
Distributed Execution of Actor Programs

Gul Agha, Chris Houck and Rajendra Panwar

Department of Computer Science

1304 W. Spring�eld Avenue

University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Email: f agha j houck j panwarg@cs.uiuc.edu

Abstract

A number of programming language models, including actors, provide inherent con-

currency. We are developing high-level language constructs using actors and studying

their implementation on multiprocessor architectures. This report describes our expe-

rience with programming in actors by means of a speci�c example of scienti�c com-

putation. We also discuss work in progress on language annotations and compilation

technology for e�cient program execution on multiprocessors.

1 Introduction

Concurrent language models, such as concurrent logic programming, functional programming

and actors, provide inherent concurrency in the evaluation of expressions. However, unlike

other models, actors allow state to be directly expressed and manipulated. Our experience

suggests that this enables us to write programs which not only avoid unnecessary sequencing

of actions but which are also easily understandable. We discuss the structure of actor

languages and issues related to their implementation on distributed memory architectures.
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Inherently concurrent languages su�er from an embarrassing amount of concurrency.

Current compiler technology is not su�ciently developed to optimize placement and mi-

gration of objects in order to provide su�cient execution e�ciency on distributed memory

architectures. Furthermore, in some cases, the structure of a problem is crystalline and well-

understood by the programmer. In these cases, the use of high-level annotations to guide

the runtime system has been suggested. The use of annotations provides modularity by

separating the logic of an algorithm from its implementation. Thus we believe annotations

are preferable to explicit placement.

The organization of this paper is as follows. In Section 2 we give a brief overview of

the actor model. Section 3 outlines annotations to provide e�ciency directives for multi-

processors. Section 4 illustrates the concepts by an example, it describes the use of actors

to express an algorithm for the Cholesky Decomposition of an SPD matrix. In Section 5

we discuss the representation of actors on multiprocessors. The �nal section presents some

conclusions.

2 The Actor Model

Actors are self-contained, interactive, independent components of a computing system that

communicate by asynchronous message passing. Each actor has a conceptual location, its

mail address, and a behavior. An actor's acquaintances are all of the actors whose mail

addresses it knows. In order to abstract over processor speeds and allow adaptive routing,

preservation of message order is not guaranteed. However, messages sent are guaranteed to

be received with an unbounded but �nite delay.

State change in actors is speci�ed using replacement behaviors. Each time an actor pro-

cesses a communication, it also computes its behavior in response to the next communication

it may process. The replacement behavior for a purely functional actor is identical to the

original behavior; in general it may change. The change in the behavior of an actor may

represent a simple change of state variables, such as change in the balance of an account,

or it may represent changes in the operations (methods) which are carried out in response
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to messages. For example, suppose a bank account actor accepts a withdrawal request. In

response, it will compute a new balance which will be used to process the next message.

Replacement is a serialization mechanism which supports a trivial pipelining of the re-

placement actions: the aggregation of changes allows an easy determination of when we

have �nished computing the state of an actor and are ready to take the next action [3]. For

example, as soon as the bank account actor has computed the new balance in the account, it

is free to process the next request { even if other actions implied by the withdrawal request

are still being carried out. This allows concurrent execution of actions speci�ed within the

body of the actor.

The concept of actors was originally proposed by Hewitt in [9]. The actor model was

formally characterized by means of power domain semantics in [6], by a transition system in

[1], and by Colored Petri Nets in [13]. Complexity measures for actor programs have been

studied in [5]. The model has also been proposed as a basis for multiparadigm programming

in [2] and has been used as a programming model for multicomputers in [4] and [7].

Rosette

Our work uses Rosette, an actor language developed at MCC in collaboration with one of the

authors [16]. The following code-fragment gives a 
avor of the Rosette language. It de�nes

a class of actors, Add-Counter which accept two types of messages and has an acquaintance

(cf. local variable) called count , initially set to zero. Upon receipt of an add message

with parameters a and b an actor of this type returns the sum of a and b and speci�es

its replacement behavior using the same behaviour de�nition and local count incremented.

If the actor receives a (die bookkeeper) message it sends a message [total count] to

bookkeeper and becomes a sink , an actor which ignores all future messages that it receives.

(defActor Add-Counter (slots& count 0)

(method (add a b)

(become Add-Counter (+ count 1))

(+ a b))

(method (die bookkeeper)

(total bookkeeper count)

(become sink)))
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Notice that the (become Add-Counter (+ count 1)) and the (+ a b) statements do

not a�ect each other and can therefore be executed concurrently.

Actor programs have a �ne-grained concurrent structure which is quite similar to that in

functional and concurrent logic languages. Actors can be used to represent purely functional

programs as well as programs that require objects with history sensitive behavior. There are

two sources of concurrency in actor programs. First, the actions on di�erent actors can be

executed in parallel, thereby allowing us to write parallel programs which require expression

of state changes in history sensitive behaviors in objects. Second, actions carried out within

an actor are executed concurrently. The e�ciency of an actor program on a distributed

memory architecture depends on where di�erent actors are placed and the communication

tra�c between them. Thus the placement and migration of actors can drastically a�ect the

overall e�ciency.

Execution of actor programs on parallel architectures requires a translator which takes

an actor program as input and generates executable code for a given parallel machine. Ide-

ally, the system executing actor programs should be able to decide e�ciently where to place

actors and when to migrate them. We provide some simple schemes for providing annota-

tions to actor programs in order to help the system decide on placement issues. The next

section discusses in greater details, how the execution e�ciency of actor programs on parallel

machines can be ensured by using annotations.

3 E�ciency Increasing Directives using Actors

When a new actor is created, a choice must be made regarding the processor on which

the actor should be placed, for example, locally or on some speci�c remote processor. The

problem is complicated due to the ability of actors to create more actors and dynamically

change the topology of the system. For a general actor program, it may be di�cult to give a

scheme which optimally decides where a given actor should be created and when and where

it should be migrated. In general, such a method will need to be adaptive and may require

expensive bookkeeping of the load on di�erent processors and the communication patterns
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between di�erent actors. However, for many numerical algorithms and other crystalline

problems, it is possible to give simple schemes that can e�ciently decide the placement of

actors and migration. In our current work, we provide the programmer with the ability to

abstractly annotate actor programs to govern actor placement and their migration. This is

similar to the notation used in the language Logo and later incorporated in other languages

such as ParAl
 [10].

The syntax for providing annotations to actor programs is: <expr1> @<expr2> where

<expr1> represents a message send (or function application) or an expression that creates

a new actor, and <expr2> evaluates to a processor number PID. The above annotation

indicates that if <expr1> is an expression representing a message sent to an actor, evaluate

the function on the processor PID. Alternately, if <expr1> is an expression creating a

new actor, create the actor on the processor PID. Thus (new some-behavior) @(pe-expr)

creates an actor on the processor whose id returned by pe-expr . The expression (mult

scalar vector) sends the (mult vector) message to scalar . Here vector is a tuple

and start-pe evaluates to the number of the processor containing the �rst element of

vector . This causes unnecesary degree of data movement. However with a @(start-pe

vector) annotation, scalar will be sent to the processor containing vector and operation

mult carried out there.

As an application of the above annotation, consider the following program for computing

the sum of elements of an array A:

(defActor SUM (slots& A)

(method (partial-sum)

(if (= (size A) 1) (head A)

(+ (partial-sum (new SUM (first-half A))

@(start-pe (first-half A)))

(partial-sum (new SUM (second-half A))

@(start-pe (second-half A)))))))

The calling actor creates a new actor SUM with acquaintance A (the original array),

sends it the message partial-sum and waits for the �nal answer. Assume that array A

is distributed between p processors so that there are n elements on each processor. The

creation of actors for computing the partial sums of array elements on each processor is
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a1

a2 a3

a4 a5 a6
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a8 a9 a10 a11 a12 a13 a14 a15

Elements
of tuple A 1 2 3 4 5 6 7 8

P1 P2 P3 P4Processor
 Numbers

Figure 1: The creation of actors on processors for addition of the elements of array A.

shown in Figure 1. The SUM actor, a1, creates two new SUM actors, a2 to compute the partial

sum of the �rst half of the array and a3 to compute the partial sum of the second half of

the array. The actor a2 is created on the processor containing the �rst element of the �rst

half of A. The actor a3 is created in the processor containing the �rst element of the second

half of the array A. Once a4 � a7 are created, there is at least one actor in each processor

and subsequent actors are created locally on each processor. The �nal value of the sum of

the array elements is returned to a1 because of the implicit continuations provided by the

function call mechanism [1].

4 Cholesky Decomposition of an SPD Matrix

We now discuss an example, the Cholesky Decomposition (CD) of a Symmetric Positive

De�nite (SPD) matrix, to illustrate how the actor model enables us to represent di�erent

ways of solving the problem in parallel. Assume A is a symmetric positive de�nite matrix of

size n�n. The following algorithm computes a lower triangular matrix G, of size n�n such

that A = GG

T

[8]. Since A is a symmetric matrix, it can be stored as a lower triangular

matrix. The elements of G overwrite the corresponding elements of A.

for j := 1 : n

if(j > 1) A[j:n,j] = A[j:n,j] - A[j:n, 1:j-1] * A[j, 1:j-1]

T

A[j:n, j] = A[j:n, j] / sqrt(A[j,j])

end
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The above algorithm is suitable for solving dense systems of SPD equations. Most of

the problems involving large systems of equations have very few non-zero elements in the

matrices and require methods for solving sparse linear systems. But some of the methods

used for solving sparse systems of equations (e.g. [15]) require solution of a dense block

of equations as an intermediate step. Depending on the size and structure of the original

systems of equations, this dense block may be huge and sequential solution of such a block

may reduce the overall speedup signi�cantly. We discuss ways of computing CD of dense

matrices in parallel.

Figure 2 illustrates the maximal parallelism available in the CD. Note that the commu-

nication requirements are language independent | they are characteristics of the algorithm

at hand.

With a two dimensional mesh of n

2

processors [8], the algorithm takes O(n

2

) time if

all the steps of one iteration are completed before starting the next one. Pipelining the

execution of di�erent iterations gives an O(n) time parallel implementation. In general the

number of processors available is fewer than the number of elements in the matrix and several

elements are assigned to each processor. For example, if n processors are available, one row

can be assigned per processor to get an O(n

2

) time parallel implementation. We now show

details of two representations of the CD algorithm using actors. The �rst representation is

purely functional whereas the second uses destructive updates and pipelines the execution

of di�erent iterations.

A Functional Implementation of CD

We de�ne an actor Mat-ops with a method cholesky . A message cholesky can be sent

to Mat-ops to compute the CD of a given matrix. The arguments sent with the message

cholesky are the matrix itself (which is essentially the location of the �rst element of the

matrix) and the size of the matrix. The matrix is represented as a tuple of rows, where each

row itself is a tuple of 
oating point numbers. The matrix is stored as a lower triangular

matrix and the tuple representing the i

th

row is of size i.

(defActor Mat-ops
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Figure 2: Parallelism available in CD algorithm
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(method (cholesky Matrix num-rows)

((iteration 1 Matrix num-rows) @(start-pe Matrix))))

The function iteration organizes the execution of the n iterations of the algorithm. The

function (updated-row Row) returns a row obtained by updating the diagonal element of

row k for starting the k

th

iteration as shown in Figure 2. Similarly, (updated-matrix Row

Matrix) returns a matrix obtained by updating its elements as required in iteration k.

(defProc (iteration iter Matrix n

(if (> k n)

[]

(let [[ X ((updated-row (head Matrix)) @(start-pe (head Matrix)))]]

(concat X (iteration (inc iter)

((updated-matrix X (tail Matrix)) @(start-pe (tail Matrix))))))))

The input matrix is distributed between di�erent processors, and the execution of func-

tion updated-matrix can result in large data movements if not done carefully. The following

function uses annotations for e�ciently executing updated-matrix function.

(defProc (updated-matrix Row Matrix k)

(if (= (size Mat) 1)

((updated-row Row (head Matrix)) @(start-pe (head Matrix)))

(concat

((updated-matrix Row (first-half Matrix))

@(start-pe (first-half Matrix)))

((updated-matrix Row (second-half Matrix) k)

@(start-pe (second-half Matrix))))))

A More Concurrent Implementation of CD

The program illustrated above is written in a purely functional style with a call-by-value

semantics. This results in two problems. First, it sequentializes the execution of di�erent

iterations by forcing completion of one iteration before starting the next one, and second,

its straight-forward implementation is ine�cient in space utilization. The �rst issue can be

handled by observing the fact that the (k+1)

th

iteration can be started as soon as row (k+1)

has been updated for the k

th

iteration. A call-by-name semantics with implicit futures would

be one way to address this problem. The second issue can be handled without changing the

functional speci�cation by allowing destructive updates in the implementation. However, a

concurrent implementation of lazy functional languages with implicit futures and side-e�ects
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in the implementation has to address the e�ects of the asynchrony of components and the

indeterminacy in message order. Interestingly, because the implementation itself involves a

nondeterministic merge, it cannot be expressed functionally. For this reason, we believe that

it is better to provide a more powerful linguistic model. We �nd actors a suitable alternate

for two reasons. First, the use of actors with local states makes the structure of the algorithm

more perspicuous. Second, it allows us to write e�cient programs whose execution has not

been optimized by the compiler.

As before we assume the matrix is available as an acquaintance of a given master actor.

This actor creates several Row-act actors, one for each row. Each Row-act actor has

three acquaintances, the row of the matrix associated with the Row-act , the next Row-act

actor ( nextRow-act ) and the number of its row Row-num . Since messages corresponding

to several iterations exist in the system at the same time and messages can reach out of

order, it is necessary for Row-act to impose some order on the messages it processes. For

example, an actor on processor P1 can send a message to Row-act R

m

to update its row

for the iteration k and P2 can send a similar message to R

m

for iteration (k + 1). Even

if, the message from P2 is sent after the message from P1 the two messages may follow

di�erent paths and reach R

m

in an unpredictable order. Since, processing messages for two

di�erent iterations in a wrong order leads to incorrect results, R

m

needs some mechanism

to decide which message should be picked from the mailbox for processing next. We use a

mechanism called enabled sets in Rosette for imposing order on the processing of messages

[14]. The following code uses the block construct which packages a set of expressions which

are evaluated concurrently. The next construct speci�es the next enabled-set of message

that the actor will accept.

(method (update-mat iter inpRow)

(block

(update-row iter diag-value)

(if (present nextRow-act)

(update-mat nextRow-act iter inpRow)))

(cond (< iter (dec Row-num))

(next [[update-mat (inc iter)]])

(= iter (dec Row-num))

(next [[start-iter]])))

(method (start-iter)

(let [[x (new-diagonal (head Matrix))]]
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(block

(update-diagonal x)

(if (present nextRow-act)

(block

(update-mat nextRow-act Row-num x)))

(start-iter nextRow-act)))

(next [[return-ans]]))))

When Row-act R

m

receives an update-mat message with value of iter equal to k,

it updates its row and enables the next set of messages which is a singleton set containing

messages of type update-mat with value of iter equal to one more than the current value

of iter . Thus only the update corresponding to (k+1)

th

iteration will be carried out after

iteration k. Once the value of iter reaches (m � 1) (i.e. one less than the row number of

R

m

), the next set of messages enabled is the singleton set containing the message of type

start-iter . Finally, an actor can receive the resulting matrix by sending the return-ans

message to the �rst Row-act actor. The complete result is returned when the last Row-act

�nishes processing.

5 Representation of Actors

Sequential processes with sends and receives form a low level language support available

on several distributed memory architectures. We are currently developing a translator to

transform the Rosette speci�cation of an actor language to code for a dialect of C requiring

explicit sends and receives. There are a number of design issues which result from the static

nature of C. We discuss one of these issues, namely the internal representation of an actor.

An actor's behavior speci�es new tasks to create and communications to send as a function

of its local state and the message being processed. Upon receipt of a message, an actor may

replace its current behavior with a new behavior that is used to process all subsequent

messages [1]. In Rosette, this is done with the become primitive. It is assumed that if an

actor does not specify a replacement behavior with a become , its behavior is the same as

its current behavior. In the following example, the actor Foo turns itself into a sink (i.e.

it stops processing further messages) upon receipt of a die message:
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(defActor Foo

(method (die)

(become sink)))

In a statically speci�ed language, such as C, behavior replacement is a troublesome trait

to mimic; an actor may choose its future behavior de�nition completely dynamically. For

example, the behavior de�nition may be speci�ed in a message: as an address of a di�erent

actor whose behavior the recipient should adopt. One possibility is to use static analysis

to determine the set of behavior de�nitions that an actor may use and encode them into a

single behavior. While this technique will work for many actor programs, it is insu�cient

in general. For example, static analysis cannot support re
ection where the runtime system

may be recon�gurable by an executing application. Furthermore, the method may create

source code on the order of the product of the number of possible actor classes by the number

of actor de�nitions in the user's program.

Forwarding Pointers. An attractive, and fairly simple idea, is to mimic each actor with a

separate process which executes its behavior. When an actor changes its behavior de�nition,

we simply create a new process which executes all future messages that get sent to the

original actor. We should �rst note that it will be necessary to keep the original actor

around, since its acquaintances may only know of it by the original mail address. So when

messages get delivered to the original mail address, the actor simply forwards them to the

new process that it created. While there are typically few behavior rede�nitions in practice,

this method can entail a signi�cant performance loss if the network gets �lled with messages

getting forwarded from previous behaviors to new ones. Furthermore, it is not clear how to

implement enabled-sets and inheritance under such a scheme [14].

Actors as Records. An alternative scheme which addresses these problems represents

each actor as a record containing a local variable bound to the address of its current behavior

and the actor's current local variables. This representation is used in actor languages such

as Acore [12]. Each behavior type is represented by a di�erent process. The execution of an

actor system is controlled by drivers which maintain lists of local actors and the messages
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to them.

All messages to an individual actor are sent to the driver which is responsible for that

actor. If the actor is currently enabled to execute a message of that type, the driver packages

up the actor's record and the incoming actor and sends them in a message to the process

which corresponds to the actor's current behavior. Sending an actor record out to a separate

process (rather than have the driver itself execute the actor's behavior) recovers much of the

concurrency in the program since all of the processes can execute in parallel.

Once the actor's replacement is determined, the process that is executing it sends its

record back to the driver which places it back in the queue of actors ready to execute. If the

actor changes its behavior, it simply means that the process which is executing the actor's

behavior changes the local-status variable before it sends its record back to the driver.

This is more e�cient in terms of source code length. However, if a driver is implemented

on a single processor it can only execute a single message at a time. This creates the

possibility of a bottleneck at the driver. The problem can be addressed by dynamically

splitting a driver to maintain load balance.

The main problem with representing actors as records is that we always su�er an indi-

rection penalty: messages have to be �rst sent to a driver and then to the process to execute

the behavior. However, no matter how many times an actor changes its behavior, messages

to it only su�er a constant amount of indirection, unlike the message forwarding scheme.

Furthermore, a driver can keep track of what type of messages an actor is enabled to receive

and check them against the incoming messages, so we get enabled sets for free. It appears

that inheritance will be easier to implement under such a representation.

6 Conclusions

The language support currently provided on a number of distributed memory architectures

consists of sequential procedures which can send and receive data across processors. The

intel iPSC also provides the ability to choose speci�c (tagged) messages out of the mail
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box [11], thus allowing a user to handle arrival order non-determinism e�ciently. However,

programmers have to specify explicit processor addresses with every message that is sent

across nodes. In particular, this means that they have to keep track of the mapping of the

original data on the processors and compute the number of processor where certain data that

is needed may be available or where the next message to start some computation should be

sent. Although the CD algorithm discussed above allows a fully static mapping of data to

processors, more generally optimal execution may require that objects be moved dynamically

to di�erent processors. It then becomes increasingly di�cult for the programmer to keep

track of the object to processor mapping. We feel that the actor model enables a program-

mer to have a logical view of the problem being solved, thereby hiding some architecture

dependent details. Our work also suggests that it is possible to easily represent algorithms

using actors and that such representations can be e�ciently executed on distributed memory

architectures.
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