
Scalable Distributed Garbage Collection
for Systems of Active Objects?

Nalini Venkatasubramanian?? ? ? ?, Gul Agha∗∗∗, and Carolyn Talcott†

email: nalini@cs.uiuc.edu, agha@cs.uiuc.edu, clt@sail.stanford.edu

1 University of Illinois, Urbana-Champaign, IL 06120, USA
2 Stanford University, Stanford, CA USA

Abstract. Automatic storage management is important in highly par-
allel programming environments where large numbers of objects and pro-
cesses are being constantly created and discarded. Part of the difficulty
with automatic garbage collection in systems of active objects, such as
actors, is that an active object may not be garbage if it has references to
other reachable objects, even when no other object has references to it.
This is because an actor may at some point communicate its mail address
to a reachable object thereby making itself reachable. Because messages
may be pending in the network, the asynchrony of distributed networks
makes it difficult to determine the current topology. Existing garbage
collection schemes halt the computation process in order to determine if
a currently inaccessible actor may be potentially active, thus precluding
a real-time response by the system. We describe a generation based algo-
rithm which does not require ongoing computation to be halted during
garbage collection. We also outline an informal proof of the correctness
of the algorithm.

Keywords: actors, asynchrony, distributed systems, generation scaveng-
ing, network clearance, broadcast and bulldoze communication, snapshot.

1 Introduction

We describe a garbage collection algorithm, HDGC (hierarchical distributed
garbage collection), for systems of active objects distributed across a network
of nodes. An important advantage of our algorithm is that it is non-disruptive:
it does not halt or otherwise interfere with the ongoing computation process. A
? This research was partially supported by DARPA contract NAG2-703, by DARPA

and NSF joint contract CCR 90-07195, by ONR contract N00014-90-J-1899, and by
the Digital Equipment Corporation.

?? Current address: Hewlett Packard Company, 19111 Pruneridge Avenue MS44UT,
Cupertino, CA 95014, USA.

? ? ? Department of Computer Science, University of Illinois at Urbana-Champaign, Ur-
bana, IL 61801

† Department of Computer Science, Stanford University, Stanford, CA 94305



novel feature is the recording of a GC-snapshot to obtain a consistent local and
global view of the accessability relation. The algorithm is described in terms
of the actor model. However, it is applicable to any language supporting dy-
namic creation and reconfiguration of objects (passive or active), executed on a
network with a global name space distributed across the nodes 1. The HDGC
algorithm can be adapted to a wide range of parallel architectures including fine,
medium or large grained MIMD machines, message passing, shared memory or
distributed shared memory machines, or networks of workstations. This paper
presents the conceptual aspects of the algorithm. An implementation effort is in
progress. There are numerous possible optimizations. These are discussed briefly
in the conclusion.

The Actor Model [Hew77,Agh86] provides a good abstraction for discussing
concurrent computation in distributed systems. Here, the universe contains com-
putational agents called actors. Each actor has a conceptual location (its mail
address) and a behavior. The only way one actor can influence the actions of
another actor is to send the latter a communication. Communication between
actors is asynchronous, and every communication sent will be delivered after
some finite but unbounded delay (fairness of mail delivery). If an actor α knows
the mail address of an actor β, then β is called a forward acquaintance of α and α
is called an inverse acquaintance of β. An actor can send communications only to
its forward acquaintances. Mail addresses of actors may be communicated: thus
the interconnection topology is dynamic. We call the actor addresses occurring
in a communication the acquaintances of that communication. On receiving a
communication, an actor processes the message and as a result may cause one or
more of the following actions: (1) creation of a new actor, (2) alteration of its be-
havior and its acquaintances, (3) transmission of a message to an existing actor.
Every actor is equipped with a mailbox that queues incoming communications.

In order to make sense of the notion of distributed memory management we
need to refine the abstract actor model to account for local grouping of actors on
nodes (processing units) and to account for the network interconnecting these
nodes. We assume that the network consists of channels linking pairs of nodes.
Each channel consists of a pair of directed links (one in each direction) with
infinite message buffers. We require that message order is preserved across a
single link and that the network routing satisfies certain progress-only constraints
that will be made precise in the next section. In addition to normal messages
between actors, there will also be special messages used for GC.

Traditionally, garbage is detected by starting with some pre-defined root
set and forming the transitive closure of the acquaintance (referenced objects)
relation. In actor-like systems there are two problems. First, the acquaintance
relation is distributed and changes dynamically. Thus we must find a way of es-
tablishing a GC start time and determining the acquaintance relation as of this
point in time, as a distributed snapshot. Second, simply following acquaintance
links from the root set is not adequate. This is because, using that definition,
a non-reachable actor can become reachable, at some later time, by communi-

1 This memory architecture is often referred to as distributed shared memory



cating its address to a reachable actor. These problems are addressed in the
HDGC algorithm by first obtaining a (locally and globally) consistent snapshot
of the acquaintance relation, then computing reachability according to an al-
gorithm that accounts for actors that are potentially reachable relative to the
snapshot. The HDGC algorithm is conservative, i.e., it identifies only a subset
of inaccessible objects during a GC. For example, a potentially reachable object
may become inactive without communicating its mail address to any reachable
object. However, all unreachable objects will be collected by some subsequent
GC.

The remainder of the paper is organized as follows. In §2 we outline the full
HDGC algorithm. In §3 we present the algorithm for establishing a consistent
snapshot of the acquaintance relation at the start of GC. In §4 we define reach-
ability and present an algorithm for marking reachable objects. §5 contains an
informal outline of a proof of correctness. §6 contains concluding remarks.

2 Hierarchical Distributed Garbage Collection

A hierarchical organization partitions a distributed system into smaller subsys-
tems. These subsystems may in turn be further partitioned. The topmost level
of the hierarchy is the entire system. The lowermost level of the hierarchy has
a single node per subsystem. There may be zero or more intermediate levels.
The organization of the distributed system into subsystems may be static or
dynamic (cf. [LQP92]). The motivation for dividing a large, distributed system
into smaller subsystems is to avoid the bottleneck inherent in global resource
management.

To accurately determine garbage in a subsystem at any level other than
the top level, it is necessary to know which internal actor addresses have been
communicated to some external actor. Such actors are called the receptionists
of the subsystem. They must be considered reachable (part of the root set) for
a GC local to the subsystem. A receptionist table is constructed by adding an
actor whenever a reference to that actor is passed out of the subsystem. This
provides a conservative approximation to reachability. It can be improved by
determining when entries in the receptionist tables are no longer accessible, but
this requires global cooperation. The approximation can also be improved by
maintaining a reference count of the number of outstanding references to each
receptionist (cf. [SGP90]). This also entails some overhead.

With purely local GC, the additional synchronization mechanisms presented
here are not necessary. Each node independently maintains a receptionist ta-
ble that becomes a part of the root set for local GC. We believe that accurate
receptionist table management entails a high overhead especially if the objects
are not large grained. Furthermore, we would like to provide a mechanism to
preserve the globality of information required for massively parallel MIMD com-
putation. Note that the algorithm presented here can be suitably modified to
avoid synchronization if GC is purely local.



We present the HDGC Algorithm in the context of a two level hierarchy, i.e.
global and node level collections. The generalization to hierarchies with inter-
mediate levels is relatively straightforward. We can use any of the traditional
algorithms for local GC. The best algorithm to use will depend on the granular-
ity of the nodes as well as on particular application domains. It is not necessary
for all nodes to use the same algorithm.

The HDGC algorithm consists of five steps: Pre-GC, DistributedScavenge,
Local-Clear Initiation, Local-Clear, and Post-GC. There is a unique (per sub-
system) special actor designated as the GC-root actor. Requests for GC go to
the GC-root actor and sequencing of the GC steps are synchronized through the
GC-root actor. Thus the algorithm does not require a global clock in the system.
We describe the purpose of each step below. The steps are initiated and carried
out by communication of GC related messages. Details are given in the following
sections. The behavior of the GC-root actor will be described after these details
have been filled in.
Step 1: Pre-GC. In a system with distributed state there is no uniquely deter-
mined global state. Thus to compute some property of the state it is generally
necessary to determine a global snapshot that determines a consistent view of
the state. In the case of the acquaintance relation for an actor system, the prob-
lem of obtaining a consistent global snapshot involves an additional subtilty.
The asynchrony of communication together with the ability to communicate ac-
quaintances means that at any given time, there can be communications in the
network whose acquaintances are no longer acquaintances of the sender, and
not yet acquaintances of the receiver. This means that before a snapshot of the
acquaintance relation can be taken, the network must be cleared of such com-
munications. During the pre-GC step each node is notified that a GC has been
initiated, and the network is cleared of messages in transit at the time GC was
initiate. This defines a local start-of-GC time on each node that is globally con-
sistent. Each node records GC information relative to its start-of-GC time that
will persist throughout the duration of the GC. The combined local information
forms a consistent global snapshot of the system state that is adequate to deter-
mine the reachability of each actor in the system. We call this the GC snapshot .
A detailed description of information and of the process of recording the GC
snapshot is presented in section 3.
Step 2: The Distributed Scavenge Phase. During this step, actors that
are non-garbage relative to the GC snapshot are marked touched. The definition
of non-garbage and the distributed scavenge algorithm for marking non-garbage
actors is described in section 4.
Step 3: Local-Clear Initiation. Each node in the system is informed that the
distributed scavenge phase has completed and local clearance begins. On each
node, objects not marked touched are cleared from local memory, according
the nodes method of memory management, and any other actions (updating
receptionist tables, etc.) entailed by this reclamation are carried out.
Step 4: Local-Clear Phase. This step detects when all nodes have completed
the local clearance initiated in the previous step.



Step 5: Post GC Broadcasts. This step informs each node that the current
GC is complete: each node can now note that GC is no longer in progress and
update necessary information to reflect this state. At the end of this step a new
GC can be initiated at anytime.

3 Asynchrony in Distributed GC

In this section we describe how the start-of-GC time is established and how the
recording of the GC snapshot is accomplished. The key idea is that in addition to
ordinary (actor-to-actor) communications, new types of messages are introduced
that propagate through the network in pre-established patterns, and can thus be
used for various forms of synchronization. To describe these messages, we make
additional assumptions about the network topology.

3.1 Message Routing in the Network

For simplicity we restrict our attention to networks of nodes that form two
dimensional grids. Such a grid contains an m × n array of nodes. Each node is
designated by a pair of integers (a1, a2), where 1 ≤ a1 ≤ m and 1 ≤ a2 ≤ n. A
node (a1, a2), is an Fneighbor of a node (b1, b2) if either a1 = b1 +1 and a2 = b2,
or a2 = b2 + 1 and a1 = b1. Similarly, a node (a1, a2), is a Bneighbor of a node
(b1, b2) if a1 = b1 − 1 and a2 = b2, or a2 = b2 − 1 and a1 = b1. Connecting
each Fneighbor/Bneighbor pair of nodes X/Y is a channel comprised of a pair
of unidirectional FIFO links, one from X to Y and one from Y to X. An Fpath
is a path in the network that progresses only along Fneighbor links. A path in
the network that progresses only along Bneighbor links is a Bpath. We call (1, 1)
the start node of the system. It is the unique node from which there exists an
Fpath to every other node in the system. Dually, we call (m,n) the finish node.
It is the unique node from which there exists a Bpath to every other node in the
system.

Ordinary messages are assumed to be routed from the node where the sender
resides to the node where the receiver resides via paths that are progress-only
in the sense that the paths contain at most one Fpath segment and at most one
Bpath segment. Thus the route of an ordinary message is either an Fpath, a
Bpath, an Fpath followed by a Bpath, or a Bpath followed by an Fpath.

In addition to ordinary messages, we introduce two kinds of node-to-node
messages: broadcast messages and bulldoze messages. These messages propagate
to every node in the system, and are used for synchronization and network
clearance. The node-to-node messages may also contain information indicating
actions to be carried out. Broadcast messages are propagated from the start
node to all the nodes in the network, along some subset of links. The protocol
for propagating a broadcast message is illustrated in Figure 4. Each node has
a designated set of broadcast predecessors and broadcast successors. A node can
issue a broadcast message to its broadcast successors only after it has received
the message from all of its broadcast predecessors. The broadcast is considered



complete when the finish node has received messages from all of its broadcast
predecessors.

-bb-error =

Fig. 1. The Broadcast Wavefront: The figure shows the broadcast messages traversing
through the network as a wavefront. The broadcast messages are initiated at the start
node and travel along indicated route to every node in the network.

There are two types of bulldoze messages, Fbulldoze messages and Bbull-
doze messages. Fbulldoze messages are initiated at the start node and propagate
along all Fneighbors links. Non-start nodes in the network issue an Fbulldoze
message to their Fneighbors only after they receive Fbulldoze message from all
of their Bneighbors. Dually, Bbulldoze messages are initiated at the finish node
and propagate along all Bneighbor links, and non-finish nodes in the network
can issue a Bbulldoze message to its Bneighbors only after it receives the Bbull-
doze message from both its Fneighbors. The propagation of a bulldoze message
forms a wave as illustrated in Figure 5. Bulldoze messages traverse every channel
in the network and, by the FIFO assumption on links, force messages already
in the network to be cleared along the direction of the bulldoze. A broadcast
message does not in general traverse all forward links in the network. Thus the
number of messages needed to accomplish a broadcast is less than the number
of messages needed to accomplish a bulldoze.

-bb-error =

Fig. 2. The Forward and Backward Bulldoze Wavefronts: The figure shows the for-
ward (FB) and backward bulldoze (BB) messages traversing through the network as
a wavefront. The FB messages are initiated at the start node and travel along Fpaths
until they reach the finish node. The BB messages are initiated at the finish node and
travel along Bpaths until they reach the start node.

3.2 Obtaining a Consistent GC Snapshot

A GC snapshot consists of acquaintance and active status information that de-
termines a consistent global view of the state of the system at start-of-GC time.
Each node records, for each of its actors, its GC-acquaintances, its GC-inverse-
acquaintances, and whether or not it was active at start-of-GC time. The GC-
acquaintances of an actor are the current acquaintances, plus any acquaintances
in messages in the network prior to the start of actual garbage collection. This
is a safe approximation of the actors acquaintances, and insures that actors ac-
tually forgotten by one actor but sent in messages during GC will not be lost.
The GC-inverse-acquaintances of an actor the set of actors having that actor as



a GC-acquaintance. This information is used to account for apparently unreach-
able actors that might communicate their mail addresses to a reachable actor.
The GC acquaintance information is used only for GC and can be discarded
when the GC for which it was created is complete.

For a global snapshot of the state of the system, we need to guarantee that
both local consistency and global consistency have been achieved. Every node in
the system needs a point of reference in time with respect to which it determines
the accessibility or inaccessibility of actors in its memory. Once a node has
established this point and recorded the necessary information, we have attained
local consistency. Global consistency is a point in time when all participating
nodes have agreed on a particular state of the distributed system.

In order to determine which messages were in the network prior to the start of
GC and which entered after, ordinary messages are given tags to classify them as
old or new messages. Old (resp. new) messages are messages which were created
prior to (resp. after) the time of the GC snapshot. When GC is initiated, all
messages in the network are tagged old. During the process of recording the GC
snapshot, the network will be cleared of old messages by means of the forward
and backward bulldoze messages explained above.

To obtain the GC snapshot, first a pre-GC message is broadcast to every node
in the system. When a node receives the pre-GC broadcast message, it initializes
the GC-acquaintances of each actor residing on that node with (1) its current
acquaintances and (2) all acquaintances contained in messages currently resid-
ing in its mail queue. Any acquaintances contained in old messages subsequently
obtained from the network are added to the GC-acquaintances. It also initializes
GC-inverse-acquaintances to be empty. When the pre-GC broadcast is complete,
a pre-GC Fbulldoze message is initiated (by the finish-node). When the pre-GC
Fbulldoze message passes a node, it marks as active any objects with non-empty
mailqueue. The active status of this node is retained for the current GC even
though the node may become inactive during GC. Any messages subsequently
communicated from that node are be tagged new. The new tag on a message
guarantees the recipient of the message that any acquaintances communicated
in the message have already been accounted for. When the Fbulldoze message
reaches the finish node a Bbulldoze message is initiated. When the Bbulldoze
message passes a node, this signals that the recording of GC-acquaintances is
complete. The node sends I-know-you messages from each of its actors to each
GC-acquaintance of that actor. When an I-know-you message from actor A to
actor B is received then actor A is added to the GC-inverse-acquaintances of
actor B. A second forward and backward bulldoze phase is required to clear the
network of I-know-you messages. This is initiated by the start node upon com-
pletion of the first backward bulldoze wave. When the second forward/backward
bulldoze wave is complete, the start node sends a pre-GC-complete message to
the root node. At this point, all old and I-know-you messages in the system have
been cleared from the network and the snapshot information is recorded.

The backwards bulldoze messages are needed for both the recording of GC-
acquaintances and GC-inverse-acquaintances, since the forward bulldoze only



clears forwards links and there may be messages traversing backwards links that
need to be recorded. To see this, note that after an object, say A, has received
the pre-GC Fbulldoze message it can send only new messages. However, it may
receive old messages from an actor H which has not yet received the pre-GC
Fbulldoze message (see Figure 6).

-bb-error =

Fig. 3. The Bulldoze Wavefront in Progress: The bulldoze wavefront is halfway through
the system. Although object A has started recording acquaintances and issues only new
messages, it can receive and old messages from object H which has not yet received the
bulldoze wave.

4 Asynchrony in Distributed GC

In this section we describe how the start-of-GC time is established and how the
recording of the GC snapshot is accomplished. The key idea is that in addition to
ordinary (actor-to-actor) communications, new types of messages are introduced
that propagate through the network in pre-established patterns, and can thus be
used for various forms of synchronization. To describe these messages, we make
additional assumptions about the network topology.

4.1 Message Routing in the Network

For simplicity we restrict our attention to networks of nodes that form two
dimensional grids. Such a grid contains an m × n array of nodes. Each node is
designated by a pair of integers (a1, a2), where 1 ≤ a1 ≤ m and 1 ≤ a2 ≤ n. A
node (a1, a2), is an Fneighbor of a node (b1, b2) if either a1 = b1 +1 and a2 = b2,
or a2 = b2 + 1 and a1 = b1. Similarly, a node (a1, a2), is a Bneighbor of a node
(b1, b2) if a1 = b1 − 1 and a2 = b2, or a2 = b2 − 1 and a1 = b1. Connecting
each Fneighbor/Bneighbor pair of nodes X/Y is a channel comprised of a pair
of unidirectional FIFO links, one from X to Y and one from Y to X. An Fpath
is a path in the network that progresses only along Fneighbor links. A path in
the network that progresses only along Bneighbor links is a Bpath. We call (1, 1)
the start node of the system. It is the unique node from which there exists an
Fpath to every other node in the system. Dually, we call (m,n) the finish node.
It is the unique node from which there exists a Bpath to every other node in the
system.

Ordinary messages are assumed to be routed from the node where the sender
resides to the node where the receiver resides via paths that are progress-only
in the sense that the paths contain at most one Fpath segment and at most one
Bpath segment. Thus the route of an ordinary message is either an Fpath, a
Bpath, an Fpath followed by a Bpath, or a Bpath followed by an Fpath.



In addition to ordinary messages, we introduce two kinds of node-to-node
messages: broadcast messages and bulldoze messages. These messages propagate
to every node in the system, and are used for synchronization and network
clearance. The node-to-node messages may also contain information indicating
actions to be carried out. Broadcast messages are propagated from the start
node to all the nodes in the network, along some subset of links. The protocol
for propagating a broadcast message is illustrated in Figure 4. Each node has
a designated set of broadcast predecessors and broadcast successors. A node can
issue a broadcast message to its broadcast successors only after it has received
the message from all of its broadcast predecessors. The broadcast is considered
complete when the finish node has received messages from all of its broadcast
predecessors.

-bb-error =

Fig. 4. The Broadcast Wavefront: The figure shows the broadcast messages traversing
through the network as a wavefront. The broadcast messages are initiated at the start
node and travel along indicated route to every node in the network.

There are two types of bulldoze messages, Fbulldoze messages and Bbull-
doze messages. Fbulldoze messages are initiated at the start node and propagate
along all Fneighbors links. Non-start nodes in the network issue an Fbulldoze
message to their Fneighbors only after they receive Fbulldoze message from all
of their Bneighbors. Dually, Bbulldoze messages are initiated at the finish node
and propagate along all Bneighbor links, and non-finish nodes in the network
can issue a Bbulldoze message to its Bneighbors only after it receives the Bbull-
doze message from both its Fneighbors. The propagation of a bulldoze message
forms a wave as illustrated in Figure 5. Bulldoze messages traverse every channel
in the network and, by the FIFO assumption on links, force messages already
in the network to be cleared along the direction of the bulldoze. A broadcast
message does not in general traverse all forward links in the network. Thus the
number of messages needed to accomplish a broadcast is less than the number
of messages needed to accomplish a bulldoze.

-bb-error =

Fig. 5. The Forward and Backward Bulldoze Wavefronts: The figure shows the for-
ward (FB) and backward bulldoze (BB) messages traversing through the network as
a wavefront. The FB messages are initiated at the start node and travel along Fpaths
until they reach the finish node. The BB messages are initiated at the finish node and
travel along Bpaths until they reach the start node.



4.2 Obtaining a Consistent GC Snapshot

A GC snapshot consists of acquaintance and active status information that de-
termines a consistent global view of the state of the system at start-of-GC time.
Each node records, for each of its actors, its GC-acquaintances, its GC-inverse-
acquaintances, and whether or not it was active at start-of-GC time. The GC-
acquaintances of an actor are the current acquaintances, plus any acquaintances
in messages in the network prior to the start of actual garbage collection. This
is a safe approximation of the actors acquaintances, and insures that actors ac-
tually forgotten by one actor but sent in messages during GC will not be lost.
The GC-inverse-acquaintances of an actor the set of actors having that actor as
a GC-acquaintance. This information is used to account for apparently unreach-
able actors that might communicate their mail addresses to a reachable actor.
The GC acquaintance information is used only for GC and can be discarded
when the GC for which it was created is complete.

For a global snapshot of the state of the system, we need to guarantee that
both local consistency and global consistency have been achieved. Every node in
the system needs a point of reference in time with respect to which it determines
the accessibility or inaccessibility of actors in its memory. Once a node has
established this point and recorded the necessary information, we have attained
local consistency. Global consistency is a point in time when all participating
nodes have agreed on a particular state of the distributed system.

In order to determine which messages were in the network prior to the start of
GC and which entered after, ordinary messages are given tags to classify them as
old or new messages. Old (resp. new) messages are messages which were created
prior to (resp. after) the time of the GC snapshot. When GC is initiated, all
messages in the network are tagged old. During the process of recording the GC
snapshot, the network will be cleared of old messages by means of the forward
and backward bulldoze messages explained above.

To obtain the GC snapshot, first a pre-GC message is broadcast to every node
in the system. When a node receives the pre-GC broadcast message, it initializes
the GC-acquaintances of each actor residing on that node with (1) its current
acquaintances and (2) all acquaintances contained in messages currently resid-
ing in its mail queue. Any acquaintances contained in old messages subsequently
obtained from the network are added to the GC-acquaintances. It also initializes
GC-inverse-acquaintances to be empty. When the pre-GC broadcast is complete,
a pre-GC Fbulldoze message is initiated (by the finish-node). When the pre-GC
Fbulldoze message passes a node, it marks as active any objects with non-empty
mailqueue. The active status of this node is retained for the current GC even
though the node may become inactive during GC. Any messages subsequently
communicated from that node are be tagged new. The new tag on a message
guarantees the recipient of the message that any acquaintances communicated
in the message have already been accounted for. When the Fbulldoze message
reaches the finish node a Bbulldoze message is initiated. When the Bbulldoze
message passes a node, this signals that the recording of GC-acquaintances is
complete. The node sends I-know-you messages from each of its actors to each



GC-acquaintance of that actor. When an I-know-you message from actor A to
actor B is received then actor A is added to the GC-inverse-acquaintances of
actor B. A second forward and backward bulldoze phase is required to clear the
network of I-know-you messages. This is initiated by the start node upon com-
pletion of the first backward bulldoze wave. When the second forward/backward
bulldoze wave is complete, the start node sends a pre-GC-complete message to
the root node. At this point, all old and I-know-you messages in the system have
been cleared from the network and the snapshot information is recorded.

The backwards bulldoze messages are needed for both the recording of GC-
acquaintances and GC-inverse-acquaintances, since the forward bulldoze only
clears forwards links and there may be messages traversing backwards links that
need to be recorded. To see this, note that after an object, say A, has received
the pre-GC Fbulldoze message it can send only new messages. However, it may
receive old messages from an actor H which has not yet received the pre-GC
Fbulldoze message (see Figure 6).

-bb-error =

Fig. 6. The Bulldoze Wavefront in Progress: The bulldoze wavefront is halfway through
the system. Although object A has started recording acquaintances and issues only new
messages, it can receive and old messages from object H which has not yet received the
bulldoze wave.

5 Detection of garbage

In this section we give a definition of reachability that takes into account the
ability of an active object to become known by communicating its mail address.
We then present an algorithm for marking objects that are reachable according
to this definition. We conclude with a description of the behavior of the GC-root
actor, which provides an overview of the complete HDGC algorithm.

5.1 Definition of reachability

The definition of reachable objects in an actor-based system is derived from the
work of Kafura et al [KWN90]. The root set is a pre-defined set of actors from
which reachability is traced. It includes actors referenced in the current compu-
tation state of the system (environment variables, control structures like stacks
etc.). A GC snapshot of the system state determines a conservative approxi-
mation of the acquaintance relation. As mentioned in the introduction, in an
actor computation, the transitive closure of this relation starting from the root
set is not adequate to determine reachability, since an inverse acquaintance of
a reachable actor may communicate its mail address at any point of time to its
reachable acquaintance, thereby making itself reachable. Thus we cannot ignore
the inverse acquaintances in determining reachability.



An actor which is currently processing messages or has messages pending in
the network or in its mail queue is an active actor, otherwise, it is an inactive
actor. An inactive actor which is not connected by the transitive closure of the
inverse acquaintance relation to an active actor is a permanently inactive actor.
An actor that is permanently inactive can never communicate its mail address
and can be safely regarded as unreachable. The set of reachable actors is defined
inductively as the least set such that:

– A root actor is a reachable actor.
– Every forward-acquaintance of a reachable actor is reachable.
– If an actor is reachable, then every inverse acquaintance of that actor which

is not permanently inactive is reachable.

A garbage actor is an actor which is not reachable according to the above defi-
nition.

5.2 Distributed Scavenging

The algorithm for marking the reachable objects in the system, distributed scav-
enging, follows the inductive definition of reachability. To record the reachable
objects, each object of the system has associated with it an object-status which
may be touched, untouched or suspended. Touched objects are objects which are
known to be reachable. Untouched objects have not yet been visited during GC.
Objects that remain untouched at the completion of GC are unreachable. Sus-
pended objects are inactive objects that are inverse acquaintances of reachable
(touched) objects. If an active inverse acquaintance of such an object is found
then the object will become touched. An object that remains suspended at the
completion of GC is also unreachable. When GC is initiated all actors in the
system have status untouched. Any actors created after the start of GC on a
node are marked as touched.

The marking of objects is accomplished by propagation of GC and GC-1

messages from the roots and by backpropagation of GC-ack and GC-1ack mes-
sages. It is initiated at the GC-root by sending GC messages to all the root
actors. It is complete when GC-acks have been received by the GC-root from
all root actors. The process of touching the accessible nodes is carried out in
accordance with the Principle of Monotonicity which states that once an actor
has been marked as touched during a GC, it cannot subsequently be untouched
or suspended during the same GC. Below we summarize the actions caused by
receipt of one of the GC marking messages.
A GC message from actor B to actor A is processed as follows:

– if A is touched then a GC-ack message is sent to B from A
– if A is untouched then A becomes touched, and

• a GC message is sent to each GC-acquaintance of A,
• a GC-1 message is sent to each GC-inverse-acquaintance of A,
• When GC-ack/GC-1ack messages have been received from all GC-acquaintances

and GC-inverse-acquaintances, a GC-ack is sent to B from A.



– if A is suspended then A becomes touched, and
• a GC message is sent to the GC-acquaintances of A,
• When GC-ack messages have been received from all GC-acquaintances

and outstanding GC-1ack messages have been received from GC-inverse-
acquaintances (to GC-1 messages sent at suspension time) then a GC-ack
is sent to B from A.

A GC-1 message from actor B to actor A is processed as follows:

– if A is touched then a GC-1ack is sent to B from A
– if A is untouched then

• if A is active then A becomes touched, and proceeds as in the GC message
case,

• if A is inactive, then A becomes suspended and sends GC-1 messages
to its GC-inverse-acquaintances. When GC-1ack messages have been re-
ceived from all GC-inverse-acquaintances, a GC-1ack is sent to B from
A.

– if A is suspended then it remains suspended and sends a GC-1ack to B

This basic distributed scavenging algorithm can be adapted to provide a gen-
erational version by extending Ungar’s Generation Scavenging scheme [Ung84].
A tag field associated with every actor which encodes the generation to which
the actor belongs. When a GC is called, the generation bits in the tag field of
accessible objects are altered. This is logically equivalent to moving the object
from one generation to another. The copy-count bits, also a part of the tag field,
are used to implement a tenuring policy and are incremented whenever the ob-
ject survives a GC. When this count reaches a threshold value, the object is
tenured from ScavengeSpace to Oldspace.

5.3 Behavior of a GC-root actor

An overall view of HDGC is given by describing the behavior of the GC-root ac-
tor. The GC-root actor remembers whether or not a GC is currently in progress.
We summarize below the actions of the GC-root actor for each message it can
receive.

– GC-initiate: This can come from any node wishing to initiate a GC. If a GC
is not in progress, then a pre-GC broadcast is initiated at the start node
and the GC-root remembers that a GC is in progress, otherwise the sender
is informed that a GC is in progress.

– pre-GC-complete: This is sent by the start node when the second forward/backward
bulldoze wave is complete. The distributed scavenge phase is initiated by
sending GC messages to each root actor. When GC-acks have been received
from all the root actors, a Local-Clear-Init broadcast is initiated at the start
node. Local clearance is begun at each node when this broadcast is received.

– Local-Clear-Complete: This is sent by the finish node when the local clear-
ance is complete. A post-GC broadcast is initiated at the start node.



– GC-complete: This is sent by the finish node when the post-GC broadcast is
complete. Now each node marks all messages as old and all remaining actors
as untouched [by flipping the interpretation of the tags]. The GC-root now
remembers that GC is not in progress and is ready to initialize another GC.

6 Informal sketch of Correctness for HDGC

The correctness of the Hierarchical Distributed Garbage Collection Scheme is ex-
pressed by the following four theorems. The first two represent safety properties
and the last two represent liveness properties.

Theorem 1. A non-garbage actor will not be collected by the distributed garbage
collection algorithm.

Theorem 2. The user program progresses as normal without any semantic in-
terference with the distributed garbage collection algorithm.

Theorem 3. The HDGC scheme terminates for every execution.

Theorem 4. Every garbage object will eventually be collected.

To establish these theorems we assume that a GC is initiated only under the
following conditions.
Initial Conditions:

– All actors in the system are untouched
– Messages in the system are of one kind – Old messages

We recall the properties of actors and the underlying network that we have
assumed.

1. There are a finite number of actors in the system.
2. Along a single link in the network messages are communicated in a FIFO

fashion.
3. Message routing is progress-only in the sense described in section 2.
4. The mutator cooperates with the collector. Any new actors created during

GC are created as touched actors, and any new messages created during GC
are tagged as new.

5. The mutator does not interfere with the collector. The mutator does not
modify data used during GC — the GC-acquaintances and GC-inverse-
acquaintances of an actor, an actors active status and other GC status in-
formation, or a messages old/new tag.

6. A garbage actor can never become non-garbage.

We have not specified the details of how a node carries out it local clearance
but we make certain requirements. Namely, that only untouched or suspended
objects on a node are collected, and that local clearance at a node terminates.
The correctness theorems follow from the HDGC step lemmas and GC invariant
lemmas stated below. A rigorous proof of these lemmas is beyond the scope of
this paper and will appear in a forthcoming publication.



6.1 HDGC Step Lemmas

The following lemmas express the crucial properties of each of the steps of the
HDGC algorithm. For informal proofs of these lemmas, see [Ven91]. Recall that
the GC snapshot consists of the GC-acquaintances, GC-inverse-acquaintances,
and active status for each actor in the system. This information together with
the root set determines a consistent global view of the reachability relation for
the purposes of the GC.

Lemma 1. [i]. The pre-GC step terminates
[ii]. At the end of pre-GC, all messages in the network are new and all objects existing prior to

initiation of GC are marked untouched.
[iii]. At the end of pre-GC, the GC snapshot is a consistent distributed snapshot of the acquaintance

relation relative to the start-of-GC time.

Lemma 2. [i]. The Distributed Scavenge phase marks all objects that are reachable according to the GC
snapshot as touched.

[ii]. The DistributedScavenge phase marks all objects that are unreachable according to the GC
snapshot as untouched or suspended.

[iii]. The Distributed Scavenge phase terminates.

Lemma 3. The Local-Clear-Initiation terminates and local clearance is initiated
on every node in the system.

Lemma 4. The Local-Clear step terminates.

Lemma 5. The termination of GC is correctly detected and all the nodes in the
system are informed of the same.

Lemma 6. [i]. The GC snapshot persists through out the duration of a given GC.
[ii]. The touching process is monotonic, i.e., once an actor has been marked as touched during a

GC, it cannot subsequently be untouched or suspended during the same GC.
[iii]. Only one GC can be active in the system at a point in time.

7 Conclusions and future work

In this paper, we have proposed a novel algorithm for garbage collection in scal-
able distributed systems of active objects called hierarchical distributed garbage
collection. An informal sketch of the proof of correctness of HDGC has been
outlined. A formal proof of correctness will appear in a forthcoming paper. To
formalize the proof of a distributed garbage collection algorithm, we formally
express the GC process as a transition relation and show that the possible com-
putations of the system satisfy the step lemmas and that these in turn imply the
desired correctness properties. The key concept for our formalization is to clas-
sify actors into object-level (application) actors and meta-level (system) actors.
Meta-level actors can access information about object-level actors that other
object-level actors cannot access. In particular, they can modify fields in the
data structures representing object-level actors such as status, tags, mailqueue,



acquaintances, and behavior. Some meta-level actors simply serve as resource
managers for a node. This provides encapsulation of the resource management
facilities, and allows us to deal with system management and application man-
agement within a single unified framework—the actor model.

Any mechanism for efficient GC in a large system must be conservative. Gen-
erational storage management techniques are conservative and they exploit char-
acteristic reference patterns observed in many applications [Ung84]; we therefore
believe that they are well-suited to machines with large numbers of processing
elements. As we avoid physically moving objects across generations, this scheme
also turns out to be less error prone because interprocessor management of for-
warding pointers can get very complex and frustrating. In actor based systems,
GC involves more than data deallocation. An actor is a basic entity within which
behavior (code), communication information and task processing information is
embedded. When an actor is deleted, all resource management responsibilities
associated with an actor disappear. Memory management in Actors is more than
a data management facility, it is a process management facility as well.

What we have avoided in this paper is a detailed discussion of optimizations
to the HDGC scheme. A consideration of various deficiencies of the this scheme
has revealed some optimizations which can reduce the time and space overheads
encountered in synchronization, name translation and bookkeeping. In addition
to possible optimizations, this research has also brought to the surface many
interesting issues. Compaction of memory to obtain locality, static analysis for
optimal actor allocation and placement, lifetime analysis, and extensions of the
HDGC algorithm to exhibit fault tolerance and real-time behavior are a few.
We believe that the ability to design efficient, scalable, concurrent systems does
not lie in esoteric programming paradigms and architectures that are difficult to
comprehend. It lies in representing applications as well classified, intuitive spec-
ifications and organizing hardware resources to render flexible and manageable
concurrency using natural strategies such as hierarchical resource management.

References

[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Sys-
tems. MIT Press, Cambridge, Mass., 1986.

[Hew77] C. Hewitt. Viewing control structures as patterns of passing messages. Jour-
nal of Artificial Intelligence, 8-3:323–364, June 1977.

[KWN90] Dennis Kafura, Doug Washabaugh, and Jeff Nelson. Garbage collection of
actorrs. In Norman Meyrowitz, editor, 1990 ECOOP/OOPSLA Proceedings,
pages 126–134, Ottawa, Canada, October 1990. ACM Press.

[LQP92] Bernard Lang, Christian Queinnec, and José Piquer. Garbage Collecting
the World. In Nineteenth Annual ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages, 39–50, 1992.

[SGP90] Marc Shapiro, Olivier Gruber, and David Plainfosse. A garbage detection
protocol for a realistic distributed object-support system. Technical Report
1320, INRIA, November 1990.



[Ung84] David M. Ungar. Generation scavenging - a non-disruptive high performance
storage reclamation algorithm. In Software Engineering Symposium on Prac-
tical Software Development Environments, pages 157–167. Pittsburgh, PA,
April 1984.

[Ven91] Nalini Venkatasubramanian. Hierarchical garbage collection in scalable dis-
tributed systems. Master’s thesis, University of Illinois, Urbana-Champaign,
Dept. of Computer Science, Urbana, IL, forthcoming 1991.


