
A Linguistic Framework for DynamicComposition of Dependability Protocols�Gul Agha, Svend Fr�lund, Rajendra Panwar and Daniel SturmanDepartment of Computer Science1304 W. Spring�eld AvenueUniversity of Illinois at Urbana-ChampaignUrbana, IL 61801, USAEmail: fagha j frolund j panwar j sturmang@cs.uiuc.eduKeywords: Programming Languages, Composition of Protocols,Dependable Systems, Software Fault-ToleranceAbstractWe present a language framework for describing dependable systems which emphasizes mod-ularity and composition. Dependability and functionality aspects of an application may bedescribed separately providing a separation of design concerns. Futhermore, the dependabilityprotocols of an application may be constructed bottom-up as simple protocols that are com-posed into more complex protocols. Composition makes it easier to reason about dependabilityand supports the construction of general reusable dependability schemes. A signi�cant aspectof our language framework is that dependability protocols may be loaded into a running appli-cation and installed dynamically. Dynamic installation makes it possible to impose additionaldependability protocols on a server as clients with new dependability demands are integratedinto a system. Similarly, if a given dependability protocol is only necessary during some criticalphase of execution, it may be installed during that period only.1 IntroductionThis paper describes a software methodology for supporting dependable services in open systems .Provision of a dependable service involves the servers implementing the service as well as the com-munication channel to the servers. We make no assumptions about the behavior of the customers,called clients, using the service. For our purposes, the most signi�cant characteristic of an open�The research described has been made possible by support provided by a Young Investigator Award from theO�ce of Naval Research (ONR contract number N00014-90-J-1899) and by an Incentives for Excellence Award fromthe Digital Equipment Corporation Faculty Program. The authors would like to thank Chris Callsen, Wooyoung Kim,and Anna Patterson for helpful discussions concerning the manuscript. We would also like to thank Takuo Watanabefor his insights into the use of re
ection and Chris Houck for the modi�cations to the Hal compiler required for ourimplementations. 1



system is extensibility: new services and new clients may be integrated into an open system whileit is functioning.In many existing methodologies for programming dependable applications, the dependabilitycharacteristics of an application are �xed statically (i.e., at compile time). This is unsatisfactoryin many computer systems, which are required to function for a long period of time, yet are fault-prone due to the uncertain environment in which they operate. An example of such a system isthe control system embedded in an orbiting satellite. Furthermore, in open systems the addition ofnew services and clients may impose new requirements for dependability of a service. For example,a �le server may start only addressing safety by checkpointing the �les to stable storage. In anopen system, new clients added to the system may require the server to also provide security,e.g., by encrypting the �les they transfer to the clients. Our method includes dynamic installationof dependability protocols which allows a system to start with a \minimal" set of dependabilityprotocols and later be extended with more protocols where and when the need arises. As the�le server example illustrates, not all dependability protocols that may be needed at runtime cannecessarily be predicted at compile time.Our methodology incorporates object-oriented programming methods and as a result o�ers thefollowing advantages:� Separation of design concerns : an application programmer need not be concerned with theparticular dependability protocols to be used when developing an application.� Reusability : code for implementing dependability protocols and application programs can bestored in separate libraries and reused.We employ re
ection as the enabling technology for dynamic installation of dependability proto-cols. Re
ection means that a system can reason about, and manipulate, a representation of its ownbehavior. This representation is called the system's meta-level. In our case, the meta-level containsa description of the dependability characteristics of an executing application; re
ection thus allowsdynamic changes in the execution of an application with respect to dependability. Re
ection in anobject based system allows customization of the underlying system independently for every objectas compared to customization in a micro kernel based system [ABB+86] where changes made tothe micro kernel a�ect all the objects collectively. This 
exibility is required for implementingdependability protocols since such protocols are mostly installed on very speci�c subsets of theobjects in a system.The code providing dependability is speci�ed independently from the code which speci�es theapplication speci�c functionality of a system. As we show later, our re
ective model allows com-positionality of dependability protocols. Compositionality means that we can specify and reasonabout a complex dependability scheme in terms of its constituents. Thus, logically distinct aspectsof a dependability scheme may be described separately. Compositionality supports a methodologyin which dependability protocols are constructed in terms of general, reusable, components. Dy-namic composition is particularly useful; it allows software for additional dependability protocolsto be constructed and installed without knowledge of previously installed protocols. It may not bepossible to describe a protocol in general terms. In such cases, composition may not be possible.For example, the composition of the two-phase commit protocol with security mechanisms may notbe done naively [JM92]. 2



A number of languages and systems o�er support for constructing fault tolerant systems. InArgus [LS82], Avalon [DHW88] and Arjuna [PS88], the concept of nested transactions is used tostructure distributed systems. Consistency and resilience is ensured by atomic actions whose e�ectare checkpointed at commit time. The focus in [MPS91], [Coo90] and [BJ87] is to provide a set ofprotocols that represent common communication patterns found in fault tolerant systems. None ofthe above systems support the factorization of fault tolerance characteristics from the applicationspeci�c code. In [WL88] and [OOW91], replication can be described separate from the servicebeing replicated. Our approach is more 
exible since fault tolerance schemes are not only describedseparately but they can also be attached and detached dynamically. Another unique aspect of ourapproach is that di�erent fault tolerance schemes may be composed in a modular fashion. Forexample, checkpointing may be composed with replication without having either method knowabout the other.Re
ection has been used to address a number of issues in concurrent systems. For example, thescheduling problem of the Time Warp algorithm for parallel discrete event simulation is modeledby means of re
ection in [Yon90]. A re
ective implementation of object migration is reportedin [WY90]. Re
ection has been used in the Muse Operating System [YMFT91] for dynamicallymodifying the system behaviour. Re
ective frameworks for the Actor languages MERING IVand Rosette have been proposed in [FB88] and [TS89], respectively. In MERING IV, programsmay access meta-instances to modify an object or meta-classes to change a class de�nition. InRosette, the meta-level is described in terms of three components: a container, which representsthe acquaintances and script; a processor, which acts as the scheduler for the actor; and a mailbox,which handles message reception.The paper is organized as follows. Section 2 gives a more detailed description of the concept ofre
ection. Section 3 introduces the Actor model which provides a linguistic framework for describingour methodology. Note that our methodology is not dependent on any speci�c language framework;we simply use an Actor language as a convenient tool to describe our examples. Section 4 describesour meta-level architecture for ultradependability (Maud). Section 5 gives an example of a repli-cated service implemented using Maud. Composition of methods for dependability is addressedin Section 6 and illustrated in section 7 by means of an example composing replication with atwo-phase commit protocol. The �nal section summarizes our conclusions and research directions.2 Re
ectionRe
ection means that a system can manipulate a causally connected description of itself [Smi82,Mae87]. Causal connection implies that changes to the description have an immediate e�ect onthe described object. The causally connected description is called a meta-level. In a re
ectivesystem, implementation of objects may be customized within the programming language. Thecustomization can take place on a per object basis in the form of meta-objects. In this paper,we use the term object as a generic term for clients and servers (when it is not necessary todistinguish between them). The object for which the meta-object represents certain aspects ofthe implementation is called the base object. A meta-object may be thought of as an object thatlogically belongs in the underlying runtime system. A meta-object might control the message lookupscheme that would map incoming messages to operations in the base object. Using re
ection, suchimplementation level objects can be accessed and examined, and user de�ned meta-objects may beinstalled, yielding a potentially customizable runtime system within a single language framework.3



The re
ective capabilities which are provided by a language are referred to as the meta-levelarchitecture of the language. The meta-level architecture may provide variable levels of sophistica-tion, depending on the desirable level of customization. The most general meta-level architectureis comprised of complete interpreters, thus allowing customization of all aspects of the implementa-tion of objects. In practice, this generality is not always needed and, furthermore, de�ning a morerestrictive meta-level architecture may allow re
ection to be realized in a compiled language. Thechoice of a meta-level architecture is part of the language design. Customizability of a languageimplementation must be anticipated when designing the runtime structure. Although a restrictivemeta-level architecture limits 
exibility, it provides greater safety and structure. If all aspects ofthe implementation were mutable, an entirely new semantics for the language could be de�ned atruntime; in this case, reasoning about the behavior of a program would be impossible.We limit our meta-level to only contain the aspects that are relevant to dependability. Appli-cation speci�c functionality is described in the form of base objects and dependability protocolsare described in terms of meta-objects. Thus, dependability is modeled as a special way of im-plementing the application in question. Our methodology gives modularity since functionality anddependability are described in separate objects. Since meta-objects can be de�ned and installeddynamically, a system can dynamically switch between di�erent dependability modes of execution.Dependability protocols could be installed and removed dynamically, depending on system need.Furthermore, new dependability protocols may be de�ned while a system is running and put intoe�ect without stopping and recompiling the system. For example, if a communication line withina system shows potential for unacceptable error rates, more dependable communication protocolsmay be installed without stopping and recompiling the entire system.Since meta-objects are themselves objects, they can also have meta-objects associated withthem, giving customizable implementation of meta-objects. In this way, meta-objects realizinga given dependability protocol may again be subject to another dependability protocol. Thisscenario implies a hierarchy of meta-objects where each meta-object contributes a part of thedependability characteristics for the application in question. Each meta-object may be de�nedseparately and composed with other meta-objects in a layered structure supporting reuse andincremental construction of dependability protocols.Because installation of a malfunctioning meta-level may compromise the dependability of thea system, precautions must be taken to protect against erroneous or malicious meta-objects. Toprovide the needed protection of the meta-level, we introduce the concept of privileged objectscalled a managers. Only managers may install meta-objects. Using operating system terminology,a manager should be thought of as a privileged process that has capabilities to dynamically loadnew modules (meta-objects) into the kernel (meta-level). It should be observed that, because ofthe close resemblance to the operating system world, many of the operating system protectionstrategies can be reused in our design. We will not discuss particular mechanisms for enforcing theprotection provided by the managers in further detail here. Because only managers may installmeta-objects, special requirements can be enforced by the managers on the structure of objectswhich may be installed as meta-objects. For example, managers may only allow installation ofmeta-objects instantiated from special veri�ed and trusted libraries. Greater or fewer restrictionsmay be imposed on the meta-level depending on the dependability and security requirements thata given system must meet. 4



3 The Actor ModelWe illustrate our approach using the Actor model [Agh86, Agh90]. It is important to note that theidea of using re
ection to describe dependability is not tied to any speci�c language framework.Our methodology assumes only that resources can be created dynamically, if needed to implementa particular protocol and that the communication topology of a system is recon�gurable. Ourmethodology does not depend on any speci�c communication model. In particular, it is immaterialto our approach whether synchronous or asynchronous communication is used.Actors can be thought of as an abstract representation for multicomputer architectures. Anactor is an encapsulated entity that has a local state. The state of an actor can only be manipulatedthrough a set of operations. Actors communicate by asynchronous point to point message passing.A message is a request for invocation of an operation in the target actor. Messages sent to anactor are bu�ered in a mail queue until the actor is ready to process the message. Each actor hasa system-wide unique identi�er which is called a mail-address. This mail-address allows an actorto be referenced in a location transparent way. The behavior of an actor is the actions performedin response to a message. An actor's acquaintances are the mail addresses of known actors. Anactor can only send messages to its acquaintances, which provides locality. In order to abstractover processor speeds and allow adaptive routing, preservation of message order is not guaranteed.The language used for examples in this paper is Hal [HA92], an evolving high-level actorlanguage which runs on a number of distributed execution platforms. Hal provides two othermessage passing constructs besides the asynchronous send. The �rst, SSEND , is a message orderpreserving send, or sequenced send. SSEND allows the sender to impose an arrival order on a seriesof messages sent to the same target. The second, BSEND , is a remote procedure call mechanism, orblocking send. The calling program implicitly blocks and waits for a value to be returned from theactor whose method was invoked.4 A Meta-Level ArchitectureIn this section we introduce Maud (Meta-level Architecture for Ultra Dependability). As pre-viously mentioned, Maud is designed to support the structures that are necessary to implementdependability. In Maud, there are three meta-objects for each actor: dispatcher, mail queue andacquaintances. In the next three paragraphs we describe the structure of meta-objects in Maud.Note thatMaud is a particular system developed for use with actors. It would be possible, however,to develop similar systems for most other models.The dispatcher and mail queue meta-objects customize the communication primitives of theruntime system so that the interaction between objects can be adjusted for a variety of dependabilitycharacteristics. For instance, a dispatcher meta-object is a representation of the implementation ofthe (SEND...) action. Whenever the base object issues a message send, the runtime system callsthe transmit method on the installed dispatcher. The dispatcher performs whatever actions areneeded to send the given message. Installing new send behaviors makes it possible to implementcustomized message delivery patterns.A mail queue meta-object represents the mail queue holding the incoming messages sent to anactor. A mail queue is an object with get and put operations. After installation of a mail queuemeta-object, its get operation is called by the runtime system whenever base object is ready toprocess a message. The put operation on a mail queue is called by the runtime system whenever5



a message for the base object arrives. By installing a mail queue at the meta-level, it is possible tocustomize the way messages 
ow into the base object.The acquaintances meta-object is a list representing the acquaintances of a base object. Infor-mation about an actor's acquaintances is necessary in order to checkpoint its state. For our currentpurposes, we assume that the acquaintances's meta-object is immutable. Otherwise, if customizedacquaintance lists could be installed, static checking of legal names would be impossible.Meta-objects are installed and examined by means of meta-operations. Meta-operations arede�ned in the class called Object which is the root of the inheritance hierarchy. All classesin the system inherits from Object , implying that meta-operations can be called on each actorin the system. The meta-operations change-mailQueue and change-dispatcher install mailqueues and dispatchers for the object on which they are called. Similarly, the meta-operationsget-mailQueue , get-dispatcher and get-acquaintances return the meta-objects of a givenactor. If no meta-objects have been previously installed, an object representing the built-in, default,implementation is returned. Such default meta-objects are created in a lazy fashion when a meta-operation is actually called.5 A Replicated ServerIn a distributed system, an important service may be replicated to maintain availability despiteprocessor faults. The type of faults that can be experienced are generally considered to be of twobasic types: Byzantine failures or fail-stop failures [Sch90]. In this section, we will give an exampleof howMaud can be used in an actor domain to implement a modular and application-independentprotocol which uses replication to protect against fail-stop failures.(DEFINE-ACTOR serveMailq(SLOTS data members)(METHOD (get who) )(METHOD (put msg);; A bcaster actor broadcasts msg to members(BSEND bcast (NEW bcaster msg) members)))(DEFINE-ACTOR bcaster(SLOTS msg)(METHOD (bcast l)(IF (not (null? l))((SSEND (msg-type msg) (car l) (msg-data msg))(SEND bcast self (cdr l))))))Figure 1: Code for the mail queue which implements replication.Dependability of a server will be increased by creating several exact copies of the server ondi�erent nodes. We refer to the copies as replicas. The task of supporting the replicas is dividedbetween two actors: a distributor, which broadcasts messages to the replicas, and a collector,which takes the replicas' responses and extracts one response to send to the client. If eitherthe distributor or the collector crashes, the replicas will be unable to communicate with the restof the world. Therefore, the applicability of the given solution is limited due to the need formore dependable processors for running the distributor and collector. However, because these two6



A

B

C

serveMailq serveDis

b 2b1 b 3

repDis repDis repDis

MailQueue

Dispatcher

Key:

Message send

Causal Connection

Figure 2: When a message is sent by the clients A or C to the replicated service B, the messageis received by B's mail queue serveMailq (1). The message is then sent to each of the replicas (2).objects are computationally much less expensive than the application itself, the solution allows us toincrease the dependablilty of a system given a few highly-dependable processors. It is possible to useMaud for implementing replication schemes which do not require a centralized distributor/collector;however we restrict our discussion to the centralized distributor/collector scheme.We assume that managers themselves install appropriate meta-objects realizing a given de-pendability protocol. Therefore, we specify the relevant dependability protocols by describing thebehavior of the initiating manager as well as the installed mail queues and dispatchers. A managerin charge of replicating a service takes the following actions to achieve the state shown in Figure 2:1. The speci�ed server is replicated by a manager by creating actors with the same behaviorand acquaintance list (using Hal's clone function).2. A mail queue is installed for the original server to make it act as the distributor describedabove. Messages destined for the original server are broadcast to the replicas. A broadcastusing SSENDs is done so that all replicas receive messages in the same order and thus solvethe same task.3. The dispatcher of the original server is modi�ed to act as the collector described above. The7



�rst message out of each set of replica responses is selected to be passed to the destination.Since we assume only fail-stop failures, no complex voting scheme is necessary.4. The dispatchers of the replicas are changed to forward all messages being sent to the orig-inal server's dispatcher. In addition, the messages are tagged so that the original server'sdispatcher can eliminate multiple copies of the same message.The dispatchers and mail queues are designed according to the speci�cation in Section 4. Thenew mail queue for the original server is described in Figure 1. Note that message order is beingpreserved in the broadcast. We use Hal's SSEND function to guarantee consistent state at eachreplica. Figure 2 shows the resulting actions occurring when a message is sent to the replicatedservice. The original server is actor B. When a message is received by the distributor, serveMailq(B's new mail queue), the message is broadcast to the replicas b1, b2, b3. Each of the replicatedactors has the same base-level behavior as B. Therefore, upon receipt of the message, each biresponds in the same way B would have. However, if the replicas respond to the message, the mes-sage destinations would be rerouted by the dispatchers repDis to the original server's dispatcher,serveDis (serving as the collector). For each response, serveDis gets three messages, one from eachreplica. It processes the three messages using some voting scheme and sends out a single responseto the original destination. Note that the base-level actor B does not receive any messages nowsince all the incoming messages are redirected to the replicas by its mail queue serveMailq and theoutgoing messages are sent by the dispatchers of the replicas directly to its dispatcher serveDis.Although this example is fairly simple, it does illustrate some of the bene�ts of our approach.The manager initiating the replication protocol needs no advance knowledge of the service to bereplicated nor does the replicated service need to know that it is being replicated. Additionally,the clients using the replicated service are not modi�ed in any way. These bene�ts give us the
exibility to dynamically replicate and unreplicate services while the system is running.6 Composition of Dependability CharacteristicsIn some cases, dependability can only be guaranteed by using several di�erent protocols. For exam-ple, a system employing replication to avoid possible processor faults may also need to guaranteeconsensus on multi-party transactions through the use of three-phase commit or some similar mech-anism. Unfortunately, writing one protocol which has the functionality of multiple protocols canlead to very complex code. In addition, the number of possible permutations of protocols grows ex-ponentially { making it necessary to predict all possibly needed combinations in a system. However,because the meta-components of an object are themselves objects in a re
ective system, there is ageneral solution for composing two protocols using Maud. A simple change to the meta-operationsinherited from the Object class, along with a few restrictions on the construction of mail queuesand dispatchers, allows us to layer protocols in a general way. Figure 3 shows how an add-mailqmethod could be expressed in terms of the other meta-operations to allow layering.Because the current mail queue, mailq , and the current dispatcher, dispatcher , are objects,we can install meta-objects to customize their mail queue or dispatcher. By adding protocols in theabove manner, the new mail queue functionality will be performed on incoming messages beforethey are passed on to the \old" mail queues. For the send behaviors, the process is reversed withthe oldest send behavior being performed �rst and the newest behavior last, thereby creating anonion-like model with the newest layer closest to the outside world.8



(METHOD (add-mailq aMailq)(IF (null? mailq)(SEND change-mailq self aMailq)(SEND add-mailq mailq aMailQ)))(METHOD (add-dispatcher aDispatcher)(IF (null? dispatcher)(SEND change-dispatcher self aDispatcher)(SEND add-dispatcher dispatcher aDispatcher)))Figure 3: The additional methods which must be inherited to allow for protocol composition.
B

A

C

D EFigure 4: Partners and Owner relationships. A is the owner of all other actors in the �gure.Dispatcher B and mail queue C are partners as well as dispatcher D and mail queue E.To preserve the model, however, several restrictions must be applied to the behavior of dis-patchers and mail queues. We de�ne the partner of a mail queue as being the dispatcher whichhandles the output of a protocol and the partner of a dispatcher as being the mail queue whichreceives input for the protocol. In Figure 4, B and C are partners as well as E and D. Each pairimplements one protocol. It is possible for a meta-object to have a null partner.The owner application of a meta-object is inductively de�ned as either its base object, if itsbase object is not a meta-object, or the owner application of its base object. For example, in �gure4, A is the owner application of meta-objects B, C, D, and E. With the above de�nition we can9



restrict the communication behavior of the actors so that:� A mail queue or dispatcher may send or receive messages from its partner or an object createdby itself or its partner.� Dispatchers may send messages to the outside world, i.e. to an object which is not a mailqueue or dispatcher of the owner application (although the message might be sent throughthe dispatcher's dispatcher). Dispatchers may receive transmit messages from their baseobject.� Mail queues may receive messages from the outside world (through its own mail queue) andsend messages when responding to get messages from their base object.� Objects created by a mail queue or dispatcher may communicate with each other, theircreator, or their creator's partner.Because of the above restrictions, regardless of the number of protocols added to an objectthere is exactly one path which incoming messages follow, starting with the newest mail queue,and exactly one path for outgoing messages in each object, ending with the newest dispatcher.Therefore, when a new dispatcher is added to an object, all outgoing messages from the object mustpass through the new dispatcher. When a new mail queue is installed it will handle all incomingmessages before passing them down to the next layer. Thus, a model of objects resembling thelayers of an onion is created; each addition of a protocol adds a new layer in the same way regardlessof how many layers currently exist. With the above rules, protocols can be composed without anyprevious knowledge that the composition was going to occur and protocols can now be added andremoved as needed without regard not just to the actor itself, but also without regard to existingprotocols. In �gure 4, actors B and C are initially installed as one \layer". Messages come intothe layer only through C and leave through B. Therefore, D and E may be installed with theadd-mailq and add-dispatcher messages as if they were being added to a single actor. Nowmessages coming into the composite object through E and are then received by C. Messages sentare �rst processed by B and then by D.7 Composition ExampleIn section 5, we demonstrated one method of implementing replication. We now build on thatexample to show how di�erent protocols can be composed. Our system currently has three actors:A, B, and C, where B has been replicated and is currently represented by b1, b2, and b3. The initialsystem con�guration is shown in Figure 2.Assume A initiates a transaction with databases B, and C. These transactions are implementedusing a speci�c commit protocol. The commit protocol is chosen dynamically depending on thekinds of failures (site failures or communication failures [BHG87]) that need to be tolerated by thesystem. Assume that a two-phase commit protocol is implemented by a mail queue called tpcMailqand dispatcher called tpcDis installed at A, B and C. Also assume that A acts as the coordinator[BHG87] of the commit protocol. This scenario is depicted in Figure 5.When A initiates a commit protocol, its tpcDis broadcasts a vote-req message to B andC, and waits for vote messages from them. The tpcDis of a participant sends a message to its10



A

B

C

b 2b1

serveMailq serveDis

tpcDis
tpcDis tpcMailqtpcMailq

tpcMailq tpcDis

b 3

(11)

(2)

(6)

(9)

(3) (7)

(8)

(4)

(1)

(3)

(4)
(5)

(4)
(5)

(6)

(8)

(8)

(9)

(9)
(4)

(5)

repDis repDis repDis

’

’(4 ) ’(4 ) ’(4 )

(5 )

’(9 ) ’(9 ) ’(9 )

’(5 ) ’(5 )

MailQueue

Dispatcher

Key:

Message send

Causal Connection

Figure 5: System resulting from the composition of two-phase commit with replication. Whena transaction is received (1), tpcMailq noti�es tpcDis (2). The tpcDis broadcasts a vote-reqmessage (3). The vote is decided (4; 5) by the participants. The voting by the replicated actorB involves the messages (40; 50). The decision of B and C is sent to the coordinator (6). Thecoordinator decides whether the transaction should be committed or aborted and sends its decisionto the participants (7,8). If the �nal decision is to commit, the transaction is installed (9).11



tpcMailq informing it of the voted value. If the participant voted no , its tpcMailq assumes that thetransaction is aborted and allows subsequent messages to proceed. Otherwise, it waits for a commitor abort message from the coordinator. The votes of B and C are received by the tpcMailq ofA and forwarded to its tpcDis. Based on the vote values, the tpcDis of A decides to commit orabort the transaction and broadcasts its decision. If the tpcMailq of B or C receives a message tocommit the transaction, it sends a message to its base actor to install the transaction.The applied meta-objects are designed to follow the restrictions given in Section 6 to preservethe onion-layer model. Figure 5 shows the resulting system after all three actors have the two-phase commit protocol installed. Because tpcMailq does not enqueue a message on data until aftertwo-phase commit is resolved, a message sent to B after the commit protocol starts, is not copiedand sent to the replicates until the protocol is �nished. There are no di�erences between the wayin which the two-phase commit protocol is installed on C and on the replicated B.8 DiscussionThe re
ective capabilities described in this paper have been implemented in Hal [AW92]. Ourwork led to the addition of several categories of constructs to Hal. The structure for Maud wasbuilt directly into Hal and the underlying system directs messages to dispatcher meta-objects,when sent, and to mail queue meta-objects when received. Additional functions to allow messagemanipulation were also added.In our prototype implementation of Maud, an application and its dependability protocols arelinked together at compile time. It is currently not possible to load new protocols into an applicationat runtime. However, we are developing an execution environment containing a dynamic linker.Applications can invoke the dynamic linker and thereby be extended with new executable code:thus it is possible for an application to dynamically extend its repertoire of dependability protocols.Using dynamic linking instead of interpretation, dynamically constructed protocols have the sameformat and exhibit the same level of trustworthiness as statically linked protocols. In particular, it ispossible to verify dynamically constructed protocols in the same way as statically linked protocols.Several examples, including the ones given in this paper, have been implemented using Hal.Our experiments suggest that the performance cost of using the meta-objects is, in itself, notsigni�cant. The cost of the extra messages caused by meta-object to base-object communication isa constant factor; the meta-objects may be on the same node as their base-object, allowing thesemessages to be converted to function calls. The primary source of cost is that generalized protocolsmay be used instead of customized protocols which can exploit knowledge of a given application. Anexample of this cost is the inability of a general replication scheme to take advantage of commutableoperations [MPS91]. Unfortunately, the cost due to generalizing protocols is di�cult to expressquantitatively since it depends on the application and the protocol: in some cases, the cost is quitehigh and, in others, insigni�cant. However, even if a programmer wants to exploit knowledge ofan application, the customized protocols can be handled as any other protocol. Our methodologystill preserves code modularity, dynamic protocol installation and removal, and composability withother protocols.The dependability of applications developed using our methodology is highly dependent on theinstallation of \correct" meta-objects. As we have already explained, installation of erroneous meta-objects may have dramatic consequences for the behavior of an application. An important part ofour future work is to come up with ways in which it is possible to reason about the behavior of12



meta-objects. A formal semantic framework is needed to verify the adherence ofMaud componentsto a given speci�cation. Preliminary work in this area has been done in [VT93]. Safety wouldbe addressed by having managers only install meta-objects that conform to some speci�cation.The approach is also 
exible and open-ended since many meta-objects may implement a givenspeci�cation.Besides protecting the meta-level, a manager may initiate the installation of meta-objects. Be-cause we have the 
exibility of dynamic protocol installation, self-monitoring could be constructedusing daemons that, without human intervention, initiate protocols to prevent faulty behavior. Theabove capability will be especially useful in the future as systems grow and become proportionallyharder for human managers to monitor. For example, daemons may use sensors to monitor thebehavior of a system in order to predict potentially faulty components.

13



References[ABB+86] M. Acceta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.Mach: A New Kernel Foundation for UNIX Developement. In USENIX 1986 SummerConference Proceedings, June 1986.[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MITPress, 1986.[Agh90] G. Agha. Concurrent Object-Oriented Programming. Communications of the ACM,33(9):125{141, September 1990.[AW92] G. Agha and K. Wooyoung. Compilation of a Highly Parallel Actor-Based Language. InU. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Proceedings of the Work-shop on Languages and Compilers for Parallel Computing. Yale University, Springer-Verlag, 1992. LNCS, to be published.[BHG87] P. A. Bernstien, V. Hadzilacos, and N. Goodman. Concurrency Control and Recoveryin Database Systems. Addison-Wesley, 1987.[BJ87] K. P. Birman and T. A. Joseph. Communication Support for Reliable DistributedComputing. In Fault-tolerant Distributed Computing. Springer-Verlag, 1987.[Coo90] E. Cooper. Programming Language Support for Multicast Communication in Dis-tributed Systems. In Tenth International Conference on Distributed Computer Systems,1990.[DHW88] D. L. Detlefs, M. P. Herlihy, and J. M. Wing. Inheritance of Synchronization andRecovery Properties in Avalon/C++. IEEE Computer, 21(12):57{69, December 1988.[FB88] Jacques Ferber and Jean-Pierre Briot. Design of a Concurrent Language for DistributedArti�cial Intelligence. In Proceedings of the International Conference on Fifth Gen-eration Computer Systems, volume 2, pages 755{762. Institute for New GenerationComputer Technology, 1988.[HA92] C. Houck and G. Agha. HAL: A High-level Actor Language and Its Distributed Imple-mentation. In Proceedings of th 21st International Conference on Parallel Processing(ICPP '92), volume II, pages 158{165, St. Charles, IL, August 1992.[JM92] Sushil Jajodia and Catherine D. McCollum. Using Two-Phase Commit for Crash Re-covery in Federated Multilevel Secure Database Management Systems. In Proceedings ofthe 3rd IFIP Working Conference on Dependable Computing for Critical Applications,pages 209{218, Mondello, Sicily, Italy, September 1992. IFIP. Preprint.[LS82] Barbara Liskov and Robert Schei
er. Guardians and Actions: Linguistic Support forRobust, Distributed Programs. In Conference Record of the Ninth Annual ACM Sympo-sium on Principles of Programming Languages, pages 7{19, Albuquerque, New Mexico,January 1982. ACM. 14



[Mae87] P. Maes. Computational Re
ection. Technical Report 87-2, Arti�cial Intelligence Lab-oratory, Vrije University, 1987.[MPS91] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communication Substratefor Fault-Tolerant Distributed Programs. Technical report, University of Arizona, Tuc-son, 1991.[OOW91] M. H. Olsen, E. Oskiewicz, and J. P. Warne. A Model for Interface Groups. In TenthSymposium on Reliable Distributed Systems, Pisa, Italy, 1991.[PS88] G. D. Parrington and S. K. Shrivastava. Implementing Concurrency Control in Re-liable Distributed Object-Oriented Systems. In Proceedings of the Second EuropeanConference on Object-Oriented Programming, ECOOP88. Springer-Verlag, 1988.[Sch90] F. B. Schneider. The State Machine Approach: A Tutorial. Lecture Notes in ComputerScience, 448:18{41, 1990.[Smi82] B. C. Smith. Re
ection and semantics in a procedural language. Technical Report 272,Massachusetts Institute of Technology. Laboratory for Computer Science, 1982.[TS89] C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. InOOPSLA Proceedings, 1989.[VT93] Nalini Venkatasubramanian and Carolyn Talcott. A MetaArchitecture for DistributedResource Management. In Proceedings of the Hawaii International Conference on Sys-tem Sciences. IEEE Computer Society Press, January 1993. To Appear.[WL88] C. T. Wilkes and R. J. LeBlanc. Distributed Locking: A Mechanism for ConstructingHighly Available Objects. In Seventh Symposium on Reliable Distributed Systems, OhioState University, Columbus, Ohio, 1988.[WY90] T. Watanabe and A. Yonezawa. A Actor-Based Metalevel Arhitecture for Group-WideRe
ection. In J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, Foundationsof Object-Oriented Languages, pages 405{425. Springer-Verlag, 1990. LNCS 489.[YMFT91] Y. Yokote, A. Mitsuzawa, N. Fujinami, and M. Tokoro. The Muse Object Architecture:A New Operating System Structuring Concept. Technical Report SCSL-TR-91-002,Sony Computer Science Laboratory Inc., Feburary 1991.[Yon90] A. Yonezawa, editor. ABCL An Object-Oriented Concurrent System, chapter Re
ectionin an Object-Oriented Concurrent Language, pages 45{70. MIT Press, Cambridge,Mass., 1990.
15


