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12.1 Introduction

The increasing performance and decreasing cost of processors and computer net-
works has continued to fuel an explosion of interest in solving larger problems
using concurrent computing. In particular, agent-based programming has emerged
as a promising paradigm which may help realize Artificial Intelligence through dis-
tributed problem solving. Agents are persistent and goal directed entities that may
move between hosts in response to changes in requirements such as security and
efficiency, and that would normally be limited in the computational resources they
may employ in pursuing their goals. Such resources include processor time, memory,
and network bandwidth.

A key challenge in concurrent computing is the difficulty of programming paral-
lel and distributed architectures. Many models of concurrency are rather low-level.
For example, shared variable models often violate data encapsulation, an essential
feature for modular software development. A promising approach to address this
difficulty is the use of concurrent objects in a reflective architecture. In particu-
lar, actors provide a formal model for building and representing the behavior of
concurrent objects and thus serve as a foundation for concurrent object-oriented
programming.

The definition of actors corresponds to that of agents given in Chapter 1. Actors
are autonomous, interacting computing elements, which encapsulate a behavior
(data and procedure) as well as a process. Different actors carry out their actions
asynchronously and communicate with each other by sending messages. The basic
mechanism for communication is also asynchronous and buffered; however, other
forms of message passing can be defined in the context of the model. Finally,
actors may be dynamically created and reconfigured, which provides considerable
flexibility in organizing concurrent activity.

Actors are a model for specifying coordination in a distributed system. Because
the internal behavior of an actor is encapsulated and cannot be observed directly,
the Actor model supports heterogeneous, variable grained objects. Specifically, the
behavior of individual actors may be defined using any programming language.

There are two advantages to using actors for building multi-agent systems. First,
actors provide a logically distributed programming model which allows systems
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to be decomposed into autonomous, interacting components without the need for
managing the concurrency explicitly. Second, by using actor implementations on
parallel and distributed architectures, performance gains will allow larger problems
to be solved.

In this chapter, we discuss a powerful concurrent programming paradigm for
DAI; the paradigm is based on abstractions built using extensions of the basic
Actor model.

12.2 Defining Multi-Agent Systems

Defining agents has been an elusive problem. A common type of agent is the various
personal assistants that have recently become commercially available; such agents
perform a large number of light weight queries in search of some information. Per-
sonal assistants perform functions such as finding the best travel fares, monitoring
product or stock prices, or searching academic articles related to a certain area of
research. Often these agents have the decision making authority to make binding
contracts on behalf of a user, such as by purchasing something using a credit card
number. Another type of agent uses a variety of filtering mechanisms to make the
huge amount of information available over (say) the Internet more manageable for
human consumption. All these can be seen as examples of personal agents that act
for or on behalf of a user.

A study of personal agents is limited in a fundamental way. Because there is
a 1-to-1 correspondence between interests and agents, each agent competes or
cooperates with others on the basis of its own interest. Although some notion of
a “cooperation instinct” can be coded into the interests of agents, it may come at
the cost of reduced code re-usability.

A common limitation comes from either not addressing the issue of mobility, or
not doing so in the context of an open system. In an open system, mobile agents
would be able to migrate from one node to another looking for desired computation
environments at affordable costs, and to spawn child agents to pursue subtasks.
There is no interesting model available to help control the resources that such
mobile agents serving some particular interest could use. Even in the case of a
single node, there is no way of preventing agents pursuing a particular task from
monopolizing the entire system’s resources.

Let us consider the example of a system of mobile agents spread over a large
network, related to the construction industry. There will be agents for clients
looking for contractors, agents for contractors looking for potential clients, and
agents for smaller sub-contractors at different levels. Each agent shops around and
tries to negotiate the best deal for its own interest. But, unless controlled, any
number of overly aggressive (say) contractor agents could spawn hundreds of child
agents looking for potential clients in parallel, potentially bringing the entire system
down. Worse, even well-meaning agents do not have the means to decide what is a
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reasonable use of the available resources.

Similarly, there is a possibility of multiple child agents working for the same
agent (i.e. serving the same interest) to take competing postures. Even if means
are provided for some sort of coordination to emerge at a higher level, such agents
may still be competing for computational resources at the scheduler level.

These reasons make it important to study ways of controlling ensembles of agents.
On the one hand, we need a bounded resources model to control the amount of
computational resources consumed by agents serving an interest; on the other, we
need a bounded autonomy model for allowing coordination among agents. In the
following sections, we will develop a model for studying systems of such agents,
that addresses these issues.

We represent agents as actors; specifically, we extend the actor model to explicitly
model the location of agents on location on particular hosts and the fact that agents
have bounded computational resources. Hosts are actors that manage physical and
logical resources and offer them to agents interested in paying for them. A uniform
currency is used to pay for the cost of these resources. The behavior of an actor
may be interpreted in a suitable framework for agents, e.g., the belief, desire, intent
model [28]. In any event, agents are persistent, have relatively long-lived goals
describing the functional aspect of what they are doing, and have computational
engines which serve as mechanisms for achieving these goals. These computational
engines include a resource utilization strategy. Of course, all these aspects of an
agent may evolve dynamically.

Although the description of goals and procedures falls largely in the domain of
conventional Al explicit resource modeling is a need specific to multi-agent systems.
Control is not based solely on programming structures, as agents may create or
invoke other autonomous agents. The resource consumption model provides the
basis for an economic model that is needed to provide mechanisms to bound use of
computational and network resources.

An agent which has a model of its own behavior and that of the environments
in which it may be executed, may improve its resource consumption by using
mobility. Moreover, because an agent may execute in new contexts which do not
satisfy its requirements, the agent may need to systematically customize behavior
of the underlying execution environment. Such agent requirements include security,
rendering software, device drivers, etc.

A model of computational reflection [22] provides a formal basis for an agent
to have a representation of its own behavior. In general, reflection models enable
interaction of higher level operations, such as real-time constraint enforcement, and
lower level information about the execution environment, such as load distribution
over a group of processors, available network bandwidth, etc. Specifically, reflection
allows an agent to have a continuous interaction with its environment in order to
determine available resources and relate such resources to the agents’ own state;
thus the use of reflection can support evolving resource utilization strategies.
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12.3 Actors

Actors are self-contained, interactive, autonomous components of a computing
system that communicate by asynchronous message passing [1, 5]. The basic actor
primitives are:

= send(a,v) creates a new message:
s with receiver a, and
@ contents v
= newactor(e) creates a new actor:
s which is evaluating the expression e, and
s returns its address
= ready(b) captures local state change:
= alters the behavior of the actor executing the ready expression to b

s frees that actor to accept another message.

These primitives form a simple but powerful set upon which to build further
abstractions. Thus actors are a natural basis for a low-level language that supports
a wide range of higher level abstractions and concurrent programming paradigms.

The actor newactor primitive extends the dynamic data creation capability in
sequential programming languages by allowing creation of processes. The ready
primitive gives actors a history-sensitive behavior necessary for shared data objects,
by delineating a group of actions as atomic. This is in contrast to a purely
functional programming model and generalizes the Lisp/Scheme/ML style sharing
to concurrent computation. The send primitive is the asynchronous analog of
function application. It is the basic communication primitive, causing a message
to be put in an actor’s mailbox (message queue).

Using the three basic actor primitives, actor systems can be dynamically con-
figured. New actors can be created and connections between actors can be made
and broken as computation proceeds. Thus the model does not require that the
structure or shape of a computational problem be completely determined, or that
the execution resources be fixed, before work on solving it can be initiated.

Actors provide a natural extension of the object-oriented paradigm to concurrent
and distributed computation. They support encapsulation, description as behavior
templates, and re-usability via libraries accessed using message-passing protocols.
The locality properties of actors guarantee that changes of representation and
elaborations can be made independent of the interaction with, and behavior of,
other actors. Thus actors can support local instrumentation and monitoring which
provide important tools for analysis and debugging.
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Figure 12.1 Actors encapsulate a thread and state. The interface is comprised of
public methods which operate on the state.

Example 12.1 Filtered Search

Consider the problem of a parallel multi-ary tree search, where we want to use a
function filter to determine what subset of a set of results obtained is useful,
before sending them on to the client. There are two different behaviors being
defined. FILTERSEARCH has a single method (hence, not named) that takes two
parameters, the identity of the customer cust and the tree to be searched tree.
Assume that the number of subtrees and a list of the subtrees can be obtained
by using functions num-children and children respectively; content returns the
content of the root. After checking for the base case, the behavior FILTERSEARCH
creates a join continuation actor jc with behavior COLLECT with its client’s
identity cust and the number of subtrees num-children tree as acquaintances.
Next, the actor creates a new actor with its own behavior for each of the tree’s
subtrees, and sends each new actor the identity of the join continuation actor as its
client, and one of the subtrees to search. Once this is done, it gets ready to service
another request.

(defActor FILTERSEARCH ()
(let ((filter (lambda (1list)
M)
(method (cust tree)

(if (= (num-children tree) 0)
(send cust (content tree))
(let ((jc (newActor COLLECT

(cust (num-children tree)
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(1ist (content tree)) filter))))
(map (lambda (x)
(let ((f (newActor FILTERSEARCH ())))
(send f jc x)))
(children tree))
(ready FILTERSEARCH ()))))))

An actor with behavior COLLECT is created with acquaintances cust, n, and
results to represent the customer, the number of values to expect, and the list
of results collected so far, respectively. After receipt of each new result, the actor
gets ready to receive more results with the same behavior acquaintances modified
to represent state change. When all results have been received, it uses the function
filter to eliminate unwanted results, and sends the remaining to its client. Finally,
the actor changes into a SINK which ignores all messages.

(defActor COLLECT (cust n results filter)
(method (res)
(cond ((> n 1)
(ready COLLECT (cust (- n 1) (append res results))))
((=n 1)
(send cust (filter (append res results)))
(ready SINK (0)))))

Here is how a typical FILTERSEARCH actor would be created and invoked.

(let ((FS (mewActor FILTERSEARCH ())))
(send FS self tree)) O

12.3.1 Semantics of Actors

It is possible to extend any sequential language with the actor constructs described
above. For example, the call-by-value A-calculus is extended in [4].

Instantaneous snapshots of actor systems are called configurations; actor com-
putation is defined by a transition relation on configurations. The notion of open
systems is captured by defining a dynamic interface to a configuration, i.e. by ex-
plicitly representing a set of receptionists which may receive messages from actors
outside a configuration and a set of actors external to a configuration which may
receive messages from the actors within.

Definition (Actor Configurations): An actor configuration with actor map,
«, multi-set of messages, u, receptionists, p, and external actors, Yy, is written

(a|p),

where p, x are finite sets of actor addresses, & maps a finite set of addresses to their
behaviors, u is a finite multi-set of (pending) messages. Let A = Dom(«), i.e., the
domain of «, then:
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(0) pCAand ANy =0,

(1) ifa € A, then FV(a(a)) C AUy, where FV(«(a)) represents the free variables
of a(a); and if <vy <= v;> is a message with content v; to actor address vy, then
FV(v;) CAUy fori < 2.

For an actor with address a, we indicate its state as [e],, where it is busy
executing e; e represents the actor’s current (local) processing state.

We can extend the local transitions defined for a sequential language (»i>), by
providing labeled transitions for the actor program as follows (assume that R is the
reduction context in which the expression currently being evaluated occurs). For
brevity, we skip writing the labels corresponding to each transition unless needed.

Definition (—):

e P bom(@)uia) € = (@ [elq | G PR

(@, [R[newactor(e)]1, ‘ ,u)f( = {a, [R[a']1a, [e]ar

u>'; a’ fresh
(a, [R[ready(v)]1a | p,<a < v> >f< — (a, [app(v,v)]4 | M)i
(a, [R[send(vo,v1)[14 | u)i = (a, [R[nil]l, | p,<w < vl>>§

(a [ um)l o (o] n)
ifm=<a<v>a€yx,and p =pU(FV(v) NDom(a))

(o | “)Z = (o ‘ Hy M >f<u(FV(v)—Dom(a))

if m =<a < v> a € pand FV(v) NDom(a) C p
12.3.2 Equivalence of Actor Systems

Based on a slight variant of the transition system described above, a rigorous theory
of actor systems is developed in [4]. Specifically, various notions of testing equiva-
lence on actor expressions and configurations are designed and studied. The model
provides fairness, namely that any enabled transition eventually fires. Thus fairness
implies three things. First, every busy actor eventually makes progress. Second, ev-
ery actor that is ready to receive a message will eventually receive a message,
provided there is a message pending for it. Finally, if an actor does not become
“stuck”, i.e. is ready infinitely often, it will eventually process every message sent
to it. Fairness is an important requirement for reasoning about eventuality proper-
ties. It is particularly relevant in supporting modular reasoning: if we compose one



Concurrent Programming for Distributed Artificial Intelligence

configuration with another which has a nonterminating computation, computation
in the first configuration may nevertheless proceed as before, for example, if actors
in the two configurations do not interact.

The notion of equivalence is defined by adding an observable distinguished event
to the set of transitions. This technique is a variant of operational equivalence
defined in [23]. Two actor expressions may be plugged into a context to see if the
event occurs in one or the other case. Two expressions are considered equivalent if
they have the same observations over all possible contexts.

The nondeterminism in the arrival order of the messages in an actor computation
gives rise to three notions of observation over a computation tree. Notice there are
many computational paths in the tree. Now it is possible that the event occurs in
every computational path (must happen); occurs in some but not all computational
paths (may happen), or never occurs.

Three distinct well-known equivalence relations may now be defined. In may
equivalence, always occurs is as good as sometimes occurs (that is, either is a
sufficient condition for proving equivalence); in must equivalence never occurs is
as good as only sometimes occurs. Conver equivalence requires the two sets to
coincide (the intersection of the two equivalences). An important result is that, in
the presence of fairness, the three forms of equivalence collapse to two, namely,
may and convez. Thus, while fairness makes some aspects of reasoning harder — we
cannot simply use co-induction in proofs — it simplifies others.

Methods for proving laws of equivalence and proof techniques that simplify
reasoning about actor systems have been developed. Finally, the composition of
configurations defines an algebra.

Note that the model we have defined thus far does not capture mobility of
code. Specifically, A-abstractions cannot be communicated. Since behaviors are
modeled as A-abstractions, this implies that remote creation and migration cannot
be explicitly modeled.

12.3.3 Actors and Concurrent Programming

In addition to the asynchronous message passing paradigm used by the Actor
model, other paradigms have also been used for implementing concurrent systems.
A detailed treatment of these can be found in [6]. In the shared variable paradigm,
processes communicate by writing to and reading from memory locations shared by
them. Although the apparent simplicity of this paradigm is appealing, it violates
principles of abstraction and encapsulation, making it difficult to implement large
systems reliably. Among the issues such implementations have to address include
support for mutual exclusion, the ability to disallow all but one process to access
a set of shared variables, and condition synchronization, requiring that a piece of
code in some process be not executed until some condition is met.

A classic problem in concurrent programming is called the critical section prob-
lem, in which n processes execute indefinitely long alternating between sections
of code that do and those that do not access some shared variables. The part of



12.4 Representing Agents as Actors 9

code that does access these variables is called the critical section. The objective is
to provide mutual exclusion, while preventing deadlock/livelock or an unnecessary
delay, and ensuring that every process attempting to enter its critical section does
eventually do so.

A construct that can be used to solve the critical section problem and many other
synchronization problems for shared variable systems is semaphores. Semaphores
provide a disciplined way for supporting condition synchronization by using values
of shared counters to control whether a section of code can or cannot be executed.
Conditional critical Tegions are an abstraction that groups together shared resources
and allows only conditional access to such groups. Monitors abstract this further by
limiting access to shared variables strictly through use of a fixed set of procedures.

The actor model abstracts over issues of low-level synchronization by encapsu-
lating the state of an object and its execution thread, and limiting communication
to asynchronous message passing. Actors thus provide an abstract level at which
to program and reason about agents. Synchronous communication and other more
complex communication mechanisms can be built on top of the basic asynchronous
communication mechanism [5]. Moreover, as we will see later in this chapter, high-
level commit protocols can be used for agent-level synchronization.

12.4 Representing Agents as Actors

In developing multi-agent systems, a key issue to be addressed is mobility. Mobility
allows an agent to migrate from one node in the distributed system to another,
seeking a “better” execution environment. The increased flexibility raises some
other important issues.

It may be desirable for an agent to migrate to a different physical location for
a variety of reasons. These reasons may include lower cost of execution compared
to the current location, or improved quality of service. The need to migrate can
also be task specific. For example, if an agent needs to access huge amounts of data
at different locations, it may make sense to migrate to those locations in order to
exploit better locality.

The above examples essentially assume that mobile agents are clients. On the
other hand, it is also possible to have server agents that roam around the network
looking for hospitable execution environments attempting to sell their services. This
may even take the shape of a partnership whereby server agents are allowed to exist
on nodes, and the nodes can advertise the additional services thus made available
to attract other clients.

To support a system where agents can use resources available “elsewhere” in
a satisfactory way, it is important to have some notion of an economy. Such an
economy would provide the basis on which nodes would allow agents to use their
resources, and would serve as an environment that would enable nodes and agents
to get into binding contracts about the services needed.
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A complementary issue to limiting the resources consumed by an agent is that of
supporting an agent or an ensemble of agents in pursuit of their goals. The system
must provide means for agents serving the same interest to cooperate, or otherwise
not impede each other’s progress.

12.4.1 Mobility of Actors

Because Actor semantics is location transparent, systems based on the model (e.g.,
[18]), do not allow actors to reason about their locations. This limits the use of
migration to system level decisions where only system level goals such as load
balancing can be considered. To take advantage of agents’ ability to autonomously
decide whether, when and where they want to migrate, we need to extend the Actor
model with notions of location and mobility.

A precursor to true migration is the ability to create an actor at a remote site. The
Actor programming language Hal [3] uses annotations to govern actor placement
at creation.

Example 12.2 Distributed Filtered Search

Consider a variation of the Filtered Search example we saw earlier, where the tree
is distributed over many nodes. New actors for searching the subtrees are created
at nodes hosting the roots of the respective subtrees. We assume that the tree is
non-empty.

(defActor FILTERSEARCH ()
(let ((filter (lambda (list)
L))
(method (cust tree)
(if (= (num-children tree) 0)
(send cust (content tree))
(let ((jc (newActor COLLECT
(cust (num-children tree)
(list (content tree)) filter))))
(map
(lambda (%)
(let ((f (newActor FILTERSEARCH ())
@ (host-of x)))
(send f jc x)))
(children tree))
(ready FILTERSEARCH ()))))) 0

A similar construct, called trojan-multisend, sends new actors to a collection
of remote locations, along with the first messages that each will process [3].

True migration must allow an actor to migrate to a different node while it is
in the middle of its execution. We will describe a specific way of providing this
functionality.

First, we define some important changes in the actor naming scheme that is
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used, to allow migration to be represented. Because actors can migrate, we need to
identify an actor’s current location. Specifically, we change the naming scheme for
identifying individual actors for the purpose of sending messages: an actor name is
now h.a, where a is a globally unique identifier for any actor, and h identifies the
node at which it currently resides. The important implication is that a name a at
any node in the system corresponds to the same actor. Practical implications of the
new name representation will be discussed shortly.

The message send that simply resulted in creation of a message from the standard
Actor semantics, now creates such a message locally in the host node’s queue,
necessitating keeping track of which node a message is physically located at, at any
time. The transfer of a message from its current location to the target actor’s node
is handled separately.

Migration can be represented in two ways: the agent language can provide a
migration primitive, or it could provide an agent with a way to grab its own state
and send it over (inside a message) to a remote node to create a duplicate with
that state; the original actor can then become a forwarder. Because a migration
primitive introduces greater semantic complexity, we choose to study the latter. A
ccf primitive can be introduced to grab the local state of an actor by enclosing
the actor’s reduction context inside a A-abstraction. Using this primitive, we can
represent higher level operations as macros.

Ezxzample 12.3 Migration

A construct for migration, called migrate@h, may be defined as a macro. Without
loss of generality, assume that each host also has a manager actor h.m that acts
on behalf of the host and manages the host’s resources. The ccf primitive is
used for grabbing the current continuation of the actor. Unlike Lisp/Scheme, here
continuations are local to a single actor; in Scheme, the continuation represents the
state of the entire sequential program — typically a much larger object. The function
given to ccf first sends a move request to the remote host’s manager h.m to create
a new actor with the same personal name as the actor requesting migration, using
the reduction context enclosed in y as its behavior. It then changes the requesting
actor’s behavior to WAIT-ACK. Assume we have a procedure getkey to generate
a new key every time it is invoked; personal-name returns the name of an actor
minus the host’s identifier.

(let ((x (getkey)))
(ccf (lambda (y)
(seq (send h.m move self y k (personal-name self))
(ready WAIT-ACK (h m k (personal-name self)))))))

Assuming that a move method is a part of h.m’s behavior, it would accept the
message, create a new duplicate actor, and return an acknowledgment. The behavior
WAIT-ACK waits for an acknowledgment from the remote host manager, containing
identities of the host and its manager, and a copy of the key sent with the request.
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(defActor WAIT-ACK (h m k a)
(lambda (ret-h ret-m ret-k)
(if (and (= h ret-h) (= m ret-m) (= k ret-k))
(ready FORWARDER (h.a))))))

To avoid the blocking semantics, the actor may add the method WAIT-ACK
to its current behavior rather than replacing with it. In such a case, until the
acknowledgment message is received the actor would keep acting as usual. Once
the message is received, it would change its behavior into that of a FORWARDER.

Note that because actor names are globally unique, there is no need to transmit
the complete name of the new actor. If a particular name is in use at multiple nodes,
only one of them corresponds to an actual actor; others have to be forwarders. An
important implication of this is that if an actor migrates to a node where the name
is already in use, it must be in use as a forwarder which can be safely overwritten
by the actual actor. O

Ezxzample 12.4 Remote Creation

A construct for remote creation, remote-actor (e)@h, may similarly be defined as
a macro. As above, assume that h.m is the manager actor for the host h. Here,
the function given to ccf sends a newactor request to the remote host’s manager
h.m to create a new actor with name a and behavior e, and changes the requesting
actor’s behavior to WAIT-ADDR.

(let ((k (getkey)))
(ccf (lambda (y)
(seq (send h.m newactor self e k)
(ready WAIT-ADDR (h m y k))))))

Behavior WAIT-ADDR waits for the address of the new actor created remotely,
and after verifying all the information, it inserts the new address in the reduction
context contained in y.

(defActor WAIT-ADDR (h m y k)
(lambda (ret-h ret-m ret-k a)
(if (and (= h ret-h) (= m ret-m) (= k ret-k))
(ready (y h.a)))))

To avoid the blocking semantics in this case, the actor could perform a local
newactor to create a local actor with a migrate expression preceding rest of the
desired behavior. This would be facilitated by the fact that actor names do not
change as actors move from node to node. o

Semantics of Mobile Actors

Transitions presented in Section 12.3.1 can now be modified to address support
for migration. To identify an actor’s current location, a superscript is added to the
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actor state representation that identifies the host; recall that the subscript identifies
the actor itself.

Definition ():

e 'i)Dom(a)U{a} ¢ = (a, el | u)i (o, 1% | u)i

We assume that all creation is local and that only messages co-located on the
same host as an actor are consumed. Remote messages, actor migration, and remote
creation will be dealt with separately.

We keep track of which node a message is physically located at by attaching
a superscript to each message, identifying the host of the intended recipient. A
separate transition is added to represent the transfer of a message from its current
location to the target node.

(@, [R[newactor(e)]1% | u)i — (o, [R[h.a']1%, [e1?, ,u)f( a’ fresh

(a, [R[ready(e)]1} | p,<a < v>" )Z — (a, [app(e, v)1% | M>f<
(, [R[send(hs.az, U)]]]le | ,u)f( — (a, [R[[nil]]]};l1 ‘ 1, <hg.ag <= v>™M >§
(a | p, <hg.a <= v>M }<p|—> (a | 1, <hg.a < v>h2 }(p

The two transitions for interaction with actors outside the system remain un-
changed, except for the fact that the receptionists p and the external actors y now
contain actors as well as host managers.

The following last transition provides access to the local state of an actor,
which is needed to support migration. It introduces the primitive ccf, which grabs
the continuation by putting the reduction context R inside a A-abstraction, and
applying it to the given function v.

(a, [R[cct(v)]1" | ,u)i = (a, lapp(v, Az.R[z])1" | u>f<
z ¢ FV(R[nil])

Although these semantics explain the process of migration, note that to establish
the need to migrate, an agent must be able to observe its own state. The model of
computational reflection provides a formal basis for an agent to have a representa-
tion of its own behavior. We will discuss reflection in Section 12.5.1.

12.4.2 Resource Model

Resource allocation in multi-agent systems is a problem that raises issues of
reciprocity as well as performance and security concerns. Nodes in a multi-agent
system over the worldwide web, for instance, may be willing to be part of a multi-
agent system if they receive something in return for allowing foreign agents to use
their resources. From the performance and security perspective, agents migrating to
a node may exhibit undesirable resource consumptive behaviors, either individually,
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or as ensembles. Similarly, network channels are a scarce resource requiring controls
on how they may be used.

We may use an economic model to protect against resource consumptive behavior
of agents in a multi-agent system. Recall that control in agent systems is not based
solely on programming structures, as agents may create or invoke other autonomous
agents. Such autonomy makes it important to devise explicit mechanisms for
controlling the extent to which an expanding group of agents, working on a
single task, can utilize a system’s resources. In an open distributed system, the
problem is compounded by the ability of agents to exist in a resource space not
entirely dedicated to their computations alone. We need mechanisms to support
bounding the resource utilization of individual agents, or ensembles of agents
working together, according to the terms under which they are allowed access to
those resources.

Ezxample 12.5 Bounded D:istributed Filtered Search

Consider a variation of the Distributed Filtered Search application described earlier,
where we want to control the amount of resources that can be consumed in pursuit
of the goal. The typical message send to an actor with behavior FILTERSEARCH
will contain a value res representing the resources allocated for the task:

(let ((FS (newActor FILTERSEARCH ())))
(send FS self tree res))

The system will strip the value res from the message, and keep track of the
resources remaining at any time. The agent would have read access to the current
value of this quantity by asking the system.

The application keeps creating new agents to search subtrees as long as it has
resources, and stops when only delta remains. We assume that delta represents
sufficient resources for transmitting results to the client. part represents the agent’s
consumption strategy that tells it what portion of the available resources may be
allocated to a sub-task.

Because there isn’t a way to know how many messages jc should expect at the
time of its creation, its initial behavior is set to TELLCOLLECT, which waits
for a count of the number of responses to expect. After receiving that message, a
TELLCOLLECT actor uses the value in replacing its behavior with COLLECT.

(defActor FILTERSEARCH ()
(let ((filter (lambda (list)
. )))
(method (cust tree)
(if (= (num-children tree) 0)
(send cust (content tree))
(let ((jc (newActor TELLCOLLECT ()))
(count 0))
(map
(lambda (x)
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(if (> (my-resources) delta)
(let ((f (newActor FILTERSEARCH ())
@ (host-of x)))
(send f jc x (part (my-resources)))
(setf count (+ count 1)))))
(children tree))
(send jc cust count (content tree)
(part (my-resource)) filter)
(ready FILTERSEARCH ()))))))

This example does not account for resources needed for agents to survive on a
node while they are inactive.

Note that an agent’s resource consumption strategy is independent of the system’s
ability to pull the plug when the resources run out. Needless to add, any attempt
to send more resources to another agent than it possesses, would be trapped by the
run-time system. O

To implement an economic model, we will use the notion of a universal currency.
Specifically, resource allocation will be measured in a common currency called GCU
(for global currency unit). Every computational activity would be allocated some
GCU’s which can be used in completing the task. Because activity in message-based
systems is triggered by a message send, these GCU’s can be allocated at message
send time. But note that what is counted as resources is the physical and logical
computational resources needed to service a message. This is not the only use of
resources; agents residing at a host waiting for something to happen, for instance,
also use resources such as memory. Thus, the notion of computational resources
must be broad enough to include all entities in the system whose use by one agent
can affect the performance of rest of the system. The amount of time devoted to an
agent by the processors, the memories, the disks and the channels, are all resources
which need to be paid for. The analog of renting resources seems to apply more
accurately than that of purchasing.

In addition to the resources consumed while progressing towards accomplishing
their goals, individual agents may sometimes be waiting for information from
elsewhere, or for reasons of coordination. Such waiting consumes memory resources
which must be accounted for. At the same time, an agent should not have to pay
if the idle wait is increased by the host’s scheduling choices. Thus, it is important
to represent resources both in terms of individual agents as well as in terms of the
larger application they are serving at a particular hosting node. Only the delays
caused by co-agents in an application should be charged.

Similarly, it is important to distinguish between economic boundaries in an open
distributed system and the physical boundaries between computational nodes. Al-
though resources such as network bandwidth usage depend on physical boundaries,
costs of other resources would more logically vary as one crosses economic bound-
aries.
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Semantics of Resource Bounded Agents

In developing the semantics for representing resource allocation, we add a value r to
the agent state (we now use the term agent instead of actor), to represent the units
of universal currency (GCU’s) available to the agent. The configuration also includes
0 to represent the system map, which includes all the host agents representing the
nodes, and the network connecting these nodes. [s]j says that the host agent h
has state s. We treat the host agents separately because they are not mobile, and
because the fact that a host’s state may determine the cost of its computational
resources, makes it important to keep track of its state changes.

We are also introducing two new functions. Ty, is a function that takes the current
state of a host and the transition being applied, to give the next state. This function
is applied to all members of 3 being effected by a transition. Tres(4,4) is a function
that represents a contract between an agent a and the node h hosting it, and
determines the cost (in Gcu’s) of performing a transition ¢ when the host is in
state s ( +% will be used to represent transitions, where ¢ is a variable representing
the specific transition taking place). Such a contract would be reached at after a
process of negotiation between the agent and the host. Note that this function is
very general because it allows the cost of the services to vary as the host’s state
changes.

Definition (—):

A /
€ = Dom(a)u{a} € =
t

(a,le,r1% | B, [s14 | pys e

<au [ela"‘ - Tres(a,h)(ta S)]Z ‘ ﬁ’ [Tst(ta S)]h ‘ M)i
if r > Tres(a,h)(ta 3)

The transitions for newactor and ccf expressions remain identical to those for
mobile actors, except that the actor is charged for the cost of performing the
transitions.

Because it is the send primitive that initiates a new activity, a certain number of
GCU’s has to be sent along with the message for pursuing the activity. So, in addition
to the cost of the transition, the wealth of the sending actor is also reduced by r’.
As the activity is entirely local, only the local host’s state changes.

The complementary activity of transferring a message from one node to another
represents change in states of both the nodes as well as the state of the network
Sn- We make a convention that the cost of this transfer is always incurred by the
sender. Because of this, it is important to identify the sender of the message, for
which we add a subscript to the messages to represent the sender’s identity. The only
amount charged for transferring a message is the network cost Tpet(hy, ho, | v |, $n)
of transferring a message of size | v |. We assume that any cost of handling the
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message at both ends of the channel is negligible in comparison and can be ignored.
(a, [R[send(ha.az,v,7")],r10! | B, [s14, | /,L>p :
<O[, [R[[nil]],r -7 - Tres(a,h)(tvs aj ‘ ﬂa [Tst(tas)] hy | Mam>i

m = <hg.az < [v, 7‘]>h1 ar

<Ol, [6,7’] le | ﬂ, [31]h17 [52]}123 [sn]net | /,L,<h2.CL2 = [1)77./] >Z11-a1 >p 'i)
<0{, [ear_Tnet(hth |U| Sn ]hl | /87 [Tst(t 51)]h17[Tst(t 32)]h25
[Tst(t sn ]net | i, <hg.az <= [v,r ]>h1 a; >f<

Receipt of a message simply results in addition of the GCU’s sent in the message
to the wealth of the receiving agent.

(o, [R[ready(e)],r1% | B, LsIn, | p<hi.ar. <= [o,7'150, )0 v
(a, [app(e, v),r—i—r’ _Tres(a1,h1)(tas)]zl ’ B, [Tst(tas)]fu | M)i

Following are the two transitions representing communication with the outside
world in the form of transfer of a message to or from the system. Because the cost of
such a transfer is to be incurred by the sender, there is no need to represent a cost
in the transition when a message is received from outside the system. Transferring a
message out of the system does result in a cost that will be incurred by the sending
agent. The host state changes occur in the network, the local host h;, and in the
host hs of the external actor, but because the external host is itself not included in
[, its state change is not represented in the transition.

(o, Le,r10t | B, Uslnys [sndmer | oo <hoeap <= [u, 7’15700 >i =

(a, Lesr = Tner(hay hay v,50)150 | By [Tae(t,8)1nss [Tst(t50) et | 1)
if hp.a2 € x, and p’ = p U (FV(v) N Dom(«))

<C¥ | ,6, [5]]1,1, [sn]net | ,U>p 'i) <O[ | 181 [Tst(tas)]hza
[Tst(t Sn ]net | u,<h1 a; < [v, r]>

if hy.a; € p and FV(v) NDom(a) C p

p
hg.as /xU(FV(v)—Dom(a))

Finally we need a transition rule to represent the cost of an inactive agent residing
at a host. As explained earlier, this cost is complicated by the fact that we do not
want to charge an agent if the wait is caused by factors associated purely with the
host itself. Essentially, we want to charge the agent if there is no message in the
system for it, for the time that its co-agents are executing. This would make sense
if the host’s scheduler would schedule an application scheduler for each application,
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rather than scheduling individual agents directly. In this way, the rent for the
memory being used can be charged only for the time for which the application
is scheduled.

(o, [R[ready(e)],r1% | B, sy, | u)? o5

(@, [R[ready(e)],r — €] o ‘ B, [Ts:(t, s)1n, | ,u)i

ha
h2 .ag

if <h.a < [v,7']1> ¢ p for any v,7’, ay and hy

and t is a transition in some co-agent of a;

12.5 Agent Ensembles

Individual agents are not much more powerful than conventional sequential pro-
grams. However, by exploiting parallelism, distribution and mobility, ensembles of
agents promise orders of magnitude greater computational power than conventional
programs. Before the promise can be realized, the dynamicity and uncertainty in
such systems poses a number of problems. To allow agent ensembles to operate
effectively, we need to provide the ability to organize groups of agents in interesting
ways. Specifically, there are two kinds of concerns we have to address. First, the
contexts in which they execute and interact need to be dynamically customizable.
Second, the interactions of different, potentially overlapping groups of agents, need
to be mediated to ensure shared protocols. We describe the programming model
that has been developed to provide the requisite flexibility.

12.5.1 Customizing Execution Contexts

An agent traveling from node to node seeking affordable resources may find itself in
environments that by default do not meet some of its requirements for execution.
For example, an agent may need some helper agents that could be asked to perform
specialized tasks, as is the case with a library of plug-ins. In order to ensure the
appropriate execution context, the agent could ensure that an acceptable context
already exists at the host before migrating there. Alternately, it could customize
the context at arrival.

In some cases, the execution of an agent needs to be mediated, contained,
scheduled, etc., to meet requirements such as security, real-time, or Quality of
Service (QoS). Because the implementation of such requirements is dependent on
the physical and logical resources available, the underlying architecture supporting
agents must be customizable. It is essential for the ability to customize the execution
context that the code for requirements such as QoS be implemented separately from
the code for the application functionality. For example, if the agents encoding an



12.5 Agent Ensembles 19

Application

\ Modify

Describe

System

Figure 12.2 Computational Reflection

application are assigning their own priorities and schedules, it is not very feasible
to schedule them in order to satisfy real-time requirements.

Customization of the execution context is accomplished using a technique called
reflection [22]. Reflection allows an application to monitor the execution of the
underlying system and to modify it dynamically (Figure 12.2).

Reflection

In general, models of reflection enable interaction of higher level operations, such as
real-time constraints, and lower level information about the execution environment,
such as load distribution over a group of processors, available network bandwidth,
etc.

Because the Actor model allows the state of the computation to be modeled
directly, the computation environment called the meta-level architecture can be
represented at an appropriate level of abstraction using the same base language [32].
Specifically, this allows use of reflection enabling an agent to have a continuous
interaction with the environment to determine available resources and relate it to
its own state to provide evolving resource consumption strategies.

In Rosette [31], a commercially developed object-oriented implementation of an
Actor architecture, the architecture has an interface layer and a system environ-
ment. The interface layer provides mechanisms for monitoring and control of ap-
plications, where the system environment contains actor communities which im-
plement resource management policies, providing monitoring, debugging, resource
management, system simulation, and compilation/transformation facilities.

To support reflection of the interface layer, Rosette uses three classes of resource
actors to abstractly implement an actor: container, processor, and mailbox. Contain-
ers model the storage local to actors, in a way similar to frames in knowledge-based
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systems. Each container is a set of associations (slots) of keys with values, which
are both other actors. Additions and deletions of slots model allocations and deal-
locations of storage. Processor actors determine how to determine the method for
responding to a message. Mailbox actors buffer incoming messages until they can
be processed.

Suppose we want to ensure the availability of some agent where its absence may be
catastrophic. We may replicate the service to ensure availability when the original
server fails. In the following example adapted from [2], we will see how such a
replication service may be provided.

Example 12.6 Replicated Service

We can use meta-actors called dispatchers to trap out-going messages, and mail-
queue meta-actors to trap in-coming messages, for every actor. When a service
request arrives for the server, its dispatcher can forward a copy of the request to
the alternate servers too. When the servers respond with results, their responses are
tagged with an identifier for the request. At the client end, the mail-queue meta-
actor can use the tag to discard extra copies of any response. A manager in charge
of replicating a service takes the following actions to achieve the state shown in
Figure 12.3:

Key:
™ Dispatcher
omr  MailQueue
— —» Message send
—p Causal Connection

Figure 12.3 When a message is sent by the clients A or C to the replicated service
B, the message is received by B’s mail queue serveMailq (1). The message is then
sent to each of the replicas (2).
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1. The specified server is replicated by a manager by creating actors with the
same behavior and acquaintance list.

2. A mail queue is installed for the original server to make it act as the distributor
described above. Messages destined for the original server are broadcast to the
replicas. A broadcast using ssends (synchronous sends) is done so that all
replicas receive messages in the same order and thus solve the same task.

3. The dispatcher of the original server is modified to act as the collector de-
scribed above. The first message out of each set of replica responses is selected
to be passed to the destination.

4.  The dispatchers of the replicas are changed to forward all messages being sent
to the original server’s dispatcher. In addition, the messages are tagged so
that the original server’s dispatcher can eliminate multiple copies of the same
message.

The new mail queue for the original server is described using the following behaviors:

(defActor SERVEMAILQ (data members)
(method get (who)
)
(method put (msg)
;; A bcaster actor broadcasts msg to members
(bsend (newActor bcaster msg) members)))

(defActor BCASTER (msg)
(method (1)
(if (not (null? 1))
(ssend (car 1) msg)
(send self (cdr 1)))))

Note that message order is being preserved in the broadcast. We use ssend
function to guarantee consistent state at each replica. bsend is a remote procedure
call (blocking send). Figure 12.3 shows the resulting actions occurring when a
message is sent to the replicated service. The original server is actor B. When
a message is received by the distributor, serveMailq (B’s new mail queue), the
message is broadcast to the replicas b1, b2, bz. Each of the replicated actors has
the same base-level behavior as B. Therefore, upon receipt of the message, each
b; responds in the same way B would have. However, if the replicas respond
to the message, the message destinations would be rerouted by the dispatchers
repDis to the original server’s dispatcher, serveDis (serving as the collector). For
each response, serveDis gets three messages, one from each replica. It processes
the three messages and sends out a single response to the original destination.
Note that the base-level actor B does not receive any messages now since all the
incoming messages are redirected to the replicas by its mail queue serveM ailq and
the outgoing messages are sent by the dispatchers of the replicas directly to its
dispatcher serveDis. O
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12.5.2 Interaction Protocols

Ability of the system to cope with new kinds of failures of a few nodes or parts of
the network is essential in a distributed system. A variation of the problem appears
when we are dealing with systems where “failure” is the norm, such as distributed
systems using wireless communications where the network connectivity is essentially
dynamic [15].

When introducing mechanisms for fault-tolerance, it is important to separate the
fault-tolerance aspects of the code from the application for reasons of modularity
and reusability. In this section we will discuss an abstraction over the primitive Ac-
tor model called interaction policies. Interaction policies determine what protocols
to use in dealing with a failure situation.

An interaction policy may be expressed in terms of the interfaces of actors
and implemented by using appropriate protocols to coordinate actors. A protocol
imposes a certain role on each participating actor. In essence it mediates the
interactions between actors to ensure that each relevant actor implements its end
of the interaction policy.

Notice that the implementation of such protocols can be quite involved: it involves
exchanging a number of messages between participating actors. Current techniques
for developing distributed software require developers to implement interaction
policies and application behavior together, significantly complicating code. The lack
of modularity not only makes it hard to reason about code; it limits its reusability
and portability. Moreover, the resulting code is brittle: modifying an interaction
policy to satisfy changing requirements requires modifying the code of each relevant
component and then reasoning about the entire system, essentially from scratch.

In the first place, in standard programming models, we cannot even express an
interaction protocol as a program module; to do so we require the ability to write
meta-programs with distributed scope. An interaction protocol imposes a role for
each actor, specifically, trapping and tagging incoming and outgoing messages to
implement the protocol. Such customization of an individual actor’s mail system
may be further limited only for the duration of an interaction.

Sturman and Agha have developed a language for describing and implementing
interaction policies [29, 30]; using this language, a protocol abstraction may be
instantiated by specifying a particular group of actors and other initialization
parameters. The runtime system must then support specific forms of reflection,
which are sufficiently powerful to enable dynamic modification of the mail system
and to store and retrieve actor states, or other parts of the meta-architecture.

Now notice that the semantics of actor systems in the presence of protocols is
quite different from the semantics of ordinary (the so-called base-level) actor sys-
tems. Our pragmatic experience suggests that reasoning about distributed applica-
tions is simplified by our meta-programming system; after all, code size is reduced
by at least an order of magnitude, and the application is decomposed into more intu-
itive units corresponding to the requirements specification. However, the semantics
of meta-level operations remains poorly understood. Recent research based on ac-
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Component
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Figure 12.4 A distributed system consists of a set of components carrying out
local computations and interacting in accordance with a set of policies.

tors has made progress on the problem of reasoning in the presence of meta-actors,
specifically, by defining a reasoning system and using it to prove the correctness of
a meta-level algorithm for taking a global snapshot of a running distributed system
of actors [32].

12.5.3 Coordination

Dynamic, virtual organization of agents can be accomplished by using coordination
mechanisms to express a wide variety of interactions. Coordination is a key design
concern for a multi-agent system. Since each problem-solving agent possesses only
incomplete information which represents a local view of the overall system, and
limited computational power, it must coordinate with other agents to achieve
globally coherent and efficient solutions. Coordination can be viewed from three
different perspectives: the information content, the exercise of control, and the
coordination mechanisms [26]. The information used for coordination can be data,
new facts discovered, partial solution/plan, preferences, or constraints. What one
would like to develop are reusable abstractions for coordination which allow agents
to play a richer variety of roles.

As a gross simplification, temporal coordination can be seen as an abstraction of
synchronization, the problem of determining when actions take place rather than
what individual actors do. Hence, coordination constraints are an abstraction of
synchronization constraints, constraints on the order of actions.

It turns out that two types of synchronizations are often useful. The first type im-
poses precedence constraints on otherwise asynchronous events at different actors,
and the other requires such events to be atomic (loosely speaking, to co-occur). By
providing a language abstraction, called synchronizer to express these two types of
constraints, we are able to show that the task of distributed programming may be
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further simplified [10]. Because synchronizers may be superimposed, and may be
dynamically added or removed, implementing such a system efficiently proves to
be a fairly challenging but is nevertheless feasible. The following example is due to
Frolund [11].

Ezxample 12.7 Coordinating Robots
Consider two coordinating robots. Each robot has an arm and a hand, and it can
grab a widget with its hand, and lift and move it using its arm.

A single robot can be modeled as a part-whole hierarchy where the robot object
serves as an interface between a user and the robot components. When told to move
a widget from point p; to point p3, the interface tells the arm the hand to pq, tells
the hand to grab the object, tells the arm to move the hand to ps, and finally tells
the hand to release the object. At the completion of any request, the component
(hand or arm) informs the robot object about the completion. For instance, the
hand would send the message releaseDone

Here, we’ll consider the case where two robots are to cooperate in moving widgets.
The top level object is a logical robot composed that serves as an interface for the
composed physical robots. These composed robots are allowed to share a widget
that is at a position reachable to both. A request may involve movement of a single
robot or it may need cross-robot movement. To service a latter type of request to
move a widget from p; to pa, the interface robot would tell robot closer to p; (the
passer) to move it from p; to psh, the shared position, and next tell the other robot
(the receiver) to move it from psh to pa. The passer would in turn communicate
with passerHand and passerArm and so on. Depending on the physical details of
the environment, cross-robot movement may have integrity requirements, such as:

= Totality: The top level message must send a move message to both or neither of
the robots. If only one robot can be dispatched, the widget may get “stuck” at
the shared position, preventing cross-robot movement involving other widgets.

m  Collision avoidance: At most one widget may occupy the shared position at any
time.

®  Sequencing: During a cross-robot movement, the first robot must release the
widget before the second robot grabs it.

A synchronizer to coordinate cross-robot movement would have to represent each of
these requirements. The totality and collision-avoidance requirement are satisfied
by putting an atomicity constraint, that requires move requests to both robots to be
dispatched at the same time. The sequencing requirement is satisfied by disabling
receiver’s hand from grabbing the widget while passer is active, and by installing
triggers that would alternate the value of passerActive between T and nil, as
it is dispatched move and releaseDone messages (by composed and passerHand,
respectively).
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(defSynch robots (passer receiver receiverHand start end shared)
(let ((passerActive nil))
(atomic (request-when (passer.move from to)
(and (= from start) (= to shared)))
(request-when (receiver.move from to)
(and (= from shared) (= to end))))
(disable (request-when receiverHand.grab passerActive)
(trigger (-> (request-when (passer.move from to)
(and (= from start)
(= to shared)))
(setf passerActive T)))
(=> (request-when passer.releaseDone T)
(setf passerActive nil)))))

The robots synchronizer template is instantiated by the top-level object
composed for each cross-robot movement. O

Synchronizers can be very effective in enforcing system level coordination re-
quirement such as the need to avoid redundant work. Note that in a multi-agent
system, multiple agents serving the same interest often end up performing the same
execution sequences without knowing about each other. At the system level, such re-
dundant activity could be avoided by using appropriate synchronization constraints
to disable requests for an activity following the first one.

Ezxzample 12.8 Real-Time Constraints
RTsynchronizers [24] offer one way of implementing real-time constraints using
an abstraction similar to that for the declarative coordination constraints discussed
earlier. RT'synchronizers are objects that enforce real-time constraints by constrain-
ing whether or not messages of a certain type can be delivered to an actor at a
certain point in time.

Consider a variation of the Producer/Consumer problem where the produced
object must lie in the buffer for a certain amount of time before being removed

Producer () {
methods:
put();
other();
} Prod.put Cons.get

Constraint Context

Consumer (){
methods:

get(Q;
other();
}

Figure 12.5 Producer/Consumer with Time-Bounded Buffer
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by the consumer. A Time Constrained Producer/Consumer problem can be im-
plemented by writing writing the code for the usual Producer Consumer problem
without explicitly considering the time constraint (Figure 12.5). Then, separately
an RTsynchronizer can be declared with the time constraint that would prevent
the Consumer’s get request to be delivered until the required amount of time has
elapsed. The declaration are translated into the correct scheduling of actors, if such
a translation is feasible. a

12.5.4 Naming and Groups

In multi-agent systems, it is important to be able to access new services that become
available and to know when existing servers no longer exist. This necessitates a
pattern based naming scheme that identifies agents as being members of groups
and allows communication with agents that are not individually known. These
group identifiers can also be used in defining protocols.

Groups of agents are an important unit of representation; for example, in defining
protocols we can assign roles to a group of agents rather than an individual agent.
Moreover, it is often necessary to communicate with agents whose address is not
previously known. In other words, we need support for a Yellow Pages service to find
addresses of agents of a given type. Traders in object request broker architecture
perform a similar function.

The ActorSpace model allows an abstract specification of a group of actors [7].
An actorspace associates an actor with specific attributes; the sender of a message
specifies a destination pattern which is pattern-matched against the attributes of
actors in the actorspace. The model may also be seen as providing a distributed
version of the blackboard (8] system for broadcast communication. A simple analogy

Seat Manufacturers

@

Wheel Manufacturers

Chassis Manufacturers

@ @

St. Wheel Manufacturers
O

Assembly

Car

Customer
—» Request

— Supply

Figure 12.6 A car assembly factory. The assembly sends requests to actorspaces
whose membership may dynamically change.
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with set theory illustrates the difference between naming in actors and actorspaces.
A set may be defined by enumerating its elements, or by specifying a characteris-
tic function which defines a subset in a domain. The first method is analogous to
actor communication (where an explicit collection of mail addresses of actors must
be specified), whereas the second method corresponds to actorspace communica-
tion. Of course, in conventional mathematics the two ways of characterizing sets
are equivalent since the properties of mathematical objects are static; by contrast,
actors may dynamically change their attributes. Actorspace provides a transparent
way of managing groups of actors. It generalizes the notion of ports in process cal-
culi, where object identity is also not uniquely defined, but pattern are degenerate.

Figure 12.6 shows a simple example of an actorspace. A car assembly requires
certain types of parts which may be available through different vendors, sets that
may themselves be changing over time. Which vendor fills a request may not be
germane to the assembly process. Such requests may be mediated through an
actorspace. Finally, meta-level operations may be associated with an actorspace.
For example, an actorspace manager may transparently schedule requests to ensure
load balancing.

12.6 Related Work

There are two aspects to programming multi-agent systems — the mechanisms defin-
ing an individual agent’s behavior (its computational engine), and mechanisms
to support coordination between agents. Computational engines of individual au-
tonomous agents in DAT have traditionally piggybacked on advances in conventional
Al In addition, DAT research has addressed issues related to communication and
coordination among agents. At the linguistic and system level, a focus of the DAI
research has been to provide the abstractions and tools necessary to develop agents.
We will call a system providing such linguistic and system level support an agent
architecture.

One of the earliest testbeds for building agent architectures was provided by
the MACE system [12], which executed in a distributed memory multiprocessing
environment. Based on the experience of this research, Les Gasser [13] outlined the
avenues of cooperation between the areas of DAI and concurrent programming, and
how the two fields can be brought closer to each other. The current proposal draws
part of its inspiration from the insights obtained by that research. More recently,
an actor-based DAI system called InfoSleuth [35] has been developed at MCC.

Genesereth [14] defines an agent as an entity that is able to communicate correctly
in an agent communication language, thereby emphasizing the expressiveness of
such a language. Programs may be converted into software agents by rewriting them
so that they have the needed communication ability, or by employing transducers or
wrappers to achieve such functionality. Facilitators keeping track of capabilities of
agents implement a federated system of communication providing a pattern-based
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message sending facility.

The Knowledge Query and Manipulation Language (KQML) [9, 21], described
in detail in Chapter 2, is a message-handling protocol that aims to provide an
effective platform for agent communication by addressing fundamental components
of (i) a common language, (ii) a common understanding of exchange knowledge, and
(iii) an ability to exchange the two. KQML messages communicate an attribute
called attitude along with the message content. The language primitives, called
performatives, define actions permissible to agents in communication. There are
special agents called facilitators that provide support in identifying agents and
services, brokering agreements, etc.

The term Agent Oriented Programming has been coined by Shoham [27] to refer
to a specialization of Object Oriented Programming (as in actor programming),
where the state of an actor (now called an agent) contains beliefs, capabilities,
choices and similar mental notions, and the computation consists of agents’ social
interactions with each other, such as informing, offering, accepting, rejecting,
competing, assisting, and so on. The latter idea is derived from speech act literature
(e.g.[25]) which categorizes speech in similar ways. Each agent runs a loop in which
it first reads the current message, updating its mental state, and then executes the
commitments for the current time. Munindar Singh [28] has developed a theoretical
framework for reasoning about intentions, know-how and communications.

A multi-level architecture for Multi-Agent Systems is described by Werner [33]
where a meta-architecture is defined to formalize users’, programmers’ or designers’
interactions with an open system. Michael Kolb’s CooL (Cooperation Language)
[19] provides a higher level of abstraction with respect to agent design than the actor
paradigm, but it gives a knowledge and execution perspective on agents rather
than employing mental states. It is possible to give a high level specification of
cooperation by negotiating a cooperation object (e.g. goal, plan, schedule) or by
synchronizing mutual execution of a plan.

Another context in which the term agent has recently been used is the world wide
web (WWW), and there has been an explosion of interest in building agents, in this
community too. The use of the term agent in DAI and in WWW has different but
related meanings. In both contexts, agents are mobile, persistent pieces of code that
execute autonomously. In DAI systems, agents may be more complex pieces of code
exhibiting intelligence, either individually or collectively; while in the context of the
WWW, this is not necessary. We give two examples to illustrate such agents.

In Chapter 14, Java has been discussed in some detail. Although Java does
provide support for concurrent programming, it is not based on any formal model
of concurrency. It allows multiple threads to run concurrently, but unlike actors,
Java objects and threads are separate entities, and its passive object model fails
to abstract over units of concurrency. The synchronize primitive provided for
enabling safe usage of concurrent threads is a very low-level facility and its overuse
by paranoid programmers often results in deadlocks. This separation of object and
thread also creates a problem for migration. By providing Actor primitives in the
form of a library, the Actor Foundry [20] developed at OSL attempts to put a
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discipline for system development in Java.

The Mobile Agent Facility Specification by the Object Management Group
[17] makes a case for standardizing areas of mobile agent technology to promote
interoperability. These include agent management, transfer, naming (agent as well
as agent system), agent system types and location syntax.

Telescript [34] addresses using a public network as a platform on which third-
party developers can build their applications. This platform is based on a remote
programming paradigm that uses Mobile Agents (MA) that can migrate from a
client to a remote server and execute remotely on behalf of the client.

Cybenko’s group at Dartmouth [16] addresses the issues in implementing mobile
agents in an environment consisting of computers, which are often disconnected
from the network. Cybenko’s mobile agent system, AgentTcl reduces migration to
a single instruction, provides transparent communication among agents (hiding all
transmission details), and provides a simple scripting language as the main agent
communication language while allowing straightforward addition of new languages
and transport mechanisms.

12.7 Conclusions

The ability to coordinate the behavior of agents in agent ensembles is a key challenge
for Distributed AI. We are just beginning to understand the concept of agent and the
requirements for supporting their execution. A platform for supporting multi-agent
ensembles needs to provide scalable mechanisms for safe and efficient execution over
open networks of computers. No such architectural platform currently exists today.

We have presented some basic notions that are necessary to support programming
agents for DAI, but it is by no means the complete picture. In particular, the un-
derlying platform must control ways in which resources are accessed and managed.
The chapter has described how resource allocation policies may be represented at
the agent level. Research on techniques for resource allocation continues and will be
able to borrow from previous work in subject areas as diverse as operating systems
and economics.

Our current understanding of agent semantics is still primitive. For example,
there is no well developed equational theory of agents. Because such a theory would
allow rigorous reasoning about the behavior of agents, it is very important to the
problem of security. Specifically, nodes must be protected against malicious or buggy
agents. One idea is that a host could verify the relevant properties of an agent before
admitting the host in a less protected mode. Because finding a proof of a program is
computationally very expensive (it can be intractable), agents could carry proofs of
their programs that the hosts check. Checking an existing proof is computationally
much less expensive.

Another approach to security is to sandbozx the agents. This technique, partially
employed by the programming language Java, physically separates the space occu-
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pied by an important piece of code (such as that for an agent), to prevent it from
affecting the node’s operation in any undesirable way. However, because Java’s
sandboxing model does not limit the physical or logical resources consumed by
imported code, it is insufficient for preventing deleterious agents. A third possibil-
ity is authentication of agents. Hosts would allow access to agents based on prior
knowledge or by checking certification provided by trusted registries.

From a different perspective, because agents can spawn other agents, multi-agent
systems must also be able to control the activity of ensembles of agents. The
behavior of an individual member of an agent ensemble may be quite reasonable, but
the behavior of a group of agents can be chaotic. We have a number of examples
where the outcome of collections of autonomous processes result in this kind of
phenomena. Consider two of them. A ferry sunk as all the passengers rushed to one
side in response to a perceived emergency. A power outage in a small area caused a
cascading outage. Economic models of control, such as those in markets, may be one
approach here. However, for reasons that are apparently not entirely understood,
the short term behavior of markets with human players can itself be quite chaotic.

The development of programming language constructs to allow high-level descrip-
tion of behavior for scalable agent ensembles must await a better understanding of
what we need to represent. What is now better understood is how to separate the
description of agents functional actions from that of other aspects such as naming,
scheduling, and synchronization. These modularity and abstraction mechanisms
that have been developed in concurrent programming in general go a long way
towards providing the basis for designing and experimenting with powerful agent
systems.
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12.8 Exercises

[Level 1] Security is an important concern in multi-agent systems. Systems
may be threatened by harmful activities of individual agents or by ensemble
of agents affecting system performance by their collective activity. One such
concern, resource consumptive behavior, has been discussed at some length in
this chapter. Describe other specific ways in which security is threatened in
such systems by collective behavior of agent ensembles.

[Level 1] Download an Actor system and use it to implement a parallel
search of a distributed n-ary tree. You can find a Java-based Actor system
at <http://osl.cs.uiuc.edu>.

[Level 1] Describe at least three different schemes for implementing actors in
Java. Discuss the advantages and disadvantages of the design decisions in each
scheme.

[Level 2] Implement an interpreter for an actor language and develop a single
processor simulation of actors for executing programs written in this language.

[Level 2] Extend the semantics developed in this chapter to incorporate a yel-
low pages service. Specifically, provide a way of representing and maintaining
ActorSpaces, and write new transition rules needed to express communication
in a system employing ActorSpaces.

[Level 3] In an actual implementation of an agent architecture, it may be
unreasonable to assume that the resources needed to complete a task can be
predicted reliably, requiring a more complex mechanism by which agents may
request more resources from, or return unused resources, to a sponsor. These
sponsors may be created by client agents as managers of resources available
to a task. Extend the semantics described in this chapter to incorporate a
reasonable scheme employing such sponsors. Note that potential frequency of
sponsor-agent communication may preclude having remote sponsors; similarly,
a naive scheme may result in the sponsors becoming a bottle-neck.

[Level 3] Agents in a multi-agent system may be organized in different ways.
An example would be a group of agents learning to solve an optimization
problem using the genetic algorithm. Implement such a system and study its
ensemble level behavior.

[Level 8] Consider several representative types of organizations of agents and
study potentially chaotic behaviors that may result at the level of ensembles.
Specifically, analyze systems organized as markets and firms. What types of
desirable emergent behaviors can you expect to result from such organizations.
[Level 4] Design and implement an agent architecture. Document the assump-

tions you make about how agents and agent ensembles would use the archi-
tecture.
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