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Abstract

Cellular automata (CA) are an abstract model of fine-
grain parallelism, as the node update operations are rather
simple, and therefore comparable to the basic operations of
the computer hardware. In a classical CA, all the nodes
execute their operations in parallel, that is, (logically) si-
multaneously. We consider herewith the sequential version
of CA, or SCA, and compare it with the classical, par-
allel CA. In particular, we show that there are 1-D CA
with very simple node state update rules that cannot be sim-
ulated by any comparable SCA, irrespective of the node
update ordering. While the result is trivial if one considers
a single computation on a chosen input, we find it both non-
trivial, and having some important and far-reaching impli-
cations when applied to all possible inputs and, moreover,
to the entire nontrivial classes of CA (SCA). We also share
some thoughts on how to extend our results herein, and we
try motivate the study of genuinely asynchronous cellular
automata.

1. Introduction and Motivation

Cellular automata (CA) were originally introduced as
abstract mathematical models that can capture, at a high
level, the behavior of biological systems capable of self-
reproduction [15]. Subsequently, CA have been extensively
studied in a great variety of application domains, but mostly
in the context of physics and, more specifically, of study-
ing complex (physical or biological) systems and their dy-
namics (e.g., [20-22]). However, CA can also be viewed
as an abstraction of massively parallel computers (e.qg, [7]).
Herein, we study a particular simple yet nontrivial class of
CA from a computer science perspective. This class are the
threshold cellular automata. We pose (and partially an-
swer) some fundamental questions regarding the nature of
the CA parallelism, i.e., the concurrency of the classical CA
computation; the analysis is done in the context of threshold
CA.

Namely, it is well known that CA are an abstract com-
putational model of fine-grain parallelism [7], in that the
elementary operations executed at each node are rather sim-
ple and hence comparable to the basic operations performed
by the computer hardware - yet, due to interaction and syn-
ergy among a (typically) great number of these nodes, many
CA are capable of highly complex behaviors (i.e., computa-
tions). In a classical (parallel) CA, whether finite or infinite,
all the nodes execute their operations logically simultane-
ously: in general, the state of node x; at time step ¢ + 1 is
some simple function of the states of node z; itself, and a
set of its pre-specified neighbors at time ¢.

We consider herewith the sequential version of CA, or
SCA, and compare it with the classical, parallel (concur-
rent) CA. In particular, we show that there are 1-D CA with
very simple node state update rules that cannot be simulated
by any comparable SCA, irrespective of the node update or-
dering. While the result is trivial if one considers a single
CA, we find the result quite nontrivial, important and with
some far-reaching implications when applied to the entire
classes of CA and SCA. Hence, granularity of the basic CA
operations, insofar as the ability to simulate their concur-
rent computation via appropriate nondeterministic sequen-
tial interleavings of these basic operations, turns out not to
be quite fine enough, as we prove that no such analogue of
the sequential interleaving semantics applied to concurrent
programs of classical CA can capture even rather simplistic
parallel CA computations. We also share some thoughts on
how to extend the results presented herein, and, in partic-
ular, we try motivate the study of genuinely asynchronous
cellular automata, where asynchrony applies not only to
the local computations at individual nodes, but also to com-
munication among different nodes (via “shared variables”
stored as the respective nodes’ states).

An example of asynchrony in the local node updates (i.e.,
asynchronous computation at different “processors”) is the
case when, for instance, the individual nodes update one at
the time, according to some random order. This is a kind
of asynchrony found in the literature, e.g., in [10]. It is im-
portant to understand, however, that even in case of what



is referred to as asynchronous cellular automata (ACA) in
the literature, the term asynchrony there applies to local up-
dates (i.e., computations) only, but not to communication,
since a tacit assumption of the globally accessible global
clock still holds. We prefer to refer to this kind of (weakly
asynchronous) (A)CA as sequential cellular automata, and,
in this work, consistently keep the term asynchronous cellu-
lar automata for those CA that do not have a global clock
(see §4).

Before dwelling into the issue of parallelism vs. arbi-
trary sequential interleavings applied to threshold cellular
automata, we first clarify the terminology, and then intro-
duce the relevant concepts through a simple programming
exercise in §§1.1.

An important remark is that we use the terms parallel
and concurrent as synonyms throughout the paper. This
is perhaps not the most standard convention among the re-
searchers of programming languages semantics and seman-
tic models of concurrency (e.g., [17], [16]), but we are not
alone in not making the distinction between the two notions
(cf. discussion in [16]). Moreover, by a parallel (equiva-
lently, concurrent) computation we shall mean actions of
several processing units that are carried out logically (if not
necessarily physically) simultaneously. In particular, when
referring to parallel (or, equivalently, concurrent) computa-
tion, we do assume a perfect synchrony. This approach is
primarily motivated by the nature of CA “hardware” and
the way classical CA compute.

1.1. Capturing concurrency by nondeterministic
sequential interleavings

While our own brains are massively parallel computing
devices, we seem to think and function rather sequentially.
Indeed, human mind’s approach to problem solving is usu-
ally highly sequential. In particular, when designing an al-
gorithm or writing a computer program that is inherently
parallel, we prefer to be able to understand such an algo-
rithm or program in the sequential terms. It is not surpris-
ing, therefore, that since the very beginning of the design of
parallel algorithms and parallel computation formalisms, a
great deal of research effort has been devoted to interpreting
parallel computation in the more familiar, sequential terms.
One of the most important contributions in that respect is
the nondeterministic sequential interleaving semantics of
concurrency [14].

When interpreting concurrency via interleaving seman-
tics, a natural question arises: Given a parallel computing
model, can its concurrent execution always be captured by
such sequential nondeterminism, so that any given parallel
computation can be faithfully reproduced via an appropri-
ate choice of a sequential interleaving of the operations in-
volved?  The answer is “Yes”, For most theoreticians of

parallel computing (that is, all the “believers” in interleav-
ing semantics as contrasted with, e.g., proponents of true
concurrency, an alternative model not discussed herewith),
the answer is apparently “Yes” - provided that we simulate
concurrent execution via sequential interleavings at a suffi-
ciently high level of granularity of the basic computational
operations. However, it need not always be clear, how do
we tell, given a parallel computation in the form of a set
of concurrently executing instructions or processes, if the
particular level of granularity is fine enough, i.e., whether
the operations at that granularity level can truly be rendered
atomic for the purpose of capturing concurrency via se-
quential interleavings?

We shall illustrate the concept of sequential interleaving
semantics of concurrency with a simple example. Let’s con-
sider the following trivia question from a sophomore paral-
lel programming class: Find a simple example of two in-
structions such that, when executed in parallel, they give
a result not obtainable from any corresponding sequential
execution sequence?

A possible answer:  Assume x = 0 initially and con-
sider the following two programs

z+—zcz+lz+x+1
VS.
z+z+1lllzeaz+1

Sequentially, one always gets the same answer: z = 2.
In parallel (that is, if the two assignment operations to the
same variable x are done concurrently), however, one gets
x = 1. It appears, therefore, that no sequential ordering of
operations can reproduce parallel computation - at least not
at the granularity level of high-level instructions as above.

The whole “mystery” is resolved if we look at the pos-
sible sequential executions of the corresponding machine
instructions:

LOAD =z, xm LOAD =z, xm
ADD =z, #1 ADD =z, #1
STORE z, xm  STORE z, xm

There certainly exists a choice of a sequential interleav-
ing of the six machine instructions above that leads to ““par-
allel” behavior (i.e., the one where, after the code is exe-
cuted, z = 1); in fact, there are several such permutations
of instructions. Thus, by refining granularity from a high-
level language instructions down to machine instructions,
we can certainly preserve the interleaving “semantics” of
concurrency, as the high-level language “concurrent” com-
putation can be perfectly well understood in terms of the
sequential interleavings of computational operations at the
level of assembly language instructions.



2. Cellular Automata and Types of
Their Configurations

We introduce classical CA by first considering (deter-
ministic) Finite State Machines (FSMs) such as Determin-
istic Finite Automata (DFA). An FSM has finitely many
states, and is capable of reading input signals coming from
the outside. The machine is initially in some starting state;
upon reading each input signal (a single binary symbol, in
the standard DFA case), the machine changes its state ac-
cording to a pre-defined and fixed rule. In particular, the
entire memory of the system is contained in what “current
state” the machine is in, and nothing else about previously
processed inputs is remembered. Hence, the probabilis-
tic generalization of deterministic FSMs leads to (discrete)
Markov chains. It is important to notice that there is no way
for a FSM to overwrite, or in any other way affect the in-
put data stream. Thus individual FSMs are computational
devices of rather limited power.

Now let us consider many such FSMs, all identical to
one another, that are lined up together in some regular fash-
ion, e.g., on a straight line or a regular 2-D grid, so that
each single “node” in the grid is connected to its immediate
neighbors. Let’s also eliminate any external sources of input
streams to the individual machines at the nodes, and let the
current values of any given node’s neighbors be that node’s
only “input data”. If we then specify the set of the possible
values held in each node (typically, this set is {0,1}), and
we also identify this set of values with the set of the node’s
internal states, we arrive at an informal definition of a clas-
sical cellular automaton. To summarize, a CA is a finite
or infinite regular grid in one-, two- or higher-dimensional
space, where each node in the grid is a FSM, and where
each such node’s input data at each time step are the corre-
sponding internal states of the node’s neighbors. Moreover,
in the most important special case - the Boolean case, this
FSM is particularly simple, i.e., it has only two possible
internal states, 0 and 1. All the nodes of a classical CA
execute the FSM computation in unison, i.e., (logically)
simultaneously. We note that infinite CA are capable of
universal (Turing) computation, and, moreover, are actually
strictly more powerful than classical Turing machines (e.g.,
[7D).

More formally, we follow [7] and define classical (that
is, synchronous and concurrent) CA in two steps: by first
defining the notion of a cellular space, and subsequently
that of a cellular automaton defined over an appropriate
cellular space.

Definition 1:  Cellular Space T' is an ordered pair
(G, Q) where G isaregular graph (finite or infinite), and
Q is a finite set of states that has at least two elements, one
of which being the special quiescent state, denoted by 0.

Definition 2:  Cellular Automaton A is an ordered
triple (T', N, M) where:
-T isa cellular space;
- N isa fundamental neighborhood,;
- M isa finite state machine such that the input alphabet of
M is QNI and the local transition function (update rule)
for each node is of the form § : QIVI+1 — @Q for CA with
memory, and & : Q¥ — @ for memoryless CA.

The local transition rule § specifies how each node up-
dates, based on its current value and that of its neighbors
in N. By composing local transition rules for all nodes to-
gether, we obtain the global map on the set of (global)
configurations of a cellular automaton.

Assuming a large number of nodes, there is plenty of po-
tential for parallelism in the CA hardware. Actually, clas-
sical CA defined over infinite cellular spaces provide un-
bounded parallelism where, in particular, an infinite amount
of information processing is carried out in a finite time (even
in a single “parallel” step). Roughly, the underlying cellu-
lar space corresponds to the CA “hardware”, whereas the
CA “software” or program is given by the local update rule
4. The global evolution (or, analogously, massively parallel
computation) of a CA is then obtained by the composition
of the effects of the local node update rule to each of the
nodes.

We now change pace and introduce some terminology
borrowed from physics that we find appropriate and useful
for characterizing all possible computations of a parallel or
sequential CA. To this end, a (discrete) dynamical system
view of CA is helpful. A phase space of a dynamical sys-
tem is a (finite or infinite) directed graph where the vertices
are the global configurations (or global states) of the sys-
tem, and directed edges correspond to possible transitions
from one global state to another.

As for any other kind of dynamical systems, we can de-
fine the fundamental, qualitatively distinct types of (global)
configurations that a cellular automaton can find itself in.
The classification below is based on answering the follow-
ing question: starting from a given global CA configuration,
can the automaton return to that same configuration after a
finite number of (parallel) computational steps?

Definition 3: A fixed point (FP) is a configuration in
the phase space of a CA such that, once the CA reaches this
configuration, it stays there forever. A cycle configuration
(CC) is a state that, if once reached, will be revisited in-
finitely often with a fixed, finite period of 2 or greater. A
transient configuration (TC) is a state that, once reached, is
never going to be revisited again.

In particular, a FP is a special, degenerate case of CC
with period 1. Due to deterministic evolution, any configu-
ration of a classical, parallel CA is either a FP, a proper CC,
oraTC.



3. 1-D CA vs. SCA Comparison and Contrast
for Simple Threshold Rules

After the introduction, motivation and the necessary def-
initions, we now proceed with our main results and their
meaning. Technical results, and their proofs, are given in
this section; discussion of the implications and relevance
of these results, as well as the possible generalizations and
extensions, will follow in Section §4.

Herein, we compare and contrast the classical, concur-
rent CA with their sequential counterparts, SCA, in the con-
text of the simplest (nonlinear) local update rules possible,
viz., the CA in which the nodes locally update according
to linear threshold functions. Moreover, we choose these
threshold functions to be symmetric, so that the resulting CA
are also totalistic (see, e.g., [7] or [22]). We show the funda-
mental difference in the configuration spaces, and therefore
possible computations, in case of the classical, concurrent
automata on one, and the sequential threshold cellular au-
tomata, on the other hand: while the former can have tem-
poral cycles (of length two), the computations of the latter,
under some mild additional conditions whose sole purpose
is to ensure some form of convergence, always converge to
a fixed point.

We fix the following conventions and terminology.
Throughout, only Boolean CA and SCA are considered;
in particular, the set of possible states of any node is {0, 1}.
The terms “monotone symmetric” and “symmetric (linear)
threshold” functions/update rules/automata are used inter-
changeably; similarly, “(global) dynamics” and “computa-
tion”, when applied to any kind of an automaton, are used
synonymously. Unless stated otherwise, CA denotes a clas-
sical, concurrent cellular automaton, whereas a cellular au-
tomaton where the nodes update sequentially is always de-
noted by SCA. Also, unless explicitly stated otherwise, CA
(SCA) with memory are assumed, and the default cellular
space is a two-way infinite line. Moreover, all the underly-
ing cellular spaces throughout the next two subsections are
(finite or infinite) lines or rings.> The terms “phase space”
and “configuration space” are used synonymously, as well,
and sometimes abridged to PS for brevity.

3.1. A simplemotivating example

A 1-D cellular automaton of radius r is a CA de-
fined over a one-dimensional string of nodes, such that each
node’s next state depends on the current states of its neigh-
bors to the left and right that are no more than r nodes away
(and, in case of CA with memory, on the current state of
that node itself). In case of a Boolean CA with memory,

1We have already generalized some of the results that follow to more
general cellular spaces, but, for the reasons of conciseness and clarity of
exposition, those results will not be discussed herein.

therefore, each node’s next state depends on 2r + 1 input
bits, while in the memoryless case, the local update rule is
a function of 27 input bits. The string of nodes can be a fi-
nite line graph, a ring (corresponding to “circular boundary
conditions™), a one-way infinite string, or, in the most com-
mon case one finds in the literature, the cellular space is a
two-way infinite string.

We compare and contrast the qualitative properties of
configurations spaces, and therefore dynamics or possi-
ble computations, of the classical, parallel CA versus the
dynamics (computations) of SCA. Sequential cellular au-
tomata (SCA) and their generalizations to non-regular (fi-
nite) graphs have been already studied in the context of a
formal theory of computer simulation (see, e.g., [2-6]).

There are plenty of simple, even trivial examples where
not only are concrete computations of parallel CA from par-
ticular initial configurations different from the correspond-
ing computations of the sequential CA, but actually the en-
tire configuration spaces of the parallel CA and the corre-
sponding SCA are structurally rather different.

As one of the simplest examples conceivable, consider a
trivial CA with more than one node (so that talking about
“parallel computation” makes sense), namely, a two-node
CA where each node computes the Boolean XOR of the
two inputs (viz., of the node’s own current state, and that of
its only neighbor). The two phase spaces are given in Fig.
1. In (b), since the corresponding automaton is nondeter-
ministic, the numbers next to the transition arrows indicate
which node, 1 or 2, is updating and thus causing the indi-
cated global state transition from the current state.

In the parallel case, the state 00 is the “sink”, and the
entire configuration space is as in Fig. 1 (a). So, regard-
less of the starting configuration, after at most two parallel
steps, the fixed point “sink™ state, that is, in the language
of nonlinear dynamics, a stable global attractor, will be
reached.

In case of the sequential node updates, the configura-
tion 00 is still a FP but, this time, it is not reachable from
any other configuration. Moreover, there are two more (un-
stable) pseudo-fixed points, 01 and 10, and two temporal
two-cycles. In particular, while all three states, 11, 10 and
01, are transient states in the parallel case, sequentially,
each of them, for any “typical” sequence of node updates,
is going to be revisited, either as a pseudo-FP or a cycle
state. In fact, for some sequences of node updates such as,
eg., (1,1,2,2,2,1,2,2,1,...), configurations 01 and 10
are both pseudo-fixed point states and cycle states. The
phase space capturing all possible sequential computation
is given in Fig. 1 (b).

Several observations are in order. First, overall, the se-
quential configuration space seems richer than its parallel
counterpart. In particular, whereas, due to determinism, any
FP state of a classical CA is necessarily a stable attractor or
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Figure 1. Configuration spaces for two-node
(a) parallel and (b) sequential XOR CA, resp.

a “sink” (in the terminology of complex dynamics), and, in
particular, once a FP configuration is reached, all the future
iterations stay there, in case of different possible sequen-
tial computations on the same cellular space, pseudo-fixed
points clearly need not be stable. Also, whereas the phase
space of a parallel CA is cycle-free (if we do not count FPs
as “proper” cycles), the phase space of the corresponding
SCA has nontrivial temporal cycles. On the other hand,
the union of all possible sequential computations (“inter-
leavings”) cannot fully capture the concurrent computation,
either: e.g., consider reachability of the state Q0.

These properties can be largely attributed to a relative
complexity of the XOR function as the update rule, and, in
particular, to XOR’s non-monotonicity. They can also be
attributed to the idiosyncrasy of the example chosen. In
particular, temporal cycles in the sequential case are not
surprising. Also, if one considers CA on say four nodes
with circular boundary conditions (that is, a CA ring on
four nodes), these XOR CA do have nontrivial cycles in the
parallel case, as well. Hence, for XOR CA with sufficiently
many nodes, the types of computations that parallel CA and
sequential SCA are capable of, are quite comparable. More-
over, in cases when one is richer than the other, it seems
reasonable that SCA will be capable of more interesting
computations than parallel CA, given the nondeterminism
due to all the possibilities for node update sequences.

This detailed discussion of a trivial example of the (S)CA
phase spaces has the main purpose of motivating what is to
follow: an entire class of CA and SCA, with the node update
functions even simpler than XOR, yet for which, irrespec-
tive of the number of nodes, the boundary conditions and
other details, it is the concurrent CA that are provably ca-
pable of computations that no corresponding (or similar, in
a sense to be defined below) SCA are capable of.

3.2. Ontheexistence of cyclesin
threshold CA and SCA

Now we consider the threshold automata in parallel and
sequential settings.

Definition 4: A threshold automaton (threshold CA)
is a (parallel or sequential) cellular automaton where 4 is a
(herein, Boolean-valued) linear threshold function.

Herein, we also assume § to be a symmetric function of
all of its inputs.

Due to the nature of the node update rules, cyclic be-
havior intuitively should not be expected in such automata.
This is, generally, (almost) the case, as will be shown below.
We argue that the importance of the results in this subsec-
tion largely stems from the following three factors: (i) the
local update rules are the simplest nonlinear totalistic rules
one can think of; (ii) given the rules, the cycles are not to
be expected - yet they exist, and in case of classical, par-
allel CA only; and, related to that observation, (iii) it is,
for this class of (S)CA, the parallel CA that exhibit the more
interesting behavior than sequential SCA, and, in particu-
lar, while there is nothing (qualitatively) among the possi-
ble sequential computations that is not present in the paral-
lel case, the classical parallel threshold CA are capable of
“oscillatory/non-converging computations” - they may have
nontrivial temporal cycles - that cannot be reproduced by
any threshold SCA.

The results below hold for two-way infinite 1-D CA, as
well as for finite CA and SCA with sufficiently many nodes
and circular boundary conditions (i.e., for (S)CA whose cel-
lular spaces are finite rings).

Lemma 1:

(i) A 1-D classical (i.e., parallel) CA with » = 1 and the
MAJORITY update rule has (finite) temporal cycles in the
phase space (PS).

(if) 1-D Sequential CA with » = 1 and the MAJOR-
ITY update rule do not have any (finite) cycles in the phase
space, irrespective of the sequential node update order p.

Remark: In case of infinite sequential SCA as in the
Lemma above, a nontrivial cycle configuration does not ex-
ist even in the limit. We also note that p is an arbitrary
sequence of an SCA nodes’ indices, not necessarily a (finite
or infinite) permutation.

Proof:  To show (i), we exhibit an actual two-cycle.
Consider either an infinite 1-D CA, or a finite one, with cir-
cular boundary conditions and an even number of nodes,
2n. Then the configurations (10)* and (01)“ in the infinite
case ((10)™ and (01)™ in the finite ring case) form a 2-cycle.

To prove (ii), we must show that no cycle is ever pos-
sible, irrespective of the starting configuration. We con-
sider all possible 1-neighborhoods (there are eight of them:
000, 001, ..., 111), and show that, locally, none of them



can be cyclic yet not fixed. The case analysis is simple: 000
and 111 are stable (fixed) sub-configurations. Configuration
010, after a single node update, can either stay fixed, or else
evolve into any of {000, 110, 011}; since we are only inter-
ested in non-FPs, in the latter case, one can readily show
by induction that, after any number of steps, the only ad-
ditional sub-configuration that can be reached is 111, i.e.,
assuming 010 is not fixed, 010 —* {000,110,011,111}.
However, 010 ¢ {000,110,011,111}. By symmetry, sim-
ilar analysis holds for sub-configuration 101. On the other
hand, 110 and 011 either remain fixed, or else at some time
step t evolve to 111, which is a fixed point. Similar analy-
sis applies to 001 and 100. Hence, no local neighborhood
T1x2x3, ONCE changed, can ever “come back”. Therefore,
there are no proper cycles in Sequential 1-D CAwith r = 1
and § = MAJORITY.

Part (ii) of the Lemma above can be readily general-
ized: even if we consider local update rules § other than
the MAJORITY rule, yet restrict § to monotone symmetric
(Boolean) functions of the input bits, such sequential CA
still do not have any proper cycles.

Theorem 1: For any Monotone Symmetric Boolean 1-
D Sequential CA A with » = 1, and any sequential update
order p, the phase space PS(A) of the automaton A is
cycle-free.

Similar results to those in Lemma 1 and Theorem 1 also
hold for 1-D CA with radius » = 2:

Lemma 2:

(i) 1-D (parallel) CA with r = 2 and with the MAJORITY
node update rule have (finite) cycles in the phase space.

(ii) Any 1-D SCA with MAJORITY node update rule,
r = 2 and any sequential order on node updates has a
cycle-free phase space.

Generalizing Lemmata 1 and 2, part (i), we have the fol-
lowing

Corollary 1: Forall » > 1, there exists a monotone
symmetric CA (that is, a threshold automaton) A such that
A has (finite) cycles in the phase space.

Namely, given any r > 1, a (classical, concurrent) CA
with 6 = MAJORITY has at least one two-cycle in the PS:
{(0"1m)«, (1"0™)«“}. If r > 3 is odd, then such a thresh-
old automaton has at least two distinct two-cycles, since
{(01)«,(10)~} is also a two-cycle. Analogous results
hold for threshold CA (SCA) defined on finite 1-D cellular
spaces, provided that such automata have sufficiently many
nodes and assuming circular boundary conditions (i.e., as-
suming T is a sufficiently big finite ring). Moreover, the
result extends to finite and infinite CA in higher dimen-
sions, as well; in particular, 2D rectangular grid CA and
Hypercube CA with § = MAJORITY (or another nontrivial
symmetric threshold update rule) have two-cycles in their
respective phase spaces.

More generally, for any underlying cellular space T' that
is a (finite or infinite) bipartite graph, the correspond-
ing (nontrivial) threshold parallel CA have temporal two-
cycles.

It turns out that the two-cycles in the PS of concurrent CA
with 6 = MAJORITY are actually the only type of (proper)
temporal cycles such cellular automata can have. Indeed,
for any symmetric linear threshold update rule §, and any
(finite or infinite) regular Cayley graph as the underlying
cellular space, the following general result holds [7], [8]:

Proposition 1:  Let a classical CA A = (I', N,T)
be such that T is an elementary symmetric threshold local
update rule applied to a finite cellular space T". Then for all
configurations C € PS(A), there exists ¢t > 0 such that
TH2(C) = THC).

In particular, this result implies that, in case of any (fi-
nite) monotone symmetric automaton, for any starting con-
figuration Cy, there are only two possible kinds of orbits:
upon repeated iteration, after finitely many steps, the com-
putation either converges to a fixed point configuration, or
else one arrives at a two-cycle.

It is almost immediate that, if we allow the underlying
cellular space T to be infinite, if computation from a given
starting configuration converges at all, it will converge ei-
ther to a fixed point or a two-cycle (but never to a cycle of,
say, period three - or any other finite period). The result also
extends to finite and infinite SCA, provided that we reason-
ably define what is meant by a single computational step in
a situation where the nodes update one at a time.?

To summarize, symmetric linear threshold 1-D CA, de-
pending on the starting configuration, may converge to a
fixed point or a temporal two-cycle; in particular, they may
end up “looping” in finite (but nontrivial) temporal cycles.
In contrast, the corresponding classes of SCA can never cy-
cle; while for simplicity we have shown that this holds only
for SCA with short-range interactions (small r), the result
actually holds for (finite) SCA with arbitrary finite radii of
interaction, » > 1. In particular, given any sequence of node
updates of a finite threshold SCA, if this sequence satisfies
an appropriate fairness condition then it can be shown that
the computation of such a threshold SCA is guaranteed to
converge to a fixed point. Since this holds irrespective of
the choice of the sequential update ordering (and, extending
to infinite SCA, temporal cycles cannot be obtained even “in
the limit”, that is, via infinitely long computations, obtained

2Additionally, in order to ensure some sort of convergence of a given
SCA, and, more generally, in order to ensure that, in some sense, all nodes
get achance to update their states, an appropriate condition that guarantees
fairness may need to be specifi ed. For fi nite SCA, one suffi cient such con-
dition is to impose afi xed upper bound on the number of sequential steps
before any given node gets its “turn” to update. In infi nite SCA case, the
issue of fairnessisnontrivial, and some form of dove-tailing of sequential
individual node updates may need to be imposed; further discussion of this
issue, however, is beyond our current scope.



by allowing arbitrary infinite sequences of individual node
updates), we conclude that no choice of “sequential inter-
leaving” can capture the concurrent computation. Conse-
quently, the “interleaving semantics” of SCA fails to fully
capture the concurrent behavior of classical CA even for
this, simplest nonlinear class of totalistic CA, namely, the
symmetric threshold cellular automata.

4  Discussion and Future Directions

The results in §3 show that, even for the very simplest
(nonlinear) totalistic cellular automata, nondeterministic in-
terleavings dramatically fail to capture concurrency. It is
not surprising that one can find a (classical, concurrent) CA
such that no sequential CA with the same underlying cel-
lular space and the same node update rule can reproduce
identical or even “isomorphic” computation, as the exam-
ple at the beginning of §3 clearly shows (see Fig. 1 and the
related discussion). However, we find it rather interesting
that very profound differences (a possibility of looping vs.
the guaranteed convergence to a fixed point configuration)
can be observed in case of the simplest nonlinear 1-D par-
allel and sequential CA with symmetric threshold functions
as the node update rules, and that this profound difference
does not apply merely to individual (S)CA and/or their par-
ticular computations, but the possible computations of the
entire class of the (symmetric) threshold CA update rules.

Moreover, the differences in parallel and sequential com-
putations in case of the Boolean XOR local update rule can
be largely ascribed to the properties of the XOR function.
For instance, given that XOR is not monotone, the existence
of temporal cycles is not at all surprising. In contrast, mono-
tone functions such as MAJORITY are intuitively expected
not to have cycles, i.e., in case of finite domains and con-
verging computations, to always converge to a fixed point.
This intuition about the monotone symmetric SCA is shown
correct. It is actually, in a sense, (statistically) “almost cor-
rect” in case of the parallel CA, as well, in that the actual
non-FP cycles can be shown to be very few, and without
any incoming transients [19]. Thus, in this case, the very
existence of the (rare) nontrivial temporal cycles can be as-
cribed directly to the assumption of perfect synchrony (i.e.,
effective simultaneity) of the parallel node updates.

We now briefly discuss some possible extensions of the
results presented thus far. In particular, we are consider-
ing extending our study to non-homogeneous threshold CA,
where not all the nodes necessarily update according to one
and the same threshold update rule. Another obvious exten-
sion is to consider 2-D and other higher-dimensional thresh-
old CA, as well as CA defined over regular Cayley graphs
that are not simple Cartesian grids. It is also of interest
to consider CA-like finite automata defined over arbitrary
rather than only regular (finite) graphs. We already have

some results along these two lines, but do not include them
herein due to space constraints.

Another interesting extension is to consider classes of
node update rules beyond the threshold functions. One ob-
vious candidate are the monotone functions that are not nec-
essarily symmetric (that is, such that the corresponding CA
need not be totalistic or semi-totalistic). A possible addi-
tional twist, as mentioned above, is to allow for different
nodes to update according to different monotone (symmet-
ric or otherwise) local update rules. At what point of the in-
creasing automata complexity, if any, the possible sequen-
tial computations “catch up” with the concurrent ones ap-
pears an interesting problem to consider.

Yet another direction for further investigation is to con-
sider other models of (a)synchrony in cellular automata. We
argue that the classical concurrent CA can be viewed, if one
is interested in node-to-node interactions among the nodes
that are not close to one another, as a class of computational
models of bounded asynchrony. Namely, if nodes z and y
are at distance k (i.e., k nodes apart from each other), and
the radius of the CA is r, then any change in the state of y
can affect the state of = no sooner, but also and more impor-
tantly, no later than after about f (parallel node update)
computational steps. As the nodes all update ”in sink”, lo-
cally a classical CA is a perfectly synchronous concurrent
system. However, globally, i.e., if one is interested in the in-
teractions of nodes that are at a distance greater than r apart,
then the classical CA and their various graph automata ex-
tensions are a class of models of bounded asynchrony.

We remark that two particular classes of graph automata
defined over arbitrary (not necessarily regular, or Cayley)
finite graphs, viz., sequential and synchronous dynamical
systems (SDSs and SyDSs, respectively), and their various
phase space properties, have been extensively studied; see,
e.g., [3-6] and references therein. It would be interesting,
therefore, to consider asynchronous cellular and graph au-
tomata, where the nodes are not assumed any longer to up-
date in unison and, moreover, where no global clock is as-
sumed. We again emphasize that such automata would en-
tail what can be viewed as communication asynchrony, thus
going beyond the kind of asynchrony in computation at dif-
ferent nodes (that is, beyond the arbitrary sequential node
updates yet with respect to the global time) that has been
studied since at least 1984 (e.g., [10], [11]).

We propose a broad study of the general phase space
properties, and a qualitative comparison-and-contrast of the
asynchronous CA (ACA) and the classical CA and SCA.
Such a study could shed light on detecting computational
behaviors that are solely due to asynchrony, that is, what
can be viewed as an abstracted version of “network delays”
in physically realistic (asynchronous) cellular automata.
Communication asynchronous CA, i.e., various nondeter-
ministic choices for a given (A)CA that are due to asyn-



chrony, can be shown to subsume all possible behaviors
of classical and sequential CA with the same correspond-
ing (T', N, M). In particular, the nondeterminism that arises
from (unbounded) asynchrony subsumes the nondetermin-
ism of a kind studied in §3; but the question arises, exactly
how much more expressive and powerful the former model
really is than the latter.

5 Conclusions

We present herein some early steps in studying cellu-
lar automata when the unrealistic assumptions of perfect
synchrony and instantaneous unbounded parallelism are
dropped. Motivated by the well-known notion of the se-
quential interleaving semantics of concurrency, we try to
apply this concept to parallel CA and thus motivate the study
of sequential cellular automata, SCA, and the comparison
and contrast between SCA and classical, concurrent CA.
Concretely, we show that, even in very simplistic cases, this
sequential semantics fails to capture concurrency of clas-
sical CA. Hence, simple as they may be, the basic oper-
ations (local node updates) in classical CA cannot always
be considered atomic. In particular, the fine-grain paral-
lelism of CA turns out not to be quite fine enough when it
comes to capturing concurrent execution via nondeterminis-
tic sequential interleavings of those basic operations. It then
seems reasonable to consider a single local node update to
be made of an ordered sequence of finer elementary opera-
tions: (1) fetching (“receiving”?) all the neighbors’ values,
(ii) updating one’s own state according to the update rule 6,
and (iii) making available (“sending”?) one’s new state to
the neighbors.

Motivated by these early results on sequential and par-
allel CA and their implications, we next consider various
extensions. The main idea is to introduce a class of gen-
uinely asynchronous CA, and formally study their prop-
erties. This would hopefully yield, down the road, some
significant insights into the fundamental issues related to
bounded vs. unbounded asynchrony, formal sequential se-
mantics for parallel and distributed computation, and, on
the CA side, to identification of those classical parallel
CA phase space properties that are a direct consequence
of the (physically unrealistic) assumption of perfectly syn-
chronous and simultaneous node updates.

We also argue that various extensions of the basic CA
model can provide a simple, elegant and useful framework
for a high-level study of various global qualitative proper-
ties of distributed, parallel and real-time systems at an ab-
stract and rigorous, yet comprehensive level.
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