Using Passive Object Garbage Collection Algorithms for

Garbage Collection of Active Objects

Abhay Vardhan
Department of Computer Science,
University of lllinois
Urbana, lllinois

vardhan@uiuc.edu

ABSTRACT

With the increasing use of active object systems, agents and
concurrent object oriented languages like Java, the problem
of garbage collection (GC) of unused resources has become
more complex. Since active objects are autonomous compu-
tational agents, unlike passive object systems the criterion
for identifying garbage in active objects cannot be based
solely on reachability from a root set. This has led to devel-
opment of specialized algorithms for GC of active objects.
We reduce the problem of GC of active objects to that of
passive objects by providing a transformation of the active
object reference graph to a passive object reference graph so
that if a garbage collector for a passive object system is ap-
plied to the transformed graph, precisely those objects are
collected which correspond to garbage objects in the original
active object reference graph. The transformation technique
enables us to reuse the algorithms already developed for pas-
sive objects systems. We provide a proof of correctness of
the transformation and discuss its cost. An advantage of the
transformation is that it can prove valuable for mixed sys-
tems of active and passive objects by providing a common
approach to GC.

Categories and Subject Descriptors

D.3.4 [Programming Languages|: Processors—Memory
management (garbage collection)

General Terms
Algorithms

*This research was made possible in part by support from
the US Department of Defense Advanced Research Projects
Agency (DARPA contract number F30602-00-2-0586) and
from the Air Force Office of Scientific Research MURI con-
tract (AFSOR contract number F49620-97-1-0382).

*

Gul Agha
Department of Computer Science,
University of lllinois
Urbana, lllinois

agha@cs.uiuc.edu

Keywords

Garbage collection, actors, active objects, program transfor-
mation, Java, agents

1. INTRODUCTION

In distributed systems resources are often scattered across
autonomous hosts making it extremely difficult to manually
recognize when a particular resource can be safely reclaimed.
The increasing use of active objects systems, agents and
object-oriented languages like Java which provide threads,
has further added to the complexity of the problem. In such
systems, automating garbage collection is essential.

A substantial amount of research has been done in the
area of garbage collection for functional, procedural and
object-oriented languages in both sequential and distributed
systems. However, it has been commonly believed that al-
gorithms for garbage collection in these systems are not ap-
plicable directly for active object or actor systems. In tra-
ditional object-oriented systems, garbage collection involves
a directed graph called the reference graph with objects as
nodes and object references as edges. A subset of objects,
called root objects, are always considered non-garbage. The
problem of garbage collection is reduced to identifying and
removing objects that are not reachable from any object in
the root set.

In a system of actors, this is not an appropriate criterion
for garbage. To see this, consider an actor which is not
reachable from any root actor but is processing a message
and has a reference to a root actor. According to the notion
of garbage in passive object systems, such an actor should
be considered garbage. Observe that although the actor is
not be reachable from any root actor, the actor itself may
have a reference to the root actor. Thus, this actor may send
a message containing its address to the root actor it knows,
thereby making itself connected from that root. Clearly, this
actor cannot be considered garbage.

This paper focuses on the problem of garbage collection
of active objects in a distributed environment. Actors[2] are
autonomous computational agents which encapsulate data
as well as some primitive processive power to manipulate

Permission to make digital or hard copies of all or part of this work for the data. They offer an intuitive and powerful abstraction
personal or classroom use is granted without fee provided that copies arefor concurrent and distributed systems as they reflect the
not made or distributed for profit or commercial advantage and that copies real-world nature of interacting and autonomous entities.

bear this notice and the full citation on the first page. To copy otherwise, o Actors and its variants are a popular paradigm for pro-
republish, to post on servers or to redistribute to lists, requires prior specific gramming in a distributed environment. Some examples of

bermission and/or a fee. such systems include Actor Foundry[1], Act++[16], ABCL[39],

ISMM’'02, June 20-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-539-4/02/0006$5.00. Erlang[4] and Actalk[9]. There has also been a convergence

between languages developed to support other models of dis-
tributed computing, such as nomadic PICT[33] and Join cal-
culus[13], and the essential constructs in the Actors model.
Finally, various agent languages essentially support actor
semantics.

In this paper, we describe a transformation of the actor-
reference graph which captures all the information neces-
sary for actor GC, and makes it possible to apply a garbage
collection algorithm for passive objects to the transformed
graph in order to collect garbage actors. The transformation
represents each actor in the original graph by a pair of nodes
in the transformed graph. References between nodes in the
transformed graph are derived using rules which depend not
only on the actors to which know a particular actor, but also
on which actors it knows; and whether or not that actor has
messages pending in its mail queue.

2. PROBLEM DEFINITION

The actor model captures the essential properties of a
system of active objects.

Actors are formally defined in [2]. In the actor model,
the universe consists of autonomous computational agents
called actors. Each actor has a unique mail address which
can be used to communicate with that actor. Communica-
tion between actors is asynchronous with unbounded delay
but guaranteed delivery. Messages for an actor are buffered
in a mail queue. Computation is message driven and each
actor processes the messages it receives in its mail queue in
the order they were queued. Processing a message involves
executing a script which is called the behavior of the actor.
In response to a message, an actor may create new actors,
send messages to actors and possibly change its behavior as
shown in Figure 1 (See [3]).

The essentials of actor systems that are important in our
discussion about garbage collection are:

1. An actor which is processing a message can communi-
cate with another actor it knows of.

2. Mail addresses can be communicated in messages.

3. Communication is asynchronous and buffered (the sender

does not wait till the recipient is ready to receive a
message).

4. Message delivery time is unbounded but all messages
are eventually delivered. Note that this assumption is
required to show that all garbage is eventually recog-
nized (a liveness property).

Let G = (V, E) be a graph, with V' as the set of actors and
an edge present from a to b if actor a has a reference to b. bis
called a forward acquaintance of a and a is called an inverse
acquaintance of b. This graph is called the actor reference
graph. Note that the forward and the inverse acquaintance
each define a binary relation on the set of actor names.

A subset of actors p C V is called a root set and actors
in this set are never considered garbage. As an example,
in a module, the receptionist actors which are accessible
from outside the system could be considered root. An actor
which is either processing a message or has messages pending
in its mail-queue is called an unblocked actor. An actor
which is not unblocked is called a blocked actor. A blocked
actor which is not connected by the recursive closure of the

Actor

Thread

Figure 1: In response to a message, an actor can:
(1) modify its local state, or (2) create new actors,
or (3) send messages to acquaintances.

inverse acquaintance relation to an unblocked actor is called
a permanently blocked actor.

The set of live actors is defined inductively by the follow-
ing rules:

DEeFINITION 1. Identifying live actors
1. A root actor is live.
2. If an actor a is live, a forward acquaintance of a is live.

3. If an actor a is live, an inverse acquaintance of a which
is not permanently blocked is live.

An actor which is not live is garbage. As an example
application of the above rules, consider the actor reference
graph shown on the top part of Figure 3. It can be seen the
actors that are live are 1, 2, 3, 4, 5, 6 and 8.

The property of being garbage is a stable property: if
an actor is garbage in a given state, it will remain garbage
in any possible state derived from that state. For a de-
tailed presentation of the differences in garbage collection of
passive object and actor systems, the reader is referred to
Vardhan[35].

3. RELATED WORK

3.1 Actor garbage collection

A formal definition of garbage actors was first given by
Kafura et al.[18]. The basis of the algorithms presented in
their work is: marking actors with three different colors,
viz. black, gray and white, with black being the only color

which guarantees that an actor is live. The colors have the
following meaning;:

e Black: It has been shown that the actor is either a
root, can receive a message from a root or can send a
message to a root.

e Gray: The actor is not processing any messages and
does not have any pending messages but can commu-
nicate with a root actor if it later receives a message.

e White: It has not been shown that the actor can com-
municate with a root actor.

Initially, roots are marked black and the rest are marked
white. The color of actors is changed in accordance with a
set of coloring rules until no further change is possible. Ac-
tors which do not get colored black are reclaimed as garbage.
In a more recent paper, Kafura et al.[17] have described in
detail a distributed version of their algorithm. Local garbage
collection at different hosts is allowed to proceed indepen-
dently. A distributed global collector is invoked for collect-
ing garbage not recognizable by the local collectors. The
collector uses previously available algorithms for taking con-
sistent snapshots in a distributed system and for detecting
termination.

A hierarchical distributed garbage collection algorithm is
described by Venkatasubramanian et al.[36]. An approach
similar to mark-sweep is followed, with specialized marking
rules which are formulated according to the definition of
garbage in actors. A snapshot of the global system is formed
and messages in the network sent before an initial broadcast
are accounted for by sending “bulldoze” messages across the
network. The distributed system is partitioned into clusters
which are organized hierarchically to avoid the bottleneck
of computation and resource management.

A garbage collector for active objects in a massively par-
allel environment has been described by Kamada et al.[19].
In this work, all active objects are considered live. An inter-
esting feature of their algorithm is the use of a centralized
agent which handles many problems related to synchroniza-
tion and detection of termination of various phases of the
garbage collection.

Puaut [28, 29] presents an algorithm comprising of inde-
pendent local collectors loosely coupled to a global collec-
tor. The global collector is a logically centralized service
that maintains a graph which is a merge of subgraphs sent
by the local garbage collectors.

Dickman [12] presents an interesting algorithm called the
Partition Merging algorithm (PMA). A key idea of the algo-
rithm is that all actors reachable from an unblocked actor
(including the unblocked actor itself) have the same garbage
status. The main action of PMA is to form Eulerian cycles®
of actors having the same garbage status due to their being
reachable from one or more unblocked actors. The use of
Euler cycles enables the traversal to be completed in linear
time.

3.2 Distributed garbage collection

A number of collectors have been developed for distributed
object systems. Some of the algorithms based on reference
counting or reference listing are given by Bevan [7], Watson

! An Euler cycle in a connected directed graph is a cycle that
traverses each edge of the graph exactly once.

and Watson [38], Piquer [27], Shapiro et al.[34] and Birrel
et al.[8]. Rodriguez-Rivera et al.[31] propose an algorithm
based on reference listing augmented with back tracing. A
similar approach is followed by Maheshwari [26]. Rodriguez
et al.[30] also suggest an algorithm based on reference list-
ing with partial tracing in order to collect cyclic garbage.
Tracing is initiated at an object suspected to be a part of
a garbage cycle. Augusteijn [5] presents an algorithm based
on an incremental three-color mark-sweep algorithm applied
to a distributed object system. Juul et al.[15] propose an-
other distributed version of the incremental mark-sweep al-
gorithm. Ladin and Liskov [20] propose an algorithm that
relies on a logically centralized global garbage detection ser-
vice.

Hughes [14] describes an appealing algorithm where mark
bits are replaced by timestamps. The key idea is that a
garbage object’s timestamp remains constant whereas a non-
garbage object timestamp increases monotonically. Fessant
et al.[22] present an algorithm based on Hughes’ algorithm
in a simplified form that makes fewer assumptions about the
distributed system. Lang, Queinnec and Piquer [21] suggest
combining reference counting and mark-sweep in order to
perform garbage collection within groups.

Schelvis [32] proposes a comprehensive global garbage col-
lection algorithm based on time-stamp packet distribution.
Local garbage collection on different hosts proceeds inde-
pendently while a global garbage detection strategy tries to
reclaim the entrance nodes which have become garbage. For
global garbage detection, packets are asynchronously and re-
peatedly sent to each remotely referenced object. The algo-
rithm does not require any synchronization between different
processors but is still able to collect all garbage.

Louboutin et al.[24, 25, 23] present an interesting algo-
rithm which is able to collect all distributed garbage by
tracking causal dependencies of relevant mutator events.
Each remotely referenced object (called global root) main-
tains a log of timestamps of edge-creation or edge-deletion
events received from adjacent global roots. The timestamps
are propagated along the paths of the global root graph en-
abling each global root to construct causal histories of rel-
evant events which ultimately identifies objects which have
become garbage. The algorithm is reactive, incremental,
scalable, does not require synchronization among processes,
and is able to collect cyclic garbage.

4. GARBAGE COLLECTION FRAMEWORK

Without loss of generality we assume that there is a single
root actor r in the actor-reference graph: if there are more
than one root actors, we can add a hypothetical root ac-
tor which has references to the actual roots. Again without
loss of generality we assume that the root actor is always
unblocked. This is because whether or not the root is un-
blocked is only important for deciding liveness for an actor b
which has the root in the recursive closure of the inverse ac-
quaintance relation (by application of Rule 3 for identifying
live actors as in Definition 1). Thus, we might decide that b
is not permanently blocked when in fact it might have been
considered permanently blocked if the root was blocked. The
concern would then be that b should not be incorrectly clas-
sified as live. However, b must be in the recursive closure of
the forward acquaintance relation from the root and hence
by successive applications of Rule 2, will be considered live
regardless of the application of Rule 3. Therefore, it makes

Actor graph

—> Original links -] H("
= Additional links () au(n)

Figure 2: Transformation of an acquaintance in the
actor-reference graph

no difference to the garbage status of any actor whether the
root is blocked or unblocked.

Given the actor reference graph G = (V, E) and a root ac-
tor p € V, we define a transformation function 7 : (G, p) —
(G', p') where G’ = (V', E’) is another graph and p’ € V.
The nodes and edges of G’ are constructed from the follow-
ing rules:

RuLEs 1. Transformation 7 : (G, p) — (G',p') Let «
and p be bijective functions from actor names to labels such
that Range(a) N Range(u) = 0.

1. The root object p’ in G’ is given by p’ = u(p).

2. For every actor named a in V, there are two corre-
sponding nodes: a(a) € A’ and p(a) € M'. V' =
A'uM'.

3. If an actor a is unblocked, there is an edge from u(a)
to a(a) in G'.

4. If an actor a has a reference to an actor b, there is an
edge from a(a) to both a(b) and u(b); and an edge
from p(b) to p(a). Figure 2 illustrates this

Now the problem of actor garbage collection can be solved
by the following algorithm:

ALGORITHM 1.

1. Obtain a snapshot G = (V, E) of the actor reference
graph. This can be done by any of the standard tech-
niques for obtaining distributed snapshots, see for ex-
ample [37, 10].

2. Apply the transformation to obtain (G',p') = 7(G,p)
with G = (V',E") and V' = AU M'.

3. Run any passive object garbage collection on G' with V'
as the objects; E' as the edges defining the references;
and root object p'. Let V; C V' be the objects found as
garbage on G'.

4. For all v' € (Vg N A4"), actor o' (v') is declared as
garbage.

Before proving the correctness of this algorithm, we pro-
vide some intuition about the rules of transformation of the
actor reference graph. The key property that makes ac-
tor garbage collection different from passive object garbage
collection is that an unblocked actor can change the refer-
ence graph making itself reachable. The transformation is
designed to produce an object reference graph that auto-
matically captures this property of actors with respect to
garbage collection. For an actor a, we can think of a(a)
as the object corresponding to the actor itself and u(a) as
the object corresponding to its mail queue. If a has a ref-
erence to another actor b, the reference from «a(a) to a(b)
simply translates the reference from a to b. The references
from a(a) to u(b) and wu(b) to u(a) are present to account
for the possibility that a could send a message to b sending
its own address and making it reachable from b. But notice
that since the rules make only p(a) (and not a(a)) reachable
from p(b), a(a) does not “benefit” from these additional ref-
erences unless a is unblocked (and hence a(a) has a reference
from p(a)). In this manner all the relevant information of
actors a and b with respect to garbage collection is captured
in the transformed graph.

In a distributed system, the actor reference graph may be
spread across different hosts and may be changing dynam-
ically. Further, there might be messages in transit which
have not yet arrived in the destination actor’s mail queue.
These problems are resolved by obtaining a global snapshot
of the actor reference graph. Since there is no omniscient
observer in a distributed system, a global snapshot is usually
constructed by taking a consistent cut of the global state as
described in [37, 10].

We illustrate the transformation in Figures 3 and 4. For
actor names ¢ = {1, 6,10, 12} which are unblocked, there is
an edge from u(7) to «(i). Looking at this graph we can
see that a garbage collector for passive objects would re-
gard a(1), a(2), a(3), a(4), a(5), a(6) and «(8) as live and
all others objects in A’ as garbage. A look at the original
actor-reference graph shows that it is exactly actors 1, 2, 3,
4, 5, 6 and 8 that are live. Of special interest is «(6) in the
transformed graph. Because a(6) has a reference from 1(6)
which is reachable from p(1) (the root), it is correctly iden-
tified as being live. The reader can also note that, although
u1(7) is reachable in the transformed graph, «(7) is not. By
step 4 of Algorithm 1, it is «(7) that is used for deciding
garbage status of actor 7 and hence 7 is correctly identified
as garbage.

LEMMA 1. For any actor a, if a(a) is found live by a
passive object garbage collector in the transformed graph G’,
u(a) will also be live.

PROOF. In the shortest path from the root to a(a), let v’
the object before a(a) (note that a(a) cannot be the root
in G’). By the rules of the transformation, b’ is either u(a)
or a(b) for some other actor b. If b is u(a) then p(a) is
reachable from the root and is live. For the other case,
notice that by the rules of the transformation, «(b) will have
a reference to p(a) making it also live. [

Figure 4: Transformed object graph

THEOREM 1. An actor a is live in G = object a(a) is
live in G’

PROOF. Let P(a) be the property of actor a that object
a(a) is live in G'. We have to show that P(a) holds for any
actor a which is live. We use rule induction on the set of
live actors as given by Definition 1. The base case is for the
root actor p. By the definition of the transformation, u(p)
is the root object in G’. Further since the root actor can be
assumed to unblocked, a(p) is reachable from u(p) implying
that a(p) is live in G'. Hence, P(p) holds.

Now we have to show that for all instances of the rules,
if P(a) holds for a given live actor a, it also holds for the
actor derived to be live because of that rule.

Rule 2 states that if an actor a is live, then a forward
acquaintance of a [call it] is live. By the rules of the trans-
formation, a(a) has a reference to a(b). Hence, if P(a) holds,
a(b) is also live in G’ which means that P(b) holds.

Rule 3 states that if an actor a is live, then an inverse
acquaintance of a which is not permanently blocked [call it
b] is live. Let d1,ds ...d» be the sequence of actors with di
being an unblocked actor and d, = b such that d;41 is a
forward acquaintance of d; for i = 1...n — 1. There has to
be some such sequence since b is not permanently blocked
(note that n could be 1). If there are more than one such
sequences, we pick one with the smallest n. By the rules of
the transformation, u(di) has a reference to a(d1); p(dit1)
has a reference to p(d;) and a(d;) has a reference to a(di+1)
for i = 1...n — 1. Moreover, u(a) has a reference to pu(b).
Following these references as shown in Figure 5, we can see

that «(b) is reachable from p(a). If P(a) holds then a(a)
is live in G’ and using Lemma 1 we can conclude that u(a)
is live. Hence a(b) is live in G’ demonstrating that P(b)
holds. O

THEOREM 2. An object a’ € A’ is live in G' = actor
a™(a') is live in G

PrOOF. We use induction on the length of the shortest
path from p’ to a’. Since p’ ¢ A’, the length of the shortest
path from p’ has to be at least 1. For this base case, the
only possibility is that a’ =a(p) since by definition, all the
other references that p(p) has, can only be to objects in M’.
The claim holds trivially for this base case.

Assuming the induction hypothesis for lengths up to k,
consider an object ' € A’ found to be live in G’ with
shortest path length k + 1. Let actor a be a~'(a’). Along
the shortest path from p’, let the sequence of objects be
p,dy,ds,...,dy,a’. Then there are two possibilities:

.. € A’. The induction hypothesis applies for d},, hence
actor o *(d},) must be live. But then by the rules of the
transformation, a~'(d}) has a reference for a, hence a is
also live.

dj, =p(a). Since this means that p(a) has a reference to
a(a), by the rules of the transformation, this implies that
actor a is unblocked. Consider the following cases:

o At least one object in {di,d5...d}} is in A": Let dj
be the object with largest j such that d; € A’. This
implies d; € M’ Vi = j+1...k. By the induction hy-
pothesis, ! (d}) islive in G. By the rules of the trans-
formation, actor = '(d},,) is a forward acquaintance
of a”'(d}) and hence live. Further g~ '(dj,,) has a
in the reflexive closure of the inverse acquaintance re-
lation. Since a is unblocked, p1~ ' (dj) is not perma-
nently blocked and being an inverse acquaintance of
a live actor (a”'(d})) is live by Rule 3. Extending
this argument successively to u™'(dj o), p~ ' (dj1s),
.. 7 H(d},), a we can see that all of these are live as
shown in Figure 6.

e Otherwise: All of {d},d5...d},} are in M’. Using the
rules of transformation, it is easy to see that u~'(d})
has a in the reflexive closure of the inverse acquain-
tance relation. Since a is unblocked, p~*(d}) is not
permanently blocked and being an inverse acquain-
tance of a live actor (the root) is live by Rule 3. Again,
by extending this argument successively to u~'(d5),
pN(dy), ... pT1(dL), a we see that all of these are
live.

THEOREM 3.

1. Any actor a declared to be garbage by Algorithm 1 is
indeed garbage according to the formal definition of
garbage actors given in Definition 1

2. Any actor a which can be found to be garbage based on
Definition 1 will eventually be declared as garbage by
Algorithm 1.

d (b) a

Figure 5: Illustration for proof of Theorem 1

57:::{;

Figure 6: Illustration for proof of Theorem 2

PRrROOF.

1. Algorithm 1 declares an actor a to be garbage, if in
some snapshot G of the actor reference graph, a(a)
is garbage in the transformed graph G’. By the con-
trapositive of Theorem 1, a has to be garbage in G
according to Definition 1. Since an actor once garbage
can never become live again, a is indeed garbage in the
actor reference graph.

2. If an actor a is in fact garbage, since all messages are
eventually delivered, some snapshot of the actor ref-
erence graph is bound to capture it as being garbage
according to Definition 1. By the contrapositive of
Theorem 2, a(a) will be found to be garbage in the
transformed graph G’. Hence a will be correctly iden-
tified as garbage by Algorithm 1.

COST OF TRANSFORMATION AND OP-
TIMIZATIONS

For an actor a, the extra information added in the trans-
formed graph is the addition of another object; the reference
between u(a) and other objects; and the reference between
u(a) and a(a) for an unblocked actor. At first sight this
might appear to be excessive overhead. However, in prac-
tice, we can encode both u(a) and a(a) in a single object.
The link between the p(a) and a(a) can be represented by a
single bit in the state of this object, with the passive object
collector modified to recognize this bit as a reference. In a
mark-sweep like scheme, separate mark bits can be kept for
both the p(a) and a(a) in the state of the object itself. We
do have to maintain inverse acquaintances in order for u(a)
to be able to refer to u(b) for any inverse acquaintance b.

The main additional cost in transforming the graph is
building of inverse acquaintances for all actors. The inverse
acquaintances can be established at the time of garbage col-
lection or can be maintained incrementally as acquaintances

JAN

AN A
s

[0 blocked actor
/\ root actor

Figure 7: A reference graph in which maintaining
inverse acquaintances is advantageous.

are created. Maintaining inverse acquaintances presents a
trade off. There are some reference graphs in which main-
taining inverse acquaintances would be an unnecessary over-
head. However, in certain reference graphs it can be advan-
tageous. Consider Figure 7, which shows a reference graph
with an unblocked actor having a large number of actors in
the reflexive closure of the forward acquaintance relation.
The root actor does not have any forward or inverse ac-
quaintances. Any algorithm which does not keep inverse
acquaintances would have to trace all the actors in the re-
flexive closure in order to make sure there is no actor through
which a message can be passed to the root actor. On the
other hand, if inverse acquaintances are maintained it can
be easily seen without tracing the entire reachability set that
the set is garbage.

6. AN EXAMPLE INSTANTIATION

Our approach towards garbage collection of actors gives
us a family of algorithms which are parameterized by the
choice of the passive object garbage collector run on the
transformed graph. If we choose a simple mark-sweep as
the passive object garbage collector, the resulting algorithm
that we get bears a close similarity to a known algorithm for
garbage collection of actors given by Venkatasubramanian
et al.[36]. Their algorithm starts by marking root actors
as touched. For each touched actor, all forward acquain-
tances and non-blocked inverse acquaintances are marked
touched. Blocked inverse acquaintances are marked as sus-
pended. Blocked inverse acquaintances of suspended actors
are marked suspended but unblocked inverse acquaintances
are marked touched. The process continues till the marking
color of no actor can be changed. At that point, all touched
actors are considered as live and others as garbage.

Our mark-sweep on the transformed object-reference graph
proceeds in a manner identical to the algorithm given by

Venkatasubramanian et al.. When their algorithm proceeds
to mark an actor a touched, our algorithm proceeds to mark
both a(a) and p(a). When an actor is marked suspended in
their algorithm, p(a) but not a(a) is marked in our algo-
rithm.

7. DISCUSSION

We have implemented a garbage collector for actors based
on our framework in the Actor Foundry [1], which is an
actor system written in Java. The run-time environment
of the Actor Foundry consists of one or more Java Virtual
Machines running on possibly different hosts. The passive
garbage collector which runs on the transformed graph uses
the Schelvis [32] algorithm based on time-stamp packet dis-
tribution. Local garbage collection is allowed to proceed
independently on each host and a global garbage collection
service collects garbage which cannot be recognized on the
basis of local information alone. For details of the imple-
mentation, the reader is referred to [35].

In systems which have actors as well as passive objects,
our framework would be particularly useful since it would
offer a common approach for garbage collection. By extend-
ing the transformation described in this paper to references
which go from passive objects to actors and wice versa, a
passive garbage collector on the transformed graph could
be used to recognize both garbage actors and garbage ob-
jects in the original graph. This would avoid running two
separate garbage collectors for actors and passive objects
respectively.

The cost of using the GC transformation we have pre-
sented is not substantial. One requirement for the trans-
formation is the knowledge of inverse acquaintances of all
actors. Although such a requirement may be considered to
be an overhead, in certain cases maintaining inverse acquain-
tances can reduce the effort required for garbage collection.
Moreover, our transformation provides an elegant method
to integrate garbage collection of active and passive objects
in systems that support both kinds of objects.

8. REFERENCES

[1] The Actor Foundry.
http://www-osl.cs.uiuc.edu/foundry.

[2] G. Agha. Actors: A Model of Concurrent

Computation in Distributed Systems. MIT Press,

Cambridge, Mass., 1986.

G. Agha, N. Jamali, and C. Varela. Agent naming and

coordination: Actor based models and infrastructures.

In A. Omicini, F. Zambonelli, M. Klusch, and

R. Tolksdorf, editors, Coordination of Internet Agents:

Models, Technologies, and Applications, chapter 9,

pages 225-246. Springer-Verlag, Mar. 2001.

[4] J. Armstrong, M. Williams, and R. Virding.
Concurrent Programming in Erlang. Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[5] L. Augusteijn. Garbage collection in a distributed
environment. In de Bakker et al. [11], pages 75-93.

[6] Y. Bekkers and J. Cohen, editors. Proceedings of
International Workshop on Memory Management,
volume 637 of Lecture Notes in Computer Science, St
Malo, France, 16-18 Sept. 1992. Springer-Verlag.

[7] D. I Bevan. Distributed garbage collection using
reference counting. In PARLE Parallel Architectures

3

and Languages Europe, volume 259 of Lecture Notes in
Computer Science, pages 176-187. Springer-Verlag,
June 1987.

[8] A. Birrell, D. Evers, G. Nelson, S. Owicki, and
E. Wobber. Distributed garbage collection for network
objects. Technical Report 116, DEC Systems Research
Center, 130 Lytton Avenue, Palo Alto, CA 94301,
Dec. 1993.

[9] J.-P. Briot. Actalk: A testbed for classifying and
designing actor languages in the Smalltalk-80
environment. In S. Cook, editor, Proceedings
ECOOP’89, pages 109-129, Nottingham, 10-14 1989.
Cambridge University Press.

[10] K. M. Chandy and L. Lamport. Distributed
snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems,
3(1):63-75, 1985.

[11] J. W. de Bakker, L. Nijman, and P. C. Treleaven,
editors. PARLE’87 Parallel Architectures and
Languages Europe, volume 258/259 of Lecture Notes
in Computer Science, Eindhoven, The Netherlands,
June 1987. Springer-Verlag.

[12] P. Dickman. Incremental, distributed orphan detection
and actor garbage collection using graph partitioning
and euler cycles. In O. Babaoglu and K. Marzullo,
editors, Tenth International Workshop on Distributed
Algorithms WDAG’96, volume 1151 of Lecture Notes
in Computer Science, Bologna, Oct. 1996.
Springer-Verlag.

[13] C. Fournet and G. Gonthier. The reflexive chemical
abstract machine and the join-calculus. In Proceedings
of the 23rd ACM Symposium on Principles of
Programming Languages, pages 372-385, St.
Petersburg Beach, Florida, Jan. 21-24 1996. ACM.

[14] R. J. M. Hughes. A distributed garbage collection
algorithm. In J.-P. Jouannaud, editor, Record of the
1985 Conference on Functional Programming and
Computer Architecture, volume 201 of Lecture Notes
in Computer Science, pages 256—272, Nancy, France,
Sept. 1985. Springer-Verlag.

[15] N.-C. Juul and E. Jul. Comprehensive and robust
garbage collection in a distributed system. In Bekkers
and Cohen [6].

[16] D. Kafura, M. Mukherji, and G. Lavender. A class
library for concurrent programming in C++ using
actors, 1993.

[17] D. Kafura, M. Mukherji, and D. Washabaugh.
Concurrent and distributed garbage collection of
active objects. IEEE Transactions on Parallel and
Distributed Systems, 6(4), Apr. 1995.

[18] D. Kafura, D. Washabaugh, and J. Nelson. Garbage
collection of actors. In N. Meyrowitz, editor,
OOPSLA’90 ACM Conference on Object-Oriented
Systems, Languages and Applications, volume 25(10)
of ACM SIGPLAN Notices, pages 126-134, Ottawa,
Ontario, Oct. 1990. ACM Press.

[19] T. Kamada, S. Matsuoka, and A. Yonezawa. Efficient
parallel global garbage collection on massively parallel
computers. In E. Moss, P. R. Wilson, and B. Zorn,
editors, OOPSLA/ECOOP 93 Workshop on Garbage
Collection in Object-Oriented Systems, Oct. 1993.

[20] R. Ladin and B. Liskov. Garbage collection of a

(21]

(22]

23]

(24]

25]

[26]

27]

28]

29]

(30]

distributed heap. In International Conference on
Distributed Computing Systems, Yokohama, June
1992.

B. Lang, C. Quenniac, and J. Piquer. Garbage
collecting the world. In Conference Record of the
Nineteenth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices,
pages 39-50. ACM Press, Jan. 1992.

F. Le Fessant, I. Piumarta, and M. Shapiro. An
implementation for complete asynchronous distributed
garbage collection. In Proceedings of SIGPLAN’98
Conference on Programming Languages Design and
Implementation, ACM SIGPLAN Notices, Montreal,
June 1998. ACM Press.

S. Louboutin and V. Cahill. A lazy log-keeping
mechanism for comprehensive global garbage detection
on Amadeus. In OOIS (Object-Oriented Information
Systems) 95, pages 118-132, London, Dec. 1995.
Springer-Verlag. Technical report TCD-CS-95-11.

S. R. Louboutin. A Reactive Approach to
Comprehensive Global Garbage Detection. PhD thesis,
Trinity College, Dublin, 1998. In preparation.

S. R. Louboutin and V. Cahill. Comprehensive
distributed garbage collection by tracking causal
dependencies of relevant mutator events. In
Proceedings of ICDCS’97 International Conference on
Distributed Computing Systems. IEEE Press, 1997.
U. Maheshwari and B. Liskov. Collecting cyclic
distributed garbage by back tracing. In Proceedings of
PODC’97 Principles of Distributed Computing, 1997.
J. M. Piquer. Indirect reference counting: A
distributed garbage collection algorithm. In Aarts

et al., editors, PARLE’91 Parallel Architectures and
Languages Furope, volume 505 of Lecture Notes in
Computer Science. Springer-Verlag, June 1991.

1. Puaut. Distributed garbage collection of active
objects with no global synchronisation. In Bekkers
and Cohen [6].

I. Puaut. A distributed garbage collector for active
objects. In PARLE’9/ Parallel Architectures and
Languages Europe, Lecture Notes in Computer
Science. Springer-Verlag, 1994. Also INRTA
UCIS-DIFUSION RR 2134.

H. C. C. D. Rodrigues and R. E. Jones. Cyclic
distributed garbage collection with group merger.

31]

32]

33]

34]

(38]

39]

In E. Jul, editor, Proceedings of 12th European
Conference on Object-Oriented Programming,
ECOOPY8, Lecture Notes in Computer Science, pages
249-273, Brussels, July 1998. Springer-Verlag. Also
UKC Technical report 17-97, December 1997.

G. Rodriguez-Riviera and V. Russo. Cyclic distributed
garbage collection without global synchronization in
CORBA. In P. Dickman and P. R. Wilson, editors,
OOPSLA ’97 Workshop on Garbage Collection and
Memory Management, Oct. 1997.

M. Schelvis. Incremental distribution of timestamp
packets — a new approach to distributed garbage
collection. ACM SIGPLAN Notices, 24(10):37-48,
1989.

P. Sewell and P. Wojciechowski. Nomadic Pict:
Language and infrastructure design for mobile agents,
2000.

M. Shapiro, P. Dickman, and D. Plainfossé. SSP
chains: Robust, distributed references supporting
acyclic garbage collection. Rapports de Recherche
1799, Institut National de la Recherche en
Informatique et Automatique, Nov. 1992. Also
available as Broadcast Technical Report 1.

A. Vardhan. Distributed garbage collection of active
objects: A transformation and its applications to Java
programming. Master’s thesis, University of Illinois at
Urbana Champaign, October 1998.

N. Venkatasubramanian, G. Agha, and C. Talcott.
Scalable distributed garbage collection for systems of
active objects. In Bekkers and Cohen [6], pages
134-147.

N. Venkatasubramanian and C. L. Talcott. Reasoning
about meta level activities in open distributed
systems. In Symposium on Principles of Distributed
Computing, pages 144-152, 1995.

P. Watson and I. Watson. An efficient garbage
collection scheme for parallel computer architectures.
In de Bakker et al. [11], pages 432-443.

A. Yonezawa, J. R. Briot, and E. Shibayama.
Object-oriented concurrent programming in ABCL/1.
In Proceedings of the 1986 Conference on
Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’86), pages 258-268. ACM
Press, 1986.

