
Maximal Clique Based Distributed Coalition Formation
for Task Allocation in Large-Scale Multi-agent Systems

Predrag T. Tošić and Gul A. Agha

Open Systems Laboratory, Department of Computer Science,
University of Illinois at Urbana-Champaign,

Mailing address: Siebel Center for Computer Science,
201 N. Goodwin Ave., Urbana, IL 61801, USA

{p-tosic, agha}@cs.uiuc.edu

Abstract. We present a fully distributed algorithm for coalition formation among
autonomous agents. The algorithm is based on two main ideas. One is a dis-
tributed computation of maximal cliques (of bounded sizes) in the underlying
graph that captures the interconnection communication topology of the agents.
Hence, given the current configuration of the agents, the coalitions that are formed
are characterized by a high degree of connectivity, and therefore a high fault tol-
erance with respect to the subsequent node and/or link failures. The second idea
is that each agent chooses its most preferable coalition based on how highly the
agent values each such coalition in terms of the coalition members’ combined
resources or capabilities. Coalitions with sufficient resources for fulfilling highly
desirable tasks are preferable to the coalitions with resources that suffice only for
completing less valuable tasks. We envision variants of our distributed algorithm
presented herein to prove themselves useful coordination subroutines in many
massively multi-agent system applications where the agents may repeatedly need
to form temporary groups or coalitions of modest sizes in an efficient, online and
fully distributed manner.

Keywords: distributed algorithms, large-scale multi-agent systems, distributed
group formation, agent coalitions.

1 Introduction and Motivation

Agent coordination poses a number of challenges to a designer of a large-scale multi-
agent system (MAS). In particular, in order to be able to effectively coordinate, agents
need to be able to reach consensus on various matters of common interest. The two
particularly prominent distributed consensus problems that often arise in MAS appli-
cations are those of leader election (e.g., [7, 18]) and coalition formation. Group or
coalition formation is an important issue in distributed systems in general (e.g., [7]), and
MAS in particular (e.g., [29, 25]). Given a collection of communicating agents, the goal
in distributed coalition formation is that these agents, based on their local knowledge
only, decide how to effectively self-organize into coalitions, so that each agent knows
which coalition(s) it belongs to.

There are several critical issues that the MAS designer needs to address in the con-
text of distributed coalition formation. First, what is the desired notion of a coalition

T. Ishida, L. Gasser, and H. Nakashima (Eds.): MMAS 2004, LNAI 3446, pp. 104–120, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

Maximal Clique Based Distributed Coalition Formation 105

in a given setting? Second, a distributed coalition formation mechanism - that is, a dis-
tributed algorithm that enables the agents to effectively form coalitions - needs to be
provided. Third, coalitions and each agent’s knowledge about its coalition member-
ship need to be maintained and, when needed, appropriately updated. Fourth, are the
coalitions to be allowed to overlap, so that an agent may simultaneously belong to two
or more coalitions? These and other challenges related to autonomous agents form-
ing coalitions have been extensively studied in the literature on multi-agent systems,
e.g., [8, 10, 11, 14, 15, 29]. They have also arisen in our own recent work on parametric
models and a scalable simulation of the large scale (103 − 104 agents) ensembles of
autonomous unmanned vehicles on a multi-task mission [5, 6, 19, 20].

Herein, we restrict our attention to the second issue above. We propose a particular
mechanism (distributed algorithm) for an effective coalition formation that ensembles
of autonomous agents can use as one of their basic coordination subroutines. A need for
a dynamic, fully distributed, efficient and online coalition formation may arise due to a
number of different factors, such as geographical dispersion of the agents, heterogene-
ity of tasks and their resource requirements, heterogeneity of agents’ capabilities, and
so on [20]. While for the small- and medium-scale systems of, e.g., robots or unmanned
vehicles, a fully or partially centralized approach to coalition formation and mainte-
nance may be feasible, the large scale systems (with the number of agents of orders of
magnitude 103 − 104 or higher) appear to necessitate a genuinely distributed approach.

The proposed algorithm is a graph algorithm. The underlying undirected graph cap-
tures the communication network topology among the agents. Each agent is a node in
the graph. As for the edges, the necessary requirement for an edge between two nodes
to exist is that the two nodes be able to directly communicate with one another. That is,
an unordered pair of nodes {A,B} is an edge of the underlying graph if and only if A
can communicate messages to B, or B can communicate messages to A, or both.

The basic idea is to efficiently and in a fully decentralized manner partition this
graph into (preferably, maximal) cliques of nodes. These coalitions are then maintained
until they are no longer useful or meaningful. For instance, the coalitions should be
transformed, or else simply dissolved, when the interconnection topology considerably
changes, either due to the agents’ mobility, or because many old links have died out and
perhaps many new, different links have formed, and the like. Another possible reason to
abandon the existing coalition structure is when the agents determine that the coalitions
have accomplished the set of tasks that these coalitions were formed to address. Thus,
in an actual MAS application, the proposed coalition formation algorithm may need to
be invoked a number of times as a coordination subroutine.

The rest of the paper is organized as follows. The preliminaries are covered in
Section 2. We include in this section some examples of large-scale multi-agent sys-
tems that are characterized by the sparse communication network topologies, as well
as a brief overview of the most relevant related work. In Section 3, we succinctly
state the problem addressed, the approach taken, and the critical assumptions that need
to hold in order for our approach to be applicable. Section 4 is the central part of
the paper: we first outline our Maximal Clique-based Distributed Coalition Formation
(MCDCF) algorithm, and then provide a simple yet illustrative toy-size example of how

106 P.T. Tošić and G.A. Agha

the algorithm works. Section 5 includes an outline of the cost analysis of the algorithm,
and some discussion. Finally, we summarize in Section 6.

2 Coalition Formation in Large-Scale Multi-agent Systems

Large ensembles of autonomous agents provide an important class of examples where
the agents’ capability to coordinate and, in particular, to self-organize into groups or
coalitions, is often of utmost importance.

We propose herewith a distributed coalition formation algorithm based on the idea
that, in peer-to-peer (in particular, leaderless) MAS, an agent would prefer to form a
coalition with those agents that it can communicate with directly, and, moreover, where
every member of such a potential coalition can communicate with any other member
directly. That is, the preferable coalitions are (maximal) cliques. It is well-known that
finding a maximal clique in an arbitrary graph is NP-hard in the centralized setting
[3, 4]. This implies the computational hardness that, in general, each node faces when
trying to determine the maximal clique(s) it belongs to. However, if the degree of a node
is sufficiently small, then finding all maximal cliques this node belongs to may become
computationally feasible. If one cannot guarantee that, or a priori does not know if, all
the nodes in a given underlying MAS interconnection topology are of a small degree,
then one has to impose additional constraints in order to ensure that the agents are not
attempting to solve an infeasible problem.

We describe our distributed maximal clique based coalition formation algorithm
in Section 4. Variations of this basic algorithm can be designed to meet the needs of
various types of agents, such as, to give some examples, the following:

- the classical cooperative distributed problem solving (DPS) agents [8, 9, 14, 15];
- different kinds of self-interested, strictly competing or competing-and-cooperating

agents [11, 20] where concepts, paradigms and tools from the N-person game theory
have found many applications; and, more generally,

- various bounded-resource, imperfect-knowledge agents acting in complex envi-
ronments [20, 26] that are only partially accessible to any agent; such autonomous
agents are thus characterized by the bounded rationality [16].

One may ask, why would this, maximal-clique based approach be promising for
the very large scale (or massive) multi-agent systems (MMAS) that may contain en-
sembles of anywhere from thousands to millions of agents? The underlying network
of such MMAS is bound to be very large, thus rendering even many typically feasible
(i.e., polynomial-time in the number of agents) graph algorithms obsolete due to their
prohibitive cost - let alone allowing distributed coordination strategies that are based on
the graph theoretic algorithms that are, in the centralized setting, NP-hard in general.

However, there is one critical observation that saves the day of our approach: even
if the underlying graph is indeed very large, in many important MMAS applications
this graph will also tend to be very sparse. That is, a typical node in such a graph
will tend to have only a handful of neighbors. Therefore, a distributed algorithm where
agents reason and communicate strictly locally, where no flooding of the network is

Maximal Clique Based Distributed Coalition Formation 107

ever performed (or needed), and where each agent needs to store and work with only
the data pertaining to its near-by agents, can still be designed to be sufficiently efficient.

Some examples of the engineering, socio-technical and socio-economic systems and
infrastructures that can be modeled as MMAS and that are also characterized by the
aforementioned sparseness of the underlying network topology, include the following:

(i) Large-scale (103 −104) ensembles of micro-UAVs or other similar autonomous
unmanned vehicles deployed, for example, in a surveillance or a search-and-rescue mis-
sion over a sizable geographic area. Unlike the scenarios where dozens of macro UAVs
are deployed, where a centralized control and/or one human operator per UAV are af-
fordable and perhaps the most efficient and robust way of deployment, in a very large
scale system of autonomous micro UAVs no central control is feasible or even possible,
and the run-time human intervention is either minimal or nonexistent. Such micro-UAV
ensembles need to be able to coordinate, self-organize, and self-adapt to the changing
environments in a truly decentralized, dynamic and autonomous manner. For more on
the design and simulation challenges of such large-scale ensembles of micro-UAVs, see
[5, 19, 20].

(ii) Smart sensor networks that include anywhere from thousands to millions of
tiny sensors, each of which often of only a few millimeters in size, and of a rather lim-
ited computational power and communication range and bandwidth. Such smart sen-
sors usually communicate via local broadcasts with very limited ranges. The main
“communication mode” of the agents in our algorithm in Section 4 are precisely the
local broadcasts. Due to their small memory capacities and low power consumption re-
quirements, smart sensors need to simultaneously minimize both the amount of local
processing, and the amount of communication.

(iii) Various social networks, and, in particular, various variants of the ’small-world’
networks where, in addition to the strictly local connectivity in the communication
network topology, a relatively few long-range connections are also present [23, 24]. A
typical node in such a network will have only a handful of neighbors it can directly
communicate with, and, moreover, most or nearly all of these neighbors in the network
will also tend to be the neighbors in the usual, physical proximity sense.

(iv) Various socio-technical infrastructures, such as, e.g., various transportation
systems, power grids, etc. An ambitious project on realistic, large-scale modeling and
simulation of infrastructures such as the city traffic systems, called TRANSIMS, is
described at [22] and in the documents found therein.

2.1 Related Work

A variety of coalition formation mechanisms have been proposed in the MAS literature
both in the context of DPS agents that are all sharing the same goal (as, e.g., in [15])
and in the context of self-interested agents where each agent has its own individual
agenda (as, e.g., in [14, 29]). In particular, the problem of distributed task or resource
allocation, and how is this task allocation coupled to what coalition structures are most
desirable in a given scenario [8, 15], are also of central importance in our own work
on a concrete MAS application, namely, a scalable parametric model and software
simulation of unmanned aerial vehicles (UAVs) that are residing and acting in bounded
resource multi-task environments [5, 19, 20].

108 P.T. Tošić and G.A. Agha

Another body of MAS literature highly relevant to the distributed coalition forma-
tion and task and/or resource allocation, casts the distributed resource allocation prob-
lems into the distributed constraint satisfaction and/or optimization (DCS/DCO) terms
[8, 9, 10]. Of a particular relevance to our work herein and other possible extensions of
the original maximal clique based coalition formation algorithm presented in [21] are
the references [15] and [9]. While Modi et al. in [9] offer the most complete formaliza-
tion of various distributed resource and/or task allocation problems, as well as general
mappings to the appropriate types of (dynamic) distributed constraint satisfaction or
optimization problems, their approach is not suitable for a direct application to our
modeling framework of massively multi-agent systems in general (see, e.g., [20]), and
the application domains we had in mind when devising the algorithm presented herein,
in particular. Namely, the agents in [9] are strictly cooperative, share the same goals,
and, as such, are not endowed with any notion of individual utilities or preferences.
While we have studied cooperative MAS in [20] and elsewhere, as well, one of our
main assumptions is that, due to a large scale of the system and a high dynamism and
unpredictability of the changes in the environment, no shared or global knowledge about
the environment is maintained. In particular, each agent has its own individual prefer-
ences over the possible (local) states of the world. The collaboration is then achieved
through “encoding” incentives into the individual agents’ individual behavior functions
[19], and thus using the incentive engineering approach [2] to enable the agents to
cooperatively coordinate with one another.

The importance of DCS in MAS in general is discussed, e.g., in [28]. However,
further discussion of DCS based approaches to distributed resource or task allocation
and coalition formation is beyond the scope of this paper.

3 Problem Statement and Main Assumptions

The main purpose of this work is a fully distributed, scalable and efficient algorithm
for ensembles of autonomous agents to use as a subroutine within their coordination
strategy, with the purpose of efficiently forming temporary coalitions of modest sizes.

Each agent is equipped with a tuple of its internal resources or capabilities [15].
Each entry in the capability tuple of any agent is a nonnegative real number. Likewise,
each task requires a certain nonnegative amount of each of the individual resources
from this tuple in order to be serviced. A single agent, or a coalition of two or more
agents, can service a given task if and only if their joint capabilities suffice with respect
to that task’s resource consumption requirements. That is, for each component of the
capability vector, the sum of the corresponding values taken over all the agents in the
coalition has to be greater than, or equal to, the value of the corresponding component
of the chosen task’s resource consumption vector.

Our distributed maximal clique based coalition formation algorithm is described in
the next section. For this algorithm to be applicable, the following basic assumptions
need to hold:

Maximal Clique Based Distributed Coalition Formation 109

- Agents communicate with one another by exchanging messages either via local
broadcasts, or in a peer-to-peer fashion.

- Communication bandwidth availability is assumed sufficient.
- Each agent has a sufficient local memory (including the message buffers) for stor-

ing all the information received from other agents.
- Communication is reliable during the coalition formation, in the following sense:

if an agent, A, sends a message to another agent B, then either agent B gets exactly
the same message that A has sent, or else the communication has failed, so that B does
not receive anything from A at all. In particular, we assume no scrambled or other-
wise modified messages are ever received by any agent. Of course, once the coalitions
have been already formed, the above assumption on communication reliability need no
longer hold1.

- Each agent has a unique global identifier, ’UID’, and the agent knows its UID.
- There is a total ordering, ≺, on the set of UIDs, and each agent knows this

ordering.
- Each agent has, or else can efficiently obtain, a reliable knowledge of which other

agents are within its communication range.
- The veracity assumption holds, i.e., an agent can trust the information received

from the neighboring agents.

On the other hand, an agent need not a priori know the UIDs of any of the other
agents, or, indeed, how many other agents are present in the system at any time.

4 MCDCF Algorithm

After the preliminaries and the clear statement of the problem addressed and the as-
sumptions made, we now present, analyze and discuss our distributed coalition forma-
tion algorithm. The Maximal Clique based Distributed Coalition Formation (MCDCF)
algorithm will be presented in subsection 4.1. An example of a simple network of
agents, and how the algorithm works when applied to this network, is given in sub-
section 4.2. An outline of the algorithm’s cost analysis will follow in Section 5.

4.1 Algorithm Description

We approach distributed coalition formation for task allocation as follows. The can-
didate coalitions are required to be cliques of uniformly bounded sizes. That is, the
system designer, based on the application at hand and the available system resources
(local computational capabilities of each agent, bandwidth of the agent-to-agent com-
munication links, etc.), a priori chooses a threshold, K = K(n), such that only the
coalitions of sizes up to K are considered. Agents themselves subsequently form coali-
tions in a fully distributed and online manner, as follows. Each agent (i) first learns of

1 As this requirement is still restrictive, and considerably limits the robustness of our algorithm,
we will try to relax this assumption in our future work, and enable the agents to effectively
form coalitions even in the presence of some limited amount of communication noise during
the coalition formation process itself.

110 P.T. Tošić and G.A. Agha

who are its neighbors, then (ii) determines the appropriate candidate coalitions, that
the agent hopes are (preferably maximal, but certainly of sizes bounded by K) cliques
that it belongs to, then (iii) evaluates the utility value of each such candidate coalition,
measured in terms of the joint resources of all the potential coalition members, then (iv)
chooses the most desirable candidate coalition, and, finally, (v) sends this choice to all
its neighbors. This basic procedure is then repeated, together with all agents updating
their knowledge of (a) what are the preferred coalitions of their neighbors, and (b) what
coalitions have already been formed.

In addition to its globally unique identifier UID, which we assume is a positive
integer, and the vector of capabilities, each agent also has two local flags that it uses
in communication with other agents. One of the flags is the binary “decision flag”,
which indicates whether or not this agent has already joined some coalition. Namely,
decision ∈ {0, 1}, and the value of this flag is 0 as long as the agent still has not
irrevocably committed to what coalition it is joining. The second flag is the “choice
flag”, which is used to indicate to other agents, how happy is the agent with its current
tentative choice or proposal of the coalition to be formed. That is, the choice flag in-
dicates the level of an agent’s urgency that its proposal for a particular coalition to be
formed be accepted by the neighbors to whom this proposal is being sent. If an agent
vi sends to its neighbors the choice flag value choice(i) = 0, that means that this agent
has no satisfactory alternatives to its currently proposed coalition. The choice flag value
of 1 indicates that an agent can afford to change its coalition choice, but that each of
the available alternative coalitions is strictly less preferred than the current proposal.
Finally, choice(i) = 2 indicates that agent vi has alternative choices that are of equal
preference as the currently proposed coalition.

We remark that any candidate coalition, that is, a subset of the set of all neighbors
of an agent, such that the agent currently considers this subset to be a possible choice
of the coalition this agent would like to form, need not be a clique, let alone a maxi-
mal clique. Indeed, based on its strictly local knowledge, the agent in general does not
know which of its candidate coalitions are cliques, if any. However, only those candi-
date coalitions that indeed are cliques will ever be agreed upon by the participating
agents, and therefore have a chance of possibly becoming the actual coalitions. This
observation justifies the name of our algorithm.

We split the MCDCF algorithm into six stages. Four of these six are iteratively
repeated until the consensus on coalition formation is reached. We point out, however,
that each agent executes these stages asynchronously and in parallel with the other
agents. The only assumption about the synchronization among the agents is that an
agent does not begin another iteration of Stages 2 - 5 before its neighbors are done
with the previous iteration. Should an agent fail to receive the update from one of its
neighbors within the pre-specified time slot, the agent assumes that its neighbor is no
longer available for the coalition formation, and deletes this neighbor’s UID from all
the appropriate lists. In the sequel, we won’t bother distinguishing between an agent or
a communication network node, vi, and this agent’s (alternatively, node’s) UID, i; the
intended meaning in any given situation will be clear from the context.

Stage 0: Each agent, asynchronously and in parallel with all other agents, broadcasts
a four-tuple to all its immediate neighbors. The entries in this tuple are (i) the agent’s

Maximal Clique Based Distributed Coalition Formation 111

UID, (ii) the agent’s list of immediate neighbors, L(i), that includes i, (iii) the value of
the choice flag that indicates that the list sent is the neighborhood list, and (iv) the value
of the decision flag. Each agent also receives the corresponding tuples from all of its
neighbors. Those neighbors whose messages have not been received within the allotted
time are discarded from the future coalition considerations.

Stage 1: Each agent i locally computes the overlaps of its neighborhood list with the
neighborhood lists that it has received from its neighbors, C(i, j) ← L(i) ∩ L(j).
These list intersections are then ordered with respect to the list size.

Each agent repeats Stages 2 - 5 until it either reaches a consensus on what coalition
it is joining, or else is left with no choice but to form the trivial single-member coalition.

Stage 2: Agent i looks for information from its neighbors, whether they have joined a
coalition “for good” during the previous round. Those neighbors that have are deleted
from the neighborhood list L(i); the intersection lists C(i, j) and the candidate
coalition lists C(i) are also updated accordingly, and those C(i, k) for which k is
deleted from the neighborhood list L(i) are also deleted. Likewise, the coalition values
val[C(i, k)] are updated as appropriate.

Stage 3: Agent i picks one of the most preferable lists C(i, j); let C(i) ←
chosen [C(i, j)]. If the group or coalition size is the main criterion, then one of the
lists of maximal length is chosen. If the combined capabilities of each tentative coali-
tion for servicing various tasks are the main criterion, then each agent first evaluates or
estimates the coalition value with respect to its local knowledge of the existing tasks
and their demands in terms of the coalitional capabilities. To evaluate these coalition
values, agent i needs to obtain information about other, near-by agents’ capabilities.
The agent then orders possible future coalitions based on these estimated coalition val-
ues, and picks as its current coalition proposal one of the possible coalitions with the
highest coalition value. Since the assumption is that the capability vector of each agent
has all entries nonnegative, this monotonicity property ensures that no proper subset
of a candidate maximal clique coalition is ever chosen - except in the cases when the
clique size exceeds the threshold, K(n).

Stage 4: Each agent sends its tuple with its UID, the tentatively chosen list C(i), the
value of the choice flag, and the value of the decision flag, to all its neighbors. Likewise,
each agent receives the corresponding 4-tuples from its current neighbors.

Stage 5: Agent i compares its chosen list C(i) with the lists C(j) received from
its neighbors. If a satisfactory clique that includes the node i exists, and all members
of this clique have selected it at this iteration as their current coalition of choice (that
is, if C(i) = C(j) for all j ∈ C(i)), this will be efficiently recognized by the
agents that are forming this particular clique. The decision flag of each agent j : j ∈
C(i) is then set to 1, the coalition is formed, and this information is broadcast to all
of the neighbors. In particular, agent i locally broadcasts its agreed-upon coalition, and
decision flag decision(i) = 1, to all of its still remaining neighbors. Else, if no such
agreement is reached, then agent i, based on its UID and priority, and its current value
of the choice flag, either does nothing, or else changes its mind about its current
coalition of choice, C(i).

112 P.T. Tošić and G.A. Agha

Each agent uses time-outs in order to place an upper bound on for how long it may
be waiting to hear from any other agent during any stage of the algorithm. If agent
vp has sent a message to agent vq, and the latter is not responding, then there are four
possibilities: (i) agent vq has failed; (ii) the communication link from vq to vp has failed;
(iii) while vq is in vp’s communication range, the converse does not hold (but vp may
not know it), and (iv) either the agent vq, or the communication link from vq to vp, is
too slow. In each case, once vp has waited sufficiently long to hear from vq, vp will
simply consider vq unavailable for the joint coalition formation, and will delete vq from
its candidate coalition lists. Thus, case (iv) will be treated by agent vp in exactly the
same way as the other three cases.

In order to ensure that the algorithm avoids cycling in every possible scenario, once
an agent, vi, changes its mind about the preferred coalition C(i), it is not allowed
through the remaining rounds of the algorithm to go back to its old choice(s). Once no
other choices are left, this particular agent sticks to its current choice, and waits for other
agents to settle to their choices. This requirement ensures the ultimate convergence to
a coalition structure that all agents (locally) agree on. That is, under the assumptions
stated in the previous section, the agents will reach consensus on the coalition structure
after a finite number of iterations through the Stages 2 - 5.

Once all the agents exit the iterated execution of the Stages 2 - 5, each formed
coalition will indeed be a clique. Moreover, those agent coalitions whose sizes do not
exceed the pre-specified threshold, K, are also maximal in a sense that, given such a
coalition C, no agent(s) outside of this coalition can be added to it, so that the following
requirements simultaneously all hold: (i) each of the new agents is already adjacent to
all the “old” coalition members of C, (ii) if more than one new agent is added, then all
the added agents are also pairwise neighbors to each other, (iii) the newly added agent(s)
do not already belong to a coalition (or coalitions) that have already been formed, and
(iv) the new size of the augmented coalition C is still at most K.

However, it is easy to construct examples of the underlying graphs and the particular
runs of the algorithm such that, once every agent joins a coalition and the algorithm
terminates, several agents end up in trivial coalitions. It is therefore reasonable, in many
application contexts, to introduce an optional Stage 6 of the algorithm during which
some of these small and, therefore, potentially not sufficiently useful coalitions, may
be merged together. Thus, if some two small coalitions, or one small and one bigger
coalition, are adjacent to each other2, they can be merged together. For an illustration,
we refer the reader to the worked out example in subsection 4.2.

4.2 How MCDCF Algorithm Works: A Simple Example

To show how the MCDCF algorithm works, we use a simple example. The intercon-
nection topology of a group of agents is given in Figure 1. For simplicity, we assume
that the only value associated with each coalition is the coalition’s size. We also assume
that no agent falls behind others by too much, i.e., that all agents complete each iteration
of Stages 2 - 5 within the allotted time.

2 That is, if there exist node x in the first coalition and node y in the second such that x and y
are adjacent in the underlying graph.

Maximal Clique Based Distributed Coalition Formation 113

1

3 5

7

2

6

4

Fig. 1. An example: the agents’ starting communication topology

We notice that the largest clique that any agent in this example belongs to is a 3-
clique. However, several agents belong to multiple triangles, so this toy example is
instructive insofar as how the agents break ties, avoid deadlocks, and reach consensus
on the coalition structure.

First, the initialization stage takes place, during which each agent locally broadcasts
its list of neighbors to each of its neighboring agents. Then each agent, asynchronously
and in parallel with the other agents, forms the initial candidate coalitions by comput-
ing the pairwise neighborhood list intersections. However, not all of thereby formed
coalitions are reachable: if C(i, k) � C(i, j) then there exists a (maximal reachable)
candidate coalition C(i, ·), C(i, k) ⊆ C(i, ·) � C(i, j), such that for some agent
vp : p ∈ C(i, ·), there exists an agent vq such that q ∈ C(i, j), and vp and vq are
not adjacent to each other. Clearly, this agent vp will never agree on forming the bigger
coalition C(i, j), since this coalition would include at least one agent that vp cannot
directly communicate with. Hence, all such sets C(i, j) that properly include other
prospective coalitions can be safely deleted from the list of candidate coalitions.

In our example, agent v1 can safely delete the set {1, 3, 6, 7}, as this coalition
can never be agreed upon by all four agents. Concretely, v3 will never agree to form
a coalition that includes v7 (and vice versa). Furthermore, based on the information
received from v3 and v7, agents v1 and v6 can readily and safely infer that the coalition
{1, 3, 6, 7} cannot be agreed on.

Once all such unreachable coalitions are deleted, the column denoted “candidate
coalitions C(i, j)” in Table 1 is obtained. After that, each agent picks one of the
available choices. Under the monotonicity assumption discussed earlier, each agent
will select one of the maximal sets (potential cliques) that it belongs to. Each agent also
appropriately sets the value of its choice flag. When the coalition size is the criterion
of that coalition’s value, agent v1, for example, would set its choice flag to 2, since it
has more choices that are just as preferable as the selected candidate coalition, the set
{1, 2, 3}. Once this step is completed by all agents, the overall configuration is reached
as depicted in Table 1, where each row represents the corresponding agent’s current
local knowledge of the neighborhood structure and of its choice of a tentative coalition.

For simplicity, we have assumed in this example that, in case of a tie, each agent
picks the lexicographically lowest coalition. Hence, the agents v1, v2 and v3 immedi-
ately reach the agreement on forming the coalition {1, 2, 3}. The other four agents, how-
ever, do not reach an agreement after the first iteration. Let us assume that, among sev-

114 P.T. Tošić and G.A. Agha

Table 1. State of each agent vi at the end of first iteration

Node neighborhood nbhd. overlaps candidate coalitions chosen choice
L(i) L(i) ∩ L(j) C(i, j) C(i) flag

v1 {1, 2, 3, 6, 7} {1, 2, 3}, {1, 2, 3, 6}, {1, 2, 3}, {1, 3, 6}, {1, 2, 3} 2
{1, 3, 6, 7}, {1, 6, 7} {1, 6, 7}

v2 {1, 2, 3} {1, 2, 3} {1, 2, 3} {1, 2, 3} 0
v3 {1, 2, 3, 6} {1, 2, 3, 6}, {1, 2, 3}, {1, 2, 3}, {1, 3, 6} {1, 2, 3} 2

{1, 3, 6}
v4 {4, 5, 6} {4, 5, 6} {4, 5, 6} {4, 5, 6} 0
v5 {4, 5, 6, 7} {4, 5, 6}, {4, 5, 6, 7}, {4, 5, 6}, {5, 6, 7} {4, 5, 6} 2

{5, 6, 7}
v6 {1, 3, 4, 5, 6, 7} {1, 3, 6}, {1, 3, 6, 7}, {4, 5, 6}, {1, 3, 6}, {1, 6, 7}, {1, 3, 6} 2

{1, 5, 6, 7}, {4, 5, 6, 7}, {4, 5, 6}, {5, 6, 7}
v7 {1, 5, 6, 7} {1, 6, 7}, {1, 5, 6, 7}, {1, 6, 7}, {5, 6, 7} {1, 6, 7} 2

{5, 6, 7}

eral agents with the same value of the choice flag, choice > 0, the ones with the lowest
index among their neighbors are required to change their proposed coalitions. In our
example, this means that, in the second iteration, v5 drops {4, 5, 6} and selects {5, 6, 7}
instead. Upon doing so, agent v5 also adjusts its value of the choice flag, and broad-
casts these changes to agents v4, v6 and v7. Also, since agents v1 and v3 are no longer
available, agents v6 and v7 delete v1, v3 from their neighborhood lists, and update the
candidate coalitions accordingly.

After each of the agents v5, v6 and v7 performs the described updates, and then
locally broadcasts its new configuration to all of the remaining neighbors, the overall
configuration at the end of the second round is as in Table 2.

Table 2. Coalition configuration at the end of the second iteration

Node candidate coalitions C(i, j) chosen C(i) choice flag decision status
v1 {1, 2, 3}, {1, 3, 6}, {1, 6, 7} {1,2,3} ... done
v2 {1, 2, 3} {1,2,3} ... done
v3 {1, 2, 3}, {1, 3, 6} {1,2,3} ... done
v4 {4, 5, 6} {4, 5, 6} 0 busy
v5 {5, 6, 7} {5, 6, 7} 0 busy
v6 {4, 5, 6}, {5, 6, 7} {4, 5, 6} 2 busy
v7 {5, 6, 7} {5, 6, 7} 0 busy

After the second round is completed, the only agent that still has some “maneu-
vering room” is v6; since there is still no agreement, and choice(v6) > 0, whereas
choice(i) = 0 for all i �= 6 such that vi is not done yet, in the next round v6 changes
its coalition proposal to {5, 6, 7}, thereby reaching the consensus with v5 and v7, and
yielding the final configuration as in Table 3.

Maximal Clique Based Distributed Coalition Formation 115

Table 3. The final coalition configuration; the only unhappy node is v4

Node candidate coalitions C(i, j) chosen C(i) choice flag decision status
at the time of agreement

v1 {1, 2, 3}, {1, 3, 6}, {1, 6, 7} {1,2,3} ... done
v2 {1, 2, 3} {1,2,3} ... done
v3 {1, 2, 3}, {1, 3, 6} {1,2,3} ... done
v4 {4} {4} 0 doomed
v5 {5, 6, 7} {5,6,7} 0 done
v6 {5, 6, 7} {5,6,7} 0 done
v7 {5, 6, 7} {5,6,7} 0 done

Thus, in the end, each of the agents, except for v4, has joined (one of) the coalition(s)
optimal for it. Since agent v4 has ended up left out, and since it is adjacent to the
coalition {v5, v6, v7}, it can be merged with this coalition to form a larger coalition
{v4, v5, v6, v7} in the optional Stage 6 (see discussion in subsection 4.1). Given the
assumed monotonicity and (locally constrained) super-additivity of the multi-agent
environment, any coalition arising from such a merger clearly cannot be a clique.

5 Algorithm Cost Analysis and Discussion

We now outline the cost analysis of the MCDCF algorithm. We will focus on the main
resource requirements per agent. We analyze under what assumptions will the required
amounts of computation time, memory storage and communication be feasible so that
an agent would want to venture into participating in the coalition formation based on
our algorithm. However, we do not address the issues of, e.g., communication reliability,
network delays, and similar.

The first and foremost cost requirement is that the algorithm be of a feasible com-
putational complexity when it comes to its overall worst-case running time. At the very
least, this running time needs to be polynomial in the number of agents, n. Moreover,
for MMAS of up to 106 agents, the upper bound on the total number of elementary
computational steps better be a polynomial of a low degree. We show that, under a
restrictive yet reasonable assumption on the sparseness of the underlying network of
agents, this goal can be attained. Due to the space constraints, we limit our complex-
ity analysis to that pertaining to the execution time, i.e., to the number of elementary
computation steps carried out by each agent. We will assume that the time to send and
receive messages is not increasing the asymptotic upper bounds on local computations.
Since the amount of data that the agents locally broadcast in the algorithm is fairly
small (namely, linear in the size of the largest list used by an agent), our assumption
boils down to assuming a sufficient available bandwidth, sufficiently big buffers for the
arriving messages, and no excessive network delays.

We shall split the time complexity analysis into two parts. First, we will estimate
the maximum number of rounds, i.e., how many times an agent may need to iterate

116 P.T. Tošić and G.A. Agha

through the Stages 2 - 5 (see subsection 4.1). Second, we will show that the amount of
computation per agent within a single iteration is relatively small.

Let K = K(n) be a nonnegative, monotonically nondecreasing function of n, and
let the class of the underlying graphs of agents be such that, for any positive integer
n (except possibly for the first O(1) of them), the size of any clique in the graph is
bounded by K(n). To show under what conditions is our algorithm going to iterate at
most polynomially many times, we establish the following result:

Proposition 1. Let an undirected graph with n nodes be such that the bound on the
maximum node degree in this graph is given by K(n) ≤ c · log n, for some positive
constant c. Let’s assume each node in the graph is an agent with sufficient computa-
tional and communication resources. Then the maximum number of iterations of the
algorithm described in Section 4, when executed by the agents, will be polynomial in
the number of agents, n.

Proof. Let K(n) ≤ c · log n. Let vi be an arbitrary agent. Since vi has at most K(n)
neighbors, the maximum number of candidate coalitions that would include agent vi is
at most 2K(n)+1, which is bounded from above by 2 · 2c log n = 2nc. Since, during a
single round of the algorithm, at least one agent has to change its current choice of the
proposed coalition, and since the old choice is permanently discarded, at each round the
total number of the remaining candidate coalitions in the entire system is reduced by
at least one. Since there are at most n · 2K(n)+1 ≤ 2n · nc possible coalitions at the
beginning, the total number of rounds is O(nc+1).

Hence, if the underlying network topology of a MAS is such that K(n) = O(log n),
then our algorithm will run in time polynomial in n. Moreover, if K(n) ≤ c log n holds
for c = 1, then the number of rounds is at most quadratic in n. We shall assume that
the bound K(n) ≤ c log n holds for some positive, real constant c close to 1. We shall
also assume that, whatever the criteria of “goodness” for these clique-based coalitions
may be, given the necessary data about its neighbors, an agent can efficiently compute
the candidate coalition’s value, val[C(i)], for any such potential coalition C(i). In
particular, we shall assume in the sequel that, for any agent vi, a single evaluation or
value estimation of any coalition C(i) of size at most m takes O(m2) steps.

Proposition 2. Let the assumptions from the discussion above hold. Then the amount
of local computation that any agent has to perform during any iteration of our MCDCF
algorithm is polynomial in the size of the data structures involved (cf. lists L(i), C(i)
and C(i, j)). In particular, assuming that the encoding of all information about a sin-
gle agent (its UID, list of available resources, etc.) is bounded by O(log n), the total
number of elementary bitwise operations of our algorithm is bounded by O((log n)4).

Proof. Under the stated assumptions, K(n) ≤ c · log n, and therefore for any agent
vi, any of the lists C(i), L(i), C(i, j) that this agent operates with are also of sizes
bounded by O(log n). Since Stages 0 - 1 are executed only once, and Stage 4 includes
communication only, we just need to estimate the amounts of local computation during
Stages 2, 3 and 5. During Stages 2 - 3, a number of operations on individual lists
and pairs of lists are performed. Sorting a list with K elements takes time O(K log K).

Maximal Clique Based Distributed Coalition Formation 117

Finding an element and deleting it from a list with at most K elements takes time
O(K). When both lists are of size O(K), comparing two sorted lists, computing their
intersection, or testing if one sorted list is a subset of the other, each takes at most
O(K · log K) operations. An agent vi may need to perform up to K such pairwise list
comparisons, intersections and similar list operations - one for each j ∈ L(i), where
|L(i)| ≤ K. Each of these operations is done at the granularity level of a single list
element, which we have assumed is encoded by O(log n) bits. Hence, the total number
of list operations at the bit level is bounded by O(K2 log K log n), which, given our
assumptions, is just O((log n)3(log log n)).

Let’s assume that the time to evaluate any val[C(i)] is bounded by some function
T (m), where m = |C(i)| is the size of coalition C(i). Let’s also assume that, at
each node, the candidate coalitions are sorted in a non-increasing order with respect to
their values val[C(i)]. Then evaluating the coalitional values takes at most O(log n) ·
(T (c · log n) + c · log(c log n) + O(1)) elementary steps. When T (m) = O(m2), this
simplifies to O((log n)3). Since each step is assumed to require no more than O(log n)
bit operations, we arrive at O((log n)4) bitwise operations overall. As updating and
maintaining the coalition values during the subsequent iterations is no costlier than
originally computing them from the scratch at the first iteration, the upper bound of
O((log n)4) remains valid.

Similar analysis applies to Stage 5, where the costliest operations are the pairwise
list comparisons. Thus Stages 2 - 5 together take the number of elementary bitwise
steps per iteration that is O((log n)4).

5.1 Discussion

The proposed distributed coalition formation algorithm is based on two main ideas. One
idea, familiar from the literature (see, e.g., [15] and references therein), is to formulate
a distributed task and/or resource allocation problem as a (distributed) set covering
problem, (D)SC, in those scenarios where the coalition overlaps are allowed, or a (dis-
tributed) set partitioning problem, (D)SP, when no coalition overlaps are allowed. Two
(or more) coalitions overlap if there exists an element that belongs to both (all) of them.
It is well-known that the decision versions of the classical, centralized versions of the
SC and SP problems are NP-complete [4]. Consequently, what is needed are effi-
cient distributed heuristics so that the agents can effectively apply DSC- or DSP-based
strategies for coalition formation. Fortunately, some such efficient heuristics are already
readily available [15].

The second main idea is to ensure that the formed coalitions of agents meet the
robustness and fault tolerance criteria, which are particularly important in applications
where there is a high probability of the subsequent node and/or communication link
failures. The most robust coalitions of agents of a particular size are those that corre-
spond to maximal cliques in the underlying interconnection topology of the agents’
communication network. Alas, the Maximal Clique problem is also well-known to be
NP-hard [3, 4]. This hardness stems from the fact that an agent may need to test for
the “cliqueness” exponentially many candidate subsets that it belongs to. However, in
those graphs where the maximum degree of each node is bounded by c log n, the num-
ber of subsets that each node belongs to is O(nc), i.e., polynomial in the total number

118 P.T. Tošić and G.A. Agha

of agents. Moreover, in those graphs where the node degrees are uniformly bounded
by some (small) constant, K = O(1), since 2K is presumably still sufficiently small,
finding maximal cliques becomes not only tractable in theory (i.e., solvable in polyno-
mial time) but also practically feasible in the online, real-time and bounded-resource
scenarios that are of the main interest in many MMAS applications.

What are the main properties of the coalition structures likely to arise when our
algorithm is invoked on an arbitrary large but sufficiently sparse graph that satisfies
the aforementioned assumptions? Once the coalitions are formed according to the algo-
rithm, these coalitions of agents will be tight (as everyone in the coalition can communi-
cate with everyone else directly), and therefore as robust and fault-tolerant as possible.
This is a highly desirable property involving the coalitions or teams of agents operating
in the environments where both the agent failures and the agent-to-agent communica-
tion link failures can be expected once these agent coalitions are deployed to service
their appropriate tasks. One example of such a MMAS application domain and, in par-
ticular, some coordination strategies in that domain, are studied in [5, 6, 19, 20].

The proposed algorithm can be used as a subroutine in many multi-agent system
scenarios where, at various points in time, the system needs to reconfigure itself, and the
agents need to form new coalitions (or transform the existing ones) in a fully distributed
manner, where each agent has to reason, act and coordinate with other agents strictly
locally, and where it is important for the agents to be able reach consensus on these
coalitions efficiently.

Our final observation is that the proposed algorithm can be expected to be use-
ful only when the time scale of significant changes in the inter-agent communication
topology is much coarser than the time scale for the coalitions of agents, first, to form
according to the algorithm, and, second, once formed, to accomplish something useful
in terms of the agents’ ultimate goals (see, e.g., [20, 21]).

6 Conclusion

We propose in this paper an algorithm for distributed coalition formation based on a
distributed computation of (maximal) cliques of modest sizes in the underlying commu-
nication network of agents. We hope that this algorithm, or its appropriately fine-tuned
variants, will turn out to be a potentially useful subroutine in many multi-agent sys-
tem applications, where the interconnection topology of the agents may often change,
so that the system needs to dynamically reconfigure itself repeatedly, yet where these
topology changes are at a time scale that allows agents to (i) form their coalitions, and
(ii) do something useful while participating in such coalitions, before the underlying
communication topology of the system changes so much as to render the formed coali-
tions either obsolete or ineffective.

As for the future work, we plan a detailed comparative analysis of the approach
presented herein on one, and the well-known coalition formation approaches from the
MAS literature, on the other hand. In particular, we would like to compare and contrast
the purely peer-to-peer, genuinely “democratic” approaches to multi-agent coordina-
tion, where all agents are made equal (except possibly for the different capability
vectors), with the asymmetric, less democratic and more leader-based coordination ap-

Maximal Clique Based Distributed Coalition Formation 119

proaches (such as, e.g., various automated dynamic auctions). Intuitively, the genuinely
leaderless mechanisms for coalition formation, such as our maximal clique based ap-
proach, are less prone to “bottlenecks” and single points of failure than the coordination
strategies where certain agents are given special roles or the “leader” status. However,
this intuition needs to be both further theoretically investigated and experimentally val-
idated via appropriate comparative simulations and performance measurements.

Acknowledgment. Many thanks to Myeong-wuk Jang, Nirman Kumar and Reza Ziaei
for many useful discussions. This work was supported in part by the DARPA IPTO
TASK Program, contract # F30602-00-2-0586. The first author would also like to ac-
knowledge the travel grant from the MMAS’04 conference organizers.

References

1. N. M. Avouris, L. Gasser (eds.), “Distributed Artificial Intelligence: Theory and Praxis”,
Euro Courses Comp. & Info. Sci. vol. 5, Kluwer Academic Publ., 1992

2. D. H. Cansever, ”Incentive Control Strategies For Decision Problems With Parametric Un-
certainties”, Ph.D. thesis, Univ. of Illinois Urbana-Champaign, 1985

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, “Introduction to Algorithms”, MIT Press, 1990
4. M. R. Garey, D. S. Johnson, “Computers and Intractability: a Guide to the Theory of NP-

completeness”, W. H. Freedman & Co., New York, 1979
5. M. Jang, S. Reddy, P. Tosic, L. Chen, G. Agha, “An Actor-based Simulation for Studying

UAV Coordination”, Proc. 15th Euro. Symp. Simul. (ESS ’03), Delft, Holland, 2003
6. M. Jang, G. Agha, ”On Efficient Communication and Service Agent Discovery in Multi-

agent Systems,” 3rd Int’l Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (SELMAS ’04), pp. 27-33, May 24-25, Edinburgh, Scotland, 2004

7. N. Lynch, “Distributed Algorithms”, Morgan Kaufmann Publ., Wonderland, 1996
8. P. J. Modi, H. Jung, W. Shen, M. Tambe, S. Kulkarni, “A dynamic distributed constraint sat-

isfaction approach to resource allocation”, in Proc. 7th Int’l Conf. on Principles & Practice
of Constraint Programming, 2001

9. P. J. Modi, H. Jung, W. Shen, “Distributed Resource Allocation: Formalization, Complexity
Results and Mappings to Distributed CSPs”, technical report, Nov. 2002

10. P. J. Modi, W. Shen, M. Tambe, M. Yokoo, “An asynchronous complete method for dis-
tributed constraint optimization”, Proc. 2nd AAMAS ’03, Melbourne, Australia, 2003

11. J. Rosenschein, G. Zlotkin, “Rules of Encounter: Designing Conventions for Automated
Negotiations among Computers”, The MIT Press, Cambridge, Massachusetts, 1994

12. T. Sandholm and V. Lesser, “Issues in automated negotiation and electronic commerce:
Extending the contract net framework”, in 1st Int’l Conf. on Multiagent Systems, pp. 328-
335, San Francisco, 1995

13. T. Sandholm, V. Lesser, “Coalitions among Computationally Bounded Agents”, Artificial
Intelligence, spec. issue on “Principles of MAS”, 1997

14. O. Shehory, S. Kraus, “Coalition formation among autonomous agents: Strategies and com-
plexity”, Proc. MAAMAW’93, Neuchatel, Switzerland, 1993

15. O. Shehory, S. Kraus, “Task allocation via coalition formation among autonomous agents”,
Proc. 14th IJCAI-95, Montreal, August 1995

16. H. A. Simon, “Models of Man”, J. Willey & Sons, New York, 1957
17. R. G. Smith, “The contract net protocol: high-level communication and control in a dis-

tributed problem solver”, IEEE Trans. on Computers, 29 (12), 1980

120 P.T. Tošić and G.A. Agha

18. G. Tel, “Introduction to Distributed Algorithms”, 2nd ed., Cambridge Univ. Press, 2000
19. P. Tosic, M. Jang, S. Reddy, J. Chia, L. Chen, G. Agha, “Modeling a System of UAVs on a

Mission”, Proc. SCI ’03 (invited session), Orlando, Florida, 2003
20. P. Tosic, G. Agha, “Modeling Agents’ Autonomous Decision Making in Multiagent, Multi-

task Environments”, Proc. 1st Euro. Workshop on MAS (EUMAS ’03), Oxford, 2003
21. P. Tosic, G. Agha, “Maximal Clique Based Distributed Group Formation Algorithm for

Autonomous Agent Coalitions”, Proc. Workshop on Coalitions & Teams, within AAMAS
’04, New York City, July 19-23, 2004

22. For more on the TRANSIMS project at the Los Alamos National Laboratory, go to
http://www-transims.tsasa.lanl.gov/ (The ’Documents’ link includes a number of papers
and technical reports for the period 1995 - 2001)

23. D. J. Watts, “Small Worlds: The Dynamics of Networks Between Order and Randomness”,
Princeton Univ. Press, Princeton, N. Jersey, 1999

24. D. J. Watts, S. H. Strogatz, “Collective dynamics of ’small-world’ networks”, Nature 393,
1998

25. G. Weiss (ed.), “Multiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence”, The MIT Press, Cambridge, Massachusetts, 1999

26. M. Wooldridge, N. Jennings, “Intelligent Agents: Theory and Practice”, Knowledge Engin.
Rev., 1995

27. M. Yokoo, K. Hirayama, “Algorithms for Distributed Constraint Satisfaction: A review”,
AAMAS, Vol. 3, No. 2, 2000

28. M. Yokoo, “Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent
Systems”, Springer, 2001

29. G. Zlotkin, J.S. Rosenschein, “Coalition, cryptography and stability: Mechanisms for coali-
tion formation in task oriented domains”, Proc. AAAI’94, Seattle, Washington, 1994

	Introduction and Motivation
	Coalition Formation in Large-Scale Multi-agent Systems
	Related Work

	Problem Statement and Main Assumptions
	PD1OT1ptmptmmmnnMCDCF Algorithm
	Algorithm Description
	How MCDCF Algorithm Works: A Simple Example

	Algorithm Cost Analysis and Discussion
	Discussion

	Conclusion

