Maximal Clique Based Distributed Group Formation for Autonomous

Agent Coalitions

Predrag Tosic}
Department of Computer Science

Open Systems Laboratory,

Gul Agha

University of Illinois at Urbana-Champaign, USA
{p-tosic, agha}@cs.uiuc.edu

Abstract

We present herein a fully distributed algorithm
for group or coalition formation among au-
tonomous agents. The algorithm is based on
a distributed computation of mazximal cliques
(of up to pre-specified size) in the underlying
graph that captures the interconnection topol-
ogy of the agents. Hence, given the current
configuration of the agents, the groups that are
formed are characterized by a high degree of
connectivity, and therefore high fault tolerance
with respect to node and link failures. We also
briefly discuss how our basic algorithm can be
adapted in various ways so that the formed
groups satisfy the requirements (“goodness” cri-
teria) other than mere strong inter-group com-
munication connectivity. We envision various
variants of our basic algorithm to prove them-
selves useful subroutines in many multi-agent
system and ad hoc network applications where
the agents may repeatedly need to form tempo-
rary groups or coalitions in an efficient, fully
distributed and online manner.

Keywords: distributed algorithms, dis-

tributed group formation, multi-agent systems,
autonomous agents, agent coalitions

1 Introduction and Motivation

Multi-agent systems (MAS) are characterized, among
other properties, by (i) considerable degree of au-
tonomy of individual computing entities or processes
(agents) and, at the same time, the fact that (ii) each
agent has a local, that is, in general, incomplete and
imperfect “picture of the world”. Since in MAS there

*Contact author. Phone numbers: 217-244-1976 (work), 217-390-6515 (cell);
Mailing address: Department of Computer Science, 1334 Siebel Center, 201 N. Goodwin, Urbana, IL 61801 USA

USs).

is either no central control, or at best only a limited
central control, and the individual agents have to both
think and act locally, genuinely distributed algorithms
are needed for the agents to effectively coordinate with
one another. MAS pose a number of challenges to a dis-
tributed algorithm designer; most of these challenges
are related to various aspects of the agent coordina-
tion problem [1, 18]. In order to be able to effectively
coordinate, agents need to be able to reach consen-
sus (or agreement) on various matters of common in-
terest. Two particularly prominent and frequently en-
countered consensus problems are those of leader elec-
tion (e.g., [6, 15]) and group formation.

Group formation is an important issue in dis-
tributed systems in general, and MAS in particular.
Given a collection of computational and communicat-
ing agents, the goal in distributed group formation is
that these agents, based on their local knowledge only,
decide how to effectively split up into several groups,
so that each agent knows what group(s) it belongs to.

There are several critical issues that a MAS designer
needs to address in the context of (distributed) group
formation. First, what is the right notion of a group in a
given setting? That is, how is the quality of a particular
group configuration measured, so that one can say that
one grouping of agents into coalitions is better for that
agent and/or for the whole system than another? Sec-
ond, a distributed group formation mechanism - that
is, a distributed algorithm that enables agents to effec-
tively form groups or coalitions - needs to be provided.
Third, groups and each agent’s knowledge about its
group membership need to be maintained and, when
needed, appropriately updated. Another important is-
sue is whether the groups are allowed to overlap, i.e.,
whether an agent is allowed to simultaneously belong to
two or more groups. Variants of these basic challenges

fax: 217-333-9386 (for calls/faxes from within the

are quite common in the MAS literature; indeed, these
challenges have arisen in our own recent and current
work on parametric models and a scalable simulation of
large scale (10% — 10* agents) ensembles of autonomous
unmanned vehicles on a multi-task mission [5, 16, 17].

Herein, however, we restrict our attention to the
second issue mentioned above. We propose a partic-
ular mechanism (distributed algorithm) for an effec-
tive coalition formation that ensembles of autonomous
agents can use as one of their basic coordination sub-
routines. A need for a distributed, online and efficient
group formation may arise due to a number of differ-
ent factors, such as the geographical dispersion of the
agents, heterogeneity of tasks and their resource re-
quirements, heterogeneity of agents’ capabilities, and
so on. While for small- and medium-scale systems of
robots or unmanned vehicles a fully or partially cen-
tralized approach to group formation and maintenance
may be feasible or even optimal, large scale systems
(with the number of agents of orders of magnitude as
in [5] or higher) seem to require a fully distributed ap-
proach. That is, the agents need to be able to self-
organize into coalitions, and quickly reach a consen-
sus on who is forming a coalition with whom. The
algorithm we present herein is an attempt to address
these challenges shared by many large-scale MAS ap-
plications.

We remark that the group formation and the leader
election problems are often inter-related. In particular,
at least three general approaches to the combined prob-
lem of both forming groups and electing group leaders
can be identified. One approach is, that groups are
formed by an authority from “the outside”, and then
the agents within each thus formed group are to reach
consensus on who is to be the group leader. That
is, only the leader election part is distributed. Dis-
tributed leader election (once the group structure is al-
ready in place) has been extensively studied in various
distributed system models (e.g., [6]).

Another approach is to first select leaders (possi-
bly by appointing them from the outside), and then let
these leaders agree with one another on how to assign
the rest of the agents to groups “belonging” to different
leaders. For very large scale systems and dense inter-
connection topologies, this is likely the most feasible
approach due to its scalability.

The third possibility of how to attack the joint
group-formation-and-leader-election problem is that
the agents in the ensemble self-organize and form
groups first, and then, as in the first scenario, agents
within each group decide on their leaders. That is,
group formation precedes leader election, and both are
done in a genuinely distributed manner. We argue that

this approach is scalable for large scale MAS provided
that the interconnection topology of the ad hoc net-
work the agents are forming (i) is relatively sparse, and
(ii) does not change too rapidly. While our algorithm
in Section 4 is generic, in designing it we were admit-
tedly motivated by the autonomous unmanned vehicle
applications - more specifically, by the micro unmanned
aerial vehicles deployed over a sizable geographical area
(see [5, 17]).

2 Group Formation in
Multi-Agent Systems

Large ensembles of autonomous agents provide an im-
portant class of examples where the agents’ capability
to coordinate and, in particular, to self-organize into
groups or coalitions, is often of utmost importance for
such systems to be able to accomplish their tasks, or, in
some cases, even to merely survive. One can distinguish
between two general, broad classes of such autonomous
agents. One is the class of agents employed in dis-
tributed problem solving. The agents encountered in
distributed problem solving (DPS) typically share their
goal(s). For instance, DPS agents most often have a
joint utility function that they all wish to maximize
as a team, without any regard to (or sometimes even
a notion of) individual payoffs. This joint utility or,
more generally, the goal or set of goals assigned to DPS
agents, is usually provided by their designer. However,
it may not be always feasible - or even possible - that
the designer explicitly provide, for instance, how are the
agents to divide-and-conquer their tasks and resources,
how are they to form groups and elect leaders of those
groups, etc. Due to scalability, incomplete a priori
knowledge of the environments these agents may en-
counter, and possibly other considerations, instead of
“hard-wiring” into his DPS agents explicitly how are
the agents to be coordinated, the system designer may
choose only to enable the agents with the basic coor-
dination primitives, and leave to them to self-organize
and coordinate as the situation may demand. Hence,
in many situations the DPS agents may be required to
be able to effectively form groups or coalitions in a fully
distributed manner.

The second basic type of agents, the self-interested
agents, are a kind of agents that do not share their
goals (and, indeed, need not share their designer). In
contrast to the DPS agents, each self-interested agent
has its own agenda (e.g., an individual utility function it
is striving to maximize), and no altruistic incentives to
cooperate with other agents. Even such self-interested,
goal-driven or individual-utility-driven agents, while in

essence selfish, may nonetheless still need to cooper-
atively coordinate and collaborate with each other in
many situations.

One class of examples are those agents (such as, e.g.,
autonomous unmanned vehicles) that, if they do not
coordinate in order to resolve possible conflicts, they
risk mutual annihilation. Another class of examples
are the agents with bounded resources: individually,
an agent may lack resources to accomplish any of its
desired tasks - yet, if this agent forms a coalition with
one or more other agents, the combined resources and
joint effort of all agents in such a coalition may provide
utility benefits to everyone involved.

For these reasons, group formation and coalition
formation are of considerable interest for many different
kinds of autonomous agents and multi-agent systems,
and, among other, even in those multi-agent systems
where the agents do not share a global utility func-
tion, and where each agent generally acts selfishly. In
particular, efficient fully distributed algorithms for ef-
fective group formation are needed. Such algorithms
should use only a few communication rounds among
the agents, place a very modest computational burden
on each agent, and ensure that a distributed consensus
among the agents - that is, in the end, who is forming a
group with whom - is effectively, reliably and efficiently
reached.

We propose herein one such class of distributed al-
gorithms. We describe in some detail the generic, dis-
tributed max-clique-based group formation algorithm
in Section 4. Various variants of this basic max-clique-
based group formation algorithm can be designed to
suit the needs of various types of agents, such as, e.g.,
the classical DPS agents, the self-interested agents, and
the resource-bounded agents.

First, we discuss a generic distributed group forma-
tion algorithm based on the idea that an agent (node)
would prefer to join a group with those agents that it
can communicate with directly, and, moreover, where
every member of such a potential group can commu-
nicate with any other member directly. That is, the
preferable groups (coalitions) are actually (maximal)
cliques. It is well-known that finding a maximal clique
in an arbitrary graph is NP-complete in the centralized
setting [3,4]. This implies the computational hardness
that, in general, each node faces when trying to deter-
mine maximal clique(s) it belongs to. However, if the
degree of a node (that is, its number of neighbors in the
graph) is small (in particular, if it is O(1)), then finding
all maximal cliques this node belongs to is computa-

tionally feasible. If one cannot guarantee that (or does
not know if) all the nodes in a given underlying MAS
interconnection topology are of small degree, then one
has to impose additional constraints in order to ensure
that the agents (“nodes”) are not attempting to solve
an infeasible problem. In particular, we shall addition-
ally require herein that the cliques to be considered -
that is, the possible coalitions to be formed - be of up to
a certain pre-specified maximum size. Once such coali-
tions are formed, being cliques, they can be expected
to be relatively robust with respect to the subsequent
node or link failures in the system.

Second, we outline how this basic maximal clique
based algorithm can be fine-tuned so that the formed
coalitions are of good quality with respect to criteria
other than the mere robustness with respect to link or
node failures. In particular, we indicate how, in multi-
agent, bounded resource, multi-task environments (as
in, e.g., [17]), the maximal clique algorithm can be ad-
justed so that each agent strives to join a group such
that the joint resources of all the agents in the group
match this particular agent’s needs in additional re-
sources. Such a choice of the group (coalition) would
enable the agent to now be able to complete some of
the tasks that this agent would not be able to complete
with its own resources alone.

A variety of coalition formation mechanisms and
protocols have been proposed in the MAS literature
both in the context of DPS agents that are all sharing
the same goal (as, e.g., in [13]) and in the context of
self-interested agents where each agent has its own in-
dividual agenda (as, e.g., in [12, 22]). In particular, the
problem of distributed task or resource allocation, and
how is this task allocation coupled to what coalition
structures are (most) desirable in a given scenario [13],
are the issues of central importance in our own work on
MAS in bounded resource multi-task environments [5,
16, 17]. These considerations have in part also moti-
vated our work, and especially the extensions of the ba-
sic max clique based group formation algorithm, where
the cost functions or coalition quality metrics, other
than each coalition’s interconnectivity alone, are used
to determine which coalition(s) is (are) most preferred
by which agent!. However, while in [13] all agents share
all of their goals, we assume herein that each agent is
self-interested and, in particular, each agent therefore
has its own preference ordering on the coalitions that
it may consider joining.

Another body of MAS literature related to our work
on modeling and simulation of large scale ensembles of

n the present work, due to space constraints, this issue of how to generalize our algorithm to more general and specifically more
resource-oriented coalition cost functions will be only briefly touched upon in Section 5. However, such generalizations, and their
implementation in our UAV simulator [5], are a high priority agenda in our future work.

UAVs [5, 16, 17] casts the distributed resource allo-
cation problems into the distributed constraint satis-
faction (DCS) terms [7, 8]. The importance of DPS
in MAS in general is discussed in [21]. However, dis-
cussing DCS based approaches to distributed resource
or task allocation and coalition formation is beyond the
scope of this paper.

3 Problem Statement and
Main Assumptions

Our goal is to design a generic, fully distributed,
scalable and efficient algorithm for ensembles of au-
tonomous agents to use as a subroutine (or a coordi-
nation strategy) with a purpose of efficiently forming
(temporary) groups or coalitions. The proposed algo-
rithm is a graph algorithm. Each agent is a node in
the graph. As for the edges, the necessary requirement
for an edge between two nodes to exist is that the two
nodes be able to directly communicate with one another
at the time our distributed group formation subroutine
is called?.

The basic idea is to efficiently partition this graph
into (preferably, maximal) cliques of nodes. These
maximal cliques may also need to satisfy some addi-
tional criteria in order to form temporary coalitions.
These coalitions are then maintained until they are no
longer useful or meaningful. For instance, the coali-
tions should be transformed (or else simply dissolved)
when the interconnection topology of the underlying
graph considerably changes, either due to the agents’
mobility, or because many old links have died out and
perhaps many new, different links have formed, and the
like. Another possible reason to abandon the existing
coalition structure is when the agents determine that
the coalitions have accomplished the set of tasks that
these coalitions were formed to address. Thus, in an
actual MAS application, the proposed group formation
algorithm may need to be invoked a number of times
as a coordination subroutine.

The algorithm is sketched in the next section. For
this algorithm to work, the following basic assumptions
need to hold:

- agents communicate with one another by exchang-
ing messages either via local broadcasts, or in a peer-
to-peer fashion;

- communication bandwidth availability is assumed
not to be an issue;

- each agent has a sufficient local memory to be
able to store all the information that it receives from
other agents; this information is cf. made of the lists
of neighboring nodes and of the coalitions proposed to
this agent - see Section 4;

- communication is reliable during the group for-
mation, but, once the groups are formed, this need no
longer hold?;

- each agent has (or else can efficiently obtain) a
reliable knowledge of what other agents are within its
communication range;

- each agent, or node, has a unique global identifier
(heretofore referred to as ‘UID’), and it knows its UID;

- there is a total ordering, <, on the set of UlDs,
and each agent knows this ordering =;

- communication ranges of different agents are iden-
tical - in particular, if agent A can communicate mes-
sages to agent B, then also B can communicate mes-
sages to A.

On the other hand, an agent need not a priori
know UIDs of other agents, or, indeed, how many other
agents are present in the system.

In addition to its globally unique identifier (UID),
which we assume is a positive integer, each agent has
two local flags that it uses in communication with
other agents. Ome of the flags is the binary “‘deci-
sion flag”, which indicates whether or not this agent
has already joined some group (coalition). Namely,
decision_flag € {0,1}, and the value of this flag is
0 as long as the agent still has not irrevocably com-
mitted to what coalition it is joining. Once the agent
makes this commitment, it updates the decision flag to
1 and broadcasts this updated flag value to all its neigh-
bors (see below). That is, as long as the decision flag
is 0, the agent’s proposals of what group it would like
to form or join are only tentative. Once the decision
flag becomes 1, however, this indicates that the agent
has made a committed choice of which coalition to join
- and this selection is final?.

The second flag is the “choice flag”, which is used to
indicate to other agents, how “happy” the agent is with
its current tentative choice or proposal of the group to
be formed. That is, the choice flag indicates the level of
agent’s urgency that its proposal for a particular coali-
tion to be formed be accepted by the neighbors in the
interconnection topology to whom this proposal is sent.

2We point out that this definition of the graph edges can be made tighter by imposing additional requirements, such as, e.g., that
the two agents to be connected by a link also be compatible, for instance, in terms of their capabilities, or that they each provide some

resource(s) that the other agent needs, or the like.

3As this requirement is still quite restrictive, and considerably limits the robustness of our algorithm, we will try to relax this

assumption in our future work.

4...at least for this particular invocation of the group formation subroutine.

It takes values choice_flag € {0,1,2,3}. When an
agent is sending just its neighborhood list (at round
one of the algorithm - see next section), the value of
this flag is 3. Else, if the current choice of a coalition
C; proposed by agent i has equally preferable alterna-
tives®, then i sets choice_flag(i) « 2. If i has other
available choices of groups it would like to join, yet each
of these alternative choices is strictly less preferable to
i than the current proposal (e.g., if each other possible
group is a maximal clique of strictly smaller size than
the maximal clique C£“""¢" that is the agent i’s current
proposal), then choice_flag(i) < 1. Finally, if ¢ has
no other alternatives for a coalition proposal (beside
the trivial coalition {i}), then choice_flag(i) « O.
Hence, an agent whose current value of the choice flag
is equal to 0 is quite desperate that its proposal of a
coalition be accepted by those neighboring agents to
whom the proposal is directed. In contrast, an agent
whose current value of the choice flag is equal to 2 has
some equally good alternative choices and can there-
fore change its mind without being penalized in terms
of having to settle for a less preferable coalition.

4 Maximal Clique Based
Distributed Group Formation

Now that the assumptions have been made explicit and
the notation has been introduced, the stage is set for
presenting our distributed maximal clique based coali-
tion formation algorithm. The algorithm proceeds in
five major stages, as follows:

Stage 1:

Set counter «— 1.

Each node (in parallel) broadcasts a tuple to all its im-
mediate neighbors. The entries in this tuple are (i) the
node’s UID, (ii) the node’s list of (immediate) neigh-
bors, L(i), (iii) the value of the choice flag, and (iv) the
value of the decision flag.

WHILE (the agreement has not been reached) DO

Stage 2:

Each node (in parallel) computes the overlaps of its
neighborhood list with the neighborhood lists that it
has received from its neighbors, C(i,5) < L(i) N L(j).
Repetitions (if any) among this neighborhood list in-
tersections are deleted; the remaining intersections are
ordered with respect to the list size (the ties, if any, are
broken arbitrarily), and a new (ordered) collection of

these intersection lists (heretofore referred to simply as
lists’) is then formed.

If counter > 1 then:

Each node looks for information from its neighbors,
whether they have joined a group “for good” during
the previous round. Those neighbors that have (i.e.,
whose decision-flag = 1), are deleted from the neigh-
borhood list L(i); the intersection lists C(i,j) are
also updated accordingly, and those C(i,k) for which
k is deleted from the neighborhood list L(i) are also
deleted.

Stage 3:

Each node (in parallel) picks one of the most preferable
lists C(i,7); let C(i) <« chosen [C(i,7)]. If the list
size is the main criterion, then this means, that one of
the lists of maximal length is chosen. The value of the
choice flag is set, based on whether an agent has other
choices of lists as preferable as the chosen clique, and, if
not, whether there are any other still available choices
at all.

Stage 4:

Each node (in parallel) sends its tuple with its UID, the
tentatively chosen list C(7), the value of the choice flag,
and the value of the decision flag, to all its neighbors.

Stage 5:

Each node 4 (in parallel) compares its chosen list C(7)
with lists C(j) received from its neighbors. If a (rel-
atively small, of size not exceeding k) clique that in-
cludes the node 7 exists, and all members of this clique
have selected it at this stage as their current group or
coalition of choice (that is, if C(i) = C(j) for all
j € C(i)), this will be efficiently recognized by the
nodes forming this clique. The decision flag of each
node j € C(i) is set to 1, a group is formed, and
this information is broadcast by each node in the newly
formed group to all of its neighbors. Else, if no such
agreement is reached, then agent ¢, based on its UID
and priority, and its current value of the choice-flag,
either does nothing, or else changes its mind about its
current group of choice, C(i) (the latter being possible
only if choice-flag > 0, meaning that there are other
choices of C(i) that have not been tried out yet that
are still available to agent 7).

counter < counter + 1;
END DO [x end of WHILE loop %]

If round > 1 then, at Stage 2, each node looks for
the information from its neighbors to find out if any
of them have joined a group in the previous round.
For those nodes that have (i.e., whose decision flag

5In the max. clique context, this means, if there are two or more maximal cliques of the same size, one of which is chosen by an
appropriate tie-breaker. This idea readily generalizes, as long as each agent has a partial order of preferences over all the possible

coalitions that include this agent.

dec = 1), each node neighboring any such already
committed node deletes this committed node from its
neighborhood list L(i), updates all C(i,7) that re-
main, and selects its choice of C(i) based on the up-
dated collection of group choices {C(i,5)}. That is,
now all those nodes that have already made their com-
mitments and formed groups are not “in the game”
any more, and are therefore deleted from all remain-
ing agents’ neighborhood lists as well as the tentative
choices of coalitions. (Of course, the only coalition a
committed agent is not deleted from at this stage is
the coalition that this agent has just joined).

There are some more details in the algorithm that
we leave out for the space constraint reasons. One im-
portant technicality is that, in order to ensure that the
algorithm always avoids to cycle, once an agent changes
its mind about the preferred coalition C(7), it is not
allowed through the remaining rounds of the algorithm
to go back to its old choice(s). Once no other choices
are left, this particular agent sticks to its current (and
the only remaining) choice, and waits for other agents
to converge to their choices. It can be shown that this
ensures ultimate convergence to a coalition structure
that all agents agree to. That is, under the assumptions
stated in the previous section, the agents will reach con-
sensus on the coalition structure after a finite number
of rounds inside the WHILE loop (see also Appendiz).
Moreover, if the maximum size of any L(¢) is a (small)
constant, then the convergence is fast.

5 Discussion and Extensions

We have outlined a fully distributed algorithm for
group or coalition formation based on maximal cliques.
This algorithm will be efficient when the underlying
graph is relatively sparse, and, in particular, when the
sizes of all maximal cliques are bounded by a small con-
stant k = O(1). When this is not the case (or when it
cannot be guaranteed to always hold), appropriate re-
strictions can be imposed “from the outside” to ensure
that the algorithm converges, and rapidly. For exam-
ple, for each node i, a range of possible values (UIDs)
of those nodes that the node ¢ is allowed to commu-
nicate and form coalitions with can be appropriately
specified.

Once the groups are formed, these groups will be
tight (as everyone in the group can communicate with
everyone else), and, in nontrivial cases, therefore as ro-
bust as possible for a given number of group elements
with respect to either node or link failures. This is a
highly desirable property involving coalitions or teams
of agents (robots, autonomous unmanned vehicles, etc.)

operating in environments where both the agent failures
and the agent-to-agent communication link failures can
be expected.

The proposed algorithm can be used as a subrou-
tine in many multi-agent system scenarios where, at
various points in time, the system needs to reconfig-
ure itself, and the agents need to form new coalitions
(or transform the existing ones) in a fully distributed
manner, where each agent would join an appropriate
(new) coalition because the agent finds this to be in its
individual best interest, and where it is important to
agents to form and agree on these coalitions efficiently,
rather than wasting too much time and other resources
on (possibly lengthy) negotiation.

This algorithm as a coordination subroutine in MAS
applications can be expected to be useful only when
the time scale of significant changes in the inter-agent
communication topology is much coarser than the time
scale for the coalitions of agents, first, to form accord-
ing to the algorithm, and, second, once formed, to ac-
complish something useful in terms of agents’ ultimate
goals. We are currently exploring using some version of
this algorithm as a coordination strategy subroutine in
a scalable software simulation of a system of unmanned
autonomous aerial vehicles (UAVs) on a multi-task mis-
sion.

To be useful in various MAS applications, such as
the above-mentioned UAV simulation, the proposed
generic algorithm can be appropriately fine-tuned, so
that the coalitions are formed that satisfy quality cri-
teria other than robustness with respect to agent or
communication link failures.

Let us assume there is an ensemble of self-interested
agents moving around and about in an environment,
searching for tasks and possible coalition partners
and/or other external resources, and trying to service
as many tasks as possible. Each task has a certain value
to each agent: an agent increases its utility by servicing
some task, and consuming this task’s value [16]. How-
ever, servicing different tasks requires resources, and
an agent may lack sufficient resources to be able to ser-
vice tasks it would like to complete. Hence, such an
agent will have an egotistic incentive [2] to coopera-
tively coordinate with other agents - and, in particular,
to try to form a group or a temporary coalition with
other agents. The preferred partners in such a coalition
would be those agents that would provide sufficient re-
sources for the desired tasks to be completed. Hence,
in the algorithm above, a refinement of the criterion
of “goodness” (quality) of different groups that can be
formed is needed. So, for example, at Stage 3, among
the available lists of intersections C(4,j), the agent ¢
may want to choose one where the sum of resources of

all the agents in this list is equal to, or exceeds (but
preferably by not too much) the resource requirements

of the particular task the agent % desires to service®.

6 Concluding Remarks

We have proposed herewith a generic algorithm for dis-
tributed group formation based on maximal cliques of
modest sizes. Among the existing distributed group for-
mation algorithms, we argue that our algorithm is par-
ticularly suitable for dynamic coalition formation and
transformation in multi-agent systems whose underly-
ing graph structures (“topologies”) change frequently,
yet not too rapidly. In particular, we find this algo-
rithm, or its appropriately fine-tuned variants, to be a
potentially very useful subroutine in many multi-agent
system applications, where the interconnection topol-
ogy of the agents often changes so that the system needs
to dynamically reconfigure itself, yet where these topol-
ogy changes are at a time scale that allows agents to (i)
form coalitions, and (ii) do something useful while par-
ticipating in such coalitions, before the underlying com-
munication topology of the system changes so much as
to render the formed coalitions either obsolete or inef-
fective. We intend to explore and test the applicability
and practical usefulness of the proposed algorithm as
a coordination strategy for various MAS applications
in general, and in the context of our scalable simula-
tion of autonomous unmanned vehicles on a complex,
multi-task mission [5, 16, 17], in particular.

Acknowledgment: Many thanks to Nirman Ku-
mar and Reza Ziaei (Open Systems Laboratory, UTUC)
for many useful discussions. This work was supported
by the DARPA IPTO TASK Program under the con-
tract F30602-00-2-0586.

Bibliography

[1] N. M. Avouris, L. Gasser (eds.), “Distributed Artifi-
cial Intelligence: Theory and Praxis”, Euro Courses Comp.
& Info. Sci. vol. 5, Kluwer Academic Publ., 1992

[2] D. H. Cansever, "Incentive Control Strategies For
Decision Problems With Parametric Uncertainties”, Ph.D.
thesis, Univ. of Illinois Urbana-Champaign, 1985

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, “In-
troduction to Algorithms”, MIT Press, 1990

[4] M. R. Garey, D. S. Johnson, “Computers and In-
tractability: a Guide to the Theory of NP-completeness”,
W. H. Freedman & Co., New York, 1979

[5] M. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, “An
Actor-based Simulation for Studying UAV Coordination”,

Proc. 15th Euro. Symp. Simul. (ESS 2003), Delft, The
Netherlands, October 2003

[6] N. Lynch, “Distributed Algorithms”, Morgan Kauf-
mann Publ., Wonderland, 1996

[7] P.J. Modi, H. Jung, W. Shen, M. Tambe, S. Kulka-
rni, “A dynamic distributed constraint satisfaction ap-
proach to resource allocation”, in “Principles and Practice
of Constraint Programming”, 2001

[8] P. J. Modi, W. Shen, M. Tambe, M. Yokoo, “An
asynchronous complete method for distributed constraint
optimization”, Proc. AAMAS 2003

[9] J. von Neumann, O. Morgenstern, “Theory of
Games and Economic Behavior”, Princeton Univ. Press,
1944

[10] J. Rosenschein, G. Zlotkin, “Rules of Encounter:
Designing Conventions for Automated Negotiations among
Computers”, The MIT Press, Cambridge, Massachusetts,
1994

[11] S. Russell, P. Norvig, “Artificial Intelligence: A
Modern Approach”, 2nd ed., Prentice Hall Series in Al,
2003

[12] O. Shehory, S. Kraus, “Coalition formation among
autonomous agents: Strategies and complexity”, Proc.
MAAMAW’93, Neuchatel, 1993

[13] O. Shehory, S. Kraus, “Task allocation via coali-
tion formation among autonomous agents”, Proc. 14th
IJCAI-95, Montreal, August 1995

[14] R. G. Smith, “The contract net protocol: high-
level communication and control in a distributed problem
solver”, IEEE Trans. on Computers, 29 (12), 1980

[15] G. Tel, “Introduction To Distributed Algorithms”,
2nd ed., Cambridge Univ. Press, 2000

[16] P. Tosic, M. Jang, S. Reddy, J. Chia, L. Chen, G.
Agha, “Modeling a System of UAVs on a Mission”, Proc.
SCI 2003 (invited session), Orlando, Florida, July 2003

[17] P. Tosic, G. Agha, “Modeling Agents’ Autonomous
Decision Making in Multiagent, Multitask Environments”,
Proc. 1st Euro. Workshop MAS (EUMAS 2003), Oxford,
England, 2003

[18] G. Weiss (ed.), “Multiagent Systems: A Modern
Approach to Distributed Artificial Intelligence”, The MIT
Press, Cambridge, Massachusetts, 1999

[19] M. Wooldridge, N. Jennings, “Intelligent Agents:
Theory and Practice”, Knowledge Engin. Rev., 1995

[20] M. Yokoo, K. Hirayama, “Algorithms for Dis-
tributed Constraint Satisfaction: A review”, AAMAS, Vol.
3, No. 2, 2000

[21] M. Yokoo, “Distributed Constraint Satisfac-
tion: Foundation of Cooperation in Multi-agent Systems”,
Springer, 2001

[22] G. Zlotkin, J.S. Rosenschein, “Coalition, cryptog-
raphy and stability: Mechanisms for coalition formation in
task oriented domains”, Proc. AAAI’94, Seattle, Washing-
ton, 1994

6 At this stage, however, we need to do more work on formalizing some of these variants of the algorithm, and, in particular, deter-
mine the criteria that would still ensure, under general assumptions similar as before, that the agents would efficiently converge to an

agreement on the coalition structure.

Appendix: Pseudo-code for Max-Clique-Based Distributed Group Formation

Notation:

i: the i-th agent (node) in the system (say, i =1,...,n)

V() := the i-th node’s UID

N(i) := the list of neighbors of node 4

L(i) := the extended neighborhood list (i.e., L(i) = N(i) U {i})

Clij) = LG) N L)

C(i) := the group of choice of node i at the current stage (i.e., one of the C(i, j)’s)
choice(i) := the choice flag of node i

dec(i) := the decision flag of node i

Mazimal Cliqgue Based Distributed Group Formation Algorithm:

Step 1:
DOALL i = 1.n (in parallel, i.e., each node i carries the steps below locally)
send [V(), L(%), choice(i) = 3, dec() =0] to each of your neighbors
END DOALL
WHILE (not all agents have joined a group) DO
Step 2:
DOALL i = 1.n
FOR all j € N(i) DO [x check if dec(j) =1 #]
if dec(j) ==1 then delete j from N(i),L(:), and C(i,j'), Vi’ € N(i) — {j}
END DO [* end of FOR loop %]
FOR all j € N(i) DO [x FOR all remaining (undeleted) indices j |
compute C(i,7) «— L(i) () L(j)
END DO [* end of FOR loop |
END DOALL

Step 3:
DOALL i = 1.n

pick C(4,7) s.t. |C(i,7)| is of max. size (not exceeding the pre-specified threshold, k):
Ci) — Ci,);

if more than one such choice, set choice(i) «— 2;

else (if there are other choices C(i,j’) but only of smaller sizes)
set choice(i) «— 1;

else (if node i has no alternatives left for a non-trivial coalition that would include 1)
set choice(i) < 0;

END DOALL
Step 4:
DOALL i = 1.n
send [V (i), C(i), choice(i), dec(i) = 0]
END DOALL

Step 5:
DOALL i = 1..n
compare C(i) with C(j) received from one’s neighbors;
if there exists a clique {i,j1,j2,...,71} such that C(i) = C(j1) = C(j2) = ... = C(5)
then set dec(i) < 1 (an agreement has been reached);
broadcast group G = (i,j1,j2,...i) and decision flag value dec(i) =1 to all neighbors
else based on ¢ and the priority (as defined by the relation < on the set of nodes 1,2, ...,n)
either DO NOTHING
or change your mind: C(i) « newchoice (from the list of candidate groups)
END DOALL

END DO [xend of WHILE loop %]

