
Abstracting Interaction Patterns:A Programming Paradigm for OpenDistributed SystemsGul A. AghaOpen Systems LaboratoryDepartment of Computer Science, 1304 W. Spring�eld Avenue, Universityof Illinois at Urbana-Champaign, Urbana, IL 61801, USA, Email:agha@cs.uiuc.edu, Web: http://www-osl.cs.uiuc.eduTo Appear: Formal Methods for Open Object-based Distributed SystemsIFIP Transactions, E. Najm and J.-B. Stefani, EditorsChapman & Hall, 1997AbstractThis paper discusses mechanisms addressing the complexity of building and maintaining OpenDistributed Systems. It is argued that a new programming paradigm based on modular speci�cationof interaction patterns is required to address the complexity of such systems. Our research isbased on developing abstraction mechanisms to simplify the task of developing and maintainingopen systems. We de�ne actors as a model of concurrency for open systems. We then review anumber of programming abstractions that are useful in modular speci�cation and implementationof open systems. Such abstractions include activators, protocols, synchronizers, and actorspaces. Weobserve that de�ning such abstractions for complex interaction patterns requires a sort of systemdecomposition that is not supported by standard execution models of concurrent programming,including actors and process algebras. Rather, a suitable meta-architecture is needed to allow theimplementation of abstract representations of interaction patterns. Currently there is no entirelysatisfactory formal theory of meta-architectures.KeywordsActors, concurrency, object-oriented programming,open systems, real-time systems, fault-tolerance,coordination, reection.

2 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed Systems1 INTRODUCTIONSystems in the real world consist of many distributed, asynchronous components which are opento interaction with their environment. We will call such systems open (distributed) systems. Thefunctionality of an open system is not de�ned by the result of evaluating an expression; insteadthe relative state of components, the relative timing of actions, locality and distribution of thecomputation, etc., are all critical to the correctness of the system. Moreover, open systems areoften subject to dynamic change of hardware or software components, for example, in response tochanging requirements, hardware faults, software failures, or the need to upgrade some component.In other words, open systems are recon�gurable and extensible: they may allow components to bedynamically replaced and components to be connected with new components while they are stillexecuting.Complex interaction patterns arise between di�erent components of an open system. Our con-tention is that to simplify the task of implementing open systems in the real world, we must beable to abstract di�erent patterns of interaction between components. On the other hand, modelsof concurrency are generally based on a rather low-level execution model { namely, message pass-ing as the mechanism to support interaction between components.� Unfortunately, programmingusing only message passing is somewhat worse than programming in assembler: sending a messageis not only a jump, it may spawn concurrent activity! The goal of our research is to �nd a set ofabstractions which enable interaction patterns between concurrent components to be representedby modular and reusable code.We use Actors as our model of concurrent computation. But the problem I address, namelyhow to reliably build complex open systems, and the techniques I develop are equally applicableto any existing model of concurrency. The problem with conventional models of concurrency, andprogramming paradigms based on these models, is that they do not allow one to write abstract,reusable code which captures interaction patterns.Consider requirements such as security, availability, and atomicity. How can we write code forsuch requirements in a modular manner, i.e., by de�ning a module which when composed with anarbitrary application guarantees a certain interaction policy for the application? For example, asecurity policy may be implemented by encrypting and decrypting messages; current techniquesrequire that we modify the code for each actor to implement the encryption and decryption. Whatwe would like to do is simply de�ne a module for encryption/decryption and compose it with anarbitrary group of actors to impose a security policy on that group of actors. We may need toimpose di�erent security policies on di�erent groups of actors or even on the same group at adi�erent point in time. So what we want is the ability to write a reusable module for security, onewhich is neither hand-coded for each application, nor hard-coded in the runtime system.I will begin with an introduction to actors and then return to the problem of separation of designconcerns, abstraction, and composition that I have outlined above. The treatment in this paper isof necessity rather high-level; the goal is to provide an overview of our research. Interested readersshould refer to the citations for technical details of the work as well as secondary references to theliterature.�I will ignore shared variable models; such models violate data encapsulation, an essential feature for modularsoftware development.

Actors 3'
&

$
%

Interface
Thread

Thread

State

State

Procedure

Interface

Thread

Procedure

State

Procedure

Interface

Messages

Figure 1 Actors encapsulate a thread and state. The interface is comprised of public meth-ods which operate on the state.2 ACTORSThe Actor model provides a exible method for representing computation in real-world systems.Actors extend the concept of objects to concurrent computation (Agha, 1986). Recall that objectsencapsulate a state and a set of procedures that manipulate the state; actors extend this by alsoencapsulating a thread of control. Each actor potentially executes in parallel with other actors andmay send messages to actors it knows the addresses of. Actor addresses may be communicated inmessages, allowing dynamic interconnection. Finally, new actors may be created; such actors havetheir own unique addresses.It is possible to extend any sequential language with the actor constructs. For example, thecall-by-value �-calculus is extended in (Agha et al., 1996). Speci�cally, the following operators areadded to expressions:send(a; v) creates a new message:� with receiver a, and� contents vnewactor(e) creates a new actor:� which is evaluating the expression e, and� returns its addressready(b) captures local state change:� alters the behavior of the actor executing the ready expression to b� frees that actor to accept another message.

4 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed SystemsA let construct may be used to allow mutual reference of newly created actors. The behavior ofan actor is represented by a lambda abstraction, the acceptance of a message by function application,i.e., app(b;m), which represents b applied to messagem. The motivation behind the actor constructsis to provide the minimal extension that is necessary to extend a sequential language to a concurrentone supporting object-style encapsulation and coordination.Instantaneous snapshots of actor systems are called con�gurations ; actor computation is de�nedby a transition relation on con�gurations. The notion of open systems is captured by de�ning adynamic interface to a con�guration, i.e. by explicitly representing a set of receptionists which mayreceive messages from actors outside a con�guration and a set of actors external to a con�gurationwhich may receive messages from the actors within.De�nition (Actor Con�gurations): An actor con�guration with actor map, �, multi-set ofmessages, �, receptionists, �, and external actors, �, is writtenh� � i��where �; � are �nite sets of actor addresses, � maps a �nite set of addresses to their behavior, � isa �nite multiset of (pending) messages, and if A = Dom(�), i.e., the domain of �, then:(0) � � A and A \ � = ;,(1) if a 2 A, then FV(�(a)) � A [�, where FV(�(a)) represents the free variables of �(a); andif <v0 (v1> is a message with content v1 to actor address v0, then FV(vi) � A [� for i < 2.An actor may be in one of two kinds of states: busy or ready to accept a message. For an actorwith address a, we indicate these states as follows:� (b)a ready to accept a message, where b is a lambda abstraction representing its behavior;� [e]a busy executing e, e represents the actor's current (local) processing state.Now we can extend the local transitions de�ned for a sequential language (�7!), by providingtransitions for the actor program as shown in Figure 2 (assume that R is the reduction context inwhich the expression currently being evaluated occurs).Based on a slight variant of the transition system described above, a rigorous theory of actorsystems is developed in (Agha et al., 1996). Speci�cally, we de�ne and study various notions oftesting equivalence on actor expressions and con�gurations. The model we have developed providesfairness, namely that any enabled transition eventually �res. Fairness is an important requirementfor reasoning about eventuality properties. It is particularly relevant in supporting modular reason-ing. There are two important consequences of fairness which illustrate its usefulness. The �rst ofthese is that each actor makes progress independent of how busy other actors are. Therefore, if wecompose one con�guration with another which has an actor with a nonterminating computation,computation in the �rst con�guration may nevertheless proceed as before, for example, if actorsin the two con�gurations do not interact. A second consequence is that messages are eventuallydelivered; thus, if upon composition, new requests may be sent to a particular server actor, previousrequests sent to that server will still be received (provided the server itself does not \fail").The notion of equivalence is de�ned by adding an observable distinguished event to the set oftransitions. This technique is a variant of operational equivalence de�ned in (Plotkin, 1975). Twoactor expressions may be plugged into a context to see if the event occurs in one or the othercase. Two expressions are considered equivalent if they have the same observations over all possiblecontexts.

Actors 5'

&

$

%

e �7!Dom(�)[fag e0) h�; [e]a � i�� 7! h�; [e0]a � i��h�; [R[newactor(e)]]a � i�� 7! h�; [R[a 0]]a ; [e]a 0 � i�� a 0 freshh�; [R[ready(v)]]a � i�� 7! h�; (v)a � i��h�; [R[send(v0; v1)]]a � i�� 7! h�; [R[nil]]a �;m i�� m = <v0 (v1>h�; (v)a <a (cv>; � i�� 7! h�; [app(v ; cv)]a � i��h� �;m i�� 7! h� � i�0�if m = <a (cv>, a 2 �, and �0 = � [(FV(cv) \ Dom(�))h� � i�� 7! h� �;m i��[(FV(cv)�Dom(�))if m = <a (cv>, a 2 � and FV(cv) \Dom(�) � �Figure 2 Actor transitions.The nondeterminism in the arrival order of the messages in an actor computation gives rise tothree notions of observation over a computation tree. Notice there are many computational pathsin the tree. Now it is possible that the event occurs in every computational path (must happen);occurs in some but not all computational paths (may happen), or never occurs.Three distinct well-known equivalence relations may now be de�ned. In may equivalence, alwaysoccurs is as good as sometimes occurs (i.e. that is, either is a su�cient condition for proving equiv-alence); in must equivalence never occurs is as good as only sometimes occurs. Convex equivalencerequires the two sets to coincide (the intersection of the two equivalences). An important resultis that, in the presence of fairness, the three forms of equivalence collapse to two, namely, mayand convex. Thus, while fairness makes some aspects of reasoning harder { we cannot simply useco-induction in proofs { it simpli�es others.We have developed methods for proving laws of equivalence and have developed proof techniquesthat simplify reasoning about actor systems. In particular, the proof techniques allow us to use

6 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed Systems'
&

$
%

Buffer

PUT

GET

Producer

ConsumerFigure 3 Synchronization between a producer, consumer and intermediate bu�er.canonical multi-step transitions as well as reduce the number of contexts that need to be considered.Finally, note that the composition of con�gurations de�nes an algebra.A concrete way to think of actors is that they represent an abstraction over concurrent architec-tures. An actor runtime system provides the interface to services such as global addressing, memorymanagement, fair scheduling, and communication. It turns out that these services can be e�cientlyimplemented, thus raising the level of abstraction while reducing the size and complexity of codeon concurrent architectures (Kim and Agha, 1995).Note that the Actor model is, like the theory of higher order nets or the �-calculus, generaland inherently parallel. Moreover, asynchronous communication in actors directly preserves theavailable potential for parallel activity: an actor sending a message does not have to necessarilyblock until the recipient is ready to receive (or process) a message. Of course, it is possible tode�ne actor-like bu�ered, asynchronous communication in terms of synchronous communication,provided dynamic actor (or process) creation is allowed. On the other hand, more complex commu-nication patterns, such as remote procedure calls, can also be expressed as a series of asynchronousmessages (Agha, 1990).A key di�erence between actors and objects de�ned using ports in the �-calculus is that actornames (addresses) are uniquely tied to the identity of an actor { giving out an actor name does notenable the recipient to receive messages directed to that actor. It is also possible to model a systemof actors by means of a higher order net and vice versa (Sami and Vidal-Naquet, 1991), althoughsuch a model does not satisfactorily account for the open systems aspects of actors.3 LOCAL SYNCHRONIZATION CONSTRAINTSConsider a system of actors consisting of producers and consumers. A producer puts elements ina bu�er and a consumer consumes them. Thus a bu�er has two methods { namely get and put:a producer invokes the put method to store in the bu�er a value that it has generated while aconsumer retrieves the next available value by sending a get message to the bu�er actor (seeFigure 3). An example of such a bu�er is a print spooler.

Communication and Continuations 7'
&

$
%

Synchronization
Constraints

Controller

Pending Queue

Evaluate
Schedule

ACTOR

Data
and

Method

State
Dependence

MailQ

Incoming
Messages

Figure 4 Implementing synchronization constraints.Because actors are asynchronous and autonomous, when a consumer does a get, it does notknow if the bu�er has any elements in it. In languages with synchronous communication, the bu�erprocess would have an input guard over a channel on which it services requests from consumers andthe guard would prevent messages from coming in when the bu�er process is empty. The consumerthen has to busy wait until such time as the bu�er is no longer empty. This solution is generallyundesirable: it wastes net bandwidth and complicates programming. Instead, we would like therequest from the consumer to be locally bu�ered until the bu�er is ready to process get requests(see �gure 4. The �gure is from (Fr�lund, 1992)).A local synchronization constraint is a programming construct which allows a declarative expres-sion of a complex sequence of actions involving testing and storing messages. Using the abstraction,we may write the desired message ordering constraint as a logical formula over the state of an actor;we do not have to program the details of testing and storing messages to enforce the ordering (whichcan get quite complicated, particularly if optimizations are used to improve e�ciency). The pro-gramming construct also encourages higher-level reasoning about the system, one which abstractsthe low level implementation details.Abstractly, an actor con�guration now includes a constraint map. For each actor and message,the constraint map yields a truth value. If the constraint holds, the message may be processed;otherwise the transition to receive the message cannot �re. The constraint map changes as thestate of an actor changes. The semantics of local synchronization constraints will be subsumed bya more complex multi-actor coordination constraint construct that we describe in Section 7.4 COMMUNICATION AND CONTINUATIONSIt is often possible to encode the computation and communication behavior de�ned in one modelof concurrency in terms of another while preserving the intuitive properties of the behavior. Thissuggests that there is some sort of equivalence between many di�erent, relatively powerful models

8 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed Systems'
&

$
%

method survey(sens-1,sens-2 : recep(real);)var r1,r2 : real;while truesens-1 ? r1 and sens-2 ? r2 where non-safe(r1,r2)! process-data(r1,r2);end surveyFigure 5 A survey method in an activator monitors values received by two sensors, sens-1and sens-2. If the values indicate a non-safe state, action is taken and the values are removed.In an activator, only one method acts on given data at a time, thus one match atomicallyremoves the values.of concurrency, although we do not have a consensus about what de�nes a universal model forconcurrency. However, from a programming language point of view, such generality is not enough.Consider the fact that although asynchronous communication is a natural way of representingprimitive interaction in distributed systems, other forms of communication, such as remote proce-dure calls, are often useful. In actor terms, an rpc-like communication is represented by an actorentering a \wait" state after sending a request to another actor; in this state all messages otherthan a reply from the called actor are deferred. In other words, expressing RPC-like communicationin terms of primitive actors, requires unfolding the continuation behavior into a separate actor. Theneed for such transformation places an unnecessary burden of book-keeping on the programmer.No model of concurrency can, and perhaps should, allow all communication abstractions to bedirectly expressed; in fact, di�erent models make some forms easier to express than others. Forexample, a communication abstraction that is relatively simple to express in Petri Nets as well asGuarded Horn Clause (or Concurrent Logic) languages is invocation by a set of messages. Thiscommunication represents a common schema where an actor carries out some useful actions onlyafter some arbitrary set of messages has been received (input synchronization). A simple example ofinput synchronization is a monitor which responds to conditions based on readings of two di�erentsensors (see Figure 5).In a high level actor language, a new programming abstraction must be introduced to allowan abstract speci�cation of a behavior that is activated by a set of messages rather than a singlemessage. In (Fr�lund and Agha, 1996), we de�ne such an abstraction, called activators, which al-lows speci�cation of both input synchronization and reply synchronization; reply synchronizationgeneralizes rpc-like communication to support the concurrent invocation of a group of actors. Acompiler can translate activators into a collection of actors which maintain the local state necessaryto capture the partial set of messages received. A di�erence between activators and concurrent logiclanguages is the atomic removal of messages matching the pattern in a method; in other words,messages in activators are use once rather than instantiations of the bindings of shared variables asin concurrent logic programming. The idea is to provide mutual exclusion of independantly speci�edactions. This is reminiscent of a token being removed in a petri net transition.

Interaction Policies 9'
&

$
%Component

Component

Interaction PolicyFigure 6 A distributed system consists of a set of components carrying out local computa-tions and interacting in accordance with a set of policies.5 INTERACTION POLICIESAn interaction policy may be expressed in terms of the interfaces of actors and implemented byusing appropriate protocols to coordinate between actors (see Figure 6).Consider a common interaction policy, namely, atomicity. Atomicity may be realized by usinga protocol such as two phase commit. Notice that the implementation of a two phase commitis quite involved: it requires exchanging a number of messages between di�erent actors. Currenttechniques for developing distributed software require developers to implement interaction policiesand application behavior together, signi�cantly complicating code. The lack of modularity not onlymakes it hard to reason about code, it limits its re-usability and portability. Moreover, the resultingcode is brittle: modifying an interaction policy to satisfy changing requirements requires modifyingthe code of each relevant component and then reasoning about the entire system, essentially fromscratch. One cannot, for example, simply pull out a two phase commit and replace it with a threephase commit.Composition of con�gurations is not su�cient to capture the kind of composition we need here. Inthe �rst place, in standard actor semantics, we cannot even express a two-phase commit protocolby a con�guration of actors; what we need to express a two phase commit as an abstraction isthe ability to write meta-programs with distributed scope. A two phase commit meta-programimposes a role for each actor, speci�cally, trapping and tagging incoming and outgoing messages toimplement the protocol. Such customization of an individual actor's mail system may be furtherlimited only for the duration of an interaction.We implement interaction policies using a linguistic construct called protocol. As described in thenext section, a protocol imposes a certain role on each actor governed by the protocol: in essenceit mediates the interactions between actors to ensure that each relevant actor implements its endof the interaction policy.

10 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed Systems'
&

$
%

A

B

Backup
for B

Server

Backup

Message
Name Role

Client
Primary−Backup

Figure 7 The Primary-Backup protocol. With respect to this protocol, the actor A servesrole of client, B serves the role of a server and Backup for B serves the role of a backup.Interactions between these actors are mediated by a protocol which ensures the correctbehavior of the protocol.6 PROTOCOLSWe have developed a programming language which allows protocols to be speci�ed and linked toactors written in conventional actor languages (Sturman and Agha, 1994). In our language, a pro-tocol abstraction, such as one for the two phase commit protocol, may be de�ned. The abstractionmay be instantiated by specifying a particular group of actors and other initialization parameters.The runtime system then uses speci�c forms of reection which are su�cient to enable the protocolto be enforced. Speci�cally, the runtime supports meta-level operations which dynamically modifythe mail system and store and retrieve actor states.Consider the primary backup protocol in Figure 7. By modifying the communication architec-ture, the protocol may be installed on any group of actors. An important advantage is that suchinstallation may be dynamic and limited in duration. Thus, a protocol's behavior may change overtime. We specify a protocol as a single object with a mutable local state and operations over thestate; the operations may be used to change the con�guration of the protocol. To specify a pro-tocol, we de�ne an abstraction which may be instantiated with di�erent actors. Protocols do notdepend on the internal representation of actors; they may however require the state of actors tobe copied as a black box. The advantage of a message-passing model and decoupled components isthat the ability to modify the communication architecture provides great exibility in customizinginteractions. Figure 8 shows the code for a primary backup protocol.An important aspect of protocols is that protocol instances may be composed. Thus, a given actormay be in di�erent roles with respect to di�erent protocol instances. Figure 9 shows the compositionof two protocols. Such composition is sometimes realized by layering in the meta-level architecture,

Protocols 11'

&

$

%

protocol PrimaryBackup fint redundancy;int ticks;initialize(actor svr, int red, int t) fticks = t;redundancy = red;assume(svr,server);assume(svr.clone(),getRole(backup));goperation addClient(actor c) fassume(c,client);grole server fCopy all messages and periodicallysend state updates to backup;grole client fRemoves tags from server messages;grole backup fReceive messages and state from server;gg

role server fTimer t;int tag;initialize() ft.set(ticks,update);backup.update(snapshot());tag = 0;gevent deliver(Msg m) fbackup.deliver(m);deliverMsg(m);gevent transmit(Msg m) fm.add(tag);tag = tag + 1;m.send();gmethod update() fbackup.update(snapshot());t.set(ticks,update);ggProtocol De�nition Server RoleFigure 8 Primary-Backup Protocol. The protocol de�nition (left �gure) de�nes rolesfor each participant in the protocol. Each role (e.g. right �gure) de�nes protocol speci�cmethods and events which the role implements. An event is a meta-level customization of aparticular operation done by the runtime system for the actor assuming the given role.much like the concept of �lters (Aksit et al., 1993). A description of the implementation and se-mantics of protocols, including details about these examples, may be found in (Sturman, 1996).Notice that the behavior of an actor system in the presence of protocols may be quite di�erentfrom its behavior otherwise. Our pragmatic experience suggests that reasoning about distributedapplications is simpli�ed by our meta-programming system; after all, code size is reduced orders ofmagnitude, and an application is decomposed into more intuitive units corresponding to the moreabstract requirements speci�cation. Speci�cally, one can reason about the protocol behavior at anabstract level rather than at the level of its implementation.However, the semantics of actor systems in the presence of meta-level operations remains poorly

12 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed Systems'
&

$
%

A

B

Backup
for B

for A

Server

Backup

Server

Message
Name Role

Client

File
State File

Primary−Backup
Periodic
Checkpoint

Figure 9 Primary-Backup overlapping with a Checkpoint protocol. The same actor mayserve in di�erent roles with respect to di�erent protocol instances.understood; in particular, the e�ect of such operations on the theory of actor equivalence is notunderstood. Recent research based on actors has made progress on the problem of reasoning inthe presence of meta-actors, speci�cally, by de�ning a reasoning system and using it to prove thecorrectness of a meta-level algorithm for taking a global snapshot of a running distributed systemof actors (Venkatasubramanian and Talcott, 1995).7 DECLARATIVE COORDINATION CONSTRAINTSTo further abstract over possible mechanisms implementing interaction policies, we focus on co-ordination constraints. As a gross simpli�cation, coordination constraints determine when actionstake place rather than what individual actors do. Such constraints naturally generalize local syn-chronization constraints to multi-actor systems. The key idea is to maintain encapsulation of actorsand express the coordination patterns in terms of the interfaces of the relevant group of actors.It turns out that two types of coordination are often useful. One type imposes precedence con-straints on otherwise asynchronous events at di�erent actors, and the other requires such events tobe atomic (loosely speaking, to co-occur). By providing a language abstraction, called a synchro-nizer , to express these two types of coordination constraints, we are able to show that the taskof distributed programming may be further simpli�ed (Fr�lund and Agha, 1993). A synchronizermay observe messages owing through to a group of actors; it has a local state which may changeas a result of these observations. Thus the local state does its own bookkeeping for the part ofthe history of a group that is relevant to the coordination between actors in the group. By doingthe extra bookkeeping, we avoid violating the data encapsulation of individual objects and thusmaintain their representation independence. Synchronizers add considerable exibility to a systemsince they may be dynamically added and removed, and may be composed.

Declarative Coordination Constraints 13'
&

$
%

AllocationPolicy =finit prev := 0enter(adm1,adm2,max)prev = max disables (adm1.request or adm2.request),(adm1.request or adm2.request) updates prev := prev + 1,(adm1.release or adm2.release) updates prev := prev - 1,gFigure 10 A synchronizer which enforces a global bound, max, on the number of resourcesallocated by two actors, adm1 and adm2. We assume that each request uses a single resourcefrom a pool of resources.Figure 10 shows an example of a synchronizer. To maintain a consistent state of a synchronizer,serialization must be maintained over di�erent possible groups of messages that a�ect the state ofthe synchronizer. A given implementation of synchronizers may satisfy this consistency requirementthrough di�erent possible concurrency control mechanisms.Besides the need for concurrency control, the fact that synchronizers may be superimposed, andmay be dynamically added or removed, means that implementing a system to support synchronizersis fairly challenging. See (Fr�lund, 1996) for a discussion of one strategy for their e�cient imple-mentation. The interesting point to note is that the particular set of protocols used to implementsynchronizers { i.e., provide fair scheduling, mutual exclusion, atomicity and so on { are all reusedby di�erent declarative coordination constraints imposed on an application using synchronizers.As one might expect, the semantics of synchronizers fundamentally alters the nature of transitionsin actor systems. Essentially, synchronizers provide a declarative mechanism for customizing thebehavior of meta-level actors that collectively represent the scheduler. Observe that synchronizersdo not add to the set of possible observable events in an actor system; they merely rule out certaininterleavings of events.A transition system for actors in the presence of synchronizers is also de�ned in (Fr�lund, 1996).The essential idea is to add a set of synchronizers, �, to con�gurations. A function Cmap maps �to a function that takes a multiset of message target pairs to a boolean value. The receipt of amessage is generalized to the receipt of a multiset of (one or more messages), where such receipt isonly possible if the boolean value resulting from evaluating Cmap function on the messages is true.The function Tmap captures the change in the state of synchronizers in response to the receipt ofthe messages. The transitions below capture the semantics of a synchronizer; the �rst one is a new

14 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed Systems'
&

$
%a

b

c

d

C(a, b, c, d)

e
f

F(c, d, e)

T(e, f)

Timing Relation Domain

Functional Domain

Constraint Patterns

Computational Objects

Constraints Applied on ObjectsFigure 11 Mapping between the timing relation and functional domain.transition, while the second modi�es message reception. We use [, for union and] for multisetunion.h � ; [R[enforce(synch(r))]]x j � j � i�� 7! h � ; [R[nil]]x j � j � [fsynch(r)g i��M = fha1 (cv1i; : : : ; han (cvnig (Cmap(�))(M)h � ; (v1)x1 ; : : : ; (vn)xn j �]M j � i�� 7! h � ; [v1 cv1]a1 ; : : : ; [vn cvn]an j � j Tmap(�;M) i��8 REAL-TIME REQUIREMENTSMany real world systems need to respond in real-time.While synchronizers provide a mechanism forconstraining the order of events, such constraints are ordinal rather than metric and thus unsuitableas a representation for real-time. However, using a linguistic abstraction similar to synchronizers cansimplify the design, implementation and reasoning about distributed real-time systems. Speci�cally,such a programming abstraction must modularize timing properties, separating their speci�cationfrom the representation of the functional behavior of actors. In contrast to conventional real-timelanguage constructs, which express timing requirements on actions within an object, we think oftiming requirements as constraints relative to message execution rather than as constraints internalto actors (Ren et al., 1996). Because real-time constraints are separately speci�ed, using genericsoftware in real-time systems becomes feasible (see Figure 11).Semantics for concurrent programming languages usually focus on qualitative aspects, whichis insu�cient for real-time programming languages. It is critical for real-time applications thatquantitative aspects are analyzed and explained. We have shown how an operational semantics ofa simple actor language which has been extended to allow timing constraints on messages, may betranslated into an underlying real-time formalism, namely, timed graphs. The net result is to providethe real-time semantics of an actor language (Nielsen and Agha, 1996). Moreover, the semantics

Naming and Groups 15'
&

$
%Car

Customer

St. Wheel Manufacturers

Wheel Manufacturers
Seat Manufacturers

Chassis Manufacturers

Request
Supply

AssemblyFigure 12 A car assembly factory. The assembly sends requests to actorspaces whose mem-bership may dynamically change.provides a loose speci�cation of programs, rather than a semantics of actual implementations. Animplementation represents a re�nement of this speci�cation.9 NAMING AND GROUPSGroups of actors are an important unit of representation; for example, in de�ning protocols wecan assign roles to a group of actors rather than an individual actor. The Actorspace model allowsan abstract speci�cation of a group of actors (Callsen and Agha, 1994). An actorspace associatesan actor with speci�c attributes; the sender of a message speci�es a destination pattern which ispattern matched against the attributes of actors in the actorspace.A simple analogy with set theory illustrates the di�erence between naming in actors and ac-torspaces. A set may be de�ned by enumerating its elements, or by specifying a characteristicfunction which de�nes a subset in a domain. The �rst method is analogous to actor communication(where an explicit collection of mail addresses of actors must be speci�ed), whereas the secondmethod corresponds to actorspace communication. Of course, in conventional mathematics the twoways of characterizing sets are equivalent since the properties of mathematical objects are static;by contrast, actors may dynamically change their attributes.Actorspace provides a transparent way of managing groups of actors. It generalizes the notionof ports in process calculi, in as much as a port name may not uniquely encapsulate an object.Moreover, Actorspace provides a multicast primitive. Multicast is useful, for example, when youwant the group to change its collective behavior, as in enacting a new policy. Figure 12 shows asimple example of an actorspace. A car assembly requires certain types of parts which may beavailable through di�erent vendors, sets that may themselves be changing over time. Which vendor

16 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed Systems�lls a request may not be germane to the assembly process. Such requests may be mediated throughan actorspace. Finally, meta-level operations may be associated with an actorspace. For example,an actorspace manager may transparently schedule requests to ensure load balancing.10 CONCLUSIONSI have discussed a number of ways in which the development of concurrent systemsmay be simpli�edby abstractions. In particular, I have argued the need for abstracting over patterns of interactionbetween meta-level actors, as well as the mechanisms they use to manage base-level actors. Such ab-stractions provide programming language support for de�ning higher-level coordination structures,reducing code size and complexity by orders of magnitude.Programming abstractions are useful only if methods are developed for e�ciently implementingthem, as well as for reasoning about their composition. Observe that in our framework, it is notsu�cient to think of composition as a way of plugging together di�erent modules; rather theimplementation of services in a runtime system must itself be thought of as a system of actors thatis composed with an application. In other words, parts of what would conventionally be thought ofas the runtime system may be customized and recon�gured.Reection provides an essential mechanism by which to implement higher level, application spe-ci�c coordination structures in a dynamic and transparent way. I should emphasize that I do notregard unrestricted computational reection, where a complete interpreter is available at runtime,as an application programmer's tool. Rather, it is necessary only to export certain meta-level op-erations to an application to enable limited runtime customization. Thus the implementation ofinteraction abstractions should be automated using the reective architecture. In any event, consid-erable research in this area remains to be done before a useful programmingmethodology, supportedby robust formal methods, becomes available.ACKNOWLEDGEMENTSResearch described in this paper has been made possible by intense interaction with the past andpresent members of the Open Systems Laboratory including Mark Astley, Christian Callsen, ChrisHouck, Svend Fr�lund, Shingo Fukui, Nadeem Jamali, WooYoung Kim, Brian Nielsen, RajendraPanwar, Anna Patterson, Shangping Ren, Masahiko Saito, Susanne Schacht, R. K. Shyamasun-dar, Daniel Sturman, Takuo Watanabe, and Nalini Venkatasubramanian. I have also particularlybene�ted from discussions with Ian Mason, Scott Smith and Carolyn Talcott. This paper extendsand incorporates (Agha, 1996). The research described has been supported in part by the O�ceof Naval Research (ONR contract numbers N00014-90-J-1899 and N00014-93-1-0273), the DigitalEquipment Corporation, Hitachi, and the National Science Foundation (NSF CCR 93-12495).REFERENCESAgha, G. (1986). Actors: A Model of Concurrent Computation in Distributed Systems. MITPress, Cambridge, Mass.

Conclusions 17Agha, G. (1990). Concurrent Object-Oriented Programming. Communications of the ACM,33(9):125{141.Agha, G., Mason, I. A., Smith, S. F., and Talcott, C. L. (1996). A foundation for actorcomputation. Journal of Functional Programming. to appear.Agha, G. A. (1996). Modeling concurrent systems: Actors, nets, and the problem of abstrac-tion and composition. In Billington, J. and Reisig, W., editors, Applications and Theoryof Petri Nets 1996, LNCS 1091, pages 1{10, Osaka, Japan. Springer-Verlag.Aksit, M., Wakita, K., Bosch, J., Bergmans, L., and Yonezawa, A. (1993). Abstracting objectinteractions using composition �lters. In Guerraoui, R., Nierstrasz, O., and Riveill, M.,editors, Object-Based Distributed Programming, volume 791 of Lecture Notes in ComputerScience, pages 152{184. ECOOP, Springer-Verlag.Callsen, C. J. and Agha, G. A. (1994). Open Heterogeneous Computing in ActorSpace.Journal of Parallel and Distributed Computing, pages 289{300.Fr�lund, S. (1992). Inheritance of synchronization constraints in concurrent object-orientedprogramming languages. In Madsen, O. L., editor, Proceedings ECOOP '92, LNCS 615,pages 185{196, Utrecht, The Netherlands. Springer-Verlag.Fr�lund, S. (1996). Coordinating Distributed Objects: An Actor-Based Approach to Synchro-nization. MIT Press.Fr�lund, S. and Agha, G. (1993). A language framework for multi-object coordination. InProceedings of ECOOP 1993, volume 707 of Lecture Notes in Computer Science. SpringerVerlag.Fr�lund, S. and Agha, G. (1996). Abstracting interactions based on message sets. InObject-Based Models and Languages for Concurrent Systems, volume 924, pages 107{124.Springer-Verlag. Lecture Notes in Computer Science.Kim, W. and Agha, G. (1995). E�cient Support of Location Transparency in ConcurrentObject-Oriented Programming Languages. In Supercomputing '95. IEEE.Nielsen, B. and Agha, G. (1996). Semantics for an actor-based real-time language. In FourthInternational Workshop on Parallel and Distributed Real-Time Systems, Honolulu. (to bepublished).Plotkin, G. (1975). Call-by-name, call-by-value and the lambda calculus. Theoretical Com-puter Science, 1:125{159.Ren, S., Agha, G., and Saito, M. (1996). A modular approach for programming distributedreal-time systems. Journal of Parallel and Distributed Computing. (to appear).Sami, Y. and Vidal-Naquet (1991). Formalization of the behavior of actors by colored petrinets and some applications. In Conference on Parallel Architectures and Languages Europe,PARLE'91.Sturman, D. and Agha, G. (1994). A protocol description language for customizing failure se-mantics. In The 13th Symposium on Reliable Distributed Systems, Dana Point, California.IEEE.Sturman, D. C. (1996). Modular Speci�cation of Interaction Policies in Distributed Comput-ing. PhD thesis, University of Illinois at Urbana-Champaign.

18 Abstracting Interaction Patterns:A Programming Paradigm for Open Distributed SystemsVenkatasubramanian, N. and Talcott, C. L. (1995). Reasoning about Meta Level Activitiesin Open Distributed Systems. In Principles of Distributed Computing.BIOGRAPHICAL SKETCHGul Agha is Director of the Open Systems Laboratory at the University of Illinois at Urbana-Champaign. His research interests include models, languages, and tools for computing in opendistributed systems. His book, Actors: A Model of Concurrent Computing in Distributed Systemsstimulated considerable research in concurrent objects. Professor Agha is an ACM InternationalLecturer, Editor-in-Chief of IEEE Concurrency, and Associate Editor of Theory and Practice ofObject Systems and ACM Computing Surveys. He is a recipient of the Incentives for ExcellenceAward from Digital Equipment Corporation, Naval Young Investigator Award from the US O�ceof Naval Research, and of a Fellowship at the University of Illinois Center for Advanced Study. Aghahas served as Consulting Scientist to Microelectronics and Computer Technology Consortium andas a Visiting Professor at the University of Grenoble, France.

