
Modular Heterogeneous System Development:A Critical Analysis of JavaGul A. Agha, Mark Astley, Jamil A. Sheikh, and Carlos VarelaDepartment of Computer ScienceUniv. of Illinois at Urbana-ChampaignUrbana, IL 61801, USAPhone: (217) 244-3087Email: agha@cs.uiuc.eduAbstractJava supports heterogeneous applications by trans-forming a heterogeneous network of machines into ahomogeneous network of Java virtual machines. Thisapproach abstracts over many of the complications thatarise from heterogeneity, providing a uniform APIto all components of an application. However, formany applications heterogeneity is an intentional fea-ture where components and resources are co-locatedfor optimal performance. We argue that Java's APIdoes not provide an e�ective means for building ap-plications in such an environment. Speci�cally, wesuggest improvements to Java's existing mechanismsfor maintaining consistency (e.g. synchronized), andcontrolling resources (e.g. thread scheduling). We alsoconsider the recent addition of a CORBA API in JDK1.2. We argue that while such an approach providesgreater 
exibility for heterogeneous applications, manykey problems still exist from an architectural stand-point. Finally, we consider the future of Java as afoundation for component-based software in heteroge-neous environments and suggest architectural abstrac-tions which will prove key to the successful develop-ment of such systems. We drive the discussion withexamples and suggestions from our own work on theActor model of computation.1 Classifying HeterogeneityHeterogeneous computing environments arise inpractice for a number of di�erent reasons; heterogene-ity, however, generates the same basic set of prob-lems: code is not portable, shared data may need tobe converted, the utilization of certain resources maybe restricted to speci�c nodes, and so on. Nonethe-less, the solution for these problems depends heavilyon the types of applications that are deployed in theheterogeneous environment. As an example, consider

the following two instances of heterogeneity:� System Evolution: Corporate computing en-vironments are continually evolving as outdatedsystems are gradually replaced with newer, morepowerful systems. However, although the hard-ware is constantly replaced, corporations are of-ten dependent on monolithic applications thatmust continue to run correctly in the presenceof new hardware.� Specialized Hardware: Certain computing en-vironments are intentionally designed to be het-erogeneous in order to utilize specialized hard-ware. Numeric simulations, for example, maybe executed on massively parallel systems whilemonitoring and analysis is performed on graphics-intensive workstations. As another example,servers with high availability requirements areplaced on hardware with large pools of avail-able resources whereas clients execute on low-endworkstations designed for single users.The solution for an evolving corporate system de-pending on existing software might involve the de-velopment of a common execution environment atopeach physical node. Thus, as long as existing applica-tions are written in terms of this uniform environment,they will continue to be usable as future improvementsare made. On the other hand, specialized hardwaremight be handled using an environment in which cus-tomized objects, targeted for speci�c hardware, coor-dinate with one another through a common interfacefor interactions. Still other environments, may utilizea hybrid of these two solutions.Many languages and programming environmentsexist for managing heterogeneous computing environ-ments. The Java programming language is an example



which directly addresses the technical problems cre-ated by a heterogeneous environment. In the words ofits designers [6]:Java is designed to meet the challenges ofapplication development in the context ofheterogeneous, network-wide distributed en-vironments. Paramount among these chal-lenges is secure delivery of applications thatconsume the minimum of system resources,can run on any hardware and software plat-form, and can be extended dynamically.CORBA, COM and other Object Request Bro-ker (ORB) based environments represent so called\middle-ware" solutions. That is, rather than addressheterogeneity directly, these environments provide amechanism for allowing interactions between applica-tions executing in heterogeneous environments.In general, we may characterize the Java approachas the transformation of a heterogeneous network ofmachines into a homogeneous network of Java vir-tual machines. Java makes no e�ort to abstract overnetwork features or cater to highly-optimized (butnon-portable) implementations. However, Java doesgreatly simplify network access and provides a nativemethod interface as a loop-hole for incorporating non-Java code. On the other hand, ORB-based systemsmake little or no e�ort to transform heterogeneoussystems into homogeneous ones. Instead, ORBs solvethe problem of interactions between heterogeneous en-vironments. While such a solution limits mobility, ap-plications may directly access high-performance im-plementations executing on dedicated hardware.Both the Java and ORB-based solution have theirmerits. However, we argue that in order for Javato become \the answer" for programming heteroge-neous computing systems, it must incorporate manyof the features already present in ORBs. In particular,to answer the challenge of high-performance systems,Java must make local, optimized servers more avail-able to Java clients. Currently, there are joint e�ortsbetween Sun and OSF to link CORBA and Java forprecisely this reason [11]. However, we believe thatwhile Java should be more ORB-like, it should alsoovercome many of the weaknesses of existing ORBssuch as the inability to customize interactions betweenORB-served objects. Moreover, to e�ectively supportconcurrency and distribution, we claim that Java re-quires more powerful constructs for controlling syn-chronization and coordination between distributed en-tities. We �nd existing Java synchronization (e.g. thesynchronized keyword) to be too low-level and un-suitable for distributed needs. The lack of control over

resource management tasks such as thread schedulingis also undesirable.We envision Java as evolving to support distributedcollections of objects executing over heterogeneouscomputing environments. In such an environment,application developers may specify services consistingof (possibly) distributed collections of Java and na-tive objects. Services would be composed with poli-cies which manage both interactions as well as deploy-ment. These policies would encapsulate many of thesolutions currently employed for heterogeneous envi-ronments: protocols which marshal arguments, rout-ing mechanisms which link client requests to optimizedobjects executing on custom hardware, and so on.In the next section, we discuss some weaknesses ofthe current version of Java as well as potential solu-tions. In Section 3, we describe features of ORB-basedmodels which we believe should be incorporated intoJava. In addition, we propose solutions for a Java-ORB system which overcomes many of the currentweaknesses of the ORB-based model. In Section 4, wepresent a future vision of Java as a tool for implement-ing large grain coordination and management for het-erogeneous applications. We describe lessons learnedfrom our research in Actor [2] systems and proposeseveral abstractions to be incorporated in future Javadevelopments. We present concluding remarks in Sec-tion 5.2 Heterogeneity in JavaSoftware executing in a heterogeneous environmentis naturally segmented into a collection of distributed,coordinating objects. As a result, desirable systemfeatures such as ease of management and high per-formance depend on the ability to specify error-freecoordination mechanisms which exploit available con-currency. Java uses a passive object model in whichthreads and objects are separate entities. As a re-sult, Java objects serve as surrogates for thread coor-dination and do not abstract over a unit of concur-rency. We view this relationship between Java objectsand threads to be a serious limiting factor in the util-ity of Java for heterogeneous systems. Speci�cally,while multiple threads may be active in a Java ob-ject, Java only provides the low-level synchronizedkeyword for controlling object state, and lacks higher-level linguistic mechanisms for more carefully charac-terizing the conditions under which object methodsmay be invoked. Java programmers often overusesynchronized and deadlock is a common bug inmulti-threaded Java programs.Java's passive object model also limits mechanismsfor thread interaction. In particular, threads ex-



change data through objects using either polling orwaitnnotify pairs to coordinate the exchange. In de-coupled environments, where asynchronous or event-based communication yield better performance, Javaprogrammers must build their own libraries which im-plement asynchronous messaging in terms of theseprimitive thread interaction mechanisms. Active ob-jects, on the other hand, greatly simplify such coordi-nation and are a natural atomic unit for system build-ing, but no such alternative is available in the currentversion of Java.Finally, we �nd Java's position on thread schedul-ing to be inadequate. While it is reasonable to notrequire applications to use fairly scheduled threads,we believe that system builders should have the op-tion of selecting fair scheduling if necessary. The lackof fair threads is a particularly devious source of raceconditions which makes debugging multi-threaded ap-plications all the more di�cult.In the remainder of this section, we elaborate oneach of these criticisms and describe potential solu-tions.2.1 Linguistic Support for Synchroniza-tionSynchronization in Java is necessary to protectstate properties associated with objects. For example,the standard class java.util.Hashtable de�nes a syn-chronized put method for adding key-value pairs, anda synchronized get method for hashing keys. Bothmethods are synchronized to avoid corrupting statewhen methods are simultaneously invoked by sepa-rate threads. This mechanism works well for classeslike Hashtable because methods in these classes haverelatively simple behavior and do not participate incomplex interactions with other classes.A side-e�ect of the convenience and simplicity ofsynchronized, however, is that it tends to be over-used by application programmers: when software de-velopers are not certain as to the context in whicha method may be called, a rule of thumb is to makeit synchronized. This approach guarantees safety inJava's passive object model, but does not guaranteeliveness and is a common source of deadlock. Typ-ically, such deadlocks result because of interactionsbetween classes with synchronized methods. For ex-ample, consider the threads t1 and t2 in Figure 1. Thethread t1 executes the synchronized method m whichattempts to invoke the synchronized method n in classB. Similarly, the thread t2 executes the synchronizedmethod n which attempts to invoke the synchronizedmethod m in class A. In a trace in which both threads

class A implements Runnable{B b;synchronized void m() {...b.n();...}public void run() { m(); }}class B implements Runnable{A a;synchronized void n() {...a.m();...}public void run() { n(); }}class Test {public static void main(String[] args){A a = new A();B b = new B();a.b = b;b.a = a;Thread t1 = new Thread(a).start();Thread t2 = new Thread(b).start();}}Figure 1: A simple example of thread interactionswhich may result in deadlock.�rst acquire their local locks, this simple example re-sults in a deadlock.We view the synchronized keyword as too low-level for e�ective use by application developers.Speci�cally, requiring developers to implement sophis-ticated synchronization constraints in terms of low-level primitives is error prone and di�cult to debug.Synchronizers [4, 3] are linguistic abstractions whichdescribe synchronization constraints over collectionsof actors (see Figure 2). In particular, synchroniz-ers allow the speci�cation of message patterns whichare associated with rules that enable or disable meth-ods on actors. Synchronizers may also have state andpredicates may be de�ned which use state in order toenable or disable methods.Note that synchronizers are much more abstractthan the low-level synchronization support provided inJava. Synchronizers may be placed on individual ac-tors as well as overlapping collections of actors. More-over, separating synchronization into a distinct lin-guistic abstraction, rather than embedding it in class
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Figure 2: Synchronization constraints over a collection of actors.de�nitions, allows constraints to be reused over di�er-ent classes. As a simple example of how synchronizersmay be speci�ed linguistically, consider two resourcemanagers, adm1 and adm2, which distribute resourcesto clients. We wish to place a bound on the total num-ber of resources allocated collectively by both man-agers. This can be achieved by de�ning the synchro-nizer given in Figure 3. The �eld max determines thetotal number of resources allocated by both managers.We believe that heterogeneous environments, inwhich a wide variety of synchronization properties willbe required, argue for an approach similar to synchro-nizers rather than the current Java solution of embed-ding low-level synchronization within classes.2.2 Flexible InteractionsDistributed, heterogeneous systems require theability to asynchronously participate in interactions inorder to take advantage of available local concurrency.Because Java uses a passive object model, threads on asingle virtual machine may interact either by pollingon shared objects, or using waitnnotify. Althoughthese heavily synchronized methods of interaction arethe most common in Java applications, asynchronousinteractions may be implemented by spawning extrathreads to handle interactions (see Figure 4).As in the case of synchronization discussed in thelast section, requiring the application developer to ex-plicitly code such interaction mechanisms is prone toerror. Asynchronous interactions are an important ba-

sic service that we believe should be standard in aheterogeneous programming environment. Thus, weargue for higher-level linguistic support in Java whichprovides such interaction mechanisms.We believe that asynchronous interactions are bestsupported by an active object model such as that pro-vided by actors. In such a model, method invoca-tions are bu�ered in a mailbox and handled in a seri-alized fashion by a dedicated master thread. Activeobjects are thus a natural unit of concurrency andsynchronization. Moreover, such objects need not bestrictly serialized: intra-object concurrency may beadded by allowing the master thread to spawn newthreads which access speci�c internal methods. Thisform of intra-object concurrency di�ers from that inJava in that the master thread controls the conditionsunder which multiple methods may be active, ratherthan allowing arbitrary threads to execute in an ob-ject.2.3 Resource ControlA �nal concern with using Java to develop hetero-geneous systems is the lack of e�ective Java supportfor controlling system resources. A particular exam-ple is the ability of application programmers to controlthread scheduling. While the Java language speci�ca-tion [5] encourages language implementors to write fairschedulers, this rule is not enforced. Hence, di�erentenvironments may provide di�erent schedulers empha-sizing particular applications. A common solution is



AllocationPolicy(adm1,adm2,max)f init prev := 0prev >= max disables (adm1.request or adm2.request),(adm1.request or adm2.request) updates prev := prev + 1,(adm1.release or adm2.release) updates prev := prev - 1gFigure 3: A Synchronizer that enforces collective bound on allocated resources.class C {void m(){...}void am(){Runnable r = new Runnable {public void run(){m();}}new Thread(r).start();// Code to continue executing// after asynchronous method call}}Figure 4: A Java class which uses separate threads tohandle interactions and execute local behavior.to favor threads which are responsible for maintaininggraphical user interfaces. However, while such an ap-proach may be feasible for certain applications, otherapplications may fail as a result. Unfortunately, Javaprovides no mechanism for selecting features of thescheduler, leaving the application developer with thetask of implementing custom scheduling if needed.One possible solution is to include standardizedthread scheduling libraries which may be invoked byapplications desiring more control over scheduling.However, a user-level approach may not apply tocertain critical threads in a system. For example,Java's RMI [12] package handles remote invocationsusing a separate, non-user controlled thread which in-vokes methods on user-de�ned objects. Because thisthread is not under user control (and hence not sub-ject to a user-level scheduling solution), unexpectedpre-emption and deadlock may result1. As a speci�csolution, we favor the inclusion of lower-level policy se-1It is possible to \hack" around this problem by modifyingthe RMI-created thread's properties once within a user-de�nedmethod. However, this may have unexpected side-e�ects sincethe thread was created for use by RMI.

lection which allows application developers to specifytheir scheduling needs. At a more general level, ap-plication developers should be able to specify abstractpolicies which govern more general classes of resources(see Section 4).3 Object Request BrokersAs of JDK 1.2, Java will incorporate an interfaceto the Common Object Request Broker Architecture(CORBA). The inclusion of ORB-based technology inJava indicates the widespread acceptance of Java asa platform for distributed computing, as well as theacceptance of CORBA as an appropriate technologyfor building component-based systems. In consider-ing this recent combination of technologies, it is in-teresting to compare the Java Transaction Services(JTS) to the Object Transaction Services (OTS) usedin CORBA. These two services are used to manage is-sues which arise in handling interactions between dis-tributed objects. For example, marshaling data types,handling remote references, etc.The design decisions evident in the JTS and OTSare a symptom of the relevant strengths and weak-nesses of Java and CORBA, and attempt to combinethe best of both worlds in a single package. BothJava and CORBA have their strong points and bothhave been used to develop successful applications. Asdiscussed in the introduction, Java is a rich languagewith many features designed to simplify programmingin heterogeneous environments. However, Java doesnot provide extensive support for matching clients toservers based on a service description. CORBA, onthe other hand, facilitates service location and in-teraction in a heterogeneous environment. In par-ticular, CORBA allows service description in termsof an Interface De�nition Language (IDL), and pro-vides mechanisms for locating services based on IDLdescriptions. IDL speci�cations are an abstract spec-i�cation of service which are independent of low-levelsystem features such as resource requirements, proce-dural behavior, control-
ow and so-on. Unfortunately,CORBA limits the types of data that can be commu-



nicated in interactions, and prohibits the passing ofobject references which is required to take advantageJava's more powerful features. The combination ofJava and CORBA is intended to alleviate many (butnot all) of these problems, while carrying over as muchfunctionality as possible from existing remote interac-tion mechanisms in Java and CORBA.In the remainder of this section we discuss some ofthe motivation behind combining ORB-based technol-ogy with Java. While we favor this marriage of tech-nologies, we argue that such a combination still lacksmany important features necessary for e�ective het-erogeneous programming. Speci�cally, CORBA andits relatives still provide a closed model for interac-tions, and force application developers to embed in-teraction protocols within client and server code. En-cryption protocols, for example, can not be de�nedas a property of the connection. Instead, both theclient and server must embed appropriate endpointsfor the protocol within the existing code for handlinginteractions. We propose an alternative approach inwhich these types of protocols may be factored outof application code and speci�ed independently on aper-interaction basis.3.1 Why Add ORB Technology?Providing services among a collection of objects ac-cessible via a shared network requires a common inter-action layer which links clients, which request services,to servers, which implement those services. CORBAand related ORBs enable the construction and inte-gration of distributed applications by providing sucha layer. In particular, CORBA allows the dynamicplacement and update of objects which implement ser-vices in a distributed, heterogeneous network. More-over, these objects may be accessed using a commondata exchange framework with many features criticalto the development of heterogeneous systems. Thesefeatures include:� Multi-threading� Debugging and Network Monitoring� Connection Groups� Synchronous and Asynchronous calls to servers� Virtual Callbacks from the server� Asynchronous operation� Location Brokering for location transparency� Naming Service y� Event Service� Life Cycle Service y� Transaction Service y� Concurrency Control Service� Relationship Service y

� Query Service y� Licensing Service� Security Service y� Object Trader Service yThose items marked with a y indicate features thatare present in the JTS as well as the OTS. A detaileddescription of each of these features is not within thescope of this paper. We refer the interested reader to[7] for more details.In addition to the features described above, ORBsprovide several other features which simplify systemdevelopment. Among these are the ability to quicklydesign and implement larger object oriented systems,and a communication backplane with consistent se-mantics regardless of whether a system executes on aheterogeneous network or a single machine. However,as we discussed in the introduction, ORBs make noattempt to transform heterogeneous systems into ho-mogeneous environments. As a result, although ORBshave been used for some time, it is only recently thatissues such as load balancing, security, and transac-tions have received appreciable attention.3.2 Other ORB-based SystemsCORBA is the most well-known ORB and is basedon the Object Management Group's (OMG) ObjectModel. This model is backed by a large consortium ofcommercial system developers and hence has a signi�-cant role to play in the future of system development.However, although CORBA has achieved widespreadsuccess, several other systems have been developedwhich support a variety of object models (includingCORBA).The Top-ORB system from NCR will allow the con-nection of CORBA objects, Java Beans, DCOM ob-jects and many other type of objects using the TopEnd framework as the underlying infrastructure. TopEnd is part of the Top End Service Interface Repos-itory (TESIR) model designed by NCR for support-ing access to legacy applications, and which de�nes ageneral object service mechanism [1]. NCR plans tolaunch the underlying infrastructure of Top-ORB in1998.The Solaris NEO system from Sun is similar toCORBA and designed around the same object model.JOE is another Sun product which provides for dis-tributed client-server applications, and complies withthe CORBA 2.0 standard. While supporting CORBAstandards, both NEO and JOE also allow for the con-nectivity of Java applets to applications running ondistributed servers. In particular, the object requestbroker used in JOE may be automatically downloaded



into web browsers, and used to connect Java appletsto remote NEO objects. Another useful feature pro-vided by JOE is an IDL compiler which generates Javaclasses from interface de�nitions of CORBA objects.Finally, Java's Remote Method Invocation (RMI)provides for more primitive client-server functionality.In particular, RMI is not CORBA compliant, but doessupport interoperability among Java objects in dis-tributed environments. However, RMI does not pro-vide any explicit support for incorporating legacy (i.e.non-Java) objects. Such objects may only be includedby adding a Java front-end which interacts with RMI.3.3 Adding ORB Functionality to JavaThe current release of Java supports RMI and Jav-aBeans and hence does not allow for integration withCORBA-like models of object systems. Despite thevarious other bene�ts of ORBs, however, ORB ven-dors including the OMG and Sun have placed techni-cal emphasis on incorporating several object modelswithin a single framework, rather than attempting toincrease the functionality of ORB models as a whole.This trend is expected to continue as no single stan-dard (i.e. object model) has been adopted for ORB-based systems.Thus, while the next release of Java will providegreater 
exibility in terms of incorporating existingobject models, several key problems with ORBs areinherited with the new approach. Speci�cally, remoteprocedure call (RPC) remains as the primary mech-anism for building distributed interactions. As withthe synchronized keyword discussed in the previ-ous section, RPC is often abused in the context ofdistributed interactions and leads to heavily synchro-nized, and therefore poorly performing applications.We have already argued for asynchronous modes ofinteraction in the previous section. More importantly,however, ORBs currently do not provide a mechanismfor 
exible speci�cation of connection properties. Ap-plications requiring speci�c policies must either use acustom coded ORB implementation, or embed policycode within clients and servers. Both approaches areerror-prone and make systems less modular.Our research in Actors has lead to a novel ap-proach for separating communication policies from ap-plication code. Communicators [10] rely on a meta-architecture to abstract over the communication be-havior of Actors. In particular, actor interactions arerepresented abstractly in terms of three operations(see Figure 5):� A transmit operation is invoked when an actorattempts to send a message;

� A deliver operation is invoked when the systemreceives a message on behalf of an actor; and,� A dispatch operation is invoked when an actor isready to process the next message.The communication behavior of actors are cus-tomized by installing meta-actors which rede�ne oneor more of the basic actor operations. This techniquemay be used to implement a wide variety of protocols.For example, consider a simple protocol for imple-menting a FIFO channel between two actors. Figure 6gives a Communicator speci�cation which de�nes sucha protocol.Communicators e�ectively separate protocol codefrom application code allowing system designers topick and choose the protocols necessary for inter-actions, without complicating code development bychanging clients and servers. We believe that an ORB-Java combination must include similar abstractions inorder to be an e�ective tool in distributed, heteroge-neous environments.4 Component-Based SystemsIn the previous sections we have discussed the near-term limitations of Java as a tool for building hetero-geneous systems. In this section, we present a futurevision of software for heterogeneous systems and thefeatures we expect to be incorporated into Java tomake it a viable development environment.The next logical step for component-based hetero-geneous system development is higher-levels of gran-ularity in which distributed collections of objects aremanaged as individual components and services. Cur-rently, this is an active area of research in the soft-ware architecture community in which such systemsare viewed as consisting of a collection of components,which encapsulate computation, and a collection ofconnectors, which describe how components are inte-grated into the architecture [9]. This separation ofdesign concerns favors a compositional approach tosystem design; a methodology which is particularlyimportant when specifying architectures for hetero-geneous distributed systems. Heterogeneity, failure,and the potential for unpredictable interactions yieldevolving systems which require complex managementpolicies. Allowing architectural speci�cations in whichthese policies are separated into abstract connectorshas clear advantages for system design, veri�cationand reuse.Note that policies for managing such systems (e.g.reliability protocols, load balance and placement, se-curity constraints, coordination, etc.) not only assert
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Figure 5: Customizing the communication operations of an actor. Actors B and C are meta-level customizationsof actor A. Each operation of A results in an operation on B and/or C.properties on the connections between component in-terfaces, but must also enforce constraints on how re-sources are allocated to components. For example, areliable server may be developed by adding a backupto an existing server and installing an instance of theprimary backup protocol. In addition to recording in-teractions at the backup, the primary backup protocolmust also ensure that the backup and server use sep-arate, failure-independent resources (e.g. they mustexecute on separate processors). The resulting collec-tion of policies is quite di�erent from those required tomanage interactions in, for example, ORB-based mod-els, and therefore requires new abstractions with thegoal of �tting components to architectural contexts,rather than de�ning interconnections between com-ponent interfaces. Speci�cally, component interfacesabstract over functionality but not resource manage-ment. In the remainder of this section, we elaboratefurther on this point, and describe recent research us-ing the Actor model which proposes a solution to theseproblems.4.1 Extending Component Interfaces andArchitectural PoliciesCurrent notions of component interfaces are basedon a functional representation of the services providedby a component. This abstraction is a natural exten-sion of the object model. However, when placing anobject in a heterogeneous architecture, this model failsto describe many important features such as:� Locality properties: The distribution and com-munication behavior of internal computational el-ements.

� Resource usage patterns: Distinctions such ascomputation bound versus I/O bound elements,degree of concurrency, hardware dependencies,and the resources corresponding to critical andtransient state.� Inter-level dependencies: The relationshipsbetween management policies at various levels ofgranularity.In general, components should provide a comprehen-sive model of architectural context: the relationshipsbetween component behavior and architectural fea-tures such as those described above. A natural so-lution would be to extend current interfaces with ad-ditional functional entry points for selecting, for in-stance, placement policies, reliability features (e.g.fault-tolerance protocols), and so on. However, suchan approach complicates component code by em-bedding orthogonal, context-speci�c concerns. Themore preferable approach would be to design gener-alized components which may be customized to par-ticular architectural contexts. Connectors would en-capsulate these customizations, preserving composi-tional system development. Note that such a solu-tion solves both sides of the heterogeneity problem:general components may be adapted to new environ-ments by composing them with appropriate policies,while hardware-sensitive components may be used ina general context by adding policies which guaranteeappropriate resource allocation to this class of compo-nents.A key challenge for specifying more general,resource-based policies is the problem of compos-ing policies while respecting object-integrity. Theconnection-oriented customizations we described in



protocol FIFO channel fInstallation asymmetric;Isolated-Interaction;role local-client f grole client fint tag;method init() ftag = 0;gmethod out(msg m) fserver.tagged in(tag, m);tag = tag + 1;g grole server fMsgBag delays;int intag;method init() fintag = 0;gmethod tagged in(int t,msg m) fmsg next;if (t == intag) fnext = m;while (next) fdeliver next;intag = intag + 1;next = delays.get(intag);gg else delays.put(t,m);g gFigure 6: The Communicator speci�cation for a FIFOchannel between actors.
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Figure 7: Components are an encapsulated collectionof actors. Liaisons are a subset of the collection whichmay participate in external interactions. Themanagernegotiates new connections and promotes actors to li-aisons.Section 3 avoid this problem because they operatestrictly on component interfaces. However, specifyingpolicies which control the allocation of resources mayrequire access to component internals. Thus, abstrac-tions which support these policies must be carefullydesigned to avoid exposing object features which arenot normally exported through an interface. We de-scribe our model for such policy composition in thenext section.4.2 Specifying Policies for Connectionand ContextIn order to reason about architectural context, werequire a model of component computation which rep-resents component behavior in terms of interactionswith a set of default system services. Relative to com-putational behavior, the semantics of these serviceswill remain the same regardless of architectural con-text. However, the semantics of the implementationof these services will vary as components are placed indi�erent architectures. This distinction allows com-positional development, in which generalized compo-nents are �tted to particular architectures, not bychanging their computational behavior (which wouldbreak encapsulation), but by customizing the interac-tions between components and the particular imple-mentation of underlying services.We build on the actor model extensions described inprevious sections by modeling components as encap-sulated collections of actors in which a distinguishedsubset, called liaisons, are used for interactions withother components (see Figure 7). Interactions be-tween liaisons in di�erent components de�ne compo-nent connection properties. In particular, by cus-tomizing these interactions, speci�c protocols may beenforced. Moreover, the architectural context of acomponent is represented by the service invocation be-havior of internal (i.e. non-liaison) actors. Thus, the



collective behavior of a component relative to architec-tural features is captured by the interactions throughits liaisons and the resource access patterns of its inter-nal actors. Both behaviors are represented uniformlyin terms of invocations of the basic actor primitives,providing a clean representation for architectural cus-tomization.Components are customized by designing policieswhich de�ne how components access a collection ofbasic system services (see Figure 8). Liaisons are theonly externally visible elements of a component. Thus,connectors which specify protocols between compo-nents are naturally represented in terms of customiza-tions applied to individual liaisons. However, con-nectors which specify resource management policiesare more challenging because they customize inter-nal component elements. In particular, we wouldlike to specify arbitrary customizations of internal ac-tors while respecting the encapsulation properties of acomponent. To this end, policies are constructed fromtwo types of meta-level behavior:� Roles: A role is a speci�c customization appliedto one or more liaisons. Roles are used to im-plement protocols on connections between com-ponents. For example, an encryption protocolmay be implemented by customizing the \send"behavior of one liaison (e.g. to encrypt outgoingmessages) and the \receive" behavior of another(e.g. to decrypt incoming messages). Roles areinstalled explicitly on a set of liaisons.� Context: A context is a single meta-level be-havior which customizes all actors within a com-ponent and is automatically installed on any dy-namically created actors. Contexts are used tomanage the allocation of resources. For exam-ple, a local load balancing strategy may be im-plemented by customizing the \create" behaviorof all actors within a component.Because roles are installed on liaisons, there is nodanger of compromising object integrity as liaisonsare already exported by components. Contexts, onthe other hand, must be installed on internal compo-nent members. However, the structure of the meta-level architecture and the encapsulation properties ofcomponents prohibit contexts from destroying inter-nal component elements or exporting non-liaison ad-dresses. Speci�cally, a meta-level customization mayonly modify actor interactions with system services,and may not change the internal behavior of an ac-tor. Similarly, regardless of meta-level customizations,

managers control component namespaces and deter-mine which actors may participate in external inter-actions.A remaining open issue is the question of whether ornot policies are composable (both with components orwith other policies). In particular, as component com-positions encompass larger systems, there is a greaterpotential for detrimental interactions between existingpolicies on sub-components. We are currently in theprocess of extending our abstractions to model andreason about such interference.5 ConclusionWe have discussed the Java approach to solving theheterogeneity problem and identi�ed several areas forimprovement in the current release of Java. In par-ticular, we claim that relative to the needs of het-erogeneous computing, current synchronization mech-anisms in Java are too low-level and hence prone tomisuse. Similarly, we argue that Java does not pro-vide enough control over resource usage, particularlythreads, and that existing interaction mechanisms be-tween Java tasks (i.e. threads) are too heavily synchro-nized and lack an alternative communication mediumsuch as asynchronous messaging. We presented sev-eral examples from our own work on Actors whichdemonstrate the utility of more powerful synchroniza-tion constructs.We have considered the recent marriage betweenJava-based computing and existing CORBA-like sys-tems in the context of heterogeneous computing.While incorporating ORB-based technology into Javais a signi�cant step, we argue that ORBs are still tooclosed with respect to interaction policies. We pre-sented several examples of policies which may be fac-tored out of object code and applied to the endpointswhich implement the connection itself. Such an ap-proach simpli�es debugging and makes componentsmore reusable. Moreover, system designers may selectonly those policies appropriate to their environment,rather than having to pay the price of layering policiesatop an existing interaction mechanism.Finally, we discussed the future of Java in therealm of component-based software development anddescribed our preliminary work on policies for resourcemanagement in a distributed, heterogeneous setting.We model components as hierarchical collections ofactors with interfaces de�ned as dynamic sets of ac-tors called liaisons. Components are customized ac-cording to the needs of a particular environment byaccessing an open implementation of the interface be-tween actors and their underlying system services. Wefactor customizations into two categories: roles are ex-
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