s.Proof of Lemma 9: The statement of the lemma 
an be stated as: for a pre�x
losed set R of tra
es with bounded length, R � T (s; �) implies R � Tf (s; �).The proof is by indu
tion on the length of s. The base 
ase is easy be
auseT (�; �) = Tf (�; �) = f�g. For the indu
tion step we have four 
ases, of whi
h weonly 
onsider the one whi
h is 
entral to the proof, namely where s = xy:s0 andy 62 �. The others are routine. We are done if we 
onstru
t a pre�xed 
losed setR0 of tra
es with bounded length su
h that R0 � T (s0; �) and xy:R0 � R. For,by indu
tion hypothesis, R0 � T (s0; �) implies R0 � Tf (s0; �). Then, xy:R0 �xy:Tf (s0; �) = Tf (s; �), whi
h together with xy:R0 � R implies R � Tf (s; �).



Suppose t0 2 T (s0; �) and l is the bound on the length of tra
es in R. Now,let t00 = w(z1):y(z01) : : : w(zn):y(z0n) for some n > len(t0) + l. Now, for w fresh,x(w):t0:t00 2 T (xy:s0; �), be
ause s0 2 s0[w=y℄, s0:t00 2 F (s0; w; y) and t0:t00 2T (s0:t00; � [ fwg). Then, sin
e R � T (s; �), there exists r 2 R su
h that r �x(w):t0:t00. It is easy to see by inspe
ting L1-L4 that r 
an only start with anoutput a
tion, that is r = (ẑ)xz:r1 for some r1. By Lemma 19, r1 � (t0:t00)fz=wg.Furthermore, (t0:t00)fz=wg = t0:(t00fz=wg) be
ause w does not o

ur in t0.Sin
e the number of outputs in t00 is greater than len(r1), some of them haveto be dropped, whi
h is only possible by an appli
ation of L3. Further, sin
ethe number of these outputs is also greater than len(t0) + len(r1), we 
on
ludethat some of these appli
ations of L3 must involve the inputs in t00. But, su
hannihilation are possible only if z = y, whi
h implies r = xy:r1. Furthermore,sin
e r1 � t0:t00fy=wg, by Lemma 20 we have r1 = r0:r00 for some r0 � t0. Let R0be the pre�x 
losure of the set of all tra
es r0 thus obtained for ea
h t0 2 T (s0; �).By 
onstru
tion,R0 � T (s0; �). Furthermore, from r = xy:r0:r00 and pre�x 
losureof R, we have xy:R0 � R. Finally, sin
e the length of tra
es in R is bounded, sois the length of tra
es in R0. 2Lemma 21 (Boreale et al. [3℄). If P s=) then Pfz=yg sfz=yg=) . 2We say s1:xw:s2fw=yg �fw=yg s1:x(y):s2. If s3 is normal and s1 ��1 s2 ��2s3, then we say s1 ��1��2 s3, where�1 � �2 = 8<:�1(x) if �1(x) 6= x�2(x) if �2(x) 6= xx otherwiseNote that, normality of s3 implies that �1 � �2 is well-de�ned. The readermay 
he
k the following simple lemma.Lemma 22. If s �� r then len(s) = len(r). Further, if s = s1:s2, r is normaland r = r1:r2 with len(r1) = len(s1), then there exist �1; �2 su
h that s1 ��1 r1,s2 ��2 r2�1, and � = �1 � �2.Proof: By indu
tion on the length of derivation of s �� r. 2Lemma 23. For a �nite pro
ess P (with no repli
ation), if P s:(ẑ)yz=) Q andẑ \ fwg = ;, then there is P 0 2 P [w=y℄i su
h that P 0 s:(ẑ)wz=) Q.Proof: By indu
tion on the derivation of P s:(ẑ)yz=) Q. 2We de�ne random substitution on substitutions as follows�[w=y℄ = f�[u 7! v℄ j v 2 �(u)[w=y℄g



Lemma 24. For 
larity, in the following, we write P [w=y℄o for random outputsubstitution on pro
esses instead of P [w=y℄ (as in de�nition 5). Let y 2 �, s is�-well-formed, t 2 T (s; �), s �� t, P be a �nite pro
ess, and P s=) Q. Then forevery P1 2 P [w=y℄o there is P 0 2 P1[w=y℄i, Q0 2 Q[w=y℄o, �0 2 �[w=y℄, su
hthat P 0 s0=) Q0 and s0 ��0 t.Proof: Without loss of generality we may assume that s and t are �[fwg-normal.Let P1 2 P [w=y℄o. The proof is by indu
tion on the length of 
omputationP s=) Q. The base 
ase is obvious. For the indu
tion step, letP s1=) Q1 ��! QThere are two 
ases depending on �.{ � 6= � : Sin
e s1:� �� t, by Lemma 22, we have t = t1:�, and for some �1; �2su
h that � = �1 � �2, s1 ��1 t1 and � ��2 ��1. By indu
tion hypothesisthere exist P 0 2 P1[w=y℄i,Q01 2 Q1[w=y℄o, �01 2 �1[w=y℄, su
h that P 0 s01=) Q01su
h that s01 ��01 t1. There are two sub
ases.� � = (v̂)uv: Sin
e s is �-well-formed and y 2 � we dedu
e u 6= y. We only
onsider the 
ase where � = uy. The 
ase where v 6= y is simpler. Sin
e sis �-well-formed, by Lemma 7, so is t. The subje
t of outputs in a �-well-formed template are not bound by previous bound outputs. Therefore,��1 = �. Therefore, sin
e uy ��2 ��1, we dedu
e � = u(v1) for some v1,and �2 = fy=v1g. Sin
e Q1 uy�!, by Lemma 16.2 we have Q01 uy0�! Q0 forsome Q0 2 Q[w=y℄o and y0 2 y[w=y℄. Let �0 = uy0, �02 = fy0=v1g, and�0 = �01 � �02. For the same reason as for ��1 = �, we have ��01 = �.Then we have �0 ��02 ��01. Then sin
e s1 ��01 t1, s01:�0 ��0 t1:�. Further�0 2 �[w=y℄. Now the lemma holds with P 0 s01:�0=) Q0.� � = (v̂)uv: We only 
onsider the 
ases where � is uy and (v̂)yv, y =2fu; vg. The 
ase where � is yy is similar to these two, and the 
asewhere � is uv for y 6= u; v is simple. Note that we have �2 is identity,and therefore � = �1 and � = ��1.� � = uy: From � = ��1 we dedu
e � = u1v1, �1(u1) = u, and�1(v1) = y. Let y0 = �01(v1). From �01 2 �1[w=y℄ it follows thaty0 2 fy; wg. From Lemmas 16.1 and 17 it follows Q01 uy0�! Q0 for someQ0 2 Q[w=y℄o. Then we have s01:uy0 ��01 t1:�, be
ause ��01 = uy0.The lemma holds with P 0 s01:uy0=) Q0.� � = (v̂)yv: From � = ��1 we dedu
e � = (v̂1)u1v1, �1(u1) = y,�1(v1) = v. By Lemma 16.1 we have Q01 (v̂)yv�! Q0 for some Q0 2Q[w=y℄o. Sin
e �01 2 �1[w=y℄, we have �01(u1) 2 fw; yg. There aretwo 
ases. If �01(u1) = y: Then we have s01:(v̂)yv ��01 t1:�, be
ause��01 = (v̂)yv. The lemma holds with P 0 s01:(v̂)yv=) Q0. On the otherhand, if �01(u1) = w, then by Lemma 23, there is P 00 2 P 0[w=y℄i su
h



that P 00 s01:(v̂)wv=) Q0 (note that sin
e t is �[fwg-normal fwg\ v̂ = ;).Note that P 00 2 P1[w=y℄i. Then we have s01:(v̂)wv ��01 t1:�, be
ause��01 = (v̂)wv. The lemma holds with P 00 s01:(v̂)wv=) Q0.{ � = � : Then s1 = s, and s1 �� t. Then by indu
tion hypothesis, thereexist P 0 2 P1[w=y℄i, Q01 2 Q1[w=y℄o, �0 2 �[w=y℄, su
h that P 0 s0=) Q01 fors0 ��0 t. From Q1 ��! Q, by Lemma 16.3, we have two 
ases:� There is Q0 2 Q[w=y℄o su
h that Q01 ��! Q0. The lemma follows triviallywith P 0 s0=) Q0.� We have Q � (�ẑ)R, w; y =2 ẑ, and there is R0 2 R[w=y℄o su
h thatQ01 (ẑ)wz�! yz�! R0. Then applying Lemma 23 to P 0 s0:(ẑ)wz:yz=) R0 we have,there is P 00 2 P 0[w=y℄i su
h that P 00 s0:(ẑ)wz:wz=) R0. But then P 00 s0=)(�ẑ)R0. Now, sin
e w; y =2 ẑ, we have (�ẑ)R0 2 Q[w=y℄o. The lemmaholds with P 00 s0=) (�ẑ)R0, be
ause P 00 2 P1[w=y℄i. 2We de�ne hŷis as follows.hŷis = 8>><>>:s if ŷ = ; or y 62 fn(s)s1:x(y):s2 if ŷ = fyg and there are s1; s2; x s.t.s = s1:xy:s2 and y 62 fn(s1) [ fxg? otherwiseProof of Lemma 10:1. First we prove P <�� Q implies (�x)P <���fxg (�x)Q. Suppose for an observerO su
h that r
p(O) \ (� � fxg) = ;, we have (�x)P jO ��=). Let z be fresh.Using Lemma 21, we have ((�x)P jO)fz=xg ��=). Sin
e x is not free in (�x)Pwe have (�x)P jOfz=xg ��=). Now x is not free in Ofz=xg, and so we have(�x)(P jOfz=xg) ��=). This implies P jOfz=xg ��=). But P <�� Q, and r
p(O)\� = ;. Therefore, QjOfz=xg ��=). It follows that (�x)(QjOfz=xg) ��=). Andsin
e x is not free in Ofz=xg, we also have (�x)QjOfz=xg ��=). Sin
e z is notfree in O, we have Ofz=xgfx=zg = O. Therefore, using Lemma 21 again, wededu
e ((�x)QjOfz=xg)fx=zg ��=), i.e. (�x)QjO ��=) sin
e z is not free in(�x)Q.Now we prove r
p(R) \ � = ; and P <�� Q imply P jR <�� QjR. Sup-pose for an observer O su
h that r
p(O) \ � = ;, we have (P jR)jO ��=).Then P j(RjO) ��=). Now, r
p(RjO) \ � = ;. Then sin
e P <�� Q, we haveQj(RjO) ��=). This, in turn implies that (QjR)jO ��=) and the lemma follows.2. Let xyjP s=) where s is �-well-formed, and t 2 T (s; �). We have xwjP 2(xyjP )[w=y℄. Then by Lemma 24, it follows that there is P 0 2 P [w=y℄i su
h



that xwjP 0 s0=) for some s0 � t. Now, (�w)(xwjP 0) hfwgis0=) , and hfwgis0 � t.Then it follows that (�w)(xwjPP 02P [w=y℄i P 0) hfwgis0=) . 2Lemma 25. Let y =2 � and y does not o

ur free as the subje
t of an input in s.Then, for every �-well-formed r su
h that e(sfz=yg) r=) there is a �-well-formed
otemplate r0 su
h that e(s) r0=) and e(r0fz=yg) r=).Proof: Let e(sfz=yg) r=) for a �-well-formed r. Without loss of generality we
an assume bn(s) \ fz; yg = ;, and s is �-normal. The proof is by indu
tion onthe length of s. The base 
ase s = � is obvious. Let s = �:s1, then sfz=yg =�fz=yg:s1fz=yg. For the indu
tion step there are two 
ases depending on �.1. � = (ŵ)xw : We only 
onsider the 
ase x = y, whi
h is 
entral to the proof;the 
ase x 6= y is simpler. Then �fz=yg = (ŵ0)zw0 where w0 = wfz=yg,and e(sfz=yg) = (�ŵ0)(zw0je(s1fz=yg)). We 
onsider the 
ase z 2 � whi
h ismore interesting; the 
ase z =2 � is similar. Sin
e z 2 � and r is �-well-formed,the message zw0 
annot �re in e(sfz=yg) r=). So there are two possibilities.{ zw0 is 
onsumed internally. Then e(s1fz=yg) r1=) for some r1 = r2:zw0:r3su
h that r = hŵ0i(r2:r3). Sin
e r is �-well-formed, we have r1 is (� [ŵ0)-well-formed. By indu
tion hypothesis there is a (�[ ŵ0)-well-formed
otemplate r01 su
h that e(s1) r01=) and e(r01fz=yg) r1=). Now, e(s) r0=)where r0 = (ŵ)yw:r01. Note that r0 is a 
otemplate that is �-well-formedbe
ause y =2 �. Further, e(r0fz=yg) = (�ŵ0)(zw0je(r01fz=yg)). Therefore,e(r0fz=yg) r=).{ zw0 is not 
onsumed. Then e(s1fz=yg) r1=) for some r1 su
h that r =hŵ0ir1. Sin
e r is �-well-formed, we have r1 is (� [ ŵ0)-well-formed.By indu
tion hypothesis there is a (� [ ŵ0)-well-formed 
otemplate r01su
h that e(s1) r01=) and e(r01fz=yg) r1=). Now, e(s) r0=) where r0 =hŵir01. Note that r0 is a �-well-formed 
otemplate. Further, e(r0fz=yg) =(�ŵ0)(e(r01fz=yg)). Therefore, e(r0fz=yg) r=).2. � = x(w): We only 
onsider the more interesting 
ase where x = y. Then�fz=yg = z(w) and e(sfz=yg) = z(w):e(s1fz=yg)). Then r = (v̂)zv:r1 forsome r1 su
h that e(s1fz=ygfv=wg) r1=). Note that r1 is �-well-formed. Sin
es is 
owell-formed, so is sfz=yg, and therefore w does not o

ur free as thesubje
t of an input in s1fz=yg. Further, sin
e s is �-normal, w =2 �. Then,by indu
tion hypothesis, e(s1fz=yg) r2=) for some �-well-formed 
otemplater2 su
h that e(r2fv=wg) r1=). Now, applying the indu
tion hypothesis againon s1fz=yg, we get e(s1) r3=) for some �-well-formed 
otemplate r3 su
hthat e(r3fz=yg) r2=). Now, the reader 
an verify the following 
laim: for
otemplates t1; t2; t3, if e(t1) t2=) and e(t2) t3=) then e(t1) t3=). Using this
laim and Lemma 21 we 
on
lude e(r3fz=ygfv=wg) r1=). Now, e(s) r0=)



where r0 = y(w):r3. Sin
e r3 is �-well-formed 
otemplate, so is r0. Fur-ther, e(r0fz=yg) = z(w):e(r3fz=yg) (v̂)zv�! e(r3fz=ygfv=wg) r1=). Therefore,e(r0fz=yg) r=). 2Lemma 26. If P s=) and e(s) r=) then P r=).Proof: Following is a proof sket
h. Sin
e we work modulo alpha equivalen
e ontra
es, we assume bn(r) \ fn(P ) = ;. If s and s0 are alpha equivalent then soare e(s) and e(s0). Then, sin
e � equivalent pro
esses have the same transitions,we 
an assume s is normal. The proof is by indu
tion on the length of the
omputation e(s) r=). The base 
ase is trivial. For the indu
tion step we 
anwrite e(s) ��! Q r1=);for some Q and r1. We have three 
ases based on �:{ � = (ŷ)xy: Then s = hŷi(s1:xy:s2) for some s1; s2 where s1 does not 
ontainany inputs, and Q = e(s1:s2). Further, sin
e P hŷi(s1:xy:s2)=) we 
an showP (ŷ)xy=) P1 s1:s2=) . Sin
e e(s1:s2) r1=), by indu
tion hypothesis, P1 r1=). Thelemma follows from P (ŷ)xy:r1=) .{ � = (ŷ)xy: Then s = s1:x(u):s2 for some s1; s2 su
h that x =2 bn(s1), ands1 
ontains no inputs, and Q = e(s1:s2fy=ug). By normality of s, u =2 n(s1),and hen
e we 
an write Q = e((s1:s2)fy=ug)). Further, from P s1:x(u):s2=) ,u =2 n(s1), and x =2 bn(s1) we also have P x(u)=) P1 s1:s2=) . Further, sin
eŷ \ fn(P ) = ;, P (ŷ)xy=) P1fy=ug. Then by Lemma 21 we have P1 (s1:s2)fy=ug=) .By indu
tion hypothesis P1fy=ug r1=), and the lemma follows from P (ŷ)xy:r1=) .{ � = � : Then we have e(s) (ŷ)xy:xy�! Q0, s = hŷi(s1:xy:s2:x(u):s3), s1 and s2
ontain only outputs,Q0 = e(s1:s2:s3fy=ug), andQ = (�ŷ)Q0 = e(hŷi(s1:s2:s3fy=ug)).Sin
e P hŷi(s1:xy:s2:x(u):s3)=) , we have P hŷi(s1:xy:s2:xy:s3fy=ug)=) by Lemma 21.The 
omplementary input and output a
tions 
an be preponed so thatP =) P1 hŷi(s1:s2:s3fy=ug)=) . By indu
tion hypothesis P1 r1=), and the lemmafollows. 2Lemma 27. Let r be ŷ-well-formed and ŷ-normal. Then (�ŷ)e(r) = e(r0), wherer0 = 8<:r1 if ŷ = fyg; r = r1:y(z):r2; and y =2 n(r1)r1:x(y):r2 if ŷ = fyg; r = r1:xy:r2; and y =2 n(r1)r otherwiseNote that the 
onditions on r imply that the three 
ases above are exhaustive.Further, (�ŷ)e(r) r0=).



Proof: That (�ŷ)e(r) r0=) is immediate. The proof of (�ŷ)e(r) = e(r0) is by astraightforward indu
tion on the length of r. The idea is to push (�ŷ) inwardsas far as possible. To push a
ross a restri
tion, we 
an use I1, A3, A8 and A19,and the fa
t that (�x)0 = 0 whi
h 
an be derived using A2, A14, A19. To pusha
ross a message we 
an use A8, and to push a
ross an input we 
an use A11.If at any point, (�ŷ) 
annot be pushed further, either 
ase 2 of the de�nition ofr0 applies, or A11 
an be used and 
ase 1 applies. If (�ŷ) 
an be pushed all theway in, we 
an use A3 and (�x)0 = 0, and 
ase 3 applies. 2Proof of Lemma 13: For 
onvenien
e, we write R(s; �) to denote the set of all�-well-formed 
owell-formed 
otemplate tra
es r su
h that e(s) r=). The lemma
an be stated as: for every set of names �, e(s) v� Pr2R(s;�) e(r). We will beusing the following property in the proof, whi
h the reader 
an verify easily. Ife(s) r=) then len(r) � len(s).Without loss of generality, we 
an assume s is �-normal. The proof is byindu
tion on the length of s. For the base 
ase, s = �, we have e(�) = 0, R(�; �) =f�g, and the lemma follows using A14 and I4. For the indu
tion step we havethree 
ases:1. s = x(y):s1: By indu
tion hypothesis we have e(s1) v� Pr02R(s1;�) e(r0).Clearly, for every r1 2 R(s1; �), fn(e(r1)) = fn(r1) � fn(s1) = fn(e(s1)).Therefore, we are done if we show that for all z 2 fn(s1), e(s1)fz=yg v�Pr02R(s1;�) e(r0)fz=yg, for then using the fa
t that x(y):R(s1; �) � R(s; �),and laws I2, A2, we 
on
lude e(s) v� Pr2R(s;�) e(r).Now, e(s1)fz=yg = e(s1fz=yg). By indu
tion hypothesis, e(s1fz=yg) v�Pr02R(s1fz=yg;�) e(r0). Sin
e s is 
owell-formed, y does not o

ur free as thesubje
t of an input in s1, and sin
e s is �-normal, y =2 �. Then, using Lemmas25 and 12, and laws I3, A1, and A2, we 
on
lude Pr02R(s1fz=yg;�) e(r0) v�Pr02R(s1;�) e(r0)fz=yg. By transitivity ofv�, we have e(s1fz=yg) v� Pr02R(s1;�) e(r0)fz=yg.2. s = (ŷ)xy:s1: By indu
tion hypothesis we have e(s1) v�[ŷ Pr02R(s1;�[ŷ) e(r0).From e(s) = (�ŷ)(xyje(s1)) and using I1, A12, and A7, we have e(s) v�Pr02R(s1;�[ŷ)(�ŷ)(xyje(r0)) =Pr02R(s1;�[ŷ) e((ŷ)xy:r0). If x 62 �, then (ŷ)xy:R(s1; �[ŷ) � R(s; �), and therefore using A2 we have e(s) v� Pr2R(s;�) e(r) as re-quired. For the 
ase x 2 �, we are done if we show for every (ŷ)xy:r1 2(ŷ)xy:R(s1; � [ ŷ) that e((ŷ)xy:r1) v� Pr02R((ŷ)xy:r1;�) e(r0). Following isthe reason. If e(s1) r1=), we have e(s) (ŷ)xy:r1=) . Then by Lemma 26, wehave R((ŷ)xy:r1; �) � R(s; �). Then using I3, A1, and A2, we 
on
ludee(s) v� Pr2R(s;�) e(r). To show e((ŷ)xy:r1) v� Pr02R((ŷ)xy:r1;�) e(r0), wehave two 
ases based on r1. Without loss of generality, we 
an assume r1 is� [ ŷ-normal.{ r1 = �. Then (ŷ)xy:r1 = (ŷ)xy, e((ŷ)xy) = (�ŷ)xy. Sin
e x 2 �,R((ŷ)xy; �) = f�g, and e(�) = 0. The result follows be
ause (�ŷ)(xy) v�P 0, whi
h 
an be derived using the example in Se
tion 4 and laws A14,A19, I1, I4.



{ r1 = u(w):r2: We only 
onsider the 
ase u = x, the other is simpler.Using A20, I1, A7, A11, we dedu
ee((ŷ)xy:r1) = (�ŷ)(xyjx(w):e(r2)) v�Xx(w):e((ŷ)xy:r2)+ Xx(w):(�ŷ)e(r2) (1)+ X(�ŷ)e(r2fy=wg)We are done if we show that for ea
h summand Q in the RHS, Q v�Pr02T e(r0), for some set T of �-well-formed tra
es that Q exhibits. Thisis be
ause, it is 
lear from (1) that if Q r0=) then e((ŷ)xy:r1) r0=). There-fore T � R((ŷ)xy:r1; �), and by using I3, A1, and A2, we 
an 
on
ludee((ŷ)xy:r1) v� Xr02R((ŷ)xy:r1;�) e(r0)Now, we 
onsider ea
h summand separately.(a) x(w):e((ŷ)xy:r2): Sin
e e(s1) r1=), we have len(r1) � len(s1). Andsin
e len(r2) < len(r1) � len(s1) < len(s), we have len((ŷ)xy:r2) <len(s). Therefore, we 
an apply the indu
tion hypothesis to 
on
ludee((ŷ)xy:r2) v� Xr02R((ŷ)xy:r2;�) e(r0)Now, for every r0 2 R((ŷ)xy:r2; �), fn(e(r0)) = fn(r0) � fn(e((ŷ)xy:r2)).Now, sin
e r1 is 
owell-formed, w does not o

ur free as the subje
tof an input in (ŷ)xy:r2. Further, sin
e r1 is � [ ŷ-normal, and hen
ew =2 �. Then using arguments similar to that in 
ase 1, we dedu
ethat for ea
h z 2 fn(e((ŷ)xy:r2)),e((ŷ)xy:r2)fz=wg v� Xr02R((ŷ)xy:r2;�) e(r0)fz=wgThen using I1 and A13 we getx(w):e((ŷ)xy:r2) v� Xr02R((ŷ)xy:r2;�)x(w):e(r0)Now, be
ause x(w):R((ŷ)xy:r2; �) � R(x(w):(ŷ)xy:r2; �), using A2,we have x(w):e((ŷ)xy:r2) v� Xr02R(x(w):(ŷ)xy:r2;�) e(r0)(b) x(w):(�ŷ)e(r2): Sin
e r1 is � [ ŷ-well-formed, it also ŷ-well-formed.Then by Lemma 27, (�ŷ)e(r2) = e(r0), where r0 is as de�ned in the



lemma and (�ŷ)e(r2) r0=). The reader 
an 
he
k that r0 is �-well-formed. Now, fn(e(r0)) � fn((�ŷ)e(r2)). The reader 
an also 
he
kthat, for z 2 fn((�ŷ)e(r2)), by Lemma 27,((�ŷ)e(r2))fz=wg = e(r0)fz=wg. Then by I2, I4 and A14,x(w):(�ŷ)e(r2) =� e(x(w):r0) =� X e(x(w):r0)Now, x(w):r0 is a �-well-formed tra
e, and sin
e (�ŷ)e(r2) r0=), wehavex(w):(�ŷ)e(r2) x(w):r0=)(
) (�ŷ)e(r2fy=wg): Sin
e len(r2) < len(s), by indu
tion hypothesis andaxiom I1 we have(�ŷ)e(r2fy=wg) v� Xr002R(r2fy=wg;�[ŷ)(�ŷ)e(r00)Let r00 2 R(r2fy=wg; � [ ŷ). We have, r00 is also ŷ-well-formed.Then by Lemma 27, (�ŷ)e(r00) = e(r0), where r0 is as de�ned inthe lemma and (�ŷ)e(r00) r0=). The reader 
an 
he
k r0 is �-well-formed. Further, sin
e e(r2fy=wg) r00=), using Lemma 26 we 
anshow (�ŷ)e(r2fy=wg) r0=). Let R be the set of all r0 that are ob-tained for ea
h r00 2 R(r2fy=wg; �[ ŷ). Then, using I3, I4, A1, A14and transitivity of v�, we 
on
lude(�ŷ)e(r2fy=wg) v� Xr02R e(r0){ r1 = (v̂)uv:r2: Using axioms A4, A5, and A8, we dedu
ee((ŷ)xy:r1) = e((ŷ)xy:(v̂)uv:r2) = e((v̂0)uv:(ŷ0)xy:r2) (2)where (sin
e r1 is � [ ŷ-normal)v̂0 = � ŷ if ŷ = fvgv̂ otherwise and ŷ0 = ŷ � v̂0By indu
tion hypothesis, we havee((ŷ0)xy:r2) v�[v̂0 Xr02R((ŷ0)xy:r2;�[v̂0) e(r0)Then, using I1, A7 and A12 we dedu
ee((v̂0)uv:(ŷ0)xy:r2) v� Xr02R((ŷ0)xy:r2;�[v̂0) e((v̂0)uv:r0) (3)



Now, u =2 �[ŷ, be
ause r1 2 R(s1; �[ŷ). Then for every r0 2 R((ŷ0)xy:r2; �[v̂0), (v̂0)uv:r0 is �-well-formed. Further, e((ŷ0)xy:r2) r0=) implies e((v̂0)uv:(ŷ0)xy:r2) (v̂0)uv:r0=) .Therefore,(v̂0)uv:R(ŷ0xy:r2; � [ v̂0) � R((v̂0)uv:(ŷ0)xy:r2; �) = R((ŷ)xy:(v̂)uv:r2; �)(4)Finally, from (2), (3) and (4), and using I4, A2 we obtaine((ŷ)xy:r1) v� Xr02R((ŷ)xy:r1;�) e(r0) 2Lemma 28. Let y =2 �, and s be a tra
e su
h that y does not o

ur free in inputa
tions of s. Then for every t0 2 T (sfz=yg; �) there is a t 2 T (s; �) su
h thattfz=yg � t0 using only L4.Proof: The proof is by indu
tion on the length of s. Without loss of generality,we may assume bn(s) \ fz; yg = ;. The base 
ase s = � is obvious. For theindu
tion step, there are three 
ases:1. s = (v̂)uv:s1: For t0 2 T (sfz=yg; �), we have t0 = (v̂0)u0v0:t01, where u0 =ufz=yg v0 = vfz=yg and t01 2 T (s1fz=yg; �). By indu
tion hypothesis, thereis t1 2 T (s1; �) su
h that t1fz=yg � t01 using only L4. But we have (v̂)uv:t1 2T ((v̂)uv:s1; �), and ((v̂)uv:t1)fz=yg = (v̂0)u0v0:t1fz=yg � (v̂0)u0v0:t01 = t0,using only L4.2. s = u(v):s1: For t0 2 T (sfz=yg; �) we have t0 = u0(v):t01, where u0 =ufz=yg and t01 2 T (s1fz=yg; � [ fvg). By indu
tion hypothesis, there ist1 2 T (s1; � [ fvg) su
h that t1fz=yg � t01 using only L4. But we haveu(v):t1 2 T (u(v):s1; �), and (u(v):t1)fz=yg = u0(v):t1fz=yg � u0(v):t01 = t0,using only L4.3. s = uv:s1: There are two sub
ases.{ v = y: Then sfz=yg = u0z:s1fz=yg where u0 = ufz=yg. There are twomore sub
ases:� z 2 �: For t0 2 T (sfz=yg; �) we have t0 = u0(w):t01, where w fresh,and t01 2 T (s2; � [ fwg) for some s2 2 s1fz=yg[w=z℄. Using the fa
tthat y 
annot o

ur free in the input a
tions of s, we 
an showshow s2 = s3fz=yg for some s3 2 s1[w=z℄. Clearly, s3 does not
ontain free o

urren
es of y in input a
tions. Then by indu
tionhypothesis, there is t1 2 T (s3; �[ fwg) su
h that t1fz=yg � t01 usingonly L4. It is easy see that, sin
e w is fresh, t1fz=wg 2 T (s1; �).Then we have uy:t1fz=wg 2 T (s; �). Then (uy:t1fz=wg)fz=yg =u0z:t1fz=wgfz=yg= u0z:t1fz=ygfz=wg � u0(w):t1fz=yg � u0(w):t01 =t0, where the relation � is by L4.� z =2 �: For t0 2 T (sfz=yg; �) we have t0 = u0z:t01, where t01 2T (s1fz=yg; �). By indu
tion hypothesis, there is t1 2 T (s1; �) su
hthat t1fz=yg � t01 using only L4. But we have uy:t1 2 T (uy:s1; �),and (uy:t1)fz=yg = u0z:t1fz=yg � u0z:t01 = t0 using only L4.



{ v 6= y: Then sfz=yg = u0v:s1fz=yg where u0 = ufz=yg. There are twosub
ases.� v =2 �: Then for t0 2 T (sfz=yg; �) we have t0 = u0v:t01, where t01 2T (s1fz=yg; �). By indu
tion hypothesis, there is t1 2 T (s1; �) su
hthat t1fz=yg � t01 using only L4. But we have uv:t1 2 T (s; �), and(uv:t1)fz=yg = u0v:t1fz=yg � u0v:t01 = t0 using only L4.� v 2 �: Then for t0 2 T (sfz=yg; �) we have t0 = u0(w):t01, wherew fresh, t01 2 T (s2; � [ fwg) for some s2 2 s1fz=yg[w=v℄. Usingthe fa
t that y o

urs free only in output a
tions of s1, we 
anshow s2 = s3fz=yg for some s3 2 s1[w=v℄. Clearly, y does not o

urfree in input a
tions of s3. Then by indu
tion hypothesis, there ist1 2 T (s3; �[fwg) su
h that t1fz=yg � t01 using only L4. But we haveu(w):t1 2 T (s; �), (u(w):t1)fz=yg = u0(w):t1fz=yg � u0(w):t01 = t0,using only L4. 2Proof of Lemma 14: The proof is by indu
tion on the length of s. Withoutloss of generality we may assume s is �-normal. The base 
ase follows from0 vPt2f�g 0 whi
h holds by A14. For the indu
tion step we have three 
ases:1. s = xy:s0: Then e(s) = xyje(s0). There are two sub
ases:(a) y =2 �: From indu
tion hypothesis we havee(s0) v� Xt02T (s0;�) e(t0)Using laws I1 and A12 in that order we getxyje(s0) v� xyj Xt02T (s0;�) e(t0) =� Xt02T (s0;�)xyje(t0) = Xt02T (s0;�) e(xy:t0) = Xt2T (s;�) e(t)(b) y 2 �: It is easy to 
he
k that for w fresh, every s00 2 s0[w=y℄ is a
owell-formed 
otemplate. Further, len(s00) = len(s0). Hen
e by indu
-tion hypothesis, we havee(s00) v� Xt02T (s00;�) e(t0)Then, by I3 Xs002s0[w=y℄ e(s00) v� Xt02T (s0[w=y℄;�) e(t0) (5)Now, sin
e y 2 �, by law A21 we havee(s) = xyje(s0) v� (�w)(xwj XP2e(s0)[w=y℄i P )



The reader may 
he
k that for any P 2 e(s0)[w=y℄i, P = e(s00) for somes00 2 s0[w=y℄ and vi
e versa . Using this we gete(s) v� (�w)(xwj Xs002s0[w=y℄ e(s00))Now using 5, laws I1 and I3, we havee(s) v� (�w)(xwj Xt02T (s0[w=y℄;�) e(t0))Now, using laws A7 and A12, we gete(s) v� Xt02T (s0[w=y℄;�) e(x(w):t0) = Xt2T (s;�) e(t)2. s = x(y):s0: Then e(s) = (�y)(xyje(s0)). By indu
tion hypothesis, we havee(s0) v�[fyg Xt02T (s0;�[fyg) e(t0)Sin
e s is �-normal, we have y =2 �. Using this and law I1, we gete(s) v� (�y)(xyj Xt02T (s0;�[fyg) e(t0))Now, using laws A7 and A12, we gete(s) v� Xt02T (s0;�[fyg) e(x(y):t0) = Xt2T (s;�) e(t)3. s = x(y):s0: Then e(s) = x(y):e(s0). We are done if we showe(s0)fz=yg v� 0� Xt02T (s0;�) e(t0)1A fz=yg (6)for every z 2 fn(e(s0)), be
ause then by laws I2, A13 and I4 we havee(s) v� x(y): Xt02T (s0;�) e(t0) =� Xt02T (s0;�)x(y):e(t0) = Xt02T (s0;�) e(x(y):t0) = Xt2T (s;�) e(t)Now we prove 6. By applying the indu
tion hypothesis to s0fz=yg, we havee(s0)fz=yg = e(s0fz=yg) v� Xt002T (s0fz=yg;�) e(t00)Sin
e0� Xt02T (s0;�) e(t0)1A fz=yg = Xt02T (s0;�) e(t0)fz=yg = Xt02T (s0;�) e(t0fz=yg)



So, we are done if we showXt002T (s0fz=yg;�) e(t00) v� Xt02T (s0;�) e(t0fz=yg)Sin
e s is �-normal, y =2 �. Further, sin
e s is a 
owell-formed 
otemplate, y
annot o

ur free in the input a
tions of s0. Then by Lemma 28, for everyt00 2 T (s0fz=yg; �) there is a t0 2 T (s0; �) su
h that t0fz=yg � t00. Then byLemma 12.2 we have e(t00) <� e(t0fz=yg), and 6 follows from laws I3, I4, A1and A2. 2


