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Abstract. We present a theory of may testing for asynchronous calculi
with locality and no name matching. Locality is a non-interference prop-
erty that is common in systems based on object-paradigm. Concurrent
languages such as Join and Pict disallow name matching, which is akin to
pointer comparison in imperative languages, to provide for an abstract se-
mantics that would allow useful program transformations. May testing is
widely acknowledged to be an effective notion for reasoning about safety
properties. We provide a trace-based characterization of may testing for
versions of asynchronous m-calculus with locality and no name matching,
which greatly simplifies establishing equivalences between processes. We
also exploit the characterization to provide a complete axiomatization
for the finitary fragment of the calculi.

1 Introduction

Experience with applying the m-calculus [10] to distributed systems has shown
that it is necessary to make additional ontological commitments. Specifically,
variants of m-calculus with asynchrony, locality, and absence of name matching
have received wide attention recently [2, 4, 7, 9]. Asynchronous message passing
is more common in distributed systems than synchronous communication that
is assumed primitive in the 7-calculus. The discipline of locality, which disallows
a process from receiving messages targeted to a name previously received by the
process, is typical in systems based on an object paradigm [1]. Name matching is
analogous to pointer comparison in imperative languages; disallowing it enables
certain performance optimizations. In fact, name comparisons are disallowed by
concurrent languages such as Pict [12]. In any case, comparing names is rarely
useful in programming; the behavior observed while communicating at a name
is all that matters and not the specific name used for communication. A variant
of the m-calculus that embodies these three features is Lz [9].

We develop a theory of may testing for two subcalculi of asynchronous -
calculus [3]: one with only locality, called Lw—, and the other with both locality
and no name matching, called Lw. May testing [11] is a specific instance of
the general notion of behavioral equivalence where two processes are said to be
equivalent if they have the same success properties in all contexts. A context in



may testing consists of an observing process that runs in parallel and interacts
with the process being tested, and success is defined as the observer signaling a
special event. The non-determinism in execution may give rise to different runs.
A process is said to pass a test proposed by an observer, if there exists a run
that leads to a success. By viewing a success as something bad happening, may
testing can be used for reasoning about safety properties.

Because the definition of may testing involves a universal quantification over
contexts, it is very difficult to prove equivalences directly from the definition. A
typical approach to circumvent the problem, is to find an alternate characteri-
zation of the equivalence, which involves only the processes being compared. We
provide an alternate characterization of may testing in L7— and Lzw. The char-
acterizations are trace based, and directly build on the known characterization
for asynchronous m-calculus [3]. In fact, we generalize the usual definition of may
testing to a parameterized version, where the parameter determines the set of
observers that is used to decide the order.

Our second result is to provide complete axiomatizations of finitary Lr—
and Lz (for processes with no replication). The axiomatizations highlight the
differences that arise due to locality and lack of name matching. In addition
to laws that are true for asynchronous w-calculus, we obtain laws that are true
only in the presence of locality and the absence of name matching. Further, the
inference rules for parameterized may testing generalize the ones for the usual
may testing. Complete proofs of lemmas and theorems can be found in [13].

2 The Calculus Lw—

We assume an infinite set of names A/, and let u,v,w,z,y,z2, ... range over N,
The set of processes, ranged over by P, @, R, is defined by the following restricted
m-calculus grammar.

Pi= 0% | aw).P | PIP | ()P | [e=ylP | la(y).P

The name z is said to be the subject of the output Ty and the input z(y).P.
The locality property is enforced by requiring that for every subterm of the form
z(y).P, the bound name y does not occur as the subject of an input in P.

For a tuple &, we denote the set of names occurring in & by {Z}. We write Z, §
for the result of appending § to . We let 2 range over {0, {z}}. The term (vz)P
is (vz)P if 2 = {z}, and P otherwise. The functions for free names, bound names
and names, fn(.), bn(.) and n(.), of a process, and alpha equivalence on processes
are defined as usual. We use the usual definition and notational convention for
name substitutions, and let o range over them. Name substitution on processes
is defined modulo alpha equivalence with the usual renaming of bound names
to avoid captures. We write Po and zo to denote the result of applying o to P
and z respectively.

We use an early style labeled transition system for the operational seman-
tics (see table 1). The transition system is defined modulo alpha-equivalence
on processes in that alpha-equivalent processes have the same transitions. The
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Table 1. An early style labeled transition system for L.

symmetric versions of COM, CLOSE, and PAR are not shown. Transition labels,
which are also called actions, can be of five forms: 7 (a silent action), Ty (free
output of a message with target x and content y), Z(y) (bound output), zy (free

input of a message) and z(y) (bound input). The relation 2 is defined by the

additional rule P M Qif P Qandy ¢ fn(P). We denote the set of all
visible (non-7) actions by L, let a range over £, and let § range over all the
actions. The functions fn(.), bn(.) and n(.) are defined on £ the usual way. As a
uniform notation for free and bound actions we adopt the following convention
from [3]: (N)Ty = Ty, ({y})Ty = Z(y), and similarly for input actions. We define
a complementation function on £ as (9)zy = (9)Ty, (9)Ty = (9)zy.

We let s, 7, t range over £*. The functions fn(.), bn(.) and n(.) are extended to
L* the obvious way. Complementation on £ is extended to £* the obvious way.
Alpha equivalence over traces is defined as expected, and alpha-equivalent traces
are not distinguished. From now on, only normal traces s € £L* that satisfy the
following hygiene condition are considered: if s = s1.a.$2, then (n(s;) U fn(a)) N
bn(a.sy) = 0. For an action a and a set of traces S we define .S = {a.s|s € S}.

We use = to denote the reflexive transitive closure of —, and :B> to

denote =—>—Ls—_ For s = .5 we use P - Q to denote P 55 , and

similarly P == Q) to denote P L Q. We write P == if P == () for some
Q, and similarly for P —+ and P ——. We say P exhibits the trace s if P ==.

We now instantiate the testing framework [5] on Lw—. In fact, by extending
the notion of locality, we consider a generalized version of may testing that
supports encapsulation. We define a parameterized may preorder Ep, where only
observers that do not listen on names in p are used to decide the order. The set of
names p can be interpreted as being “owned” by the process being tested, in that
any testing context is assumed to have only the capability of sending messages
to these names. The reader may note that 5@ is the usual may preorder.



(L1) s1.(§)s2 < s1.(P)ry.s2 i (§)s2 # L

(L2) s1.(9)(axy.s2) < s1.(Pry.a.s2 if (§)(cwy.s2) # L
(L3) 51.(9)s2 < s1.(§)xy.Ty.s2 lf (9)s2 # L
(L4) s1.7w.(s2{w/y}) < s1.%(y).s2

Table 2. A preorder relation on traces.

Definition 1 (may testing). Observers are processes that can emit a special
message fipr. We let O range over the set of observers. We say O accepts a trace
s if O 28, For P,0, we say P may O if P|O £5. Let rep(P) be the set of all
free names in P that occur as the subject of an input in P. For any given p we
say P Ep Q if for every O such that rep(O)Np =0, P may O implies Q may O.
We say P ~, Q if P Ep Q and Q Ep P. Note that Ep is reflexive and transitive,
and ~, s an equivalence relation. a

The larger the parameter of a preorder, the smaller the observer set that is
used to decide the order. Hence if p; C p3, we have P Epl Q implies P 5,,2 Q.
However, P 502 Q@ need not imply P 5,,1 Q. For instance, 0 ~,} Tz, but only
0 5@ Txr and Tx 7[&@ 0. Similarly, o ~(, .1 Yy, but zw 5@ vy and gy 7[&@ T
However, P ~,, Q implies P ~,, Q if fn(P) U fn(Q) C pi.

Theorem 1. Let p; C pa. Then P Epl Q implies P 502 Q. Further, if fn(P)U
n(Q) C p1 then P Epz Q implies P Epl Q. O

We now build on the trace-based characterization of may testing for asyn-
chronous m-calculus presented in [3] to obtain a characterization of may testing
in Lw—. We note that L7_ is a proper subcalculus of the calculus in [3], i.e.
every Lz term is also an asynchronous 7-calculus term, and the transition sys-
tems of the two calculi match on the common terms. Following is a summary
of the alternate characterization of may testing in asynchronous w-calculus. To
avoid infinitary branching, a transition system with synchronous inputs instead
of asynchronous inputs is used. To account for asynchrony, the trace semantics
is modified using a trace preorder =< that is defined as the reflexive transitive
closure of the laws shown in table 2. The notation (§)- is extended to traces as
follows.

s ifg=0ory¢ fn(s)
s1.¢(y).s2 if § = {y} and there are s1, s2, s.t.

s = s1.xy.s2 and y & fn(sy) U {z}
L otherwise

(9)s =

The may preorder 5@ in asynchronous w-calculus is then characterized as: P 5@
Q if and only if P == implies Q == for some r < s.

The intuition behind the preorder is that if an observer accepts a trace s, then
it also accepts any trace r < s. Laws L1-L8 capture asynchrony, and L4 captures



the inability to mismatch names. Laws L1 and L2 state that an observer cannot
force inputs on the process being tested. Since outputs are asynchronous, the
actions following an output in a trace exhibited by an observer need not be
causally dependent on the output. Hence the observer’s outputs can be delayed
until a causally dependent action (L2 ), or dropped if there are no such actions
(L1). Law L3 states that an observer can consume its own outputs unless there
are subsequent actions that depend on the output. Law L4 states that without
mismatch an observer cannot discriminate bound names from free names, and
hence can receive any name in place of a bound name. The intuition behind the
trace preorder is formalized in the following lemma. We note that, since Lz— is
a subcalculus of asynchronous w-calculus, the lemma also holds for Lz_.

Lemma 1. If P :§>, then r < s implies P = O

May testing in Lw— is weaker than in asynchronous m-calculus. This is be-
cause the locality property reduces the number of observers that can be used to
test processes. For example, the following two processes are distinguishable in
asynchronous 7-calculus but equivalent in Lz_.

P = (vz)(lz(2).0|Tz|yz) Q = (vx)(lz(2).0|yz)

The observer O = y(z).z(w).@p can distinguish P and ) in asynchronous -
calculus, but is not a valid L7— term as it violates locality. In fact, no Lw— term
can distinguish P and @, because the message Tz is not observable.

To account for locality we need to consider only the traces that correspond
to interaction between Lzw— processes. Note that the transition system does not
by itself account for locality. For instance, in case of the example above, we have
P 25 % although the message T is not observable. To counter this deficiency,
we define the notion of well-formed traces.

Definition 2. For a set of names p and trace s we define rcp(p, s) inductively
as

rep(p,€) = p rep(p, s.(9)zy) = rep(p, s) rep(p, s-(9)Ty) = rep(p,s) UG

We say s is p-well-formed if s = s1.(9)Ty.s2 implies x ¢ rep(p, s1). We say s is
well-formed if it is O-well-formed. O

Only p-well-formed traces correspond to an interaction between a process
and an Lz_ observer O such that rep(O) N p = (). We are now ready to give the

. . Coo.
alternate characterization of ~, in Lz—.

Definition 3. We say P <, Q, if for every p-well-formed trace s, P = im-
plies there is 7 < s such that Q ==. O

To prove the characterization, we define an observer O(s) for a well-formed

trace s, such that P may O(s) implies P = for some r < s. This construction
is the same as the one used for asynchronous m-calculus [3].



Definition 4 (canonical observer). For a trace s, we define O(s) as follows:

O(e) & ﬁg O((9)ey-t) < (v§)(@y|O(1))

0@w).t) ¥ z(y).0) 0@y.s) & z(u).u =y]O(s) u fresh 0

Note that well-formedness of s guarantees that O(s) is an La_ term. Further-
more, it is easy to show that if s is p-well-formed, then rcp(O(s)) N p = 0. Since
the canonical observer constructions match and Lz— is a subcalculus of asyn-
chronous w-calculus, the following lemma proved for asynchronous 7-calculus [3],
also holds in Lz—.

Lemma 2. For a well-formed trace s, O(s) LRy implies 7 < s. O

Theorem 2 proves the equivalence of Ep and <, in Lw=. The proof is similar
to that of Theorem 3 in Section 3.

Lemma 3. Let p be a set of names where rep(O) N p = 0. Then P|O 2L can
be unzipped into P == and O EHS for some s that is p-well-formed. O

Theorem 2. P ~, Q if and only if P <, Q. 0

3 The Calculus L7

We now investigate the effect of lack of name matching capability. The rules in
table 1 except the MATCH rule, constitute the transition system for L.

The lack of name matching capability further weakens may testing equiva-
lence. For example, the processes (vu)(Tu|Tu) and (vu, v)(Tu|Tv) are equivalent
in L7, but not in Lw—. For the alternate characterization of P Ep Q, it is too
stringent to require that for any trace s that P exhibits, @) exhibits a single
trace r such that any observer accepting s also accepts r. In fact, there exist
L7 processes P and @) such that P Ep @, and if P exhibits s, then @ exhibits
different traces to satisfy different observers that accept s. For instance, let
P = Tu |guy |ug (w). @ww which can exhibit s = Tu;.gu;.u; (w).ww. The following
L7 observers accept s.

O1 = (vw)(z(u).y(v) Tw|w(v).fip)

Oy = (vw)(z(u).y(v) vw|w(v).fij)

O3 = (vw)(z(u).y(v) uyw|w(v).fij)

Os = (vw)(@(u).y(v).(Uo[aw) | ui(z)w(z)wiw | w(v).mp)

Now, the process @ = (vv)(v(z).v(2").(Tz|7z")[Tur|[Duz| Wua(2). W1z | vy (w). Ww)
can satisfy

01 with 7y = Tuy . Jue.ur (w) Ww O with 1y = Tus.Juq . uy (w)- Ww
O3 with ry or ry, and Oy with r4 = Tuy . Jus . usus Utz ur (w) Ww



but cannot exhibit a single trace that can satisfy all four observers. In fact, it
is the case that P 5@ Q. Intuitively, although unlike P, @ always exports two
different names at x and y, for each possible dataflow pattern of the received
names inside an observer that P satisfies, @) exhibits a corresponding trace that
can lead the observer to a success.

For the alternate characterization, we define templates which are a special
kind of traces that can be used to represent dataflows in an observer. A template
is a trace in which all outputs are bound. The binding relation between argu-
ments of outputs and their subsequent free occurrences, represents the relevant
dependencies between the output argument that is received by an observer and
its subsequent use in the observer’s computation. For a trace s and set of names
p, we define a set T'(s,p) that has a template for each possible dataflow in a

computation O S with rep(O) N p = 0. Further, if ¢ represents the dataflow in

a computation O Z£8, then it will be the case that O Loy Thus, if an observer
accepts a trace s, then it also accepts a template in T'(s, p). This template con-
struction essentially captures the effect of lack of match operator. We will show
that P 50 Q if and only if for every p-well-formed trace s that P exhibits and
for each ¢t € T'(s, p), @ exhibits some r < t.

Following is an informal description of how the set T'(s, p) can be obtained.
Due to the lack of name matching capability, an observer cannot fully discrim-
inate between free inputs. Therefore, a process can satisfy an observer O that

exhibits O @ by replacing free input arguments in § with any name as long as
it is able to account for changes to the subsequent computation steps that de-

pend on the replaced name. Specifically, suppose O :ﬁ abbreviates the following
computation:

0= Oo —) 01 02 O —)—)

Because of the locality property, the name y received in the input may be used
only in output terms of O;. We call such occurrences of y as dependent on the
input. During subsequent computation, these output terms may appear either
as an output action or are consumed internally. In the latter case, y may be
the target of the internal communication, or the argument which in turn may
generate further output terms with dependent occurrences of y. Therefore, O can
do the following computation when y in the input is replaced with an arbitrary
name w:

O OO 01 71 02 V2 . On Tn K

where ; is obtained from f; as follows. If 3; is an output action, then -; is
obtained from S; by substituting dependent occurrences of y with w. If 3; is an
internal delivery of a message 7z with target y being a dependent occurrence,
there are two possibilities. If z is a private name, then 7; = wW(z).yz and the
subsequent bound output 8; (j > ¢) that exports z for the first time (if any), is
changed to a free output. If z is not a private name, then ; = wz'.yz', where 2’



is w when z is a dependent occurrence of y and z otherwise. For all other cases,
v; = Bi. Note that, if w is fresh, the input of w could be a bound input.
Clearly, any computation obtained by repeated application of the above con-
struction can be performed by O. In particular, if we always replace free inputs
with bound inputs, we will eventually obtain a computation in which all inputs

are bound and the construction can not be applied any further. Let O LEE ab-
breviate a computation thus obtained. The trace t is a template that explicitly
represents all dependencies between received names (bound input arguments)
and subsequent computation steps (subsequent free occurrences of the argu-
ment). The set T'(s,p) consists of all the templates that can be obtained by

this construction starting from arbitrary computations of the form O SR ith
rep(O) N p = 0.

We now formalize the ideas presented above leading to a direct inductive
definition of T'(s, p). Let O =L 2% 0y =2 28 We first consider the simple case
where y ¢ rep(O1). Due to locality, in the computation following input zy, there
cannot be an internal message delivery with y as the target. Therefore, the fol-

- _
lowing computation is possible. O = 2, w)mw 0] == "% where s, is obtained from

53 by renaming dependent occurrences of y in output actions to w. Specifically,
it does not involve exposing internal actions that use dependent occurrences of
y. When the computation steps above are not known, all we can say about g
is that it is obtained from $3 by renaming some occurrences of y. Similarly, O}
is obtained from O; by renaming some occurrences of y in output terms. These
relations are formalized in Definition 5 and Lemma 4.

Definition 5 (random output substitution). For o = {4/} we define ran-
dom output substitution (from now on just random substitution) on process P,
denoted by P[o], modulo alpha equivalence as follows. We assume bn(P)N{0} =
fm(P)oNbn(P)=0. For a name x we define x[o] = {z,z0}.

Olo] = {0} _ (z(y)-P)lo] = {x(y).P" | P' € Plo]}
(Ty)lo] = {«'y’ | " € x[o], ¢ € y[o]} (PIQ)[o] = {P'|Q" | P' € P[0],Q" € Q[o]}
((vz)P)lo] = {(wa)P" | P' € Plo]}  ('(y).P)lo] = {lz(y).P" | P' € Plo]}

Random substitution on traces is defined modulo equivalence as follows. We as-

sume bn(s) N {0} = fn(s)o N bn(s) = 0.

elo] = {e} ((@)zy-s)lo] = {(§)Ty.5'|s" € s[o]}
(2(y)-5)[o] = {«'(y)-5'|a" € 0], " € s[o]}

(zy.5)[o] = {«'y"s'[¢" € z[o],y" € y[o],s" € s[0]}
We will use [4/0] as a short form for [{G/0}]. a

Lemma 4. If P = P ¢ Plw/y], and y ¢ rep(P), then P’ SN for some
s' € s[w/y]. a

Now, suppose y € rep(01). Then, in the computation O ETNLEN 01 LN
certain internal transitions may 1nvolve a message with a dependent occurrence of



y as the target. Then, the following computation which exposes such transitions

is also possible O g(ﬂw 01 =2, " where E is obtained from S3 by not

only renaming all dependent occurrences of y in output transitions to w, but
also exposing each internal message delivery with a dependent occurrence of y
as the message target. If the computation steps are not known, we can only say
g is obtained from some r € sy[w/y] by exposing arbitrary number of internal
transitions at any point in 7. The relation between s, and s/, is formalized in
Definition 6 and Lemma 5. To account for the situation where an exposed pair
of actions (2)wz.yz export a private name z, we need the following function on
traces.
s ifg=0ory¢n(s)
s1.xy.s2 if § = {y} and there are sy, 2,z s.t.

s =s1.2(y).s2 and y € n(s1) U {z}
1 otherwise

~

[9]s =

Definition 6. For a trace s and a pair of names w,y, the set F(s,w,y) is the
smallest set closed under the following rules:

1. e € F(e,w,y)

2. (D)uv.s" € F((0)uv.s,w,y) if s' € F(s,w,y)

3. (d)uv.s' € F((0)uv.s,w,y) if s' € F(s,w,y)

4. (2

Note that s € F(s,w,y). For a set of traces S, we define F(S,w,y) = UsesF(s,w,y).
O

Lemma 5. IfP = and P' € Plw/y], then P’ éfor some s’ € F(slw/y],w,y).
a

For a trace s and a set of names p, we say s is p-normal, if s is normal and
pNbn(s) = 0. Now, let O be an arbitrary observer such that rcp(O) N p = 0.
Suppose

02 0, 22

where s7.xy.53 is p-normal. If y € p or y is the argument of a bound input in
51, then by locality y ¢ rep(O1). Otherwise, since O is arbitrary, it is possible
that y € rep(O;). From this observation, we have that for an arbitrary observer
O such that rep(O) Np = 0, if O accepts the p-normal trace s1.Ty.ss, then
O also accepts s;.(0)Tw.s), where w is an arbitrary name and s, € sy[w/y] if
y € p or y is the argument of a bound output in s1, and s, € F(s2[w/y],w,y)
otherwise. T'(s, p) is precisely the set of all traces with no free outputs, that can
be obtained by repeated application of this reasoning. T'(s, p) is formally defined
in Definition 7.

Definition 7. For a trace s and a set of names p, the set of templates T'(s, p)
is defined modulo alpha equivalence as follows. We assume that s is p-normal.

1. e€T(e,p).



2. (9)xy.s" € T((§)xy.s,p) if s € T(s,p)
3. 7(y).s' € T'(w(y).s,p) if s € T'(s,pU{y})
4. T(w).s" € T(Ty.s,p) if w fresh, s' € T(s", pU{w}), and

" slw/y] ify€ep
= e {F(S[w/y]away) ify%p

The reader may check that if t € T'(s,p), then s <t using only L3 and Lj. 0O

Lemma 6. If P =5 and p N rep(P) = 0, then there is t € T(s,p) such that
t

P =. O
Lemma 7 states that template construction in Definition 7 preserves p-well-

formedness.

Lemma 7. If s is p-well-formed then every t € T'(s, p) is p-well-formed. O
We are now ready to give the alternate characterization of Ep in L.

Definition 8. We say P <, Q if for every p-well-formed trace s, P == implies
for each t € T(s,p) there is r <t such that Q =. O

For t € T'(s,p), where s is a p-well-formed trace, let O(t) be the canonical
observer as defined in Definition 4. By Lemma 7, since s is p-well-formed ¢ is
also p-well-formed. Hence O(t) satisfies the locality property, and rep(O(t)) N
p = 0. Further, since t is a template, the case t = ZTy.t' does not arise in the
construction of the observer. Hence O(t) is an Lz term. Since L is a subcalculus
of asynchronous m-calculus, Lemma 1 holds for Lz. Further, since the canonical
observer construction is unchanged, the following lemma (which is a weaker
version of Lemma 2) holds for L.

Lemma 8. Fort € T(s,p), where s is a p-well-formed trace, O(t) Loy implies
r <t. a

Lemma 3 holds for L7 with formally the same proof. Now, we are ready to
prove that <, is an alternate characterization of Ep.

Theorem 3. P Ep Q if and only if P <, Q.

Proof. (if) Let P <, @ and P may O for an observer O such that rep(O) Np =
0. From P may O we have P|O iy By Lemma 3, this computation can be
unzipped into P == and O ZE for some p-well-formed trace s. From Lemma 1

and 6 we deduce there is a t' € T'(s.uu, p) such that ' < ¢’ implies O L.
It is easy to show that t' € T'(s.upu,p) implies t' = t.up for some t € T(s, p).
From P <, @, there is a trace r <Xt such that Q) = . Moreover, r < t implies
rpp <t = t'. Therefore, O 228, We can zip this with Q == to obtain
Q|0 £5 which means Q may O.



(only if): Let P Ep Q and P = where s is p-well-formed. We have to
show for every ¢t € T'(s,p) there is a trace r < ¢ such that @ = It is easy

to show that if ¢t € T'(s, p), then O(t) ZE¢ This can be zipped with P == to
get P|O(t) £&, that is P may O(t). From P Ep @, we have Q may O(t) and

therefore Q|O(t) L% This can be unzipped into @ = and O(t) ZEL From
Lemma 8, it follows that r <. ad

For finitary processes we can obtain a simpler characterization based on a
modified version of Definition 7 as given below.

Definition 9. For a trace s and a set of names p, the set T¢(s,p) is defined
inductively using the first three rules of Definition 7 and the following two.

4 T(w).s' € Ty(Ty.s,p) if y € p,w fresh, s' € T¢(s", pU{w}), and s" € s[w/y]
5 Ty.s' € Tr(Ty.s,p) if y & p, and, s' € Ty(s,p) O

The main difference from Definition 7 is that output arguments y that are not
in p are not converted to bound arguments. According to rule 4 of Definition 7,
such conversions introduce arbitrary number of pairs of input/output actions.
But, since the length of traces that a finite process can exhibit is bounded,
the only way the process can exhibit a trace r < t for each of the resulting
templates, is by emitting the same name y, so that L4 and L3 can be applied to
annihilate some of these input/output pairs. The following lemma helps formalize
this observation.

Lemma 9. For a trace s, a set of names p, and a prefived closed set R of traces
with bounded length, if for every t € T(s,p) there exists r € R such that r < t,
then for every ty € Ty (s, p) there exists r € R such that r < ty. O

Using this lemma, we can show that for finitary processes we can use T (s, p)
in Definition 8 instead of T'(s, p). The resulting characterization is equivalent
to the earlier one for the following reason. Suppose P == implies, for every
t € T(s,p), there exists 7 < t such that Q ==. Then, let R be the set of all
traces that @ exhibits. Note that R is prefix closed. Further, since @ is finite,
there is a bound on the length of traces in R. By Lemma 9, for every ¢ty € Ty (s, p),
there exists » < ¢y such that @) == . Conversely, suppose P == implies that for
every t € Ty(s,p) there exists r < ¢ such that @ = It is easy to verify that
for every t € T'(s,p) there exists a ty € Ty(s,p) such that ty < ¢, where the
relation can be derived using only L& and Lj. From transitivity of <, it follows
that P == implies for every t € T(s, p) there exists r < ¢ such that Q ==

4 An Axiomatization of Finitary Lw_ and L=

We first give a sound and complete proof system for = p for the finitary fragment
of L, i.e. for L7 processes that do not use replication. A simple adaptation of



the proof system gives us one for finitary L7—. The proof system consists of the
laws given in table 3 and the rules for reflexivity and transitivity. For a finite
index set I, we use the macro ) ;.; P; to denote, (vu)((|icru(u).P;)[wu) for u
fresh if T # 0, and 0 otherwise. For an index set that is a singleton, we omit I and
simply write ) | P instead of ), ; P. We let the variable G range over processes
of form 3, P;. We write 3,/ Py + 3¢ ; Py to denote } 3y ; Pr. We write
C as a shorthand for Cy, and = for =p. Random input substitution on processes
Plw/y]; is defined similar to random output substitution (Definition 5), except
that only the occurrences of y at the subject of input prefixes in P are randomly
substituted with w.

It i PC,Q and rep(R)Np =0, then (va)P C,_y,y (vo)Q, PIRC, Q|R.
I2  if for each z € fn(P,Q) P{z/y} C, Q{z/y} then z(y).P C, z(y).Q

13 if for each 1 € I P; [y Zje.] Qij then Zie[ P, Z
I if pr Cp2and PC,, Q then PLC,, Q.

iel,jed Qij

Al G+G=G A3 Plo=P A5 (PIQ)|R = P|(Q|R)
A2 GLCG+G A4 PIQ=Q|P

A6 Let G=3},  aiPiand G'=} ., o).Pj where each
a; (resp. aj) does not bind free names of G’ (resp. G). Then

GIG' =Y, ai(PIG) + X, o (GIP))

AT (Vﬂf)(zlez ) = Zlej(l/x)Pi

Ag  (vz)(P|Q) = P|(vz)Q z ¢ n(P)
A9 (vz)(Ty|a.P) = a.(va)(Ty|P) z ¢ n(a)
A10  (vz)(zylz(2).P) = (ve)(P{y/z})

A1l (v)(y(z).P) = { v vk iiiizx#z

A1z Ey|ziejpi :Ziej(fy|Pi) I#0

AL? a'ZieIPi:ZieIa'Pi I;éw

A1l P=>P

415 2(y).(@|P) C wolz(y).P yEuy £
A16 P{y/z} C zylz(z).P

A17 x(u).y(v).P C y(v).x(u).P uF#y,uFv
418 (y).(wyP) C P y & n(P)
A19 (vz)P C P{y/z}

A20 Itz € p, w+#x and w # y, then

Ty|z(w).P B, ) 2(w).(Ty|P) + ) 2(w).P + ) Q, where Q = { Ply/wiifz =z

otherwise

A21 wy|P C, (vw)(Tw| ZP,EP[w/y]i P’ w fresh, y € p.

Table 3. Inference rules and axioms for L.



While axioms A1 to A19 all hold in asynchronous m-calculus [3], axioms 420
and A21 are unique to Lw. A20 captures the fact that a message targeted to a
name that an environment is prohibited from listening to, cannot escape to the
environment. The axiom states that there are only two ways such a message can
be handled in the next transition step: it can be consumed internally or delayed
for later. The axiom also accounts for delaying the message forever by including
dropping of the message as one of the possibilities. As an application of this
axiom, if € p, we can prove Ty C, 0 as follows. For w fresh,

A8, All,11)

(

(48)
vw)(Y w(w).0+ > w(w).Ty —I—_X: 0) EA?O ,11)

(
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Al1,A11,A14,13)

Axiom A21 captures the effect of lack of match operator. It is directly moti-
vated from rule 4 of Definition 9 for template construction.

The inference rules extend the rules for asynchronous m-calculus to handle
parameterization of the may preorder. In fact, the rules for asynchronous -
calculus presented in [3] can be obtained by setting p = 0 in I1, I2and I3. Ij is a
new rule that is motivated by Theorem 1. We make a few remarks about 1 which
is significantly different from its analogue for asynchronous m-calculus. First,
using Ty Cy,y 0 (proved above) and [1, we get (va)Ty C (va)0, and by axiom
A19 we have (vz)0 C 0. Therefore, (va)Ty C 0. Note the use of the ability to
contract the parameter p of the may preorder after applying a restriction. Second,
the following example illustrates the necessity of the side condition rep(R)Np = (
for composition: Ty E{x} 0 but not ZTy|z(y).7y E{z} z(y).yy, for the LHS can
satisfy the observer y(u).mp and the RHS can not.

The soundness of rules /1-1} can be easily proved directly from Definition 1.
We only show the argument for 71, which is given in Lemma 10. Soundness of
axioms A1-A21 is easy to check. For A1-A19, whenever P C @, we have P ==,
implies Q == such that r < s. For A20, both LHS and RHS exhibit the same
p-well-formed traces. Proof of soundness of axiom A21 is more involved, and is
established in Lemma 10. The reader can verify that A20 and A21 would also be
sound as equalities. For instance, the converse of A21 can be shown using A19,
Al, and I1.

Lemma 10.

1. IfP 50 Q and rep(R) N p =0, then (va)P Ep,{m} (vz)Q, P|R Ep Q|R.
2. Fory € p and w fresh, Ty|P Ep (vw)(Tw| ZP’EP[w/y]i Ph. O

We prove that the laws presented constitute a complete proof system for
finite processes, i.e. for finite processes P,Q, P C, Q if P 5,, Q. Inspired by the
alternate characterization, the proof relies on existence of canonical forms for
processes.



Definition 10. If s is a template, then we call 5 a cotemplate. Thus, a cotem-
plate is a trace with no free inputs. If s is well-formed, we says is cowell-formed.

1. For a cowell-formed cotemplate s, the process e(s) is defined inductively as
follows.

Note that cowell-formedness of s implies that e(s) is an Lw term. From now
on we follow the convention that whenever we write e(s) it is implicit that s

is a cowell-formed cotemplate.
2. The process ) g €(s), for a set of traces S, is said to be in canonical form.
O

The proof of completeness relies on the following four lemmas. The first
lemma states that every process has an equivalent canonical form.

Lemma 11. For a process P there is a canonical form C such that P =C. O
Lemma 12. (1) Ife(s) =, then e(r) C e(s). (2) If s < r thene(r) C e(s). O

The proofs of the two lemmas above are formally the same as the proofs
of the corresponding lemmas for asynchronous m-calculus [3]. This is because,
the proofs of P = C and e(r) C e(s) constructed using the proof system of [3],
can be transformed into proofs in our proof system. This claim is justified by
the following three observations. First, every Lz term is also an asynchronous
m-calculus term. Second, starting from Lz terms, every term that appears in the
proofs of [3] is also an Lz term. (Note that any summation that appears is finite
and can be interpreted as our macro.) Finally, every axiom and inference rule
used in their proof is derivable in our proof system.

Lemma 13. Let R contain all the cowell-formed cotemplates r such that e(s) ==
and r is p-well-formed. Then e(s) E, > cre(r). a

Lemma 14. e(s) C, ZteTf(s,p) e(t). a

Note that the summations in the two lemmas above are finite because R and
T¢(s,p) are finite modulo alpha equivalence. For instance, finiteness of R is a
direct consequence of the following two observations. For every r € R, we have
fn(r) C fn(e(s)), and since e(s) is a finite process, the length of traces in R is
bounded. We are now ready to establish the completeness of the proof system.

Theorem 4. For finite Lw processes P, and a set of names p, P C, Q) if and
only if P Ep Q.



Proof. The only-if part follows from the soundness of laws in table 3. We prove
the if part. By Lemma 11 and soundness of the proof system, without loss of
generality, we can assume that both P and @ are in canonical form, i.e. P is
of form ) ¢ e(s) and @ is of form ) g e(s). Using Lemma 13, and laws
I3, A1, we get P C, > -pe(r), where R is the set of p-well-formed cowell-
formed cotemplates that P exhibits. Using Lemma, 14 and laws 13, A1, we have
Yorerer) By X icpelt), where T' = U.crTy(r, p). Note that since every r € R
is a cotemplate, so is every t € T'. Let t € T'. Then t € T(r, p) for some p-well-
formed r that P exhibits. Using the characterization of may preorder based on

T¢(r,p), we have P Ep @ implies there is s' < t such that Q ==. It follows that

for some s € Sa, e(s) é Since @ é, by locality, s’ is cowell-formed. From the
facts that s’ < ¢ and ¢ is a cotemplate, it follows that s’ is a cotemplate. Then
by Lemma 12.2 and law I4, e(t) C, e(s'). Further, by Lemma 12.1 and law I/,
e(s") C, e(s). Hence by transitivity of C,, we have e(t) C, e(s). Since t € T is
arbitrary, using laws 13, A1, and A2, we deduce ), re(t) E, > g, e(s). The
result follows from transitivity of C,. O

We obtain a complete proof system for Lw— by dropping axiom A21 and
adding the following two for the match operator: [t = |P = P,and [z = y]P =0
if x # y. Completeness of the resulting proof system can be established by simple
modifications to the proofs above.

5 Related Work

We have provided an alternate characterization of a parameterized version of
may testing for asynchronous variants of m-calculus with locality and no name
matching. We have exploited the characterizations to obtain complete axioma-
tizations of the may preorder for finitary fragments of the calculi. Our results
extend the ones obtained by Boreale, De Nicola, and Pugliese for asynchronous
m-calculus [3]. We now compare our work with other related research.
Hennessy and Rathke [6] study typed versions of three behavioral equiva-
lences, namely may and must equivalences, and barbed congruence in a typed
m-calculus where the type system allows names to be tagged with input/output
capabilities. In the typed calculus, one can express processes that selectively
distribute different capabilities on names. The locality property is a special case
in which only the output capability on names can be passed. A novel labeled
transition system is defined over configurations which are process terms with
two typed environments, one that constrains the process and the other the envi-
ronment. It is shown that the standard definitions of trace and acceptance sets
[5] defined over the new transition system characterize may and must preorders
respectively. In comparison to our work, the typed calculus of Hennessy and
Rathke is synchronous and is equipped with name matching, whereas Lr= is
asynchronous, and Lz is asynchronous with no name matching. Further, Lr—
has no capability types and hence we obtain a simpler characterization of may
testing for it, which is based on the usual early style labeled transition system.



Finally, we have also a given an axiomatization of may testing, which is not
pursued by Hennessy and Rathke.

There have been extensive investigations of bisimulation-based behavioral
equivalences on Lz and related variants of w-calculus, which are properly con-
tained in may testing which is trace based. Merro and Sangiorgi [9] investigate
barbed congruence in Lw, and show that a variant of asynchronous early bisim-
ulation provides an alternate characterization for the congruence. Boreale and
Sangiorgi [4] study typed barbed equivalence for typed (synchronous) m-calculus
with capability types and no name matching, and show that the equivalence is
characterized by a typed variant of bisimulation. Merro [8] characterizes barbed
congruence in the more restricted setting of asynchronous m-calculus with no
name matching (no capability types, and no locality in particular). He defines
synonymous bisimulation and shows that it characterizes barbed congruence in
this setting.
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A Appendix

The structural congruence relation on L7 processes = is the smallest congruence
that is closed under the following rules.
1. PI0= P, PIQ = QIP, and P|(Q|R) = (P|Q)|R
2. (vz)0 =0, (vz)(vy)P = (vy)(ve)P, and P|(vz)Q = (vz)(P|Q) if z ¢ fn(P).
3. \P = P|P.

It is the case that structurally congruent processes have the same transitions,
ie it P2 @, P =P and @ = Q' then P’ N Q'. Structural congruence rules
for L~ contain the additional rule: [z = z]P = P.

Proof of Theorem 1: Let P E’m Q. Suppose P may O and rcp(O) N pz = 0.
Since p1 C p2, we have rcp(O) N p; = @. Then since P 501 Q, we have @ may O.
Hence P Epz Q.

Let fn(P)Ufn(Q) C p1 and P Epz Q. Suppose P may O and rep(O)Npy = 0.
We have to show @ may O. Let {#} = rcp(O). Then, we have rep((vE)0O) = 0.
Since fn(P)N{Z} = 0, we have P|(vZ)O = (v&)(P|O). From this, RES rule,

and P|O %, we deduce P|(vZ)O £5 ie. P may (v&)O. Now, since P R Q
we have @ may (vZ)O. From fn(Q) N{&} = 0 we have (vZ)(Q|0) = Q|(vi)O.

It follows that (v&)(Q|0) £%, and hence QO £ . O

Lemma 15. Let P ==, T{LA ns= s1.(9)zy.s2 implies x € ¢ gg%p(P),sl)
Proof: Suppose P =% P, 2% P, =2, We observe that P, - if and only if
x € rep(Pr). So we are done if we show that rep(Py) C rep(rep(P), s1). This can

shown by a simple induction on s using the locality property. |

Proof of Lemma 3: The sequence P|O 25 can be unzipped into P == and

O ZE¢ for some trace s. While unzipping, we can choose bound names such
that bn(s) N rep(O) = B. To show that s is p-well-formed, we show that if s =

A\ —

$1.(§)Ty.s2, then = ¢ rep(p, s1). By applying Lemma 15 to O 22 we deduce
that @ € rep(rep(0),s1). If @ € rep(O), then x ¢ rep(p, s1) because p N rep(O) =
bn(s1) Nrep(O) = . If © ¢ rep(O), then z must be the bound argument of an
output in 57, which again implies = ¢ rep(p, s1). Therefore, s is p-well-formed.
O

Lemma 16. If P} € Pylw/y], then

1. Py (ﬁ)—u)v Py and w ¢ 0 implies there is P| € Pi[w/y] such that P} (’7)_”;’ Pl
2. By (m)v Py and w & © implies there is P] € Py[w/y] such that P, = P|
where for some u' € ulw/y] and v' € v{w/y]

:{@' fo=10

u'(v) otherwise



3. Py — Py implies one of the following;
(a) There is P] € Pi[w/y] such that P} — P].

(b) P = (v2)Q, w,y ¢ 2, and there is P] € Qw/y] such that P}

(z)wz yz Pll
Proof of Lemma 16.1: Since we work modulo alpha equivalence on process,

without loss of generality we may assume the hygiene condition w,y ¢ bn(P).

The proof is by induction on the derivation of F, (ﬂf P;. For the base case, we

have Py = u(z).Q), P, = Q{v/z}, the last derivation step is an application of INP
rule, and 9N fn(Py) = 0. By hygiene condition z # w,y. Let P} € Py[w/y]. Then
P} = u(2).Q' for some Q' € Q[w/y]. By INP rule we have, u(z).Q" — Q'{v/z}.

Since w ¢ 0 it follows that u(z).Q’ (M Q'{v/z}. Now, since z # w,y, we have
Q'{v/z} € Q{v/z}w/y] and the lemma follows.
For the induction step, there are three cases.

1. Py = Qo|R, P = Q1|R, and the last derivation step is an application of
PAR rule:

(0)uv
PAR: — 0 ;’le 0N fn(R) =0
Qo|R — Q1|R

Then Pj = Qp|R' for some Qf € Qo[w/y] and R' € R[w/y]. By induction
hypothesis we have Q) (2w Q1 for some Q] € Q1[w/y]. From w ¢ v and

oNfn(R) = O we deduce oNfn(R') = 0. Then by PAR rule we have Qj|R' — (2w
Q1|R’', and the lemma follows from the fact that Q] |R’ € Pi[w/y].

2. Py = (v2)Qo, P, = (v2)Q; and the last derivation step is an application of
RES rule:

RES: Qo — O z ¢ {u,v}

UUU )

(vz2)Qo — (vz)Q1
By the hygiene condition, we have z # w,y. Then P} = (vz)Q for some
Q5 € Qolw/y]. By induction hypothesis Q5 @)y Q' for some Q| € Q1[w/y].
Then by RES rule we have (vz)Q, — (@ (vz)Q1, and the lemma follows from

the fact that (v2)Q} € Pi[w/y].
3. Py =!Qo, P = Q1 and the last derivation step is an application of REP rule:

(v)uv

'Qo —> Q1
Then Py =!Q;, for some Q) € Qo[w/y]. Since Qp|'Qy € (Qol!Qo)[w/y], by
induction hypothesis we have Q0|'Q0 (2)up Q1 for some Q] € Q1[w/y]. Then
by REP rule we have 'QO Ql, and the lemma follows. O

Proof of Lemma 16.2: Since we work modulo alpha equivalence on process,
without loss of generality we may assume the hygiene condition w,y ¢ bn(Fp).



The proof is by induction on the derivation of Py (v)—u;) P,. There are two base
cases.

1. Py =uv, P, = 0 and the last derivation step is an application of OUT rule.
OUT:w % 0

Then P} = u/v’ for some u' € u[w/y] and v’ € v[w/y]. By OUT rule we have

u'v' u_l—v; 0, and the lemma follows.
2. Py = (vv)Qo, P = @ and the last derivation step is an application of
OPEN rule.

Qo 5 Qy

) UFVY
()@ "% @
By hygiene condition, we have v # w,y. Then Pj = (vv)Qj for some Q) €

OPEN:

Qo[w/y]. By induction hypothesis Q) CAN Q1 for some u' € ulw/y], v' €
v[w/y], and Q] € Q1[w/y]. Further, since y # v we have v’ = v, and since

w # v we have u' # v. Then by RES rule we have (vv)Q w @', and the
lemma, follows.

For the induction step there are three cases.

1. Py = Qo|R, P = Q1|R, and the last derivation step is an application of
PAR rule. (o
v)uv

PAR: @0 (% Q1

Q0|R — Q1|R

Then Py = Qp|R' for some @ € Qow/y] and R’ € Rlw/y]. By induction

hypothesis, Q) — Q) for some Q| € Qi[w/y] and « as stated in the

lemma. We have bn(a) = o. From w ¢ % and ¢ N fn(R) = 0 we deduce

bn(a) N fa(R') = @. Then by PAR rule Q)|R' — Q! |R’, and the lemma

follows from the fact that Q}|R' € Py[w/y].

2. Py = (v2)Qo, P, = (vz)Q1, and the last derivation step is an application of
RES rule:

oNf(R)=10

(0)wv

RES: Qo (ﬁ)—;v @1
(v2)Qo — (v2)Ga
By hygiene condition we have z # w,y. Then P} = (v2)Qj for some Qf €
Qo[w/y]. By induction hypothesis, Q) —— @) for some Q' € Q,[w/y] and
« as stated in the lemma. Further since z ¢ {w,y,u,v} we have z ¢ n(a).
Then by RES rule we have (v2)Ql — (v2)Q}, and the lemma follows from

the fact that (v2)Q} € Piw/y].
3. Py =!Qo, P = Q1 and the last derivation step is an application of REP rule:

z # u,v

Qo (0w Q1



Then Py =!Q;, for some Q) € Qo[w/y]. Since Qp|'Qy € (Qol!Qo)[w/y], by
induction hypothesis we have Q}]!Q) — @} for some Q) € Q:[w/y] and
« as stated in the lemma. Then by REP rule we have !Q) — @}, and the
lemma, follows. a

Proof of Lemma 16.3: Since we work modulo alpha equivalence on pro-
cess, without loss of generality we may assume the hygiene condition w,y ¢
bn(Py, P1). The proof is by induction on derivation of Py —Ts P,. There are two
base cases depending on the last derivation step.

1. Py = Qo|Ro, P1 = Q1|Ry and the last derivation step is

co Qo = Qu_Ro % Ry
QO|RO L> Q1|R1

Then Pj = Qf| R}, for some @, € Qo[w/y] and R, € Ro[w/y]. By Lemma 16.2,
b vy Q) for some Q] € Q1[w/y], v' € ulw/y] and v' € vjw/y]. There are
two subcases.

(a) u' = u: Since random substitution on processes does not change input
prefixes, it follows that R) > R}, R} € Ry[w/y]. Using COM we have
Qb Ry — Q' |R}. Then condition 1 of lemma holds with P = Q}|R}.

(b) v’ = w: Then u = y. Since random substitution on processes does not
change input prefixes, it follows that R ¥ R!, R} € R;[w/y]. Then by
PAR rule we have Pj = Q4| R} Tv, Q4 |Ry L% Q4 |R). Then condition 2
of lemma holds with z = v' and 2 =0, Q@ = Q|R;, and P} = Q}|Rj}.

2. Py = Qo|Ro, P = (vv)(Q1|R1) and the last derivation step is

E(’U uv
cposE: Qo= @ Ro = B1 g fy(Ry)
Qo|Ro — (vv)(Q1|R1)

Then Pj = Qp|R{ for some Q) € Qo[w/y] and Rj, € Ro[w/y]. By hygiene

condition v # w,y. Then by Lemma 16.2, we have @) M Q7 for some

Q1 € Q1[w/y] and v’ € u[w/y]. There are two subcases.

(a) u' = u: Since random substitution on processes does not change input
prefixes, it follows that R > R}, R} € R;[w/y]. From v # w,y and
v ¢ fn(Ry) we deduce v ¢ fn(R)). Using COM we have QbR ——
(vv)(Q}|R}). Then condition 1 of lemma holds with P = (vv)(Q}|R}).

(b) v’ = w: Then u = y. Since random substitution on processes does not
change input prefixes, it follows that Ry ~» R}, R, € Ry[w/y]. From
v # w,y and v ¢ fn(Ry) we deduce v ¢ fn(R(). Then by PAR rule we
have P} = Qp| R}, oY Q1 |Ry L% Q4 |R). Then condition 2 of the lemma
holds with z = v and 2 = {v}, @ = Q1|R1, and P] = Q}|R}.



For the induction step, there are three cases.

1. Py = Qo|R, P = Q1|R, and the last derivation step is an application of
PAR rule:
AR D@1
QolR — Q1|R

Then Pj = Qp|R' for some Q) € Qolw/y] and R' € R[w/y]. By induction

hypothesis we have two cases.

(a) Q) — @} for some Q) € Qi[w/y]. Then by PAR rule, P} = Q)|R' -
Q1|R' and condition 1 of the lemma holds with P| = Q |R'.

(b) @1 = (v2)S, w,y ¢ %, Q) BI05v= 61 for some S € Slw/y]. Without
loss of generality we may assume 2 N fn(R) = 0. Then P, = (v2)(S|R),
and 2N fn(R') = 0. Then by PAR rule Py = Qp|R S'|R'. Then
condition 2 of the lemma holds.

2. Py = (vv)Qo, P, = (vv)@; and the last derivation step is an application of
RES rule:

, (2)wz. yz

RES- Qo %) Q1
(v0)Qo — (V)@
By hygiene condition, we have v # w,y. Then P} = (vv)Q, for some Q) €
Qo[w/y]. By induction hypothesis we have two cases.
(a) Qy — Q4 for some Q] € Qi[w/y]. Then by RES rule, (vv)Q) —
(vv)@! and condition 1 of the lemma holds with P = (vv)Q}.

(b) Q1= (v2)S, w,y ¢ 2, Q) (BI5Y> 1 for some §' € Slw/y]. Without loss
of generality we may assume v ¢ 2. There are two subcases:

— v = z.Then 2 = (. Then by OPENrule P} = (vv)Q "WYY 61 Then
condition 2 of the lemma holds with z = v, 2 = {v}, P, = (vv)S and
Sl
—v 7é z: Then by RES rule P} = (vv)Qj (2Jwzgu= (vv)S'. Then condi-
tion 2 of the lemma holds with P, = (v )(V’U)S and P| = (vv)S'.
3. The case where the last derivation step is an application of REP rule is
straightforward. a

Proof of Lemma 4: Since we work modulo alpha equivalence on traces we can
assume the hygiene condition bn(s) N {w,y} = 0. Proof is by induction on the

number of steps in the transition sequence abbreviated by P == The base case
is obvious by letting s’ = € and the fact that € € e[w/y]. For the induction step,

suppose P =%+ can be written as P i) P =~ There are three cases depending

on 3:

1. P (@)—u;) P;: Due to locality, rep(Py) C rcp(P). By Lemma 16.1, P’ (@)—u;) P
(0

for some P] € Pi[w/y]. Let B’ = (%)uv



2. P (v)—u>v Py : We have rep(Py) C rep(P)Ud. Since by hygiene condition y ¢ 0,
we have y ¢ rep(Py). By Lemma 16.2, P’ N P/ for some P| € P;[w/y] and
B is « as stated in Lemma 16.2.

3. P - Pp: By locality y ¢ rcp(Py). Now, we apply Lemma 16.3. From
y ¢ rep(P) and P' € Plw/y] we deduce y ¢ rep(P'). It follows that only the
first case of Lemma 16.3 applies, because in the second case y is used as the
subject of an input action which implies y € rep(P’). Therefore, P’ - P}
for some P| € Pi[w/y].

In all cases, y ¢ rep(Py). Then by induction hypothesis, P/ =5 where 7' €
r[w/y]. The result follows from the observation that in cases 1 and 2, '’ €
(B.7)[w/y], and in case 3, 7' € r{w/y] = s[w/y]. O

Proof of Lemma 5: Since we work modulo alpha equivalence on traces we
can assume bn(s) N {w,y} = 0. Proof is by induction on the number of steps

in transition sequence P ==. The base case is obvious with s’ = € because
€ € F(e[w/y],w,y). For the induction step, suppose P == can be written as

P i> P ——F—> We have three cases:

1. p Y P;: Since w ¢ 0, by Lemma 16.1, there is P| € P;[w/y] such that

pr Oy P}. By induction hypothesis P/ == for some ' € F(r[w/y],w,y).
By letting s' = (0)uv.r', we have s' € F((0)uv.r{w/y],w,y) = F(s[w/y],w,y)
and the lemma follows.

2. p % Pp: Since w ¢ 9, by Lemma 16.2, there is P/ € Pi[w/y] such that

P' % P} where for some u' € u[w/y] and v' € v[w/y]

{UU’ ifo=10
a =

u'(v) otherwise

By induction hypothesis P| = for some 1’ € F(rlw/y],w,y). By letting
s’ =a.r', we have s’ € F(a.r{w/y],w,y) = F(s[w/y],w,y) and the lemma
follows.

3. P P,: Then r = s. By Lemma 16.3 we have two cases:

T

(a) There is P; € Pi[w/y] such that P — Pj. By induction hypothesis,
P == for some s' € F(s|lw/y],w,y). The lemma follows from P’ =

(b) P, = (¥2)Q1, w,y ¢ 2, and there is P] € Q1[w/y] such that P’ (2)8: vz,
P|. From w,y ¢ 2 we have (v2)P] € ((v2)Q1)[w/y]. By induction hy-

pothesis, (v2)P] = for some s € F(s[w/y],w,y). It is easy to show
that P/ Z% The lemma follows from (Rwz.gz.[2]s" € F(slw/y],w,y)
s

and P’ (Q—mf%ﬁ

O



Lemma 17. If P =% P, and w ¢ fn(P), then there is P] € Py[w/y] such that
P pr.
Proof: Since we work modulo alpha equivalence on processes, without loss of
generality we may assume the hygiene condition w ¢ bn(P). The proof is by
induction on the derivation of P =% P;. For the base case, we have P = z(z2).Q,
= Q{y/z}, and the last derivation step is an application of INP rule. Then, by
INP rule and w ¢ fn(P), we have z(2).Q) el Q{w/z}. Furthermore, by locality,
z occurs only in output terms in Q{w/z}. Therefore, Q{w/z} € Q{y/z}w/y],

from which the lemma follows.
For the induction step, there are three cases.

1. P =Q|R, P, = Q1|R, and the last derivation step is an application of PAR
rule:

PAR' Q Ql
QIR % QiR

From w ¢ fn(P), it follows that w ¢ fn(Q) and w ¢ fn(R). Since w ¢ fn(Q),
by induction hypothesis we have @ z(—>w) Q7 for some Q] € Q1[w/y]. Then,
since w ¢ fn(R), by PAR rule we have Q|R — =) Q}|R. By letting P/ = Q}|R,
the lemma follows from Q' |R € Pi[w/y].

2. P = (v2)Q, P, = (vz)Q; and the last derivation step is an application of
RES rule:

RES: Q— 0 z ¢ {z,y}
1

(v2)Q =5 (v2)Q
By hygiene condition w # z and hence w ¢ fn(Q). Then by induction hypoth-
esis, @ =) Q] for some Q) € Q1[w/y]. Now, since z ¢ {z,w}, by RES rule
we have (v2)Q =) (v2)QY, and the lemma follows from (vz)Q} € P [w/y].
3. P =!Q, P, = @1 and the last derivation step is an application of REP rule:

zy
rep: QO 2Oy Qxy_) @
Q — G
Since w ¢ fn(Q]!Q), by induction hypothe51s QlQ — z Ql for some Q] €
Q1[w/y]. Then by REP rule we have 'Q Ql, and the lemma follows. O

Proof of Lemma 6: Since we work modulo alpha equivalence on traces, we as-
sume s is p-normal. The proof is by induction on the number of 7 transitions and

the number of steps in the transition sequence P = ordered lexicographically.

Base case is easy with ¢ = €. For the induction step, we can write P N P =
Now, there are four cases based on (.

1. B = 7 : By locality, rep(Py) C rep(P), and hence p N rep(Py) = (). Further,
r = s and the lemma follows from induction hypothesis.



2. B = (§)Ty : From p-normality of s, we have § N p = . Since rep(Py) C
rep(P) U ¢, we have p N rep(Py) = (. Now, r is p-normal and by induction

hypothesis, there exists ' € T'(r, p) such that P, =5 The lemma follows
from (§)zy.r' € T(s,p).

3. B = xz(y) : By locality, (p U {y}) N rep(P;) = 0. Furthermore, r is (p U {y})-
normal. By induction hypothesis, there exists ' € T'(r,p U {y}) such that

Py = The lemma follows from T(y).r' € T(s,p).
4. B = zy : Let w be fresh, that is w ¢ fn(P) U n(s) U p. By Lemma 17, there

is P/ € Pi[w/y] such that P =) P/. Because of locality, rep(P]) C rep(P)
and therefore (p U {w}) N rep(P]) = ). We have two subcases:
— y € p: Then y ¢ rep(P) and by locality y ¢ rep(Pr). Then by Lemma 4,

Py L% for some r" € r{w/y]. From the proof of Lemma 4, it is clear
that the computation P| — has the same number of T transitions and
computation steps as P, =.

— y ¢ p: Then by Lemma 5, P/ L% for some 1" € F(rjw/y],w,y). From
the proof of Lemma 5, it is clear that if the number of 7 transitions in

Py 2% is not less than that in P :F>, then both computations have
exactly the same number of steps.
In either case, without loss of generality we may assume ' is (p U {w})-

normal. Then by induction hypothesis, P/ =% for some 1’ € T(r", pU{w}).
The lemma follows from Z(w).r" € T'(s, p). O

Lemma 18. Let s be p-well-formed. Then for y ¢ p all traces in F(s,z,y) are
p-well-formed.

Proof: Let r € F(s,x,y). We prove by induction on the derivation of r, that
r is p-well-formed. The base case where r = € € F(e,x,y) is obvious. For the
induction step there are three cases one for each rule of Definition 6.

1. s = (0)uv.s’,r = (O)uv.r’ and r' € F(s',x,y). Suppose r = (0)uv.ry.(0)Zw.rs.
Now, s' is p-well-formed, and by induction hypothesis r' is p-well-formed.
Then we have z ¢ rep(r1, p) = rep((0)uv.ry, p). Hence 7 is p-well-formed.

2. s = (0)uv.s',r = (0)uv.r' andr' € F(s',x,y). Suppose r = (0)uv.ry.(d)zZw.rs.
Now, s' is (p U 0)-well-formed. Then by induction hypothesis ' is (p U ©)-
well-formed. Then z ¢ rep(ry, p U 0) = rep((0)uv.ry, p). Further, since s is
p-well-formed, u ¢ p. Hence r is p-well-formed.

3. r = (0)zw.yw.[w]r', for somer’ € F(s,z,y). Let r = (@)zw.gw.[w](r1.(0)Tv.rs2).
Since [w]r' # L, we have r = (0)zw.gw.([W]r1).(0)wv.r} for some 5. Now,
by induction hypothesis r' is p-well-formed. Then u ¢ rep(ry, p). Since [W]ry
changes only the first bound input with argument w in r; (if any), it follows
that rep(r1, p) = rep([W]ry, p) = rep((W)zw.gw.[w]ry). Now, since y ¢ p, we
conclude that r is p-well-formed. |



Proof of Lemma 7: We prove by induction on derivation of r € T'(s, p) that
r is p-well-formed. The base case € € T'(¢, p) is obvious. For the induction step
there are four cases.

1. s = (9)zy.s', r = (Y)zy.r’ and r' € T(s', p). Suppose r = (§)zy.r1.(0)uv.rs.
Now s’ is p-well-formed, and by induction hypothesis r' is p-well-formed.
Then we have u ¢ rep(ry, p) = rep((§)zy.r1, p). Hence r is p-well-formed.

2. s=%(y).s',r ==(y).r' and r' € T(s', pU{y}). Suppose r = Z(y).r1.(0)Tv.rs.
Now, s’ is p U {y}-well-formed, and by induction hypothesis r' is p-well-
formed. Then we have u ¢ rep(ri, p U {y}) = rep(T(y).r1). Further, since s
is p-well-formed = ¢ p. Hence r is p-well-formed.

3. s=my.s',y € p, r =T(w).r' for some w fresh and r' € T'(r",p U {w}) for
some 1" € s'[w/y]. Now s' is p-well-formed. Since s is normal y ¢ bn(s').
From this, and the facts that w is fresh and random substitution on traces
does not change output actions, we have 7’ is p-well-formed. Moreover, since
w is fresh we also have r"" is p U {w}-well-formed. By induction hypothesis
r' is p U {w}-well-formed. Further, since s is p-well-formed we have = ¢ p.
We conclude r is p-well-formed.

4. s =Ty.s', y ¢ p, r = T(w).r' for some w fresh and r' € T'(r", p) for some
" € F(s'[w/y],w,y). Now, s" is p-well-formed, and by the argument in
case 3 we have r'’ is p U {w}-well-formed. By Lemma 18, r' is p U {w}-well-
formed. Further, since s is p-well-formed we have © ¢ p. We conclude r is
p-well-formed. |

Lemma 19. (§)zy.r R T(w).s implies r < s{y/w}.

Proof: By induction on the derivation of (9)Zy.r < T(w).s. O

Lemma 20. r < sy.so implies r = ry.ry for some r; < s1.

Proof: By induction on the derivation of r < s;.s2. O

From now on, we use the following notation. For two sets of traces R and S,
we say R < S, if for every s € S there is r € R such that r < s.

Proof of Lemma 9: The statement of the lemma can be stated as: for a prefix
closed set R of traces with bounded length, R < T'(s, p) implies R < T (s, p).
The proof is by induction on the length of s. The base case is easy because
T(e, p) = Ty (e, p) = {€}. For the induction step we have four cases, of which we
only consider the one which is central to the proof, namely where s = Ty.s' and
y & p. The others are routine. We are done if we construct a prefixed closed set
R’ of traces with bounded length such that R" < T'(s',p) and Ty.R' C R. For,
by induction hypothesis, R < T'(s', p) implies R’ < T¢(s',p). Then, Ty.R' <
Ty. Ty (s', p) = Ty (s, p), which together with Ty.R' C R implies R < T(s, p).



Suppose t' € T'(s',p) and [ is the bound on the length of traces in R. Now,
let t" = w(z1).y(2]) ... w(zp).Yy(z,) for some n > len(t') + I. Now, for w fresh,
T(w).t'.t" € T(Ty.s',p), because s’ € s'[w/y], s'.t" € F(s',w,y) and t'.t" €
T(s".t",p U {w}). Then, since R < T'(s,p), there exists r € R such that r <
T(w).t'.t". It is easy to see by inspecting LI-L4 that r can only start with an
output action, that is r = (£)Tz.r; for some r;. By Lemma 19, 7y < (¢'.t"){z/w}.
Furthermore, (t'.t"){z/w} = t'.(t"{z/w}) because w does not occur in ¢'.

Since the number of outputs in " is greater than len(r ), some of them have
to be dropped, which is only possible by an application of L3 Further, since
the number of these outputs is also greater than len(t') + len(r1), we conclude
that some of these applications of L8 must involve the inputs in #’. But, such
annihilation are possible only if z = y, which implies r = ZTy.r;. Furthermore,
since 71 < t'.t"{y/w}, by Lemma 20 we have r; =r'.r" for some ' <¢'. Let R’
be the prefix closure of the set of all traces r' thus obtained for each t' € T'(s', p).
By counstruction, R’ < T'(s', p). Furthermore, from r = Ty.r'.r'" and prefix closure
of R, we have Ty.R' C R. Finally, since the length of traces in R is bounded, so
is the length of traces in R'. ad

Lemma 21 (Boreale et al. [3]). If P == then P{z/y }s{z/y} i

We say s;.7w. sz{w/y} Sfw/y) 51.T(y).s2. If s3 is normal and s; =5, 52 <o,
s3, then we say s1 <, ¢0, S3, Where

o1(z) if o1(z) #
01 B o2 =< ox(x) if oo(x) #2
T otherwise

Note that, normality of s3 implies that oy @ o is well-defined. The reader
may check the following simple lemma.

Lemma 22. If s <, r then len(s) = len(r). Further, if s = s1.52, T is normal
and r = r1.12 with len(ry) = len(s1), then there exist 01,09 such that sy <, 71,

S2 ja’g r201, and o = o1 D o2.

Proof: By induction on the length of derivation of s <, 7. |

Lemma 23. For a finite process P (with no replication), if P S'(iﬁ)yz Q and

N {w} =0, then there is P' € Plw/y); such that P’ -l g Q.

Proof: By induction on the derivation of P’ z)yz =" Q. |

We define random substitution on substitutions as follows

o[w/yl = {olu = v] [ v € o(u)w/yl}



Lemma 24. For clarity, in the following, we write Plw/y], for random output
substitution on processes instead of Plw/y] (as in definition 5). Let y € p, s is
p-well-formed, t € T(s,p), s <4 t, P be a finite process, and P == Q. Then for
every P, € Plw/y|, there is P' € Pi[w/yli, Q" € Qlw/ylo, o' € olw/y], such

that P' == Q' and s' <y t.

Proof: Without loss of generality we may assume that s and ¢ are pU{w}-normal.
Let P, € Plw/ylo,. The proof is by induction on the length of computation
P == (). The base case is obvious. For the induction step, let

= Q1 —Q
There are two cases depending on «.

— a # 7: Since s1.« <, t, by Lemma 22, we have t = t;.6, and for some o4, 02
such that o = 01 ® 02, 51 <, t1 and a =,, 0. By induction hypothesis

there exist P’ € Pi[w/y]i, @, € Q1[w/y]o, o} € o1[w/y], such that P =2 Q)
such that s} 2! t1. There are two subcases.

e o = (0)wv: Since s is p-well-formed and y € p we deduce u # y. We only
consider the case where a = uy. The case where v # y is simpler. Since s
is p-well-formed, by Lemma 7, so is . The subject of outputs in a p-well-
formed template are not bound by previous bound outputs. Therefore,
Ao, = 6. Therefore, since uy -<02 fo1, we deduce 8 = u(v;) for some vy,

and oy = {y/v1}. Since Q1 =, by Lemma 16.2 we have Q) —) Q' for
some Q" € Qw/ylo and y' € y[w/y] Let o' =y, 05 = {y'/v1}, and
o' = o] @ ogl. For the same reason as for o, = 6, we have o] = 6.
Then we have o' 2o fo1. Then since s; o t1, si.a' <4 t1.6. Further
o' € o[w/y]. Now the lemma holds with P' 2= @'

e a = (0)uv: We only consider the cases where « is uy and (0)yv, y ¢
{u,v}. The case where « is yy is similar to these two, and the case
where « is uv for y # wu,v is simple. Note that we have oy is identity,
and therefore 0 = o7 and o = fo;.

x a = uy: From a = 6oy we deduce § = ujvi, o1(u1) = u, and
o1(v1) = y. Let y' = of(v1). From o] € o1[w/y] it follows that

y' € {y,w}. From Lemmas 16.1 and 17 it follows Q] — u, Q' for some
Q" € Qw/yl,- Then we have s{.uy’ <,/ t1.0, because o7 = uy'.
The lemma holds with P’ "2 '

* a = (0)yv: From a = fo; we deduce 0 = (vy)uiv1, o1(u1) = v,

01(v1) = v. By Lemma 16.1 we have ()] (% Q' for some Q' €
Q[w/y],. Since o} € o1[w/y], we have of(u1) € {w,y}. There are
two cases. If o (u1) = y: Then we have s{.(0)yv =, t1.6, because

0o} = (9)yv. The lemma holds with P’ sy @'. On the other
hand, if o] (u;) = w, then by Lemma 23, there is P" € P'[w/y]; such



7. (v)wv

that P" Q' (note that since t is pU {w} normal {w}No = ).
Note that P” € Pilw/y];. Then we have s.(0)wv =, 1.0, because

S

fo! = (0)wv. The lemma holds with P" U Q'

— «a = 7: Then s; = s, and s; <, t. Then by induction hypothesis, there
exist P’ € Py[w/yli, Q) € Q1[w/ylo, o' € o[w/y], such that P' == @/ for
s' <4 t. From Q; —— @, by Lemma 16.3, we have two cases:

e There is Q' € Q[w/y], such that Q) — Q'. The lemma follows trivially

with P’ == Q.
e We have Q = (V2)R, w,y ¢ %, and there is R' € R[w/y], such that
Q) — Z)wz Y% R'. Then applying Lemma 23 to P’ ! (Z)wz Y* R we have,

’
S

there is P" € P'[w/y]; such that P" g R'. But then P" =
(vZ2)R'. Now, since w,y ¢ %, we have (Vz)R’ € Qlw/ylo. The lemma

holds with P == (vZ)R', because P" € Pi[w/y];.

(z)wz wz

We define (g)s as follows.

s ifg=0ory¢ fn(s)
()s = 51.Z(y).s2 if § = {y} and there are sy, 592,z s.t.
s = 51.Ty.s2 and y & fn(s1) U {z}
L otherwise

Proof of Lemma 10:

1. First we prove P 5,, @ implies (vz) P Ep {2} (v7)Q. Suppose for an observer
O such that rep(0) N (p — {z}) = 0, we have (z/x)P|O . Let z be fresh.
Using Lemma 21, we have ((1/$)P|O){z/x} =>. Since z is not free in (vx)P

we have (1/$)P|O{z/x} - Now  is not free in O{z/x} and so we have
(vz)(P|O{z/z}) £5. This 1mphes P|lO{z/z} £& But P ~, Q, and rcp(O)ﬂ
p = 0. Therefore, Q|O{z/x} £&. It follows that (V:U)(Q|O{Z/:U}) . And
since  is not free in O{z/x}, we also have (vz)Q|0{z/x} £&. Since z is not
free in O, we have O{z/z}{z/z} = O. Therefore, using Lemma 21 again, we
deduce ((vx)Q|0{z/z}){z/z} ﬁﬁ“, ie. (vz)Q|O ZX Since z is not free in
(va)Q
Now we prove rep(R) N p =  and P Ep Q@ imply P|R Ep Q|R. Sup-
pose for an observer O such that rep(O) N p = B, we have (P|R)|O 2
Then P|(R|O) g Now, rep(R|O) N p = . Then since P ~, Q, we have
Q|(R|O) 'y This, in turn implies that (Q|R)|O L& and the lemma follows.

2. Let Ty|P = where s is p-well-formed, and ¢t € T(s, p). We have Tw|P €
(Ty|P)[w/y]. Then by Lemma 24, it follows that there is P’ € Plw/y]; such



that Tw|P’ = for some s' =< t. Now, (vw)(Tw|P") (s ,and ({w})s’ < t.
Then it follows that (vw)(@w| Y pre po/y;; P (s’ o

Lemma 25. Let y ¢ p and y does not occur free as the subject of an input in s.
Then, for every p-well-formed r such that e(s{z/y}) = there is a p-well-formed

cotemplate ' such that e(s) é and e(r'{z/y}) =

Proof: Let e(s{z/y}) = for a p-well-formed r. Without loss of generality we
can assume bn(s) N{z,y} =0, and s is p-normal. The proof is by induction on
the length of s. The base case s = € is obvious. Let s = a.sy, then s{z/y} =
a{z/y}.s1{z/y}. For the induction step there are two cases depending on «.

A\—

1. a = (w)zw : We only consider the case & = y, which is central to the proof;
the case & # y is simpler. Then a{z/y} = (w')zw’ where w' = w{z/y},
and e(s{z/y}) = (vw')(Zw'|e(s1{z/y})). We consider the case z € p which is
more interesting; the case z ¢ p is similar. Since z € p and 7 is p-well-formed,
the message Zw' cannot fire in e(s{z/y}) =. So there are two possibilities.

— Zw' is consumed internally. Then e(s;{z/y}) == for some r; = ry.2w'.r3
such that r = (w')(ry.r3). Since r is p-well-formed, we have r; is (p U
w')-well-formed. By induction hypothesis there is a (p U w’)-well-formed
cotemplate ! such that e(s;) — and e(ri{z/y}) ==. Now, e(s) N
where 1’ = (w)yw.r]. Note that ' is a cotemplate that is p-well-formed
because y ¢ p. Further, e(r'{z/y}) = (vw')(Zw'|e(r}{z/y})). Therefore,
e(r'{z/y}) =

— Zw' is not consumed. Then e(s;{z/y}) == for some r; such that r =
(w'yry. Since r is p-well-formed, we have r1 is (p U w')-well-formed.
By induction hypothesis there is a (p U w')-well-formed cotemplate 7}
such that e(s;) == and e(r,{z/y}) ==. Now, e(s) = where ' =
(w)r]. Note that r' is a p-well-formed cotemplate. Further, e(r'{z/y}) =
(vw')(e(r}{z/y})). Therefore, e(r'{z/y}) =

2. a = xz(w): We only consider the more interesting case where & = y. Then
afz/y} = z(w) and e(s{z/y}) = z(w).e(s1{z/y})). Then r = (¥)zv.ry for
some 71 such that e(s; {z/y}{v/w}) ==. Note that r| is p-well-formed. Since
s is cowell-formed, so is s{z/y}, and therefore w does not occur free as the
subject of an input in s;{z/y}. Further, since s is p-normal, w ¢ p. Then,

by induction hypothesis, e(s;{z/y}) = for some p-well-formed cotemplate
15 such that e(rs{v/w}) ==. Now, applying the induction hypothesis again
on s1{z/y}, we get e(s;) => for some p-well-formed cotemplate r3 such
that e(r3{z/y}) ==. Now, the reader can verify the following claim: for
cotemplates t1,t,ts, if e(t1) L2 and e(t2) L2 then e(t1) L5 Using this
claim and Lemma 21 we conclude e(r3{z/y}{v/w}) ==. Now, e(s) AN



where ' = y(w).rs. Since r3 is p- well formed cotemplate, so is r'. Fur-
’U zv

ther, e(r'{z/y}) = z(w).e(rs{z/y}) —— e(rs{z/y}{v/w}) ==. Therefore,
e(r'{z/y}) = O

Lemma 26. If P == and e(s) = then P ==.

Proof: Following is a proof sketch. Since we work modulo alpha equivalence on
traces, we assume bn(r) N fn(P) = (. If s and s’ are alpha equivalent then so
are e(s) and e(s’). Then, since « equivalent processes have the same transitions,
we can assume s is normal. The proof is by induction on the length of the
computation e(s) ==. The base case is trivial. For the induction step we can
write

e(s) = Q ==,

for some @) and ;. We have three cases based on a:

— a = (9)Ty: Then s = (9)(s1.Ty.s2) for some s1, s2 where s; does not contain

@ >(81:x>y #2) we can show

P Y p 2 Gince
lemma follows from P

— a = (9)zy: Then s = sl.az(u).52 for some sy, sy such that z ¢ bn(sy), and
s1 contains no inputs, and @ = e(s1.s2{y/u}). By normality of s, u ¢ n(s;),
S1- x(u) So

and hence we can write @@ = e((s1.s2){y/u})). Further, from P ,

s3) ==, by induction hypothesis, P, ==. The

(
any inputs, and ) = e(s;.s2). Further, since P
e(s1.
(@)Tym

81.82

u ¢ n(s1), and = ¢ bn(s1) we also have P A_g P, =. Further, since
gnfa(P)=0,P zy Pi{y/u}. Then by Lemma 21 we have P; (5152 v/

By induction hypothesis P, {y/u} ==, and the lemma follows from P
(9)zy zy
= Q

(y)xy r1

— a = 7: Then we have e(s) , 8 = (9)(s1.7y.52.2(u).s3), s1 and so
contain only outputs, Q' = e(s1.s2.s3{y/u}), and Q = (v9)Q" = e((J)(s1.s2.s3{y/u})).
Since P <y>(sl'$gw(u)'sg), we have P <y>(sl'wy's—2—f>y'sg{y/u}) by Lemma 21.
The complementary input and output actions can be preponed so that

P= P @)(Sl'g{y/u}). By induction hypothesis P, ==, and the lemma
follows. a

Lemma 27. Letr be g-well-formed and §-normal. Then (v§)e(r) = e(r'), where

r1 if g ={y},r =ri.y(z).rs, and y ¢ n(ry)
=< r.z(y) e if §={y},r =ri.Ty.ry, and y ¢ n(r)
r otherwise

Note that the conditions on r imply that the three cases above are exhaustive.

Further, (vij)e(r) i



Proof: That (vy)e(r) = is immediate. The proof of (vg)e(r) = e(r') is by a
straightforward induction on the length of r. The idea is to push (vg) inwards
as far as possible. To push across a restriction, we can use I1, A3, A8 and A19,
and the fact that (vz)0 = 0 which can be derived using A2, A14, A19. To push
across a message we can use A8, and to push across an input we can use A11.
If at any point, (¥y) cannot be pushed further, either case 2 of the definition of
r" applies, or A11 can be used and case 1 applies. If (vg) can be pushed all the
way in, we can use A8 and (vx)0 = 0, and case 3 applies. |

Proof of Lemma 13: For convenience, we write R(s, p) to denote the set of all
p-well-formed cowell-formed cotemplate traces r such that e(s) ==. The lemma
can be stated as: for every set of names p, e(s) C, ZreR(&p) e(r). We will be
using the following property in the proof, which the reader can verify easily. If
e(s) = then len(r) < len(s).

Without loss of generality, we can assume s is p-normal. The proof is by
induction on the length of s. For the base case, s = €, we have e(e) = 0, R(e, p) =
{¢}, and the lemma follows using A1 and I4. For the induction step we have
three cases:

1. s = z(y).s1: By induction hypothesis we have e(s1) T, >, cp(s, ) €(r)-
Clearly, for every m € R(s1,p), fn(e(r1)) = fn(ri) C fn(s1) = fn(e(s1)).
Therefore, we are done if we show that for all z € fn(s1), e(s1){z/y} C,
> reR(sy,p) €(r'){z/y}, for then using the fact that z(y).R(s1,p) C R(s,p),
and laws 12, A2, we conclude e(s) 5y 3, c gy, ) (7).

Now, e(s1){z/y} = e(si{z/y}). By induction hypothesis, e(si{z/y}) C,
P eR(si{z/y},p) €(T")- Since s is cowell-formed, y does not occur free as the

subject of an input in s, and since s is p-normal, y ¢ p. Then, using Lemmas
25 and 12, and laws I3, A1, and A2, we conclude ZT,ER(SI{Z/?!M) e(r') C,

2 rer(s,p) €(r"){z/y}. By transitivity of C,, we have e(s1{2/y}) T, 3., c (s, ) €r'){2/y}-
2. s = (§)Ty.s1: By induction hypothesis we have e(s1) Cpug 2 e sy, pug) €(7)-

From e(s) = (v9)(Tyle(s1)) and using I1, A12, and A7, we have e(s) C,

2R puy) PO @Ye(r) = 2o e pis, pug) €((@)Ty-r')- I & p, then (§)Ty.R(s1, pU

§) C R(s,p), and therefore using A2 we have e(s) Ty >, cps,,) €(r) as re-

A\ —

quired. For the case x € p, we are done if we show for every (§)Ty.r; €
(9)Ty.R(s1,p U §) that e((§)Zy.r1) Tp X0 er((g)zy.m.p) €(r')- Following is

the reason. If e(s;) ==, we have e(s) GLELrs  Then by Lemma 26, we

have R((9)ZTy.r1,p) C R(s,p). Then using I3, A1, and A2, we conclude

e(s) Tp Dren(s,p) €(r)- To show e((§)Ty.r1) Tp D ricr(gyzy.rm.p €(), We
have two cases based on 1. Without loss of generality, we can assume 71 is
p U g-normal.

—r; = €. Then (9)Zy.r1 = (9)Ty, e((§)Ty) = (vy)Ty. Since =z € p,
R((9)Zy, p) = {€}, and e(e) = 0. The result follows because (v9)(Ty) C,
>~ 0, which can be derived using the example in Section 4 and laws A1/,
A19, 11, I}



— r1 = u(w).ro: We only consider the case u = x, the other is simpler.
Using A20, 11, A7, A11, we deduce

e((9)Ty.r) = (vy)(@ylz(w C, Y a(w).e((d)Ty.rz)

+ Y x(w).(vh)e(r2) (1)
+ Y (he(ra{y/w})
We are done if we show that for each summand @ in the RHS, @ C,
> nere(r’), for some set T' of p-well-formed traces that @ exhibits. This

is because, it is clear from (1) that if Q) = then e((9)Ty.r1) = There-
fore T C R(( )Ty.r1, p), and by using I3, A1, and A2, we can conclude

(@Er)C, Y el

r' €R((§)Ty.T1,p)

Now, we consider each summand separately.

(a) z(w).e((§)Ty.r2): Since e(s1) ==, we have len(r;) < len(s;). And
since len(rz) < len(r;) < len(s1) < len(s), we have len((§)Ty.r2) <
len(s). Therefore, we can apply the induction hypothesis to conclude

(@Fyr) T, Y elr)

r ER((9)Ty-T2,p)

Now, for every r' € R((§)y.ra, p), fa(e(r')) = fn(r') C fale((§)Ty.r2)).
Now, since r; is cowell-formed, w does not occur free as the subject
of an input in (§)Ty.re. Further, since r1 is p U §-normal, and hence
w ¢ p. Then using arguments similar to that in case 1, we deduce
that for each z € fn(e((9)Ty.r2)),

e((9)Ty.r2){z/w} £, Yo el {z/w}
' €R((§)Ty-r2,p)
Then using /1 and A13 we get
z(w).e((9)Ty.r2) 5, Z z(w).e(r')
' €R((§)Ty-r2,p)

Now, because z(w).R((§)ZTy.r2,p) C R(x(w).(9)Ty.r2,p), using A2,
we have

2(w).e((§)Fy.r2) C, S e(r)

r'€R(z(w).(§)Ty.r2,p)

(b) z(w).(vy)e(rz): Since ry is p U g-well-formed, it also g-well-formed.
Then by Lemma 27, (vg)e(rs) = e(r'), where r' is as defined in the



lemma and (vg)e(rs2) . The reader can check that r' is p-well-
formed. Now, fn(e(r')) C fn((vg)e(rz2)). The reader can also check
that, for z € fn((v§)e(r2)), by Lemma 27,

((vg)e(r2)){z/w} = e(r'){z/w}. Then by 12, I and A14,

w(w).(v)e(rs) = e(z(w).r') =, Y e(e(w).r')

Now, z(w).r" is a p-well-formed trace, and since (vg)e(rs) é’, we
have )
a(w).(vi)e(rs) "

(c) (vg)e(ra{y/w}): Since len(ry) < len(s), by induction hypothesis and
axiom I1 we have

(vi)e(r2{y/w}) C, > (vg)e(r")

r"€R(r2{y/w},pU9)

Let " € R(ro{y/w},p U g). We have, r'" is also g-well-formed.
Then by Lemma 27, (v§)e(r”) = e(r'), where r' is as defined in

’
r

the lemma and (vg)e(r’") =>. The reader can check 7’ is p-well-
formed. Further, since e(ro{y/w}) ==, using Lemma 26 we can

show (vg)e(r2{y/w}) . Let R be the set of all 7' that are ob-
tained for each r'" € R(r2{y/w},pUg). Then, using I3, I4, A1, A14
and transitivity of C,, we conclude

(wie(ra{y/w}) T, 3 e(r')
reR

— r; = (0)Tv.re: Using axioms A4, A5, and A8, we deduce

e((9)Ty.r1) = e((§)Ty.(0)uv.rz) = e((v")uv.(y')Ty.r2) (2)
where (since r; is p U g-normal)

1;,:{27if?3={11}

R )
© otherwise and y'=g—v

By induction hypothesis, we have

e((y")Ty.r2) T, e(r')
' ER((y")Ty.r2,pU0")

Then, using I1, A7 and A12 we deduce

e((v')av.(y")Ty.r2) C, 3 e((v")av.r') (3)

" ER((Y")Ty.r2,pU0")



Now, u ¢ pUjj, because r; € R(s1, pUj). Then for every r' € R((y')Ty.rs, pU

~ ~ ~ ~

v'), (v")aw.r" is p-well-formed. Further, e((y)Zy.rs) = implies e((v")av.(y")Ty.r2) (v

Therefore,
(v av.R(y'Ty.re, pU ') C R((v')@v.(y")Ty.rs, p) = R(§)Ty.(0)av.r2, £})
Finally, from (2), (3) and (4), and using I4, A2 we obtain

e((9)Ty.r1) G, > e(r')
P ER((§)Fy.11.0)
O

Lemma 28. Lety ¢ p, and s be a trace such that y does not occur free in input
actions of s. Then for every t' € T(s{z/y},p) there is a t € T'(s,p) such that
t{z/y} 2 t' using only L/.

Proof: The proof is by induction on the length of s. Without loss of generality,
we may assume bn(s) N {z,y} = 0. The base case s = € is obvious. For the
induction step, there are three cases:

1. s = (d)uv.s;: For t' € T(s{z/y},p), we have t' = (v')u'v'.t}, where u' =
u{z/y} v = v{z/y} and t| € T(s1{z/y}, p). By induction hypothesis, there
ist1 € T'(s1, p) such that t;{z/y} <t} using only L4. But we have (0)uv.t; €
T((0)uv.s1,p), and ((0)uv.t1){z/y} = @'V t{z/y} = W)t = t,
using only L4.

2. s = @w(v).s1: For t' € T(s{z/y},p) we have t' = u'(v).t}, where u' =
u{z/y} and t| € T(s1{z/y},p U {v}). By induction hypothesis, there is
t1 € T(s1,p U {v}) such that t;{z/y} =< t| using only L4. But we have
u(v).t; € T(u(v).s1,p), and (u(v).t1){z/y} = ' (v).t1{z/y} W' (v).t} =,
using only L4.

3. s = uv.s;: There are two subcases.

— v = y: Then s{z/y} = u'z.s1{z/y} where u' = u{z/y}. There are two
more subcases:

e z € p: For t' € T(s{z/y},p) we have t' = u/(w).t|, where w fresh,
and t} € T'(s2,p U {w}) for some sy € s1{z/y}[w/z]. Using the fact
that y cannot occur free in the input actions of s, we can show
show sy = s3{z/y} for some s3 € si[w/z]. Clearly, s3 does not
contain free occurrences of y in input actions. Then by induction
hypothesis, there is t; € T'(s3, pU {w}) such that ¢;{z/y} < t| using
only Lj. It is easy see that, since w is fresh, t;{z/w} € T(s1,p).
Then we have uy.t;{z/w} € T(s,p). Then (uy.t;{z/w}){z/y} =
wzti{z/wH{z/y} = wzti{z/y}{z/w} < v (w).ti{z/y} 2 v (w).t] =
t', where the relation < is by L4.

e 2 ¢ p: For t' € T(s{z/y},p) we have t' = wu/z.t], where t| €
T(s1{z/y}, p). By induction hypothesis, there is t; € T'(s1, p) such
that t1{z/y} < t| using only L4. But we have uy.t; € T(uy.s1,p),
and (Wy.t1){z/y} = v'z.t:{z/y} < u'z.t}; = t' using only L4.



— v # y: Then s{z/y} = u'v.s;{z/y} where v’ = u{z/y}. There are two
subcases.

e v ¢ p: Then for t' € T(s{z/y},p) we have t' = u'v.t|, where t| €
T(s1{z/y}, p). By induction hypothesis, there is t; € T'(s1,p) such
that ¢;{z/y} < t| using only L4. But we have av.t; € T(s,p), and
(@v.t1){z/y} = u'v.t1{z/y} <X vv.t| =t using only L4.

e v € p: Then for t' € T(s{z/y},p) we have t' = u/(w).t}, where
w fresh, t] € T(s2,p U {w}) for some sy € si{z/y}[w/v]. Using
the fact that y occurs free only in output actions of sy, we can
show sy = s3{z/y} for some s3 € s;[w/v]. Clearly, y does not occur
free in input actions of s3. Then by induction hypothesis, there is
t1 € T(s3, pU{w}) such that t;{z/y} < t] using only L4. But we have
w(w).ty € T(s,p), @w).t1){z/y} = v'(w).t1{z/y} 2 v (w).ty = ¢,
using only L4. O

Proof of Lemma 14: The proof is by induction on the length of s. Without
loss of generality we may assume s is p-normal. The base case follows from
0C Zte{e} 0 which holds by A14. For the induction step we have three cases:

1. s =Ty.s": Then e(s) = Tyle(s’). There are two subcases:
(a) y ¢ p: From induction hypothesis we have

t'eT(s',p)

Using laws 1 and A12 in that order we get

zyle(s') C, Ty| Z e(t') =, Z Tyle(t') = Z e(Ty.t') = Z e(t)

teT(s',p) teT(s',p) teT(s',p) teT(s,p)

(b) y € p: It is easy to check that for w fresh, every s” € s'[w/y] is a
cowell-formed cotemplate. Further, len(s'") = len(s'). Hence by induc-
tion hypothesis, we have

(T, 3 elt)

t'eT(s",p)

Then, by I3

S oS, Y ) 5)

s'"es' [w/y] t'eT(s'[w/y],p)

Now, since y € p, by law A21 we have

e(s) = Tyle(s) Cp (vw)(@w| Y P)

Pee(s')[w/yli



The reader may check that for any P € e(s’)[w/y];, P = e(s") for some
s € s'[w/y] and vice versa . Using this we get

e(s) Cp (vw)(@w| D e(s"))

s''es'[w/y]

Now using 5, laws /1 and I3, we have

e(s) Cp w)(@w| Y et)

v eT(s'[w/yl,p)

Now, using laws A7 and A12, we get
S, Y e@wit)= Y e

el (s'[w/yl.p) teT(s,p)
(s) = (vy)(Tyle(s')). By induction hypothesis, we have

e(s") Eputyy Z e(t')

t'eT(s’,pU{y})

Since s is p-normal, we have y ¢ p. Using this and law 11, we get

e(s) S, )@yl D elt)

teT(s',pU{y})

Now, using laws A7 and A12, we get
es)C, Y, e@y)t)= > e

t'eT(s’",pU{y}) teT(s,p)

3. s = z(y).s": Then e(s) = z(y).e(s’). We are done if we show

(&

(s"){=/y} Ep( > e(t’)> {z/y} (6)

t'eT(s',p)

for every z € fn(e(s")), because then by laws 12, A13 and I/ we have

e(s) Cpaly). Y

t'eT(s'

()=, Y ee)= Y elaly).t)=

> el)

) vET (s ) vET (s ,p) teT(s,p)

Now we prove 6. By applying the induction hypothesis to s'{z/y}, we have

e(s"){z/y} =e(s'{z/y}) &, Yoo et

Since

Y el)

t'eT(s',p)

t"eT(s'{z/y}.p)

{z/yy =Y elfzlyl= D elt'{z/y})

t'eT(s',p) t'€T(s',p)



So, we are done if we show

Y S, Y et{=/up

t"eT(s'{z/y},p) t'eT(s",p)

Since s is p-normal, y ¢ p. Further, since s is a cowell-formed cotemplate, y
cannot occur free in the input actions of s’. Then by Lemma 28, for every
t" € T(s'{z/y},p) there is a t' € T(s', p) such that t'{z/y} < ¢'. Then by
Lemma 12.2 we have e(t") = e(t'{z/y}), and 6 follows from laws 13, I{, A1
and A2 |



