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Abstract

Java supports heterogeneous applications by trans-
forming a heterogeneous network of machines into a
homogeneous network of Java virtual machines. This
approach abstracts over many of the complications that
arise from heterogeneity, providing a uniform API
to all components of an application. However, for
many applications heterogeneity is an intentional fea-
ture where components and resources are co-located
for optimal performance. We argue that Java’s API
does not provide an effective means for building ap-
plications in such an environment. Specifically, we
suggest improvements to Java’s existing mechanisms
for maintaining consistency (e.g. synchronized), and
controlling resources (e.g. thread scheduling). We also
consider the recent addition of a CORBA API in JDK
1.2. We arqgue that while such an approach provides
greater flexibility for heterogeneous applications, many
key problems still exist from an architectural stand-
point. Finally, we consider the future of Java as a
foundation for component-based software in heteroge-
neous environments and suggest architectural abstrac-
tions which will prove key to the successful develop-
ment of such systems. We drive the discussion with
examples and suggestions from our own work on the
Actor model of computation.

1 Classifying Heterogeneity

Heterogeneous computing environments arise in
practice for a number of different reasons; heterogene-
ity, however, generates the same basic set of prob-
lems: code is not portable, shared data may need to
be converted, the utilization of certain resources may
be restricted to specific nodes, and so on. Nonethe-
less, the solution for these problems depends heavily
on the types of applications that are deployed in the
heterogeneous environment. As an example, consider

the following two instances of heterogeneity:

e System Evolution: Corporate computing en-
vironments are continually evolving as outdated
systems are gradually replaced with newer, more
powerful systems. However, although the hard-
ware is constantly replaced, corporations are of-
ten dependent on monolithic applications that
must continue to run correctly in the presence
of new hardware.

e Specialized Hardware: Certain computing en-
vironments are intentionally designed to be het-
erogeneous in order to utilize specialized hard-
ware. Numeric simulations, for example, may
be executed on massively parallel systems while
monitoring and analysis is performed on graphics-
intensive workstations. As another example,
servers with high availability requirements are
placed on hardware with large pools of avail-
able resources whereas clients execute on low-end
workstations designed for single users.

The solution for an evolving corporate system de-
pending on existing software might involve the de-
velopment of a common execution environment atop
each physical node. Thus, as long as existing applica-
tions are written in terms of this uniform environment,
they will continue to be usable as future improvements
are made. On the other hand, specialized hardware
might be handled using an environment in which cus-
tomized objects, targeted for specific hardware, coor-
dinate with one another through a common interface
for interactions. Still other environments, may utilize
a hybrid of these two solutions.

Many languages and programming environments
exist for managing heterogeneous computing environ-
ments. The Java programming language is an example



which directly addresses the technical problems cre-
ated by a heterogeneous environment. In the words of
its designers [6]:

Java is designed to meet the challenges of
application development in the context of
heterogeneous, network-wide distributed en-
vironments. Paramount among these chal-
lenges is secure delivery of applications that
consume the minimum of system resources,
can run on any hardware and software plat-
form, and can be extended dynamically.

CORBA, COM and other Object Request Bro-
ker (ORB) based environments represent so called
“middle-ware” solutions. That is, rather than address
heterogeneity directly, these environments provide a
mechanism for allowing interactions between applica-
tions executing in heterogeneous environments.

In general, we may characterize the Java approach
as the transformation of a heterogeneous network of
machines into a homogeneous network of Java vir-
tual machines. Java makes no effort to abstract over
network features or cater to highly-optimized (but
non-portable) implementations. However, Java does
greatly simplify network access and provides a native
method interface as a loop-hole for incorporating non-
Java code. On the other hand, ORB-based systems
make little or no effort to transform heterogeneous
systems into homogeneous ones. Instead, ORBs solve
the problem of interactions between heterogeneous en-
vironments. While such a solution limits mobility, ap-
plications may directly access high-performance im-
plementations executing on dedicated hardware.

Both the Java and ORB-based solution have their
merits. However, we argue that in order for Java
to become “the answer” for programming heteroge-
neous computing systems, it must incorporate many
of the features already present in ORBs. In particular,
to answer the challenge of high-performance systems,
Java must make local, optimized servers more avail-
able to Java clients. Currently, there are joint efforts
between Sun and OSF to link CORBA and Java for
precisely this reason [11]. However, we believe that
while Java should be more ORB-like, it should also
overcome many of the weaknesses of existing ORBs
such as the inability to customize interactions between
ORB-served objects. Moreover, to effectively support
concurrency and distribution, we claim that Java re-
quires more powerful constructs for controlling syn-
chronization and coordination between distributed en-
tities. We find existing Java synchronization (e.g. the
synchronized keyword) to be too low-level and un-
suitable for distributed needs. The lack of control over

resource management tasks such as thread scheduling
is also undesirable.

We envision Java as evolving to support distributed
collections of objects executing over heterogeneous
computing environments. In such an environment,
application developers may specify services consisting
of (possibly) distributed collections of Java and na-
tive objects. Services would be composed with poli-
cies which manage both interactions as well as deploy-
ment. These policies would encapsulate many of the
solutions currently employed for heterogeneous envi-
ronments: protocols which marshal arguments, rout-
ing mechanisms which link client requests to optimized
objects executing on custom hardware, and so on.

In the next section, we discuss some weaknesses of
the current version of Java as well as potential solu-
tions. In Section 3, we describe features of ORB-based
models which we believe should be incorporated into
Java. In addition, we propose solutions for a Java-
ORB system which overcomes many of the current
weaknesses of the ORB-based model. In Section 4, we
present a future vision of Java as a tool for implement-
ing large grain coordination and management for het-
erogeneous applications. We describe lessons learned
from our research in Actor [2] systems and propose
several abstractions to be incorporated in future Java
developments. We present concluding remarks in Sec-
tion 5.

2 Heterogeneity in Java

Software executing in a heterogeneous environment
is naturally segmented into a collection of distributed,
coordinating objects. As a result, desirable system
features such as ease of management and high per-
formance depend on the ability to specify error-free
coordination mechanisms which exploit available con-
currency. Java uses a passive object model in which
threads and objects are separate entities. As a re-
sult, Java objects serve as surrogates for thread coor-
dination and do not abstract over a unit of concur-
rency. We view this relationship between Java objects
and threads to be a serious limiting factor in the util-
ity of Java for heterogeneous systems. Specifically,
while multiple threads may be active in a Java ob-
ject, Java only provides the low-level synchronized
keyword for controlling object state, and lacks higher-
level linguistic mechanisms for more carefully charac-
terizing the conditions under which object methods
may be invoked. Java programmers often overuse
synchronized and deadlock is a common bug in
multi-threaded Java programs.

Java’s passive object model also limits mechanisms
for thread interaction. In particular, threads ex-



change data through objects using either polling or
wait\notify pairs to coordinate the exchange. In de-
coupled environments, where asynchronous or event-
based communication yield better performance, Java
programmers must build their own libraries which im-
plement asynchronous messaging in terms of these
primitive thread interaction mechanisms. Active ob-
jects, on the other hand, greatly simplify such coordi-
nation and are a natural atomic unit for system build-
ing, but no such alternative is available in the current
version of Java.

Finally, we find Java’s position on thread schedul-
ing to be inadequate. While it is reasonable to not
require applications to use fairly scheduled threads,
we believe that system builders should have the op-
tion of selecting fair scheduling if necessary. The lack
of fair threads is a particularly devious source of race
conditions which makes debugging multi-threaded ap-
plications all the more difficult.

In the remainder of this section, we elaborate on
each of these criticisms and describe potential solu-
tions.

2.1 Linguistic Support for Synchroniza-
tion

Synchronization in Java is necessary to protect
state properties associated with objects. For example,
the standard class java.util. Hashtable defines a syn-
chronized put method for adding key-value pairs, and
a synchronized get method for hashing keys. Both
methods are synchronized to avoid corrupting state
when methods are simultaneously invoked by sepa-
rate threads. This mechanism works well for classes
like Hashtable because methods in these classes have
relatively simple behavior and do not participate in
complex interactions with other classes.

A side-effect of the convenience and simplicity of
synchronized, however, is that it tends to be over-
used by application programmers: when software de-
velopers are not certain as to the context in which
a method may be called, a rule of thumb is to make
it synchronized. This approach guarantees safety in
Java’s passive object model, but does not guarantee
liveness and is a common source of deadlock. Typ-
ically, such deadlocks result because of interactions
between classes with synchronized methods. For ex-
ample, consider the threads t1 and t2 in Figure 1. The
thread t1 executes the synchronized method m which
attempts to invoke the synchronized method n in class
B. Similarly, the thread t2 executes the synchronized
method n which attempts to invoke the synchronized
method m in class A. In a trace in which both threads

class A implements Runnable{

B b;
synchronized void m() {
...b.nQ);...
}
public void run() { m(Q); }
}
class B implements Runnable{
A a;
synchronized void n() {
...a.m();...
}

public void run() { n(Q; }
}

class Test {
public static void main(String[] args){

A a = new AQ);
B b = new B();
a.b = b;
b.a = a;

Thread t1 = new Thread(a).start();
Thread t2 = new Thread(b).start();
}

}

Figure 1: A simple example of thread interactions
which may result in deadlock.

first acquire their local locks, this simple example re-
sults in a deadlock.

We view the synchronized keyword as too low-
level for effective use by application developers.
Specifically, requiring developers to implement sophis-
ticated synchronization constraints in terms of low-
level primitives is error prone and difficult to debug.
Synchronizers [4, 3] are linguistic abstractions which
describe synchronization constraints over collections
of actors (see Figure 2). In particular, synchroniz-
ers allow the specification of message patterns which
are associated with rules that enable or disable meth-
ods on actors. Synchronizers may also have state and
predicates may be defined which use state in order to
enable or disable methods.

Note that synchronizers are much more abstract
than the low-level synchronization support provided in
Java. Synchronizers may be placed on individual ac-
tors as well as overlapping collections of actors. More-
over, separating synchronization into a distinct lin-
guistic abstraction, rather than embedding it in class
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Figure 2: Synchronization constraints over a collection of actors.

definitions, allows constraints to be reused over differ-
ent classes. As a simple example of how synchronizers
may be specified linguistically, consider two resource
managers, adml and adm2, which distribute resources
to clients. We wish to place a bound on the total num-
ber of resources allocated collectively by both man-
agers. This can be achieved by defining the synchro-
nizer given in Figure 3. The field max determines the
total number of resources allocated by both managers.

We believe that heterogeneous environments, in
which a wide variety of synchronization properties will
be required, argue for an approach similar to synchro-
nizers rather than the current Java solution of embed-
ding low-level synchronization within classes.

2.2 Flexible Interactions

Distributed, heterogeneous systems require the
ability to asynchronously participate in interactions in
order to take advantage of available local concurrency.
Because Java uses a passive object model, threads on a
single virtual machine may interact either by polling
on shared objects, or using wait\notify. Although
these heavily synchronized methods of interaction are
the most common in Java applications, asynchronous
interactions may be implemented by spawning extra
threads to handle interactions (see Figure 4).

As in the case of synchronization discussed in the
last section, requiring the application developer to ex-
plicitly code such interaction mechanisms is prone to
error. Asynchronous interactions are an important ba-

sic service that we believe should be standard in a
heterogeneous programming environment. Thus, we
argue for higher-level linguistic support in Java which
provides such interaction mechanisms.

We believe that asynchronous interactions are best
supported by an active object model such as that pro-
vided by actors. In such a model, method invoca-
tions are buffered in a mailbox and handled in a seri-
alized fashion by a dedicated master thread. Active
objects are thus a natural unit of concurrency and
synchronization. Moreover, such objects need not be
strictly serialized: intra-object concurrency may be
added by allowing the master thread to spawn new
threads which access specific internal methods. This
form of intra-object concurrency differs from that in
Java in that the master thread controls the conditions
under which multiple methods may be active, rather
than allowing arbitrary threads to execute in an ob-
ject.

2.3 Resource Control

A final concern with using Java to develop hetero-
geneous systems is the lack of effective Java support
for controlling system resources. A particular exam-
ple is the ability of application programmers to control
thread scheduling. While the Java language specifica-
tion [5] encourages language implementors to write fair
schedulers, this rule is not enforced. Hence, different
environments may provide different schedulers empha-
sizing particular applications. A common solution is



AllocationPolicy(adml,adm2,max)

{ init prev := 0

prev >= max disables (adml.request or adm2.request),
(adml.request or adm2.request) updates prev := prev + 1,
(adml.release or adm2.release) updates prev := prev - 1

}

Figure 3: A Synchronizer that enforces collective bound on allocated resources.

class C {
void m(O{...}
void am(){
Runnable r = new Runnable {
public void run(){
m();
}
}
new Thread(r).start();
// Code to continue executing
// after asynchronous method call

}
}

Figure 4: A Java class which uses separate threads to
handle interactions and execute local behavior.

to favor threads which are responsible for maintaining
graphical user interfaces. However, while such an ap-
proach may be feasible for certain applications, other
applications may fail as a result. Unfortunately, Java
provides no mechanism for selecting features of the
scheduler, leaving the application developer with the
task of implementing custom scheduling if needed.
One possible solution is to include standardized
thread scheduling libraries which may be invoked by
applications desiring more control over scheduling.
However, a user-level approach may not apply to
certain critical threads in a system. For example,
Java’s RMI [12] package handles remote invocations
using a separate, non-user controlled thread which in-
vokes methods on user-defined objects. Because this
thread is not under user control (and hence not sub-
ject to a user-level scheduling solution), unexpected
pre-emption and deadlock may result'. As a specific
solution, we favor the inclusion of lower-level policy se-

It is possible to “hack” around this problem by modifying
the RMI-created thread’s properties once within a user-defined
method. However, this may have unexpected side-effects since
the thread was created for use by RMI.

lection which allows application developers to specify
their scheduling needs. At a more general level, ap-
plication developers should be able to specify abstract
policies which govern more general classes of resources
(see Section 4).

3 Object Request Brokers

As of JDK 1.2, Java will incorporate an interface
to the Common Object Request Broker Architecture
(CORBA). The inclusion of ORB-based technology in
Java indicates the widespread acceptance of Java as
a platform for distributed computing, as well as the
acceptance of CORBA as an appropriate technology
for building component-based systems. In consider-
ing this recent combination of technologies, it is in-
teresting to compare the Java Transaction Services
(JTS) to the Object Transaction Services (OTS) used
in CORBA. These two services are used to manage is-
sues which arise in handling interactions between dis-
tributed objects. For example, marshaling data types,
handling remote references, etc.

The design decisions evident in the JTS and OTS
are a symptom of the relevant strengths and weak-
nesses of Java and CORBA, and attempt to combine
the best of both worlds in a single package. Both
Java and CORBA have their strong points and both
have been used to develop successful applications. As
discussed in the introduction, Java is a rich language
with many features designed to simplify programming
in heterogeneous environments. However, Java does
not provide extensive support for matching clients to
servers based on a service description. CORBA, on
the other hand, facilitates service location and in-
teraction in a heterogeneous environment. In par-
ticular, CORBA allows service description in terms
of an Interface Definition Language (IDL), and pro-
vides mechanisms for locating services based on IDL
descriptions. IDL specifications are an abstract spec-
ification of service which are independent of low-level
system features such as resource requirements, proce-
dural behavior, control-flow and so-on. Unfortunately,
CORBA limits the types of data that can be commu-



nicated in interactions, and prohibits the passing of
object references which is required to take advantage
Java’s more powerful features. The combination of
Java and CORBA is intended to alleviate many (but
not all) of these problems, while carrying over as much
functionality as possible from existing remote interac-
tion mechanisms in Java and CORBA.

In the remainder of this section we discuss some of
the motivation behind combining ORB-based technol-
ogy with Java. While we favor this marriage of tech-
nologies, we argue that such a combination still lacks
many important features necessary for effective het-
erogeneous programming. Specifically, CORBA and
its relatives still provide a closed model for interac-
tions, and force application developers to embed in-
teraction protocols within client and server code. En-
cryption protocols, for example, can not be defined
as a property of the connection. Instead, both the
client and server must embed appropriate endpoints
for the protocol within the existing code for handling
interactions. We propose an alternative approach in
which these types of protocols may be factored out
of application code and specified independently on a
per-interaction basis.

3.1 Why Add ORB Technology?

Providing services among a collection of objects ac-
cessible via a shared network requires a common inter-
action layer which links clients, which request services,
to servers, which implement those services. CORBA
and related ORBs enable the construction and inte-
gration of distributed applications by providing such
a layer. In particular, CORBA allows the dynamic
placement and update of objects which implement ser-
vices in a distributed, heterogeneous network. More-
over, these objects may be accessed using a common
data exchange framework with many features critical
to the development of heterogeneous systems. These
features include:

Multi-threading

Debugging and Network Monitoring
Connection Groups

Synchronous and Asynchronous calls to servers
Virtual Callbacks from the server
Asynchronous operation

Location Brokering for location transparency
Naming Service

Event Service

Life Cycle Service f

Transaction Service T

Concurrency Control Service

Relationship Service

Query Service
Licensing Service
Security Service }
Object Trader Service t

Those items marked with a { indicate features that
are present in the JTS as well as the OTS. A detailed
description of each of these features is not within the
scope of this paper. We refer the interested reader to
[7] for more details.

In addition to the features described above, ORBs
provide several other features which simplify system
development. Among these are the ability to quickly
design and implement larger object oriented systems,
and a communication backplane with consistent se-
mantics regardless of whether a system executes on a
heterogeneous network or a single machine. However,
as we discussed in the introduction, ORBs make no
attempt to transform heterogeneous systems into ho-
mogeneous environments. As a result, although ORBs
have been used for some time, it is only recently that
issues such as load balancing, security, and transac-
tions have received appreciable attention.

3.2 Other ORB-based Systems

CORBA is the most well-known ORB and is based
on the Object Management Group’s (OMG) Object
Model. This model is backed by a large consortium of
commercial system developers and hence has a signifi-
cant role to play in the future of system development.
However, although CORBA has achieved widespread
success, several other systems have been developed
which support a variety of object models (including
CORBA).

The Top-ORB system from NCR will allow the con-
nection of CORBA objects, Java Beans, DCOM ob-
jects and many other type of objects using the Top
End framework as the underlying infrastructure. Top
End is part of the Top End Service Interface Repos-
itory (TESIR) model designed by NCR for support-
ing access to legacy applications, and which defines a
general object service mechanism [1]. NCR plans to
launch the underlying infrastructure of Top-ORB in
1998.

The Solaris NEO system from Sun is similar to
CORBA and designed around the same object model.
JOE is another Sun product which provides for dis-
tributed client-server applications, and complies with
the CORBA 2.0 standard. While supporting CORBA
standards, both NEO and JOE also allow for the con-
nectivity of Java applets to applications running on
distributed servers. In particular, the object request
broker used in JOE may be automatically downloaded



into web browsers, and used to connect Java applets
to remote NEO objects. Another useful feature pro-
vided by JOE is an IDL compiler which generates Java
classes from interface definitions of CORBA objects.
Finally, Java’s Remote Method Invocation (RMI)
provides for more primitive client-server functionality.
In particular, RMI is not CORBA compliant, but does
support interoperability among Java objects in dis-
tributed environments. However, RMI does not pro-
vide any explicit support for incorporating legacy (i.e.
non-Java) objects. Such objects may only be included
by adding a Java front-end which interacts with RMI.

3.3 Adding ORB Functionality to Java

The current release of Java supports RMI and Jav-
aBeans and hence does not allow for integration with
CORBA-like models of object systems. Despite the
various other benefits of ORBs, however, ORB ven-
dors including the OMG and Sun have placed techni-
cal emphasis on incorporating several object models
within a single framework, rather than attempting to
increase the functionality of ORB models as a whole.
This trend is expected to continue as no single stan-
dard (i.e. object model) has been adopted for ORB-
based systems.

Thus, while the next release of Java will provide
greater flexibility in terms of incorporating existing
object models, several key problems with ORBs are
inherited with the new approach. Specifically, remote
procedure call (RPC) remains as the primary mech-
anism for building distributed interactions. As with
the synchronized keyword discussed in the previ-
ous section, RPC is often abused in the context of
distributed interactions and leads to heavily synchro-
nized, and therefore poorly performing applications.
We have already argued for asynchronous modes of
interaction in the previous section. More importantly,
however, ORBs currently do not provide a mechanism
for flexible specification of connection properties. Ap-
plications requiring specific policies must either use a
custom coded ORB implementation, or embed policy
code within clients and servers. Both approaches are
error-prone and make systems less modular.

Our research in Actors has lead to a novel ap-
proach for separating communication policies from ap-
plication code. Communicators [10] rely on a meta-
architecture to abstract over the communication be-
havior of Actors. In particular, actor interactions are
represented abstractly in terms of three operations
(see Figure 5):

e A transmit operation is invoked when an actor
attempts to send a message;

e A deliver operation is invoked when the system
receives a message on behalf of an actor; and,

e A dispatch operation is invoked when an actor is
ready to process the next message.

The communication behavior of actors are cus-
tomized by installing meta-actors which redefine one
or more of the basic actor operations. This technique
may be used to implement a wide variety of protocols.
For example, consider a simple protocol for imple-
menting a FIFO channel between two actors. Figure 6
gives a Communicator specification which defines such
a protocol.

Communicators effectively separate protocol code
from application code allowing system designers to
pick and choose the protocols necessary for inter-
actions, without complicating code development by
changing clients and servers. We believe that an ORB-
Java combination must include similar abstractions in
order to be an effective tool in distributed, heteroge-
neous environments.

4 Component-Based Systems

In the previous sections we have discussed the near-
term limitations of Java as a tool for building hetero-
geneous systems. In this section, we present a future
vision of software for heterogeneous systems and the
features we expect to be incorporated into Java to
make it a viable development environment.

The next logical step for component-based hetero-
geneous system development is higher-levels of gran-
ularity in which distributed collections of objects are
managed as individual components and services. Cur-
rently, this is an active area of research in the soft-
ware architecture community in which such systems
are viewed as consisting of a collection of components,
which encapsulate computation, and a collection of
connectors, which describe how components are inte-
grated into the architecture [9]. This separation of
design concerns favors a compositional approach to
system design; a methodology which is particularly
important when specifying architectures for hetero-
geneous distributed systems. Heterogeneity, failure,
and the potential for unpredictable interactions yield
evolving systems which require complex management
policies. Allowing architectural specifications in which
these policies are separated into abstract connectors
has clear advantages for system design, verification
and reuse.

Note that policies for managing such systems (e.g.
reliability protocols, load balance and placement, se-
curity constraints, coordination, etc.) not only assert
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Figure 5: Customizing the communication operations of an actor. Actors B and C are meta-level customizations
of actor A. Each operation of A results in an operation on B and/or C.

properties on the connections between component in-
terfaces, but must also enforce constraints on how re-
sources are allocated to components. For example, a
reliable server may be developed by adding a backup
to an existing server and installing an instance of the
primary backup protocol. In addition to recording in-
teractions at the backup, the primary backup protocol
must also ensure that the backup and server use sep-
arate, failure-independent resources (e.g. they must
execute on separate processors). The resulting collec-
tion of policies is quite different from those required to
manage interactions in, for example, ORB-based mod-
els, and therefore requires new abstractions with the
goal of fitting components to architectural contexts,
rather than defining interconnections between com-
ponent interfaces. Specifically, component interfaces
abstract over functionality but not resource manage-
ment. In the remainder of this section, we elaborate
further on this point, and describe recent research us-
ing the Actor model which proposes a solution to these
problems.

4.1 Extending Component Interfaces and
Architectural Policies

Current notions of component interfaces are based
on a functional representation of the services provided
by a component. This abstraction is a natural exten-
sion of the object model. However, when placing an
object in a heterogeneous architecture, this model fails
to describe many important features such as:

e Locality properties: The distribution and com-
munication behavior of internal computational el-
ements.

e Resource usage patterns: Distinctions such as
computation bound versus I/O bound elements,
degree of concurrency, hardware dependencies,
and the resources corresponding to critical and
transient state.

e Inter-level dependencies: The relationships
between management policies at various levels of
granularity.

In general, components should provide a comprehen-
sive model of architectural context: the relationships
between component behavior and architectural fea-
tures such as those described above. A natural so-
lution would be to extend current interfaces with ad-
ditional functional entry points for selecting, for in-
stance, placement policies, reliability features (e.g.
fault-tolerance protocols), and so on. However, such
an approach complicates component code by em-
bedding orthogonal, context-specific concerns. The
more preferable approach would be to design gener-
alized components which may be customized to par-
ticular architectural contexts. Connectors would en-
capsulate these customizations, preserving composi-
tional system development. Note that such a solu-
tion solves both sides of the heterogeneity problem:
general components may be adapted to new environ-
ments by composing them with appropriate policies,
while hardware-sensitive components may be used in
a general context by adding policies which guarantee
appropriate resource allocation to this class of compo-
nents.

A key challenge for specifying more general,
resource-based policies is the problem of compos-
ing policies while respecting object-integrity. The
connection-oriented customizations we described in



protocol FIFO_channel {

Installation asymmetric;
Isolated-Interaction;

role local-client { }

role client {
int tag;

method init() {
tag = 0;
}

method out(msg m) {
server.tagged_in(tag, m);
tag = tag + 1;

i

role server {
MsgBag delays;
int intag;

method init() {
intag = 0;

}

method tagged_in(int t,msg m) {
msg next;

if (t == intag) {
next = m;
while (next) {
deliver next;
intag = intag + 1;
next = delays.get(intag);

} else delays.put(t,m);

Hh

Figure 6: The Communicator specification for a FIFO
channel between actors.

Create Actor

Interactions Between
Components

Manager Promote Liaison

°°")\'f,‘,‘§," 9 Liaison Encapsulated Interaction

Figure 7: Components are an encapsulated collection
of actors. Liaisons are a subset of the collection which
may participate in external interactions. The manager
negotiates new connections and promotes actors to li-
aisons.

Section 3 avoid this problem because they operate
strictly on component interfaces. However, specifying
policies which control the allocation of resources may
require access to component internals. Thus, abstrac-
tions which support these policies must be carefully
designed to avoid exposing object features which are
not normally exported through an interface. We de-
scribe our model for such policy composition in the
next section.

4.2 Specifying Policies for Connection
and Context

In order to reason about architectural context, we
require a model of component computation which rep-
resents component behavior in terms of interactions
with a set of default system services. Relative to com-
putational behavior, the semantics of these services
will remain the same regardless of architectural con-
text. However, the semantics of the implementation
of these services will vary as components are placed in
different architectures. This distinction allows com-
positional development, in which generalized compo-
nents are fitted to particular architectures, not by
changing their computational behavior (which would
break encapsulation), but by customizing the interac-
tions between components and the particular imple-
mentation of underlying services.

We build on the actor model extensions described in
previous sections by modeling components as encap-
sulated collections of actors in which a distinguished
subset, called liaisons, are used for interactions with
other components (see Figure 7). Interactions be-
tween liaisons in different components define compo-
nent connection properties. In particular, by cus-
tomizing these interactions, specific protocols may be
enforced. Moreover, the architectural context of a
component is represented by the service invocation be-
havior of internal (i.e. non-liaison) actors. Thus, the



collective behavior of a component relative to architec-
tural features is captured by the interactions through
its liaisons and the resource access patterns of its inter-
nal actors. Both behaviors are represented uniformly
in terms of invocations of the basic actor primitives,
providing a clean representation for architectural cus-
tomization.

Components are customized by designing policies
which define how components access a collection of
basic system services (see Figure 8). Liaisons are the
only externally visible elements of a component. Thus,
connectors which specify protocols between compo-
nents are naturally represented in terms of customiza-
tions applied to individual liaisons. However, con-
nectors which specify resource management policies
are more challenging because they customize inter-
nal component elements. In particular, we would
like to specify arbitrary customizations of internal ac-
tors while respecting the encapsulation properties of a
component. To this end, policies are constructed from
two types of meta-level behavior:

e Roles: A role is a specific customization applied
to one or more liaisons. Roles are used to im-
plement protocols on connections between com-
ponents. For example, an encryption protocol
may be implemented by customizing the “send”
behavior of one liaison (e.g. to encrypt outgoing
messages) and the “receive” behavior of another
(e.g. to decrypt incoming messages). Roles are
installed explicitly on a set of liaisons.

e Context: A context is a single meta-level be-
havior which customizes all actors within a com-
ponent and is automatically installed on any dy-
namically created actors. Contexts are used to
manage the allocation of resources. For exam-
ple, a local load balancing strategy may be im-
plemented by customizing the “create” behavior
of all actors within a component.

Because roles are installed on liaisons, there is no
danger of compromising object integrity as liaisons
are already exported by components. Contexts, on
the other hand, must be installed on internal compo-
nent members. However, the structure of the meta-
level architecture and the encapsulation properties of
components prohibit contexts from destroying inter-
nal component elements or exporting non-liaison ad-
dresses. Specifically, a meta-level customization may
only modify actor interactions with system services,
and may not change the internal behavior of an ac-
tor. Similarly, regardless of meta-level customizations,

managers control component namespaces and deter-
mine which actors may participate in external inter-
actions.

A remaining open issue is the question of whether or
not policies are composable (both with components or
with other policies). In particular, as component com-
positions encompass larger systems, there is a greater
potential for detrimental interactions between existing
policies on sub-components. We are currently in the
process of extending our abstractions to model and
reason about such interference.

5 Conclusion

We have discussed the Java approach to solving the
heterogeneity problem and identified several areas for
improvement in the current release of Java. In par-
ticular, we claim that relative to the needs of het-
erogeneous computing, current synchronization mech-
anisms in Java are too low-level and hence prone to
misuse. Similarly, we argue that Java does not pro-
vide enough control over resource usage, particularly
threads, and that existing interaction mechanisms be-
tween Java tasks (i.e. threads) are too heavily synchro-
nized and lack an alternative communication medium
such as asynchronous messaging. We presented sev-
eral examples from our own work on Actors which
demonstrate the utility of more powerful synchroniza-
tion constructs.

We have considered the recent marriage between
Java-based computing and existing CORBA-like sys-
tems in the context of heterogeneous computing.
While incorporating ORB-based technology into Java
is a significant step, we argue that ORBs are still too
closed with respect to interaction policies. We pre-
sented several examples of policies which may be fac-
tored out of object code and applied to the endpoints
which implement the connection itself. Such an ap-
proach simplifies debugging and makes components
more reusable. Moreover, system designers may select
only those policies appropriate to their environment,
rather than having to pay the price of layering policies
atop an existing interaction mechanism.

Finally, we discussed the future of Java in the
realm of component-based software development and
described our preliminary work on policies for resource
management in a distributed, heterogeneous setting.
We model components as hierarchical collections of
actors with interfaces defined as dynamic sets of ac-
tors called liaisons. Components are customized ac-
cording to the needs of a particular environment by
accessing an open implementation of the interface be-
tween actors and their underlying system services. We
factor customizations into two categories: roles are ex-
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Figure 8: Components are customized by policies which redefine interactions between liaisons, and the invocation

of basic system services.

plicit customizations of liaisons, while contexts are im-
plicit customizations of all actors within a component.
Roles allow the enforcement of interaction policies over
connections between components. Contexts support
component-wide resource management and coordina-
tion. Composition at the meta-level allows multiple
customizations to be applied to a single component.

Despite our reservations, we believe that Java is an
important step towards developing appropriate tools
for building heterogeneous systems. In particular, we
have used Java as the development environment for
a prototype actor system which incorporates many of
the abstractions described above [8].
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