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Abstract

Applications where collection of agents reside in dy-
namically changing environments and are required to
accomplish various tasks in real time pose a number
of modeling, design and analysis challenges. These
challenges include finding appropriate models for co-
ordination and cooperation among the agents, and for
individual agent’s adaptability and autonomy. This
paper chiefly focuses on understanding and modeling
individual agent’s autonomy. First we try to identify
those characteristics that distinguish autonomous
agents from other types of agents. We consider au-
tonomy to be a capability of goal-directed individual
decision making in presence of uncertainty, incom-
plete knowledge and/or noise. An autonomous agent
is viewed as a pro-active, goal-driven and generally
selfish entity, and its autonomous decision making,
together with other capabilities such as adaptability
and cooperation with other agents, enables the agent
to meaningfully strive to maximize its appropriately
defined individual expected payoff. We illustrate the
general ideas about agent autonomy with an example
of autonomous unmanned aerial vehicles (UAVs) on
a multi-task mission viewed as a real-time multi-agent
system.

Keywords: multi-agent systems, autonomous
agents, weak and strong agent autonomy, intelligent
agents, distributed online scheduling

1 Introduction

Autonomous agents are a growing and increasingly exciting
research area in many scientific disciplines, from economics
to social sciences to “hardcore” computer science to artificial
intelligence. Different disciplines have different needs, use dif-
ferent terminologies and may have different notions of what
exactly they mean by an agent. However, agents in economics
and those in (distributed) artificial intelligence, for example,
nonetheless tend to have at least some shared properties that
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are essential for why are the underlying entities considered
agents in the first place.

This preliminary report has two main goals. One is to
identify some such general properties of autonomous agents,
and to look at agent autonomy in the context of goal- or
utility-driven agents embedded in complex, dynamic envi-
ronments from a high level of abstraction, that is, indepen-
dently of any particular application domain. The second
goal is to define a meta-problem of agents in multi-task envi-
ronments, where the relationship between agent’s autonomy,
pro-activeness, and goal-orientedness, and simple characteri-
zation of these basic agent properties, can readily be estab-
lished. To illustrate the applicability of the notions and con-
cepts defined at this meta-level, we then look at a concrete
example of what can be viewed as a multi-agent system -
viz., a system of autonomous, “intelligent” vehicles that are
both cooperating and competing in order to serve a number
of dynamically changing tasks.

1.1 What are autonomous agents 7

As an introduction, we first reflect some more on what is it,
in most general terms, that distinguishes agents from other,
non-agent entities. Indeed, there has been much of debate,
what property or set of properties exactly qualifies an en-
tity, such as a computer program, for an autonomous or an
intelligent agent. The good survey articles, such as [1] for
intelligent agents or [2] for autonomous agents!, while trying
to clarify and unify the terminology, as well as offer broad
agent taxonomies, also illustrate the heterogeneity and lack
of agreement on the definition and the required (as opposed
to optional) properties even in case of certain perhaps some-
what restricted classes of agents, such as autonomous agents
that are required to be computer programs (rather than, say,
humans or social insects)?. Whether the unification of dif-
ferent terminologies as well as various agent semantics is to
be seen any time soon, is anyone’s guess.

Some of the most frequently encountered general proper-
ties of agents found in the literature include reactiveness, pro-
activeness, ability to execute autonomously, goal-orientedness
or goal-directedness, a capability of sensing the environment
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necessary but not sufficient capability that an agent needs to have in order to be considered intelligent.
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and being affected by the environment, a capability of af-
fecting the environment, sociability, ability to communicate,
persistence, purposefulness, and ability to learn and/or rea-
son about the world. Not all agents have to possess all of the
above properties, of course. As we are primarily interested
in autonomous agents, we would like to make an attempt
to identify those properties that can be reasonably consid-
ered necessary for an entity, such as a computer program
or an unmanned vehicle or a social insect, to “qualify” for
an autonomous agent. In case of computer programs, being
capable of autonomous execution seems to be the most nat-
ural requirement. However, a question then arises, is this
enough? For instance, a finite state machine (FSM) ex-
ecutes autonomously and reactively, but we find it hard to
consider FF'SMs an appropriate abstraction of autonomous
agents. In case of reactive situated agents that are adequately
representable by (coupled) finite state automata, all possible
states of the environment are mapped to a pre-determined
and fized finite set of equivalence classes corresponding to
the agent’s “internal states”; and each of these equivalence
classes is then mapped into an action from a fized finite set
of the possible agent actions.

We shall argue in §4 that pro-activeness is central in dis-
tinguishing an autonomous agent from, say, a merely reactive
situated agent. We also argue that pro-activeness is typi-
cally a result of the agent being, in some form, goal-driven or
utility-driven. We shall outline in the sequel a fairly generic
(yet unavoidably not fully general) multi-agent, multi-task
framework where the agent’s autonomous decision making is
a capability used for a well-defined purpose, viz., to maxi-
mize agent’s utility defined in terms of agent’s successfulness
in completing those tasks. To illustrate the usefulness and
broad applicability of the meta-framework, we then outline
how to apply this generic framework to an application do-
main that has recently arisen in our work - the system of
unmanned vehicles on a multi-task mission.

We would like to focus specifically on entities that are
capable of some form of individual decision making in non-
trivial (and possibly quite complex) environments, where
those decisions may impact both the entities themselves and
their environment in certain ways that are not necessarily
easy (or even possible) to always reliably predict. That is,
our subject are autonomous agents in as general a sense of
this term as possible; in particular, rather than restricting
these autonomous agents exclusively to computer programs
alone, we are more inclusive insofar as what kinds of entities,
under appropriate circumstances, could qualify for the label
of an autonomous agent. In particular, we would like to allow
the entities that, in addition to certain computing capabilities
based on an appropriate computer program, may also possess
various sensors, communication links and effectors for inter-
action and information exchange with their environments.

The rest of the paper is organized as follows. In the next
section, we define a multi-agent, multi-task meta-framework
within which we intend to define and study some important
concepts related to agent autonomy. As a step towards de-
signing parametric models of autonomous agents and multi-

agent systems, we identify some of the critical design pa-
rameters. We then focus on some of the main ingredients
in modeling agents’ autonomous behavior strategies®. Subse-
quently, we outline an application of the meta-framework to
a system of UAVs that are set to accomplish a number of in-
dependent tasks. Finally, we summarize and briefly indicate
some directions for future work.

2 Meta-Level Problem Formulation

We now give a high-level framework for a kind of multi-agent,
multi-task problems where agent’s capability of autonomous
decision-making can be expected to play a central role. This
framework is not completely general, but we feel it is general
enough to capture many situations where one has a collection
of autonomous agents and a collection of independent tasks
these agents need to complete.

Let us consider a collection of N agents that need to
serve a collection of M tasks. Each task T has a dynami-
cally changing value associated with it, that we denote V;(t).
Each agent is assumed to be a pro-active, goal-driven entity.
That is, an agent, A;, is driven by the desire to increase its
own (expected) utility, U;, by consuming as much of value
of different tasks as possible. In particular, an agent is not
simply embedded into its environment, where it may under-
take different actions merely as a reaction to the (observed)
changes in the environment. Instead, it actively seeks to im-
prove its well-being, that is, to increase its (expected) utility.
In order to be able to meaningfully and effectively pursue
the increase in (expected) utility, the agent must have some
idea of what its goals or tasks are, and some estimated wutil-
ity function associated with completing each of these tasks.
This is not the same as saying, that the agent needs to know
all of its tasks ahead of time, or all of those tasks’ values.
However, some a priori, i.e., built-in, basic knowledge about
the agent’s own self (i.e., its identity), the agent’s goals, and
awareness of the available capabilities and resources for ac-
complishing those goals, has to exist. This awareness can be
expected, in general, to evolve with time, as the agent goes
along in exploring its environment, learning more about its
tasks, resources and other agents. In particular, we know of
no natural or artificial agents that, however adaptable and/or
autonomous and/or intelligent they may be, do not have some
of this initial, basic, a priori awareness about self, the ability
to distinguish between self and one’s surrounding, and some
idea of one’s goals in the world, and how to go about pursuing
those goals.

Back to our meta-model, we feel that assigning a time-
dependent value-function Vj(t) to each task Tj is a simple
and generic enough way of capturing any relatively simple
heterogeneity among the subproblems or tasks that are mu-
tually independent and that have to be individually solved or
completed by the agents. When an agent discovers a partic-
ular task, it gets attracted by its value. If the agent happens
to be simultaneously aware of two or more tasks at a given

3These considerations naturally open up the issue of what is the proper role of game theory and decision theory in studying MAS made of
autonomous agents. Due to space limitations, however, we leave that discussion for another occasion.

4In case of natural agents, i.e., living organisms, one of the basic goals is certainly survival, and all species that can be reasonably considered
autonomous agents have some, however rudimentary, sense or survival instinct, i.e., in our terminology, some a priori or built-in idea or intuition or
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(discrete) time step®, the agent needs to decide which of
the tasks is currently most attractive to it. Based on that
decision, the agent then chooses one of finitely many pos-
sible actions at its disposal; this action may include sending
messages to other agents. Whatever action the agent chooses,
the idea is that, the agent acting rationally, it is agent’s desire
and hope that this action will maximize agent’s (expected)
payoff. In our simple meta-problem, the choice of action ba-
sically boils down to which task the agent chooses to tackle
next. In particular, we observe that this model implies the
agent does no (long-term) planning. Indeed, the classical
planning framework familiar from AI does not apply here, as
the assumption is that the tasks and environment in general
are only partially observable, dynamic and possibly nonde-
terministic (or at least appear so to the agent); see, e.g., §11
in [3]. More complex models of planning, and, in particular,
those that include decision making under uncertainty, how-
ever, could well be applicable - but we would expect them to
be prohibitively expensive for nontrivial problem sizes. We
return to decision making under uncertainty in the context
of models of agent autonomy in §§4.2.

The total amount of the available value in the system in
our meta-problem is assumed to be bounded at all times.
Consequently, the agents can be expected to end up compet-
ing for this limited resource. Agents are assumed to be selfish
by default, that is, without an explicit or implicit incentive,
they are not going to be inclined to cooperate. Each agent’s
sole goal is to maximize its own utility function. However,
various forms of cooperation, coordination and collaboration
may nonetheless arise. An explicit incentive is, for example,
an agent’s realization that, with its own resources alone, it
cannot accomplish a particular badly desired task, and there-
fore, such agent may be able to use whatever communication
channels it has on its disposal, to contact other agents and
offer collaboration. This phenomenon is well-known in multi-
player game theory, where the incentive for forming coalitions
is still purely egotistic - including the realization by the ratio-
nal agent (player) that the spoils, if any, will have to be split
with the participating collaborators, for some spoils are still
better than none. A generic example of implicit incentive to
cooperate with competitors is any kind of a conflict resolu-
tion scenario where the agents, unless they coordinate, can
expect mutual destruction and, therefore, no hope of fulfill-
ing their goals or maximizing utility. Concrete such examples
are readily available, for instance, in the context of intelligent
transportation systems and autonomous vehicles.

3  Some Critical Design Parameters
in Multi-Agent Systems

We now briefly discuss some of the most critical design param-
eters featuring in our generic model of a multi-agent, multi-
task system. One ultimate goal of our current and future
investigations is to cover as much of this multidimensional
parameter space as possible, analytically whenever feasible
and via computer simulation and experiments when analyti-
cal approach is not promising, and subsequently to compare
and contrast the individual agent behaviors as well as the

system performance in various scenarios, thereby increasing
our understanding of autonomous agents and MAS made of
such agents, and, in particular, our prediction ability of the
MAS behavior and performance under various conditions.

In the meta-model we outlined above, while we do con-
sider our formulation fairly general and high-level, nonethe-
less a number of simplifying assumptions has been tacitly
made. For instance, in much of the work on MAS (includ-
ing our own [4], [5]), the existence of global time and the
global clock is assumed. The agents are assumed to com-
municate with one another (or, when applicable, with any
kind of central control) exclusively via message passing. We
also assume that all communication is perfectly synchronous.
It is well-known that the more realistic assumption of asyn-
chronous communication renders many important distributed
coordination and agreement problems formally undecidable
[6].

In our current framework ([4], [5]), the agents are assumed
all to be equally capable - in particular, no agent special-
ization has been considered, where only certain agents can
perform some particular task or set of tasks. The tasks ap-
pear identical to all agents - except possibly for their (true
or estimated) values. We further assume that the tasks are
mutually independent of one another; in particular, in case
that an agent has several available choices, which tasks it is
going to pick to service, and in what order, is entirely driven
by the agent’s appropriate estimate of those tasks’ values and
their expected utilities or payoffs for that agent.

With these simple yet necessary stipulations in place, we
can proceed to identifying the main MAS parameters. The
parameters of interest include the ratio of the number of
agents to the number of tasks, agents’ sensor and commu-
nication ranges, the model of agent-to-agent communication,
the model of the agent’s knowledge of the tasks (i.e., whether
any uncertainty and/or noise are allowed), a choice of a co-
ordination model and strategy (if any), a model of the agent
individual behavior strategy (or, in heterogeneous scenarios
where agents are distinguishable, strategies), a model of in-
dividual agent’s adaptability, etc. For instance, by adapt-
ability we mean the ability to change the individual strate-
gies and coordination models based on observed changes in
the environment, including but not limited to any form of a
feedback, such as an appropriate reinforcement via varying,
action-dependent payoffs, received from the environment.
Similarly, coordination may refer to any form of communi-
cation or other way of information exchange among differ-
ent agents, with agents purposefully mutually adjusting their
behaviors in order to individually benefit from these adjust-
ments. In other words, in our model of selfish, individual
utility-driven autonomous agents, each agent may choose to
coordinate only because it feels it would be beneficial for its
own expected utility to coordinate. Hence, coordination may
be simply about conflict avoidance and resolution, or about
coalition forming among different groups of agents, or a form
of self-organization among the agents, who may adaptively
learn that, under certain circumstances, they are each indi-
vidually better off coordinating and cooperating than acting
strictly on their own. These general observations are usually
more appreciated if some concrete examples from relevant
application areas are offered. For that purpose, we refer the

5 Agent’s awareness of tasks’ existence, and some, not necessarily accurate, idea of those tasks’ values are results of either the agent having sensed
those tasks, or because it got the (not necessarily reliable) information about the tasks from other agents.



reader to §5, and a brief discussion on agent autonomy, and
its relationship to coordination among UAVs as an illustra-
tive example. More details on the UAV coordination per se
can be found in [4] and [5].

4 Models of Agent Autonomous Be-
havior Strategies

We now try to justify the class of generic models of agent au-
tonomy in the context of the meta-problem of an autonomous
agent acting in a multi-agent, multi-task environment as out-
lined in earlier sections. The meta-model of agent autonomy
will be an appropriate (class of) mathematical function(s),
that, depending on the situation, can be deterministic, non-
deterministic or probabilistic®.

Before we begin a discussion of what properties this class
of functions (that we’d like to argue fairly generally captures
the notion of agent autonomy) should have, however, we first
reflect on what types of agents lack a kind of autonomy we
are after.

During the late 1980s and much of 1990s, perhaps the
most dominant thread of agent-related research in AI was
the study of situated agents. These are agents that are em-
bedded in dynamic, possibly quite complex environments, a
kind of agents that are capable of sensing the environment,
reacting to the observed environmental changes, and also af-
fecting their environment via their own actions. In [7], such
persistent situated agents are defined as “Intelligent agents
[that] are systems that have a complez, ongoing interaction
with an environment that is dynamic and imperfectly pre-
dictable”. While most ingredients of what we consider au-
tonomous agents are indeed present in such situated agents -
reactiveness, situatedness, ability to change the environment,
persistence - clearly something is missing. It is not surpris-
ing that [7] concludes that “it is more appropriate to think of
an agent embedded in an environment as performing a trans-
duction”, and to proceed with a formal, transduction model
of such situated “intelligent” agents based on coupled finite
state automata. What appears confusing, however, is what
exactly makes such a transducer autonomous, let alone in-
telligent? It is our view that the coupled automata model
in [7] is an appropriate abstraction for reactive, persistent
agents acting in dynamic, complex and partially or not fully
accurately observable environments, but this abstraction, in
our view, fails to fully capture the notion of agent autonomy.

Let us now consider the notion of intelligent agents as de-
fined in [1]. The four necessary properties that a computer
program or system has to possess in order to be considered
an intelligent agent (in the weak sense of [1]) is that it must
be autonomous, responsive, pro-active and sociable. The
authors find responsiveness, pro-activeness and sociability to
be characteristics of agent’s flexibility as a necessary prereg-
uisite for agent intelligence, but, interestingly enough, they
do not require adaptability. While we do agree with [1] that
intelligent agents are a (proper) subset of autonomous agents
- in order for any reasonable, however weak, notion of intelli-
gence to hold for an agent, that agent certainly has to have

some degree of autonomy in its behavior - we also feel that,
together with autonomy, responsiveness and pro-activeness,
an intelligent agent has to be capable of adjusting to the
changes in its environment and/or in its goals, that is, such
agent has to be adaptable. This adaptability, however, may
but need not always mean a capability of a highly complex be-
havior such as, e.g., some form of symbolic learning. Indeed,
in our view an agent may be called adaptable even if its ca-
pability of autonomous, dynamic behavior adjustment is only
rather rudimentary. For example, the ability of an appropri-
ate parameter adjustment based on the feedback from the
environment or the estimated distance from fulfilling one’s
goal would qualify an autonomous agent to be considered
adaptable, and hence one step closer to intelligent. Due to
space constraints, we leave modeling agent adaptability for
another occasion.

What are, then, the critical ingredients needed to capture
agent autonomy? In our view, reactivity (or what in [1] is
referred to as “responsiveness”) is clearly necessary, as the
agent has to be able to (i) notice changes in the environment,
and (ii) appropriately respond to those changes - but reactiv-
ity alone does not appear to be sufficient. An existing, weak
notion of agent autonomy can be approximated as

(weak) autonomy = reactivity + persistence (1)

For example, a “proper” software agent can be expected to
be at least somewhat persistent, unlike say a subroutine of a
computer program whose “turning on and off” is controlled
from outside of that subroutine. This view is strongly re-
lated to the usual requirement of (weak) autonomy, namely,
the requirement that an entity (agent) have the control of its
internal state.

We identify below two other key ingredients that we find
crucial for a notion of autonomy that is stronger than mere
“reactivity + persistence”. It is the presence of these two
new ingredients, in some form, that we consider necessary
requirements, in addition to reactivity and persistence, for a
natural or artificial agent to be autonomous in a stronger, or
“more Alish”, sense.

One feature that we see in virtually all known genuinely
autonomous agents, biological and computational alike, is
some form of goal-orientedness or goal-drivenness. In case
of living organisms, that is, “biological (autonomous) agents”,
the highest level driving mechanisms are the instincts or de-
sires of survival and reproduction’. At lower levels, the
driving mechanisms - finding food or a sexual partner - are
those that are expected to provide, promote or enhance the
two highest-level goals, survival and reproduction. In case
of computational agents such as a web crawler or a robot or
an autonomous unmanned vehicle, these agents are designed
and programmed with a particular task (or a set of tasks) in
mind. For instance, while there certainly are simple robots
(e.g., those working in a car factory assembly line) that are
merely reactive, such robots lack autonomy, and vice versa:
those robots that can be reasonably viewed as autonomous
have nontrivial tasks to accomplish, a kind of tasks where
mere pre-determined and fixed reactions to changes in the
input stream from the outside world is not enough. That is,
autonomous robots (and other computational agents that are

8That is, a probability distribution over a well-defined, finite set of possible actions, plans or strategies.
7The latter instinct being related to the survival of the species or perhaps, in the ?Dawkinsian” terms, of the particular genes and gene patterns

[8], as opposed to the survival proper, that is, the survival of individuals.



truly autonomous) are always driven by some built-in notion
of a goal or a set of goals that need to be accomplished.?

Finally, in addition to responsiveness, persistence and
goal-drivenness or goal-orientedness, one more characteris-
tic found in virtually all autonomous agents, not altogether
unrelated to goal-orientedness, is that of pro-activeness. Bi-
ological examples abound: a very hungry lion, even if say
physically rather tired, will pursue finding some food, or at
least get younger lions to get some food for him®. Such a lion,
if it were merely reactive, would just lie down and wait for an
antelope to come near enough so that he can grab her - some-
thing antelopes usually don’t do. Now lions sometimes are
lazy - but usually not to the point of starving to death. This
is so because the lions are goal-driven (survival, reproduc-
tion) and, in order to be able to fulfill their goals, being just
passively reactive is quite often simply not good enough; so,
they have to be pro-active in pursuing their goals, i.e., doing
what it takes in order to be able to survive and reproduce. In
case of computational agents, on the other hand, identifying
where pro-activeness comes from may be more complicated
but, as a general rule of thumb, it is always closely related to
the agent having some a priori notion of its goals, and being
driven by the desire to achieve those goals. In other words,
we argue that pro-activeness is related to, and (at least in
part) stems from, some form of goal-orientedness.

To summarize, we find that it is precisely the proper-
ties of (i) reactiveness or responsiveness, (ii) persistence, (iii)
pro-activeness, and (iv) goal-directedness or goal-orientedness
that, together, make an agent truly autonomous:

(strong) autonomy = reactivity + persistence +

goal-orientedness + pro-activeness  (2)

Granted, much of the agent literature has identified proper-
ties (i) - (iv) as common to autonomous and/or intelligent
agents (see [1], [2] and references therein). We claim, how-
ever, that these four properties are the necessary properties
that are all found in nearly every reasonable model of au-
tonomy, whereas other characteristics, including sociability,
adaptability, mobility, “mental states” (beyond whatever is
necessary to have some notion of one’s goals), beliefs-desires-
intentions, etc., are non-essential, and are found in (or can
reasonably be attributed to) only some, but by no means
all or nearly all, of the known autonomous agents, whether
biological or computational.

After this brief excursion into the ontology of agent auton-
omy, we return to more practical issues: what kind of math-
ematical and computational tools and paradigms are needed
to adequately capture agent autonomy at an abstract, and
therefore hopefully broadly applicable level? As we are ar-
guing that the agent autonomy is, ultimately, a capability
of (pro-active, goal-driven) decision making, based on one’s
internal state and the input stream from the outside world,
of how to (rationally and effectively) pursue one’s agenda or
goals, the critical question arises, how to model this decision-
making process, and what are the critical parameters that it
depends on? We turn to these questions next.

4.1 Agent Autonomy: Noiseless Case

In the quest for generic models of autonomous agent deci-
sion making, we first consider the simplest, noiseless case.
The agents are assumed to have perfectly reliable sensors and
communication links. An agent’s knowledge of the environ-
ment, and of the tasks in particular, while assumed (locally)
accurate, is still not necessarily complete, however. Due to
the ontological assumptions of (i) no central control, and (ii)
bounded sensor and communication ranges, each agent neces-
sarily has only a local picture of the tasks, as well as the other
agents and their whereabouts. If the agents work in unison,
i.e., if they have the common goal that they are striving to
achieve (that is, a single joint utility function that they all as
a system are trying to maximize), then the problem of how to
split up the tasks among the agents, and in what order, ap-
proximately reduces to a well-known problem of (distributed)
online task allocation and scheduling (see, e.g., [9]). One sub-
stantial difference between classical scheduling problems and
this multi-agent division-of-labor problem is that, in case of
the latter, instead of some concrete metrics such as the task
priority or the expected duration of task completion, a more
general notion of the task value is the quantitative metric
the agents are trying to optimize. In [9] one can find a useful
taxonomy of various flavors of (real-time) scheduling prob-
lems, some well-known solutions, and a rich bibliography on
the subject. Our problem of the choice of an agent’s opti-
mal action or strategy in the multi-agent, multi-task meta-
framework defined herein would fit into the category of dis-
tributed dynamic pre-emptive scheduling problems.

However, the problem we desire to model is conceptually
and analytically considerably more complex than mere dy-
namic scheduling. The main reasons behind the complexity
of the problem at hand are the inherently distributed nature
of individual agent information, knowledge, and interests - in
particular, the assumption of agents striving to maximize any
sort of joint utility is usually unrealistic, and one ought to
assume agents’ quests for maximizing (expected) individual
utilities instead. That is, even under the usually unrealistic
assumptions of perfectly reliable communication and sensing,
we identify the following generic sources of considerable ad-
ditional complexity:

(1) each agent only has a local knowledge of the tasks, and
of other agents;

(ii) typically, each agent is trying to maximize its own
individual payoff, and there is no guarantee, that individual
selfishness would necessarily lead to a satisfactory efficiency
of the system as a whole;

(iii) even if communication links are perfectly reliable, the
information that an agent receives from other agents need not
be reliable, as the agents, in general, can be expected to com-
pete for tasks and therefore the veracity assumption, in any
such competitive scenario, need not hold.

Observation (i), and models and analysis of this paradigm
in various application domains, is a subject of distributed arti-
ficial intelligence. Similarly, (ii) and its generalization - how
to reconcile the quest for maximizing individual vs. joint
utility functions - is a subject matter of incentive engineer-

8We remark that payoff- or utility-driven agents, as we see it, are nothing but a little more complex version of goal- or task-driven agents, a kind
of agents that, in addition to some notion of their goal(s), also have some “performance metric”, i.e., quantitative measure of those goals’ values,

importance, resource requirements, etc.; see also §2 of [3].

9How exactly this kind of coordination takes place is another interesting subject, but beyond the scope of this work.



ing [10]. Finally, (iii) takes us into the realm of multiple-
player game theory. Therefore, we share the view that the
ideas, paradigms and tools of distributed AI, incentive engi-
neering and N-person game theory are all highly applicable
and, in case of multi-agent systems of considerable complex-
ity along all the indicated dimensions, even necessary for
accurate and systematic model development and analysis of
such systems. Moreover, this list will be further expanded in
the next subsection, when we introduce the additional com-
plexity stemming from faulty communication links and less-
than-perfectly-accurate sensors.

4.2 Agent Autonomy: Noisy Case

In the previous subsection, we have assumed that the agents’
knowledge of their environment and their tasks, while local, is
perfectly accurate. Most of the time, a realistic agent model
has to drop the assumption of perfect accuracy in favor of
an imperfect, noisy model of agent knowledge of the world.
In particular, an agent’s sensors, in general, cannot be as-
sumed to be perfectly accurate and reliable; whatever prop-
erties of the environment they measure, these measurements
likely bring about some noise in the agent’s local picture of
the world. Likewise, an agent’s communication links, in prac-
tice, hardly ever can be safely considered perfectly reliable:
they may be faulty and they may experience delays. Hence,
even if the agent veracity assumption did hold, the delays
in communication can lead to an agent basing its decisions
on outdated information received from other agents, which, in
complex, dynamic environments, often can be worse than not
receiving any information from other agents at all - however
well-intentional these other agents may be.

Allowing an agent’s sensors and communication links not
to be perfectly reliable brings in additional complexity to
studying autonomous agents and multi-agent systems. In
particular, in the single-agent framework, once agent’s (lo-
cal) knowledge of his surrounding becomes noisy, one moves
into the realm of decision making under uncertainty [11] - a
subject of Decision Theory. It is worthwhile observing that
the environment in which the agent is embedded and acting
may be perfectly deterministic and predictable; however, as
long as it does appear nondeterministic to the agent who is
probing that environment with his limited and imperfect re-
sources, from the agent’s perspective, this is all that matters.
In case of multiple agents, the stated assumptions cast the
problem into the category of multi-stage (or repeated) multi-
player games of imperfect information, but the new element,
“borrowed” from distributed computing, is that of possible
asynchrony in the communication between the agents due to
network delays.?

It is, therefore, an unavoidable conclusion that multi-
agent systems where self-interested, goal-driven or utility-
driven autonomous agents act and communicate with one
another in dynamic, unpredictable, only partially and im-
perfectly accurately observable environments, agents whose
sensors and communication links need not be reliable, and
who in general cannot trust each other’s veracity, represent
an incredibly complex class of dynamical and computational

systems to model and analyze, and pose a number of consid-
erable mathematical and computational challenges.

5 An Example: UAVs on a Multi-

Task Mission

A collection of Unmanned Aerial Vehicles (UAVs) on a
mission provides an ideal framework for identifying, model-
ing and analyzing many interesting paradigms, design pa-
rameters and solution strategies applicable not only to au-
tonomous unmanned vehicles, but to Multi-Agent Systems
(MAS) in general. UAVs are finding their use in a vari-
ety of military and law-enforcement operations, e.g., in vari-
ous surveillance, reconnaissance, and search-and-rescue tasks.
These UAVs carry sophisticated payloads in order to be able
to fulfill their increasingly complex missions. In particular, a
typical UAV is equipped with certain sensors such as, e.g.,
radars. With these sensors, a UAV probes its environment
and forms a (local) “picture of the world” on which its future
actions may need to be based. A UAV is also equipped with
some communication capabilities, that enable it to communi-
cate with other UAVs and/or the ground or satellite control.
This communication enables a UAV to have an access to the
information that is not local to it - that is, the information
not directly accessible to the UAV’s sensors.

While trying to accomplish their mission, these UAVs
need to respect a heterogeneous set of constraints on their
physical and communication resources. The UAVs also need
to be able to communicate and cooperate with each other.
Their cooperation can range from merely assuring that they
stay out of each other’s way (collision avoidance) to enabling
themselves to adaptively and dynamically divide-and-conquer
their tasks.!!

Not all kinds of UAVs can be reasonably considered gen-
uine agents; e.g., those that are remotely controlled through-
out their mission would not qualify for autonomous agents in
the usual sense. However, for the reasons of system scalabil-
ity, dependability and robustness, increasingly complex and
autonomous unmanned vehicles are being studied, designed,
manufactured and employed. We are interested in UAVs that
are not remotely controlled and that have the ability to make
their own decisions in real time. We are also assuming ei-
ther no central control, or only a limited central control. In
particular, the knowledge of the world that each UAV pos-
sesses is, in general, assumed to be local, possibly noisy, to
vary with time, and to be augmentable, at a certain cost, via
communication with other UAVs.

Some of the problems that have been extensively studied
in the context of UAVs include motion planning and con-
flict detection and resolution (see, e.g., [12-14]). What has
drawn considerably less attention, to the best of our knowl-
edge, is modeling and analysis of the task-driven behavior
of the UAVs that can be reasonably viewed as autonomous
agents.

We now turn to the MAS formulation of the system of
autonomous UAVs problem and how it fits into the frame-

10In this context, knowing whether the messages that an agent receives are bugged due to other agents trying to mislead this agent, or due to
noise in the communication links, may or may not matter to the agent, but dwelling any further into this is beyond the scope of this work. The new
element not present in classical game theory, however, is that of communication delays and the asynchrony resulting from such delays.

111n [4], this latter, higher form of cooperation (coordination) we also call goal-driven cooperation (respectively, coordination).



work outlined in the previous sections. A collection of N
UAVs needs to accomplish a certain complex, multi-task mis-
sion. We model this mission with a collection of M interest
points (IPs). An interest point is a semantic extension of
the more common notion of a target - in addition to targets
proper, an IP may also refer to, e.g., a small local region of
interest, that may or may not include “real targets”, but is
nonetheless worth while exploring. Each interest point j has
a dynamically changing value associated with it, II;(¢). An
IP may be static or mobile. A mobile IP j, at any time step
t, is completely and uniquely specified by its position and
velocity vectors, v;(t) and ;(t), respectively, and its value
IL;(t). Each UAV 1 is driven by the desire to increase its
own utility, U;, by consuming as much of value of various
IPs as possible. The total amount of value is assumed to be
bounded at all times. Consequently, the UAVs may end up
competing for this limited resource.

From an individual UAV’s perspective, the goal is to max-
imize its own utility, by visiting as many interest points and
consuming as much of their value as possible. This is ac-
complished by following a certain either fixed or dynami-
cally changing (adaptable) individual behavior strategy. This
strategy can be specified by an appropriate individual behav-
jor function, ©;, that UAV i follows as long as there is
no outside signal telling the UAV it should start doing some-
thing else. An example of such outside signal is a request
to a given UAV to join a newly formed group; if such re-
quest comes from a leader whose supremacy in authority is
recognized, the follower UAV will have to abandon its cur-
rent behavior and comply with the leader’s desires, thereby,
in a sense, giving up its individual autonomy. Thus, we can
observe in this case an instance of a fundamental tradeoff
between individual autonomy (viewed as a capability that
enables an agent to strive for maximizing its individual util-
ity), and group coordination which may require (partial or
complete, temporary or permanent) sacrifice of the agent’s
autonomy.

5.1 Simple Models of UAV Autonomy

In order for any type of “intelligent” vehicles to be considered
autonomous agents, they have to be capable of autonomous
decision making without direct assistance of a human or
other outside operator. We outline a simple model of au-
tonomy applicable to UAVs that would render UAVs proper
autonomous agents, albeit of a perhaps fairly restricted kind.
That is, UAVs are modeled herein as utility-driven entities.
They fulfill their goals and thus increase their utilities by ser-
vicing tasks. In our modeling framework, tasks are given as
interest points and the UAVs, loosely speaking, strive to con-
sume as much of interest points’ wvalue as fast as possible.
As we assume that a single UAV can consume value from
at most one IP at any single time step, the question arises:
among several candidate IPs, how should a UAV choose in
what order it is to visit these IPs? Therefore, it can be ar-
gued that each UAV faces an online scheduling problem. For
simplicity, we consider a simplified version of dynamic online
scheduling, and only ask, given a set of interest points whose
current positions and (estimated) values are known to a par-
ticular UAV, which IP among those points should the UAV

121n case of mobile targets, current velocities would be also needed.

select to visit first?

We model the individual UAV’s autonomous decision-
making with UAV’s individual behavior functions, ©;. Given
a set of IPs with their current positions and values!?, a UAV
1 evaluates its behavior function ©; that returns the index
j* of the IP such that, if the UAV selects that IP as its next
task to service, this choice, from that UAV’s perspective, is
expected to maximize the estimated increase in the UAV’s
utility. A generalization of this short-term, “single-shot”
action selection mechanism given by ©; to the individual
behavior functions that, instead of a single index j*, would
return partial or complete schedules (ji,...,Jf), is immedi-
ate.

In particular, each UAV is assumed to behave greedily -
unless and until ordered differently from the outside. How-
ever, a great variety of greedy strategies can be specified via
different choices of the functions ©;.

Some variables that individual behavior functions can be
expected to depend on are the UAV’s distance from the given
IP, the IP’s current value (or its estimate), and the estimated
competition for that IP and its value - viz., the number of
other UAVs in the IP’s vicinity. Let z;(t) and v;(t) be the
i-th UAV’s position and velocity vectors at time t, respec-
tively, let 1;(t) be the position of IP j at time ¢, §;(t) its
velocity, and let n;, be the total number of UAVs within
the distance r from IP j. Then one class of models of the i-th
UAV’s target selection strategy can be specified by

0i(t) = arg{maz; G(1L;, ||lz: — ¥;ll, l|vi(t) — & (O], s, 1)}
where G is a function that is increasing in II; and non-
increasing in the distance of the UAV from the IP j, ||z;(t)—
1;(t)||, and the (estimated) relative velocity between the two,
[lvi(t) — & (t)]]. This function specifies what IP j* should
UAV i pick as the estimated short-term (expected) optimal
choice.

One example of a simple greedy individual behavior that
fits the given general framework is given by

6i(t) = argimazisisu [ Grad—wom } - G
where it is assumed that the minimal allowable distance of
any UAV from any IP is strictly positive, and that distances
are appropriately normalized so that one may pretend they
are “dimensionless”.

Another example of a greedy individual behavior that ei-
ther assumes the IPs are stationary or else that their velocities
can be neglected is given by

0i(t) = arg{mazi<jan (TR0 } 4)
where d stands for the (constant) consumption rate of an
IP’s value, and similar assumptions hold as in (1).

Yet another, slightly more elaborate UAV choice-of-action
function that we have considered is given by

Ot
0i(t) = arg{maz g jep [ e pid) - (5)
where #/_, is the estimated time that UAV i will need to

est
reach close enough to IP j in order to start consuming its

value. The heuristic assumptions made - for example, that
the number of other UAVs in vicinity of j is going to remain
fixed in the meantime, or that all those UAVs are precisely
after the IP j (and not some other IP that is in its vicin-
ity) - are a kind of oversimplifications that may not hold in



a given situation even as crude approximations. Yet, some
such simplifying assumptions are likely necessary, in order
for the agent’s choice-of-action function ©; to be readily
and quickly computable “on the fly”, at each discrete time
step t.

Everything said thus far about UAVs’ individual behav-
ior strategies rests on the assumption that each UAV acts
strictly selfishly, and largely independently (except for the
dependence of ©; on n;,) from what other UAVs do. Once
UAV-to-UAV communication and coordination are taken into
account, modeling a UAV’s autonomous behavior becomes
more complex. In particular, in addition to the already men-
tioned parameters, each 0;(t) would be expected to also de-
pend on the set of messages that the i-th UAV has received
from other UAVs at time steps t' < t. These issues, cru-
cial for the design and analysis of UAV communication and
coordination models, however, are beyond the scope of this
work.

An important point about the IP value function II;(¢) is
that this function, for each IP j, represents the j-th task’s
true (or objective) value, irrespective of which UAV may
have observed IP j, and from how far away. In other words,
the tacit assumption is that, once an IP is discovered by the
UAVs, all UAVs who are aware of this IP’s existence immedi-
ately also know its exact (current) value. While this perfect
knowledge assumption is a good starting point for modeling
the UAV task-driven behavior, the more realistic and more
general assumption is that each UAV has its own, local and,
in general, imperfect (i.e., noisy) and probabilistic knowledge
of each of IPs’ values. The generalization of this observa-
tion to other types of agents and their tasks, in lieu with the
discussion in §84.1. and §§4.2., is immediate.

6 Concluding Remarks

The subject of this paper are autonomous agents. First, we
offer some thoughts on agents in general, and autonomous
agents in particular. We try to identify the critical and nec-
essary characteristics that one should expect to find in any
autonomous agent. We also briefly discuss the relationship
and importance of these properties, and we try to make a
clear distinction between them on one, and various “optional”
properties that one may or may not find in different kinds of
the actual autonomous agents, on the other hand.

In order to be able to model agent autonomy as an ap-
propriate mathematical function (deterministic or otherwise),
we define a meta-problem for autonomous agents’ decision-
making in multi-task environments. This meta-problem,
while very high level, is unavoidably not fully general; in
particular, in terms of the common AI classifications, our
meta-problem is “scheduling-flavored” rather than “planning-
flavored”. Nonetheless, we find this meta-problem to provide
a sufficient abstract framework for a variety of autonomous
agent models where planning can be considered impractical,
impossible or prohibitively computationally expensive, and
where agents have to make their decisions online and/or in
real time, and possibly in presence of various types of uncer-
tainties and/or noise. To illustrate the practical usefulness
of our meta-problem framework, we dedicate a section to an

application of this meta-problem to a concrete example of
a MAS, and to modeling and analysis problems of appro-
priately identifying parameters and functionally representing
agent autonomy in the context of that application.

While the ideas presented herein clearly represent work
in progress, we do hope that this report will shed some light
and provide yet another perspective on agent autonomy, and
a modest contribution to understanding autonomous agents.
We also hope that these ideas, once further developed, will
provide some useful insights into how to proceed in pursuing
effective ways of mathematically and computationally mod-
eling agent autonomy at a high level, that would make these
models general enough to be applicable and useful in a great
variety of practical multi-agent system situations.
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