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Abstract

Concurrent systems maintain a distributed state and thus require coordination and synchro-
nization between components to ensure consistency. To provide a coherent design approach to
concurrent systems, recent work has employed an object-based methodology which emphasizes
interactions through well-defined interfaces. The Actor model has provided formal reasoning
about distributed object systems. Nonetheless, due to the complex interactions among compo-
nents and the high volume of observable information produced, understanding and reasoning
about concurrent algorithms in terms of simple interactions is a difficult task. Coordination
patterns, which abstract over simple interactions, are not biased by low-level event orderings
and are the appropriate mechanism for reasoning about concurrent algorithms. In this thesis,
we present a methodology for visualizing coordination patterns in concurrent algorithms which
emphasizes observable interactions and causal connections between objects. We introduce wvi-
sualization groups as an intuitive notion for mapping coordination patterns to visualization.
Visualization groups are specified linguistically using visualizers. Visualizers are specified sep-
arately from algorithm code and thus respect code integrity. Moreover, visualizers may be
implemented strictly in terms of object interfaces and thus preserve object encapsulation. We
describe the implementation of STAGEHAND, a prototype environment which supports visual-
izers for the purpose of specifying visualization over actor computations implemented on the

actor platform BROADWAY.
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Chapter 1

Introduction

1.1 Introduction

Two distinctive features of today’s concurrent systems are their distributed nature and their
emphasis on interactions through well-defined interfaces. Because state is distributed in such
systems, coordination and synchronization are needed in order to ensure consistency. Coordi-
nation patterns, which consist of point-to-point interactions, synchronization, and local state
change, drive any distributed computation. However, due to the complex interactions among
components and the high volume of observable information produced, attempting to under-
stand and reason about concurrent algorithms in terms of simple interactions is a difficult task.
Moreover, conventional sequential tools do not readily extend to distributed systems.

As a simple example of how complexity in distributed algorithms establishes the need for
special analysis tools, consider a distributed protocol such as two-phase commit. Two-phase

commit may be expressed algorithmically as follows [6] (see Figure 1.1):

1. A coordinator sends the message vote to each component participating in the protocol.

2. Upon receiving vote, each component sends either the message commit or abort to the

coordinator.
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Figure 1.1: Two-phase Commit. The coordinator collects votes and decides on an action.
All participants execute the same action.

3. After collecting all responses from all participating components, the coordinator broad-

casts the message commit if all components voted to commit, and abort otherwise.

Two-phase commit proceeds in two stages delineated by rounds of message passing. Un-
derstanding and reasoning about two-phase commit requires the ability to correlate component
state with phases of the algorithm. However, during the voting procedure, the coordinator can
determine only when a stage has ended but can not establish the exact state of the protocol in
the middle of a phase. Similarly, no participant can establish protocol state based solely on its
interactions. Hence typical sequential analysis techniques which emphasize component-centric
views are not sufficient. Such systems lack a multi-component context which correlates state
over multiple components with their causal relationships established by interactions. Thus any
analysis tool for distributed systems must be based on the combined state of all participating
components and their interactions.

Similarly, components in a distributed system often require multiple interaction protocols.
Typically, protocols will overlap (see Figure 1.2). As a result, interactions at a single component
may consist of intermingled interactions involving several protocols. Thus, an analysis tool must
provide abstraction mechanisms for identifying and separating interactions according to their

semantic content. Moreover, large complex systems generate a large volume of observable
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Figure 1.2: Overlapping Protocols. The components participating in protocol A overlap
with those participating in protocol B.

information. Abstraction mechanisms must therefore exist for varying granularity and filtering
interactions.

Program visualization, the animated display of various aspects of algorithm execution, has
been utilized in an attempt to provide appropriate analysis tools [27, 32]. In particular, program
visualization has been applied to such diverse applications as computer science instruction [9],
visual debugging [21], program verification and reasoning [27], and educational software [16].
Typical visual environments use pictorial abstractions to represent program components and
their interactions, showing the various stages of a program in execution. Note that a visual-
based analysis tool provides a multi-component context. Moreover, extending such systems
with an appropriate specification language allows analysis which filters specific interactions.
That is, visualization may provide abstraction mechanisms which capture high-level behavior
whereas typical analysis tools, such as trace-based systems, tend to be biased to representing
low-level execution details.

Current visualization environments adopt the view that program visualization represents a
mapping from computational state to visual representation [26]. Constructing this map involves
the following three tasks: first, identifying interesting program states; second, defining visual
representations corresponding to these states; and finally, defining a mapping mechanism which
links program state to visual representation. We call this the state-transition approach. Under

the state-transition approach, visualization is synchronized with the transition of a program



among computational states. Thus, when used to visualize concurrent execution, the state-
transition approach requires a global snapshot of algorithm state. Unfortunately, in distributed
environments global snapshots are costly due to distributed state and asynchrony, and may
not correspond to any state entered by the underlying execution [23]. Moreover, semantically
equivalent execution behavior may yield different state transitions. As a result, the state-
transition approach is costly to implement and does not effectively abstract over the relevant
behavior in distributed systems.

A more natural model for visualizing distributed algorithms is one in which visualization
is triggered according to the occurrence of events at participating objects. An event consists
of a basic transition which effects global state; message passing and the dynamic creation of
new objects are specific examples. We call such a visualization model an event-based approach.
By considering patterns of local events, an event-based approach emphasizes coordination pat-
terns and hence captures the salient behavior of distributed systems. Due to asynchrony and
distributed state, only a partial order of events is available in a distributed system [17]. Thus
in order for event-based visualization to be meaningful, some form of consistency must be en-
forced between the ordering of events and the visualization they trigger. In particular, correctly
characterizing the causal relationships of the underlying execution is critical to providing a tool
for reasoning about distributed execution [28].

In this thesis we develop an event-based environment for specifying and implementing visu-
alization of distributed object-based systems. In our environment, visualization is synchronized
with causally ordered coordination patterns among objects. Moreover, granularity is not fixed
in our environment; visualization may be specified over simple low-level interactions as well as
complex interaction patterns over a dynamically changing set of objects. Unlike most contem-
porary environments, our model allows a transparent implementation separating visualization
design concerns from algorithm code. We demonstrate the utility of our model by way of
STAGEHAND, a specification language and supporting run-time mechanisms for specifying on-
line program visualization over a distributed computation. Online means that visualization is

generated in real-time in response to events in the underlying execution. Using STAGEHAND,



users define the set of interactions which trigger a particular visual transition as well as the spe-
cific manipulations of visual modeling entities. Specifically, STAGEHAND embodies the following

set of design goals:

Generality. We may visualize sequential components and their interaction patterns in dis-

tributed systems.
Consistency. Visualization preserves the causal order of events that it represents.

Flexibility. Events which trigger visualization range from local component interactions to arbi-
trary patterns involving interactions among distributed components. The set of visualized

components may be dynamic.

Transparency. Visualization mechanisms are both specification and execution transparent to

the system being visualized:

Specification. Object integrity is preserved. Visualization is specified separately from

algorithm code.

Ezecution. Low-overhead event detection mechanisms are used. Synchronization prop-

erties among components are not altered.

By allowing generality while ensuring consistency, our environment encompasses visualiza-
tion of general distributed systems which preserves the characteristic features of the underlying
execution. In particular, reasoning about coordination behavior requires preserving the causal
relationships among interacting components. Causal order can be determined succinctly in
terms of the partial order of events in a distributed system [17]. Thus, our environment guar-
antees consistency by requiring that visualization observe the same partial order of events as
that of the algorithm execution. Moreover, visualizing coordination behavior requires flexibil-
ity in specifying both the events which trigger visualization as well as the set of components
to be visualized. Specifically, we require the ability to specify visualization for a possibly dy-

namic set of algorithm components and their interaction patterns. Hence, the scope of our



environment is such that abstract patterns of interaction may be visualized over arbitrary (i.e.
dynamic) groups of components. Finally, an important aspect of a visualization tool is that it
not introduce further complication into a system. In particular, visualization should be speci-
fiable over algorithms without side-effects; algorithms should retain approximately the same
execution behavior regardless of whether or not they are being visualized. Large performance
overhead affects message passing and may mask race conditions. QOur environment naturally
separates visualization design objectives from the system under analysis by allowing transparent
implementation.

The remainder of this thesis is organized as follows. This chapter discusses background in-
formation and related work: Section 1.2 discusses the Actor model of computation; Section 1.3
discusses the concept of reflection; Section 1.4 discusses related work in program visualization.
In Chapter 2 we describe how our visualization model is defined over a distributed computation.
In particular, we develop an event-based model for visualizing actor-based systems. In Chap-
ter 3 we describe the specification language portion of STAGEHAND for defining visualization.

Chapter 4 describes the implementation of STAGEHAND. We conclude in Chapter 5.

1.2 Actors

Our goal is to visualize encapsulated, possibly distributed, objects which interact via message
passing. Actors [1] provide a general and flexible model of concurrency which captures all such
systems, thus we base our visualization mechanisms on actor-based computation. Actors are
encapsulated, interactive, autonomous components of a computing system that communicate
by asynchronous message passing. Conceptually, an actor encapsulates a state, a thread of
control, and a set of procedures which manipulate the state. Actors provide an interface which
may be used to invoke encapsulated procedures. Procedures which are accessed through this
interface are called methods (see Figure 1.3).

Actors coordinate by asynchronous message passing. Each actor has a unique masil address

and a mail buffer to receive messages. Actors compute by serially processing messages queued
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Figure 1.3: Actor Model. Actors encapsulate state and a thread of control. The interface
is comprised of public methods which operate on the state.

in their mail buffers. An actor blocks if its mail buffer is empty. Each message invokes a specific
method within an actor. Within the body of a method, there are two basic actions which an

actor may perform that affect the concurrent computational environment!:

e send messages asynchronously to acquaintances, and

e create actors with specified behaviors.

Communication is point-to-point and is assumed to be weakly fair: executing a send even-
tually causes the message to be buffered in the mail queue of the recipient although messages
may arrive in an order different from the one in which they are sent. Actor names are first class

entities which specify the mail address of an actor and may be communicated within messages

! Those familiar with the Actor model may notice that become is missing. In recent work [5], become has
been replaced by a continuation passing style transform and the specification of a replacement behavior. We

assume a similar convention in this thesis.



allowing dynamic reconfiguration of the communication topology. The create primitive creates
a new actor with a specified behavior. Initially, the new actor is an acquaintance only of the
creating actor (i.e. only the creating actor knows the name of the new actor). As described
above, the name of the new actor may be communicated to other actors.

The actor primitives defined above provide a simple yet powerful mechanism for expressing
concurrency. External concurrency is provided by asynchronous send and the ability to create
new actors. Internal concurrency may be mimicked by creating a new actor to asynchronously
process the remainder of the current computation while the original actor begins processing a
new message. Actors provide a model of concurrent computation upon which a wide variety of
concurrent abstractions can be developed [2]. Hence, the visualization mechanisms described
in this thesis readily extend to computational models supporting synchronous communication,
remote procedure call, migrating processes, and so on. More importantly, actors provide a
uniform view of concurrency: every object, including system-level objects, are actors. Our
visualization mechanisms may be installed on any actor in a system, hence visualization may
be used to monitor computations at any arbitrary level of abstraction ranging from system-level
to high-level application specific interactions.

For the purposes of this thesis, we model actors as residing in one of two states: ready or
processing. The ready state simply indicates that an actor is ready to process the next message
in its mail queue. An actor is in the processing state when it is processing a message. These
states serve no other purpose than to allow us to define two basic actor transitions. A method
dispatch corresponds to the transition from the ready state to the processing state. Intuitively,
the actor gets the next message off its mail queue and begins processing. A method completion
corresponds to the transition from the processing state to the ready state. Intuitively, the
actor has finished processing the current message and is ready for the next message. We make
no assumptions as to when these transitions occur other than that an actor may only begin
processing a message by being in the ready state and performing a method dispatch, and that
after processing a message an actor must eventually transition to the ready state by performing

a method completion. We also assume that all actors initially start in the ready state.



1.3 Reflection

Reflection refers to the ability of an object to manipulate a causally connected description of
itself [18, 29]. Causal connection implies that changes to the description have an immediate
effect on the described object. The reflective capabilities of a language are referred to as the
meta-architecture of the language and are embodied by meta-objects which customize specific
attributes of their base-object. For example, in the case of actors, a meta-object may be used
to control how the mail buffer functions. Another meta-object might be used to control how
new actors are created. Using reflection, such meta-objects may be customized at run-time
and replaced with user defined meta-objects yielding a dynamically reconfigurable computation
environment.

From the perspective of program visualization, reflection has the advantage of allowing flex-
ibility while respecting object integrity. In particular, meta-level objects may be manipulated
without requiring access to base-object internals. This feature will allow us to transparently
install visualization on objects. Specifically, we reflectively manipulate the meta-level objects
describing communication, method dispatch, and actor creation. Conceptually, we encapsulate
these meta-level objects into an observer, a meta-level object which reports the occurrence of
events we are interested in for visualization purposes. BROADWAY supports a limited form of
reflection which allows the run-time customization of communication-related attributes using
compiled objects. STAGEHAND specifications are compiled into appropriate observers which are

installed on visualized actors at run-time.

1.4 Related Work

Most of the work related to the visualization of parallel and distributed programs has con-
centrated on performance analysis and instrumentation. The ParaGraph [15] and Pablo [25]
systems are representative of this work. These approaches tend to emphasize largely application
independent performance issues. In this thesis we focus our attention on application-specific

program visualization. That is, we are primarily concerned with user-definable abstraction



mechanisms which aid in the comprehension of concurrent algorithms. As such, we will not
discuss visualization for tuning performance.

The majority of work on program visualization has been concerned with visualizing sequen-
tial program execution. Although we are concerned with visualizing parallel and distributed
programs, it is still useful to contrast and compare with these sequential systems in order to
reveal differences in expressiveness and specification techniques.

Representative sequential environments include BALSA [9] and its descendent ZEUS [10],
and TANGO [31]. Technically, these environments are not restricted to visualizing sequential
programs. However, none of the named systems includes explicit mechanisms for dealing with
concurrency. The strength of these systems tends to lie not in their visualization specification
mechanisms, but rather in their support of flexible and expressive modeling primitives for
creating complex imagery. BALSA and ZEUS provide perhaps the most complete mechanisms
in terms of specifying arbitrary visual layouts. TANGO, on the other hand, contributes a
natural and flexible animation facility using the notion of path transitions [30]. The emphasis
of this thesis is on specification techniques rather than modeling and rendering visualization.
Hence STAGEHAND contains a rather basic set of primitives for generating images. Nonetheless,
any complete visualization system should include a comprehensive modeling and rendering
environment. The systems named above are prime examples of the type of flexibility which
should be supported.

The sequential systems named above all use code annotation to identify visualization events
(in BALSA these are called interesting events). That is, the programmer indicates, using
special syntax, where in the source code visualization should take place. As a result, visual-
ization is produced as a side effect of algorithm execution. In contrast, STAGEHAND supports
transparent realizations and requires no explicit code modification. Moreover, visualization is
implemented reflectively over source components and hence respects object integrity. Although
code annotation is undesirable from a software engineering perspective, overall it provides the
most flexibility and allows the finest control of when to trigger visualization. However, we

have argued that coordination behavior is the most relevant attribute in concurrent systems.
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Our techniques demonstrate that code modification is not necessary to capture synchronization
and coordination. Moreover, annotated code biases the resulting visualization to a particular
execution history. By emphasizing patterns as a basis for visualization events, STAGEHAND
specifications avoid bias and provide an abstraction mechanism for viewing interactions.

The concept of synchronizing visualization with the causal relationships of the underlying
execution has been recognized as critical to understanding concurrent algorithms. Turner and
Cai have described a visualization mechanism based on the logical clock traces of interacting
processes [38]. Similarly, the PVM [35] distributed computing environment has been extended
with PVaniM [36] to support timestamp based visualization. The Conch [8] system has been
extended in a similar fashion in [37]. All of these environments are based on post-mortem visu-
alization. That is, events are recorded in a log during execution and visualized after the fact.
Thus, a shallow difference between these systems and STAGEHAND is that STAGEHAND allows
visualization during system execution. Note that many important and interesting distributed
systems never “terminate”. STAGEHAND was designed to be online in the interest of allow-
ing visualization to be added dynamically at run-time. The latter two systems both employ
POLKA [32] as a visualization front-end. POLKA is a descendent of TANGO intended for ani-
mations of programs executing on parallel architectures. POLKA is a relatively straightforward
extension of the sequential model of TANGO for a concurrent setting; the most notable addition
is the support of concurrent, overlapping animation and more modular constructs for creating
visual representations. The visualization support provided by POLKA is more complete than
that supplied by sTAGEHAND. However, the two systems described above provide no mecha-
nisms for abstracting over low-level interactions. Such abstraction must be implemented as part
of the visualization mechanism in POLKA. Furthermore, PVaniM utilizes a code annotation
approach, the tradeoffs of which we have already discussed; whereas the approach described
in [37] modifies system level routines to record events. In the latter case, there are no conve-
nient mechanisms for filtering events, thus every potentially interesting event must be recorded.
STAGEHAND represents a significant step in the direction of integrating language support for

specifying visualization with the run-time mechanisms necessary to implement this support. In

11



particular, STAGEHAND provides modular visualization constructs which respect object integrity
and allow the user to specify the granularity of events. Furthermore, by utilizing a reflective
architecture, STAGEHAND constructs are transparently integrated with applications, obviating
the need for code annotation.

The concurrent visualization environments we have described above all employ a rather
traditional view of process-based concurrent computation. The PAVANE [26] system repre-
sents a coherent approach to visualizing concurrent program execution based on a tuple-space
environment similar to Linda [11]. Moreover, PAVANE has been designed explicitly to aid pro-
grammers in reasoning about program execution. In PAVANE, a configuration of tuple-space
represents the current state of an algorithm in execution. Visualization event detection follows
a rule-based approach where visualization rules match based on the contents of tuple-space
and create graphic representation tuples in a separate visualization space. Animation may be
created by annotating tuples in visualization space with animation information. Note that PA-
VANE enjoys all the advantages of a rule-based approach. In particular, visualization rules do
not interfere with algorithm code and are completely reusable.

The main differences between STAGEHAND and PAVANE are the model of concurrency and
the expressiveness of the visualization event detection mechanism. The PAVANE model of con-
currency is completely synchronized, thus global program state is readily obtainable. Changes
to tuple-space in PAVANE are synchronized according to groups of executing “processes.”
Thus tuple-space (i.e. program state) may be sampled after each process group has completed
execution. STAGEHAND specifications, on the other hand, specify visualization for distributed
environments. Moreover, abstraction is difficult to define using the PAVANE mapping approach
because transitions among computational states correspond directly to transitions among visu-
alization states. In particular, abstractions expressed using temporal relations are difficult to
describe. STAGEHAND specifications, on the other hand, allow event patterns which depend on
mutable state making temporal relationships easy to detect.

From a somewhat different tradition than program visualization, event diagrams have been a

prevalent mechanism for visualizing actor computation. Augmented Event Diagrams were used

12



by Manning in the Traveler observatory to support the debugging of actor programs [19]. In
a related fashion, predicate transition nets have been used to visualize actor computation [20].
However, both approaches suffer from two key weaknesses: there are no coordination abstrac-
tion mechanisms; and, representations rather than models are generated. Event diagrams do
not abstract over low-level execution details and tend to be unnecessarily complex. Predicate
transition nets do not retain the history of the computation and only visualize actor behav-
ior change. Moreover, both approaches fix the visualization mechanism and limit flexibility.
STAGEHAND provides a foundation upon which explicit views of concurrent computation may
be developed; STAGEHAND specifications may be used to create both event diagram and predi-

cate transition net representations.
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Chapter 2

An Event-Based Model for Program

Visualization

We formulate visualization of actor systems in terms of actor events. We are primarily interested
in interaction patterns. Thus, we define actor events in terms of those transitions observable
externally to each actor. Specifically, an actor event may be either a message send, a method
dispatch, a method completion, or dynamic creation of new actors'. We disallow events based
on actor internals in order to preserve object integrity. This design tradeoff is discussed in some
detail in Chapter 5.

Our model of program visualization relates visualization events to visualization actions by

way of a visualization mechanism. Each of these terms is defined below:

Visualization Event: A visualization event corresponds to a pattern of actor events. Visu-
alization events are used to indicate configurations of the system at which visualization

should take place.

Visualization Action: A visualization action corresponds to some rendering or animation
activity which updates the current display of an algorithm. Typically, a visualization

action is parameterized by the visualization event which invokes it.

! Formally, actor events are only receive events [3]. However, for the sake of clarity we abuse terminology here.

14



Visualization Mechanism: The visualization mechanism specifies the relationship between
visualization events and visualization actions. In particular, the visualization mechanism
is responsible for detecting visualization events and determining the appropriate visual-

ization action to trigger.

Figure 2.1 illustrates the relationship among each of these components.

Vi sual i zat i on
Event s

Vi sual i zati on
Acti ons

Vi sual i zati on
Mechani sm

Figure 2.1: Program Visualization. Visualization events are mapped to visualization
actions by the visualization mechanism.

Our task is to define our model for program visualization so that each of these components
is specified in a manner consistent with the goals stated in Chapter 1. In Section 2.1 we
consider actor events in more detail. In particular, we discuss the features of the visualization
mechanism necessary to preserve consistency in the resulting visualization. A model based
solely on local actor events is satisfactory for visualization but is too low-level for practical use.
In Section 2.2, we introduce visualization groups, an abstraction mechanism for encapsulating
interaction patterns in the spirit of abstract data types. Finally, in Section 2.3 we develop the

architecture of the visualization mechanism required to implement our model.

2.1 Events

Actor events represent the most fine-grain elements which may trigger visualization. As aresult,
some care must be taken in their definition. In particular, it is expected that a large volume
of actor events will be generated by an executing system. Thus, actor events must be defined
so that their detection incurs little overhead without sacrificing expressive ability. Moreover,
we require that actor events capture the low-level interactions used to express coordination.

Formally, actor events are defined as follows:

15



Actor Event: An actor event corresponds to one of the following:

o A message send.
o A method dispatch.
o A method completion.

e The creation of a new actor.

A message send corresponds to the invocation of the send actor primitive. A method dispatch
corresponds to the transition of an actor from the ready state to the processing state. Similarly,
a method completion corresponds to the transition of an actor from the processing state to
the ready state. Finally, a creation event corresponds to the invocation of the create actor
primitive. Each actor event corresponds to an externally observable interaction between the
actor and the underlying run-time environment. For example, an actor invoking send must call
the interprocess communication library supported by the system. Hence, each actor event may
be detected on a local basis while preserving object integrity. Moreover, actor events correspond
to the relevant local activities associated with coordination among components: in two-phase
commit, for example, coordination was expressed using vote-reply-decision message patterns.

Detecting actor events on a local basis eliminates the necessity of querying global state.
Moreover, as we demonstrate in Chapter 4, actor events may be detected transparently. In
particular, we detect actor events by distributing the visualization mechanism so that each actor
is monitored by an independent observer. Observers are objects which filter actor interactions
and trigger visualization when specific actor events are detected.

Visualization triggered by actor events serves to visually identify changes in local state in
response to interactions with other actors. However, because actors are distributed entities,
visualization is triggered in an asynchronous fashion. From the perspective of reasoning about
programs, this is an undesirable feature since it is not clear how the visualization character-
izes the underlying execution. The causal relationships between interacting components in a
distributed system are a critical feature for reasoning about distributed interactions [28, 7]. In

particular, causal relationships indicate a chain of interactions which corresponds to the progress

16



of a distributed algorithm. To capture this feature in the resulting visualization, we require a
visualization mechanism which ensures that visualization actions characterize the causality of
the underlying execution. This requirement may be stated in terms of the following restriction

on visualization actions:

Causal Connection Restriction: The invocation order of visualization actions must pre-

serve the causal order of actor events which trigger them.

Note that under the casual connection restriction, the resulting visualization always corresponds

to a consistent cut [23] of the triggering events in the underlying execution.

Figure 2.2: Event Diagram. Three actors A, B and C are shown together with their
visualization events.

Figure 2.2 illustrates how the causal connection restriction affects visualization. The event
diagram displays a total order of actor events for three actors A, B and C. The causal con-
nection restriction states that if two actor events are causally connected, then their associated
visualization actions must be invoked in a causally consistent order. Thus visualization actions
corresponding to events A; and B; (which we call v(A4;) and v(B;) respectively) are causally
connected. Moreover, v(B;) may not be invoked until v(A;) is. However, there is no causal
connection between events A; and C; thus v(A4;) and v(C;) do not restrict one another. A
more subtle relationship is that between Cy, Cy and A;. In this case, v(C2) must wait for the
execution of both v(A;) and v(C1) (as well as v(B;) and v(Bjy)).

The detection of actor events locally, together with the causal connection restriction com-

pletely defines a model of visualization for actor-based systems:
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Actor Event Model:

e Actor events are detected locally at each component.

o Invoked visualization actions are executed according to the causal connection restric-

tion.

In the actor event model, there is a one-to-one correspondence between actor events and vi-
sualization. However, as discussed above, actor events represent the most fine-grain element
of visualization. Specifically, we anticipate a large volume of actor events. Unfortunately, the
actor event model provides no mechanisms for abstracting over these fine-grain elements. In
particular, we are forced to view every actor event. In the next section, we consider constructs

for defining abstractions over patterns of actor events.

2.2 Visualization Groups

The actor event model provides a foundation for generating visualization and ensuring consis-
tency but lacks constructs for abstracting over low-level events. In order to capture patterns of
events, we organize actors into visualization groups which specify visualization events in terms
of patterns of actor events. Moreover, visualization groups associate state with event patterns

to facilitate temporal and guarded visualization events. Formally:

Visualization Group: A visualization group is defined as the actors over whom a set of
visualization events are specified. A visualization group maintains state which may be
referenced and modified by visualization actions defined for the group. In particular,

predicates over group state may be used to guard visualization events.

Figure 2.3 illustrates the functionality of visualization groups. Recall that observers are
entities associated locally with each actor. Conceptually, actors in a visualization group are
monitored by observers and a coordinator, which manages state for the group. Observers detect

actor events and report them to the coordinator. The coordinator collects local actor events
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Figure 2.3: Visualization Groups. Visualization groups specify visualization events over
possibly overlapping groups of actors.

and determines if the current set of events matches a visualization event pattern. When a
pattern is matched the corresponding visualization action is invoked. Note that shared state
for a visualization group is maintained within the group’s coordinator.

The motivation for organizing actors into visualization groups is in the spirit of encapsulating
data within an abstract data type. Specifically, we would like to encapsulate interaction patterns
within a single abstraction and consider the behavior of the visualized actors strictly in terms
of those patterns. In essence, a visualization group filters actor events considering only those
relevant to some appropriate behavioral metaphor. Moreover, we wish to allow events which
depend on visualization group state as well as patterns of actor events.

Combining the notions of state dependent events and abstraction over sets of actor events,
we define visualization events inductively over actor events by adding guards or conjoining
visualization events. Specifically, a visualization event for a visualization group is either an

actor event on a member of the group or consists of:

Guarded Events: Visualization events guarded by a predicate.

Set of Visualization Events: A finite set of visualization events.
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For example, for two actors participating in message passing, the send event at one actor and
the receive event at the other may be composed to form a single visualization event.

In addition to visualization events, visualization groups give rise to several meta-events.
For example, an actor may move from one visualization group to another. Strictly speaking,
these transitions are not visualization events but may affect the visual metaphor being pre-
sented. Thus, in order to provide flexibility, the following events may also be used to trigger

visualization:
Group Event: A group event corresponds to one of the following;:

e A group enter event.

o A group exit event.

A group enter event corresponds to the addition of an actor to a visualization group. A group
exit event, on the other hand, corresponds to the removal of an actor from a visualization group.
Actors are added and removed from visualization groups dynamically at run-time in one of two
ways: explicitly using the language constructs joinGroup and leaveGroup; or, implicitly as
a result of the visualization action associated with a create actor event. We discuss these two
mechanisms for manipulating group membership in more detail in Chapter 3. Note that actors
may only modify their own visualization group membership or the group membership of actors
they create at the time of creation.

As an example of how visualization groups can be used to specify visualization, consider the
two-phase commit example from above where the coordinator for the commit protocol is also
a participant in a primary backup protocol. The following example illustrates how we might
define visualization groups for the participants of these two protocols.

Example: Two-Phase Commit and Primary Backup. In order to visualize these two
protocols we create two visualization groups, a PrimaryBackup group and a TwoPhaseCommit
group (see Figure 2.4). For the PrimaryBackup group we will only be interested in update
messages which are periodically sent by the coordinator to the backup. For visualization pur-

poses, we will denote the coordinator with a circle when both the coordinator and its backup
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Figure 2.4: Group Organization. Organization of primary backup and two-phase commit
participants.

are consistent, otherwise we will denote the coordinator with a square. The backup actor will
not have a visual representation.

For the TwoPhaseCommit group will be interested in each of the message rounds of the
protocol. Each participant in the protocol will have an explicit visual representation (a square
for this example). We will visualize the message rounds as follows. When the coordinator
broadcasts the vote message we will generate a “funnel” originating from the coordinator.
When a participant replies with a commit or abort and the coordinator receives the reply
we will draw a line from the participant to the coordinator. Finally, when the coordinator
broadcasts the decision in the final stage of the protocol we will draw another funnel. The
shading of the funnel will indicate whether the decision was to commit or abort. Figure 2.5
shows several frames from the resulting visualization. Notice that the visualization captures
such dynamics as the fact that some participants may reply before all participants have received
the vote request, but the coordinator may only reply after receiving all votes.

We will delay a detailed discussion of how visualization events are specified for this example
until Chapter 3. However, we can provide the following intuitive description. The visualization

event for processing update messages consists of a send event followed by a method dispatch
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Figure 2.5: Visualization. On the left, the coordinator has broadcast a vote message,
two participants have replied, and the backup is not consistent with the coordinator. On the
right, the coordinate has broadcast the commit decision, and the backup and coordinator
are consistent.

event guarded by the state variable consistent defined in the PrimaryBackup visualization group.
When the coordinator sends the update message (detectable via a send event) we set consistent
to true. For any message received by the coordinator we set consistent to false and change
the coordinator’s visual representation to be a square. When the backup processes an update
message (detectable via a method dispatch event) we check the consistent flag. If consistent is
true we change the coordinator’s visual representation to be a circle, otherwise we do nothing.
The visualization events for the TwoPhaseCommit group are specified in a similar fashion. The
visualization event for the broadcast of the vote and decision messages consists of the set of
all message sends from the coordinator to each participant. Replies to a vote request are just
the send/method dispatch pairs originating at participants. O

As the example above demonstrates, visualization groups provide the appropriate abstrac-
tion mechanism for filtering actor events to isolate interesting behavior. However, visualization
groups require a two-layered approach in order to implement visualization: actor events are first
detected locally at each actor, then patterns are detected at the group coordinator. Introducing

a new layer between the observed actors and the resulting visualization implies new consistency
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requirements for the visualization mechanism. In the final section we develop the architecture

of the visualization mechanism necessary for implementing this multi-layered approach.

2.3 Visualization Mechanism

Visualization groups are constructs which allow for abstract events. That is, events which are
defined as patterns of actor events. As a result, we need to refine the notion of causal relation
between events. For actor events, causal relationships were well defined because actor events
are indivisible relative to one another. That is, actor events are atomic. Abstract events, on the
other hand, may consist of multiple actor events and may share multiple causal relationships
with other abstract events. In particular, it is not clear what the “right” causal relationship is
between abstract events. The purpose of this section is to develop the visualization mechanism
for the event-based model, and, in doing so, define the causal relationship between abstract
events. Specifically, we define how events are detected and how they are used to trigger visual-
ization.

Figure 2.6 illustrates the architecture of the event-based model. The visualization monitor
represents the modeling and rendering environment and generates the user display. In this
figure, we have identified observers, coordinators, and the display as separate objects although
they need not be implemented in this manner. The causal connection restriction guarantees that
observers deliver events in causal order to all coordinators. Coordinators, in turn, collect events
and determine if any visualization event for the visualization group they manage is satisfied.
Satisfied visualization events cause the invocation of their corresponding visualization action.

Actor events invoke visualization actions exactly in the manner defined above. Abstract
events, on the other hand, may require multiple actor events to be satisfied (i.e. a set of actor
events) and may be guarded by a predicate over group state (¢.e. a guarded event). As a result,
actor events delivered to a coordinator must be held by that coordinator until they may be

used to satisfy an abstract event or it is determined that they may never be used. Moreover,
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Figure 2.6: Model Architecture. Observers causally deliver actor events to coordinators.
Coordinators determine if a visualization event is satisfied and invoke appropriate visualization
actions.

if an actor event may be used to satisfy multiple abstract events, some resolution mechanism
must exist to determine which abstract event is satisfied.

Preserving the causal order of the underlying execution is critical for presenting visualiza-
tion which may be used to reason about distributed algorithms. Moreover, having coordinators
maintain lists of actor events indefinitely is undesirable both from an implementation perspec-
tive as well as in terms of presenting understandable visualization. Thus, given a set of actor
events which may be used to trigger a visualization event we require that the visualization

mechanism implement the following policies:

Use Earliest Policy: An actor event may only be used to satisfy a visualization event if no
other causally preceding actor event within the same group may be used. If more than

one causally unrelated actor event may be used, one is chosen non-deterministically.

Use Once Policy: An actor event may only be used to satisfy one visualization event within

each visualization group.
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The use earliest policy guarantees that actor events won’t be used in a single visualization group
in a manner contradictory to the underlying causal order of the execution. That is, visualization
within a group is always generated according to a consistent cut of actor events. The use once
policy guarantees that as soon as an actor event is used to satisfy a visualization event it will be
discarded. By enforcing these policies it is unambiguous at the time of invocation which actor
events were used to satisfy a visualization event. However, neither policy places any restriction
on the relation between visualization events in separate visualization groups.

As a final consideration, note that visualization actions may modify state. Thus we require
that the visualization mechanism execute visualization actions atomically so that each action
has a consistent view of visualization group state. We may summarize the event-based model

as follows:

Event-Based Model:

e Actors are organized into visualization groups.

e For each visualization group, visualization events are defined as patterns of actor

events over the set of member actors.
e Actor events are detected locally and delivered in causal order to coordinators.

e Coordinators invoke visualization actions by matching visualization events using the

“use earliest” and “use once” policies.

e Visualization actions are executed atomically.

The definition of visualization events in terms of visualization groups and the requirement that
causal orders be preserved in visualization provides a coherent model for reasoning about coordi-
nation. By forcing visualization actions to preserve the partial order of the visualization events
which invoke them we may use visualization to reason about the causal interactions among
components. The resulting emphasis on causal connections shifts the focus of visualization
to communication and coordination which serves as the driving mechanism in any distributed

computation.
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Chapter 3

Specifying Visualization

In this chapter we discuss linguistic support for specifying visualization of actor-based systems.
Our goal is to develop unambiguous specification mechanisms which do not require access to
actor internals, and which support visualization activated by the event structure we described
in the previous chapter. There are two aspects to specifying visualization: defining visualization
events, and defining visualization actions which are triggered by these events. In this chapter
we only consider language constructs for defining visualization events. Developing linguistic
support for specifying visualization actions depends to a large degree on the modeling and
rendering library in use as well as the demands of the user. However, the degree of support
provided and the syntactic mechanisms required for specifying visualization actions is not ger-
mane to the development of event detection language support. Moreover, it is our intention to
provide specification mechanisms which are not constrained by the computer graphics support
available in the system. Thus, we will leave issues related to specifying visualization actions
until Chapter 4. Note that none of the constructs defined here rely on graphics library specific
support.

For the purposes of this chapter, we will assume a simple C-like syntax for the base actor
language. Note that none of the constructs we define are inextricably tied to this base language.
All that we require is a syntax for identifying an actor’s behavior, and the methods and message

contents used in message passing. We will identify an actor’s behavior with a simple text string.
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For example, an actor implementing the Fibonacci function would be labeled Fibonacci. When
we refer to the type of an actor, we are referring to its behavior. Methods within an actor
will be defined much in the same fashion as a C function prototype without a return value.
For example, the function sort which takes as arguments an array and its boundaries would be
identified as:
sort(Array A, Integer lower, Integer upper)

We may also refer to the same method as just sort when we are not interested in the arguments.
When we refer to the address of an actor we are referring to the unique identifier used to send

messages to the actor.

3.1 Visualizers

The notion of a visualization group is captured by the Visualizer language construct. Visualizers
are defined in a fashion similar to classes in the object-oriented sense. Specifically, visualizers
maintain a list of members (instances if you like), local state, and a set of rule blocks which
define visualization events. Members of a visualizer are added or removed dynamically using
syntax described below and in Chapter 4. Our language defines rule blocks for three classes of

events:

Membership Change. Each visualizer maintains a list of member components. Visualization

may be triggered when an actor joins the group or when a current member leaves.

Actions. An action is defined to be either a message send or a method dispatch and is meant to
indicate a direct interaction between two actors. Visualization may be triggered according

to patterns of actions which may depend on visualizer state and the contents of messages.

Dynamic Behavior. Dynamic behavior corresponds to the creation of new actors (i.e. in-
voking create) or method completion. Visualization may be triggered when members of
a visualizer create new actors or complete the processing of a method (i.e. coarse grain

state change).
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When a member of a visualizer exhibits an appropriate behavior, each rule in the related rule
block is evaluated in order until a rule matches or the list of rules is exhausted. Only the first
matching rule is invoked. The rules in a visualizer are evaluated independently for each member

when specific behavior is detected. Figure 3.1 provides an abstract syntax for visualizers.

visualizer ::= visualizer name {
local_variables
initialization
membership_rules
action_rules
dynamic_behavior_rules

}

Figure 3.1: Visualizers. Rule blocks are used to organize visualization actions according
to the type of visualization events which trigger them.

The specification of a visualizer may include any, all, or none of the rule blocks identified
in Figure 3.1. When a member of a visualizer exhibits one of the behaviors specified above,
that object is referred to as the target. In general, rules defined in a visualizer match based
on conditions defined on the target. For example, membership rules match based on the type
of the target and whether the target is joining or leaving the visualizer. Some rules may have
multiple targets. For example, actions may specify communication patterns involving multiple
objects. Where it is unambiguous, the address of the target is always bound to the identifier
self. Otherwise, specific identifiers must be introduced to identify separate components within
a rule. Note that because actor addresses are unique, self may be used to identify individual
actors within a rule.

The specification of a visualizer allows for the definition of both local variables (encapsulated
within the visualizer) as well as an initialization block which is executed when the visualizer is
created. In general, the syntax of these two sections will depend on the base actor language in
use. Thus we will not provide a syntax for specifying local variables or their initialization until
Chapter 4. For this chapter, assume that local variables may simply be referenced by name

when necessary.
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membership_rules ::= begin enter behavior_rule ::= on behavior do
{behavior_rule}* vis_action
end enter end
begin exit
{behavior_rule}*
end exit

Figure 3.2: Membership Change Syntax. Abstract syntax for visualization events which
match membership change.

3.1.1 Membership Rules

Membership rules are used to invoke visualization actions in response to membership changes
in a visualizer. In particular, two types of rules may be defined. An enter rule specifies a
visualization action triggered when an actor becomes a member of the visualizer. Similarly, an
exit rule is triggered when an actor leaves the visualizer. Both rules are matched based on the
type of the actor. Moreover, the identifier self is bound to the address of the actor within each
visualization action which is triggered. Figure 3.2 gives an abstract syntax for membership

rules. The meaning of the syntax is described below:

e |vis_action| specifies a visualization action.

° ‘on behavior do ‘ defines a behavior rule. If the target actor has type matching

behavior then the associated visualization action is invoked.

3.1.2 Action Rules

Action rules are used to invoke visualization actions in response to the detection of message
patterns. An action rule specifies a message pattern to detect and a corresponding visualization
action to invoke. Message patterns are specified using basic patterns which represent the
interaction of two components. More complex patterns are created from basic patterns using
guards and conjunction. Because rules are evaluated in the order they are specified, detecting

a disjunction of patterns is implicit. Figure 3.3 gives an abstract syntax for defining actions.
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action_rules  ::= begin action
pattern { where ezpr } do
vis_action
end
end action

pallern 1= msg_spec
|  msg_spec; and ... and msg_specy,

msg_spec ::= {local} id; <+ id : method
| {local} id; — id : method

method ::= method_name
|  method_name(arg_list)

Figure 3.3: Actions Syntax. Abstract syntax for actions.

Actions are structured according to individual component-to-component interactions. Ac-
tors communicate by invoking named methods on other actors. Method identifies a method
of an actor and specifies the method_name and, optionally, an argument list specified by args.
Recalling our example from above, sort is a valid method and so is sort(Array A, Integer lower,
Integer upper). The purpose of this syntax is to be able to define actions based on the messages
passed among actors as well as the contents of those messages. Note that by convention, self

is never defined within an action rule. The remainder of the syntax is defined as follows:

e | {local} id; < id:method | and |{local} id; — id:method| specify a msg_spec which

matches a single message interaction. A < specifies a method dispatch. A — specifies
a message send. The keyword local, if present, requires that both participants in the
interaction be members of the visualizer within which this msg_spec appears. Method
specifies the message passed between the two participants as described above. A msg_spec
is said to match an interaction if:

1. The optional local keyword is satisfied.

2. The interaction is a send or method dispatch as appropriate.

3. The passed message satisfies the specification of method.

30



If the interaction is matched, then id; is bound to the address of the member of the
visualizer sending or dispatching the method in the interaction, and id is bound to the
address of the other participant in the interaction. If method includes an argument list,
then each argument is bound appropriately according to the contents of the message.
Note that messages in an actor’s mail queue will not match a method dispatch msg_spec

until the actor is about to begin processing the method.

° ‘ msg_spec; and . ..and msg_spec, | defines a pattern which matches if and only if msg_spec;

through msg_spec,, may be satisfied.

e | pattern { where ezpr }| specifies the complete visualization event for an action rule.

The where ezpr syntax indicates an optional guard specified as a predicate over the state
of the visualizer and the bindings of any argument list in a msg_spec in pattern. If no guard
is present, then the event is matched when pattern is satisfied. If a guard is specified,

then the event is matched when pattern is satisfied and the guard evaluates to true.

As mentioned above, patterns are created by assembling msg_specs using conjunction and
guards. Actions are unique in that they may require multiple interactions before triggering a
visualization action. As a result, each time a member of a visualizer is involved in a message
interaction, the status of each action rule is updated in order. If an action is completely
matched, the appropriate visualization action is invoked. Recall from Chapter 2 that visualizers
are required to implement both the use earliest and use once policies. That is, a message may
be used to satisfy a msg_spec only if no causally preceding message may be used in its place,
and a message may be used to match only one action rule. Until an interaction is used in rule

matching it is available to any action rule.

3.1.3 Dynamic Behavior Rules

Dynamic behavior rules are invoked when member components complete the processing of a
message (called a become rule for historical reasons), or when a member of a visualizer instan-

tiates a new actor using create (called a create rule). Create rules, in addition to triggering a

31



visualization action, may specify the visualizer membership of the new actor. Dynamic behavior
rules define visualization in response to the dynamically changing computational environment.
In particular, create rules allow visualizers to update visual abstractions in response to new sys-
tem components, while become rules can be used to indicate changes in these abstractions in
response to coarse grain state change. Figure 3.4 gives an abstract syntax for dynamic behavior

rules.

dyn_beh_rules ::= begin create
{create_rule}*
end create
begin become
{become_rule}*
end become

create_rule  ::= on behavior from id {join vis;,...,vis,} do
vis_action
end
become_rule ::= after {local} id : method do
vis_action
end

Figure 3.4: Dynamic Behavior Syntax. Abstract syntax for dynamic behavior rules.

Create rules have two targets, namely, the newly created actor and the member of the
visualizer which created it. Become rules have a single target: the member of the visualizer
which just completed processing a method. For create rules, self is bound to to the address of
the newly created actor. For become rules, self is bound to the address of the member of the
visualizer which just completed the method. In addition, for create rules, an identifier may be
bound to the address of the creating actor and the initial visualizer membership of the created
actor may be specified. Similarly, for become rules, an identifier may be bound to the address
of the actor which invoked the method. In addition, the arguments of the completed method
are accessible within the visualization action triggered by a become rule. The meaning of the

syntax is described below:
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e |on behavior from id {join visy, ...,vis,} do ‘ defines a create rule. A create rule

matches if the newly created actor has type matching behavior. When the rule matches,
self is bound as described above and id is bound to the address of the member of the
visualizer which created the new actor. The optional expression join visy, ..., vis, specifies
a list of visualizers to which the new actor should be added after it has been created. Note

that adding actors in this fashion causes an enter event to be triggered in each visualizer.

e |after {local} i¢d : method do| defines a become rule. When the rule matches, self is

bound as described above and id is bound to the actor which invoked the method which
has just completed. The optional keyword local, if specified, requires that the invoking
actor must be a member of the visualizer in which the rule is defined. Method refers to a

valid method specification as defined for action rules above.

3.2 Example

The linguistic constructs we have described above are suitable for detecting the types of events
we defined in Chapter 2. In particular, visualizers completely encompass the notion of visual-

ization groups. Our approach has two key strengths:

e QOur linguistic constructs respect object integrity and do not provide any functionality

which breaks object encapsulation

e Action rules are particularly powerful for visualizing coordination as they may trigger

visualization actions based on both message patterns and their contents.

Moreover, any identifiers bound in membership, dynamic behavior or action rules remain bound
within the scope of the triggered visualization action. Thus, our linguistic constructs effectively
parameterize the visualization which they trigger.

To illustrate how visualizers are specified syntactically, consider the visualization of pri-
mary backup and two-phase commit from Chapter 2. We defined two visualization groups,

a PrimaryBackup and a TwoPhaseCommit visualization group. Naturally, we will define two
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corresponding visualizers which capture the appropriate interaction patterns. Figure 3.5 gives
the complete code for the PrimaryBackup and TwoPhaseCommit visualizers.

The PrimaryBackup visualizer captures interactions between the coordinator and the backup.
We use the consistent flag to determine when the two are consistent. In particular, if the backup
dispatches an Update message before the coordinator receives any further messages, the two
are consistent. We capture this behavior by setting consistent to true when the coordinator
sends an update, and testing the value of consistent when the backup receives the update. In a
similar fashion, the TwoPhaseCommit visualizer captures interactions between the coordinator
and each participant. We capture the broadcast of a vote request or decision by creating a
conjunctive event consisting of all the individual message sends to each participant. Note that
by the use once policy, each message used to satisfy the conjunctive event must be unique.
Thus the event is only satisfied when all messages in the round have been sent. We capture the

individual replies from each participant using a simple message specification event.

3.3 Discussion

The specification of the PrimaryBackup and TwoPhaseCommit visualizers reiterates how visual-
ization may be specified within the event-based model without requiring access to component
internals. In particular, note that none of the event specifications required access to actor
internals. All that we require is a specification of the actor’s interface. However, the above
example also illustrates some of the limitations of the specification language we have provided.
For example, it would be more convenient to express the broadcast of a Vote message using
a “wild-card” operator which captures multiple messages invoking the same method. In our
specification language, such patterns may only be expressed by explicitly listing each of the
messages involved.

In general, the language we have provided should be extended with more powerful combi-
nators for expressing interaction patterns. Nonetheless, our goal in this chapter was to provide

a basic specification language which could be used to develop visualization for the event-based
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model. The language constructs we have illustrated above completely satisfy this requirement.
Furthermore, within each event, the participants and the interactions involved are readily dis-
cernible from the description of the event. This allows an unambiguous description of the
relationship between execution behavior and the resulting visualization. In the next chapter,
we describe the implementation of STAGEHAND, a prototype visualization environment which

implements the event-based model and completely supports the language described above.

35



visualizer PrimaryBackup {
begin var
bool consistent;
end var

begin enter
on Coordinator do
Draw circle for coordinator
end

on Backup do
// Assume consistency initially
consistent = true;
end
end enter

begin action
// Coord sends update
Coord — Back : Update do
consistent = true;
end

// Coord receives message
Coord + Part : VoteCommit do
consistent = false;
Draw square for coordinator
end

Coord < Part : VoteAbort do
consistent = false;
Draw square for coordinator
end

// Backup is consistent

Back < Coord : Update where consistent do

Draw circle for coordinator
end

// Backup is not consistent

Back < Coord : Update where !consistent do

// Do nothing, discards event
end
end action

}

visualizer TwoPhaseCommit {
begin enter
on Participant do
Draw square for participant
end
end enter

begin action
// Coord sends vote
Coord — P1 : Vote and
Coord — P2 : Vote and
Coord — P3 : Vote and
Coord — P4 : Vote and
Coord — P5 : Vote do
Draw vote “funnel”
end

// Coord sends commit decision
Coord — P1: Commit and
Coord — P2 : Commit and
Coord — P3 : Commit and
Coord — P4 : Commit and
Coord — P5 : Commit do
Draw commit “funnel”
end

// Coord sends abort decision
Coord — P1 : Abort and
Coord — P2 : Abort and
Coord — P3 : Abort and
Coord — P4 : Abort and
Coord — P5 : Abort do
Draw abort “funnel”
end

// Coord receives a reply

Coord < Part : VoteCommit do
Draw connection to participant

end

Coord < Part : VoteAbort do
Draw connection to participant
end
end action

}

Figure 3.5: PrimaryBackup and TwoPhaseCommit Visualizers. Visualization events
are defined for Backup, Coordinator, and Participant actors. Visualization actions are repre-
sented by italicized pseudo-code.
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Chapter 4

Implementation

STAGEHAND is a visualization environment designed to extend actor-based systems in order
to support online event-based program visualization. In particular, STAGEHAND implements
the event-based model described in Chapter 2 and supports the specification of visualization
using the language constructs defined in Chapter 3. In order to test our mechanisms, we
chose to extend BROADWAY [34], a prototype environment for building actor-based systems.
The accessibility and strict object-oriented design of BROADWAY make it an ideal platform for
testing our ideas.

In this chapter, we provide a detailed discussion of the implementation mechanisms used in
building STAGEHAND. Section 4.1 provides an overview of the structure of BROADWAY. A more
detailed description of the design methodology which inspired BROADWAY is available in [34].
In Section 4.2 we describe the overall architecture of STAGEHAND visualizers. In particular, we
provide a general description of how visualizers are implemented and how BROADWAY actors
are added to visualizers. The implementation of visualizers can be roughly divided into two
components: actor event detection and delivery, and rule matching and execution. In Section 4.3
we describe the STAGEHAND mechanisms added to BROADWAY in order to implement event
detection and causal delivery. In Section 4.4 we describe implementation mechanisms for rule
matching and visualization action execution. In Appendix C, we provide several fully coded

examples and screen shots using STAGEHAND.
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4.1 Broadway

BROADWAY is a prototype programming and run-time support environment implemented in
C++ for developing actor-based applications. In particular, BROADWAY provides support for
distributed actor programs including asynchronous communication, dynamic actor creation,
and scheduling of actors. Basic actor functionality is augmented with support for migration,
exception handling [4], synchronization constraints [13], and modular specification of interaction
policies [34]. The platform currently runs on Ultrix for DEC MIPS workstations, on Solaris for
SUN Sparcstations, and IRIX 5 for SGI workstations.

Broadway supports basic actor functionality using a multi-thread scheduler, distributed
name service, and platform independent communication service. These facilities are imple-
mented using class hierarchies that simplify adding new features to the system. For example,
the visualization mechanisms we describe below were implemented as a subclass of the standard
actor behavior.

Each actor is implemented as a C+-+ object: the state and methods of the actor are the
state and methods of the C++ object. Each actor also maintains a mail queue to buffer
incoming messages. When an actor is ready to process its next message, the scheduler invokes
the correct method in the C++ object as a new thread. With one notable exception — replies
from RPC invocations — only one method may be active for a single actor: there is no internal
concurrency.

In addition to run-time functionality, BROADWAY includes a library of system actors. These
actors include an i/o and file system interface, a failure detector, and a migration controller.
Application actors interact with the system actors using standard asynchronous message pass-

ing.

4.1.1 Reflection in Broadway

In addition to supporting basic actor application development, BROADWAY is designed to sup-

port a limited form of reflection using compiled objects. Reflection has two manifestations in
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BROADWAY: a dynamic form of reflection which allows compositional modifications to the actor
communication mechanism, and a static form of reflection which allows transparent interaction
with superclass structures which all actors contain as part of their instantiation. The former
mechanism is dynamic because it may be customized on a per-actor basis at run-time. The
latter mechanism is static because the superclass structure of all actors is fixed at run-time. In
the next section, we discuss how STAGEHAND utilizes the static reflective capabilities supplied

by BROADWAY for the purpose of local actor event detection®.

4.2 Visualizer Architecture

To provide for a straightforward implementation, we organize visualizers within a single BROAD-
WAY actor called a VisManager. Upon creation, the VisManager calls the initialization block of
each visualizer. The VisManager is responsible for managing the membership of all visualizers,
collecting actor events and distributing them to the appropriate visualizer, ensuring that visu-
alizers see events in the correct causal order, and providing an interface to the modeling and
rendering library. In general, STAGEHAND visualization proceeds in three interacting stages:
first, actor events are detected locally at each application actor and delivered in causal order to
the VisManager; second, the VisManager distributes each actor event to the appropriate visual-
izer; and third, each visualizer is given an opportunity to determine if any rules have matched
and to trigger appropriate visualization actions. Figure 4.1 illustrates the relationship between
application actors and the VisManager.

In BROADWAY, each application actor is developed as a specialization of the class AClass
which encapsulates an actor superstructure. The actor superstructure consists of a “fat” class
hierarchy using multiple inheritance to allow the customization of several features of the ac-
tor run-time system. Figure 4.2 illustrates this superstructure. AClass provides an interface for

standard actor functionality (send, create, etc.) to all subclasses (i.e. application actor classes).

!Interested readers should refer to [34] for applications of the dynamic form of reflection for the modular

specification of interaction policies.
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Figure 4.1: Visualization in STAGEHAND. Application actors detect actor events and
report them to the VisManager. The VisManager distributes actor events to the appropriate
visualizers.

AClass methods are implemented by accessing methods either in one of the immediate super-
classes or in Actor. Thus, the standard actor functionality may be augmented by inserting the
appropriate class between AClass and Actor and modifying the appropriate methods. Moreover,
interactions may be explicitly directed at superstructure classes without the knowledge of the
application actor. This extendibility provides a form of static reflection: messages may be sent
to superstructure classes in order to customize the behavior of an actor; however, classes in the
superstructure are fixed at compile time.

We take advantage of BROADWAY’s static reflective support to link application actors to
the VisManager. In particular, we introduce a special event detection class into the AClass
superstructure for the purpose of event detection and delivery. This class, together with the
VisManager, combine to implement a causal delivery protocol which ensures that the VisManager
only receives events in causal order. Within the VisManager, each visualizer is implemented as
an object which maintains a list of events and evaluation mechanisms for determining when
an event is satisfied. When the VisManager receives an actor event, it distributes the event to

the appropriate visualizer object and checks all objects to determine if any visualization events
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ExceptionHandler

Figure 4.2: Actor Superstructure. Application actors inherit from AClass. Classes may
be inserted between Actor and AClass and accessed from AClass methods to customize specific

actor features.

have been matched. A matched visualization event triggers the appropriate visualization action
and the used actor events are discarded. We discuss the implementation of event detection,

delivery, and rule evaluation in some detail in the remaining sections.

4.3 Event Detection and Delivery

We implement local actor event detection by adding the VisEvent class to the AClass super-
structure. The appropriate methods in AClass are then modified to allow VisEvent access to all
interactions which constitute an actor event. The VisEvent instantiation at each actor tracks
the set of actor events which should be detected locally, called a local detect list, and updates
causal information in response to interactions with other actors. This causal information is
used to implement causal delivery at the VisManager. In particular, the VisEvent class provides

the following functionality:

Visualizer Membership. The VisEvent class responds to requests from the VisManager to
add or remove the local actor from a visualizer. In the case of joining a visualizer, events
are added to the local detect list. In the case of leaving a visualizer, events are removed

from the local detect list.
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Event Detection. The VisEvent class determines when the local actor has participated in an

interaction which matches an event in the local detect list, and sends information about

the event to the VisManager.

Causal Information. The VisEvent class updates local causal information in response to in-

teractions with other actors and events caused by the local actor.

Figure 4.3 illustrates the functionality of the VisEvent class.
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Figure 4.3: VisEvent Functionality. The VisEvent class manages the visualizer membership
of a local actor, detects and reports local events, and maintains local causal information.

The local detect list maintains the following information for each event to be detected:

1. The type of event: send, method dispatch, create, or method completion.

2. A unique ID for the event.

3. The address of the actor to report the event to (i.e. the VisManager).
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4. Event specific information:

e Send, method dispatch, and method completion events require the name of the

method to be detected.

e Create events require the type of the actor created.

Each visualizer maintains a list of actor events, called a member detect list, which specifies the
exact set of events which its members should detect locally. Actors are added to a visualizer by
sending the member detect list to the VisEvent component of the actor which, in turn, adds the
list of events to its local detect list. Actors are removed from a visualizer by simply reversing
the process.

Requests to add or remove actors are processed by the VisManager. Actors are added to
visualizers in one of three ways: first, an actor may add itself to a visualizer; second, an actor
may add another actor to a visualizer if it knows its address®(i.e. an acquaintance); and third,
an actor may be implicitly added to a visualizer as a result of a create visualization event.
In order to maintain consistency, it is necessary to synchronize the installation or removal of
an actor from a visualizer. This is done via remote procedure calls (RPC) among the involved
actors. Specifically, when an actor wishes to change its own membership it initiates an RPC
with the VisManager which adds the actor to the appropriate visualizer and returns the member
detect list to the calling actor. The caller adds the list to its own local detect list before exiting
the RPC. If an actor wishes to modify the membership of an acquaintance, it again initiates
an RPC with the VisManager. The VisManager, in turn, initiates an RPC with the actor whose
visualizer membership will be modified and passes the appropriate member detect list. The
modified actor performs the appropriate modifications to its local detect list and the RPCs
unwind to the original calling actor. In the case of an implicit add due to a create, the same

scheme is used where the creator calls the VisManager which in turn calls the created actor.

2Technically, this feature is not supported by the language constructs defined in Chapter 3. However, to help

bootstrap visualization we have added this feature to the implementation of STAGEHAND.
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As discussed above, local events are detected by modifying the send, method dispatch,
method completion and create methods in AClass. Specifically, when an actor invokes one of
these methods, control is eventually passed to the local VisEvent instantiation. VisEvent checks
to see if the interaction should be reported and returns immediately if no action is required. If
the local event should be reported then local causal information is updated, and appropriate
information about the event is packaged together with causal information and sent to the
VisManager. The local detect list is stored as a hash table so that it can quickly be determined
whether or not an event should be reported. In the case of a create event, some overhead may
result due to the necessity of adding the created actor to a visualizer. This is unfortunate
but necessary in order to preserve the causal relationship between the create event and any
subsequent interactions involving the created actor.

A rather straightforward vector clock protocol, described in Appendix A, is used to store
local causal information and implement causal delivery at the VisManager. Specifically, the
VisEvent portion of each visualized actor maintains a local vector clock which is updated in re-
sponse to local events and interactions with other actors. The VisEvent portion of non-visualized
actors also maintains a vector clock but only updates the clock in response to information ob-
tained from messages received from other actors. This preserves causal relationships between

visualized actors who interact through a non-visualized actor.

4.4 Rule Matching and Execution

In STAGEHAND, visualizers are managed by the VisManager using an interface for relaying events
received from individual actors. Each visualizer specification is compiled into a class with event
handler methods corresponding to each of the visualization events defined for the visualizer.
In addition, a visualizer class instance maintains structures which track a list of candidate
actor events which may be used to satisfy some visualization event defined by the visualizer.

Figure 4.4 presents C++ pseudo-code illustrating the basic structure of a visualizer class.
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class compiled_visualizer : public visualizer {
public:
ActorEventList Candidates;

Vartiables from var block copied here

/* Constructor calls init code block */
compiled_visualizer();

/* These methods invoked by VisManager
* when a new actor event is received.
*/

HandleSend () ;

HandleDispatch();

HandleCompletion();

HandleCreate();

/* Visualization action methods for each visualization event.
* Code block for each action is invoked by these methods.

*/
EventEnter_1(); ... EventEnter_n();
EventExit_1(); ... EventExit_n();
EventAction_1(); ... EventAction_n();
EventCreate_1(); ... EventCreate_n();
EventBecome_1(); ... EventBecome_n();

}

Figure 4.4: Compiled Visualizer Class. Each visualizer specification is compiled into a
class with methods for handling each of the various actor events. A list of candidate actor
events which may be used to satisfy a visualization event is maintained by the class.

When the VisManager is created (at system startup), an instance of each visualizer specific
class is created and initialized by calling the initialization block defined in the corresponding
visualizer specification. Each event handler is responsible for determining if an incoming actor
event may satisfy a particular visualization event. When a visualization event is matched,
appropriate bindings are generated according to the specification of the related visualizer rule,
and the corresponding visualization action is activated. In STAGEHAND, visualization actions
are specified as C++ code blocks. Visual representations are created and manipulated using a

simple graphics library described in Appendix B. Note that the event-based model defined in
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Chapter 2 requires that visualization actions be atomic. In STAGEHAND, this is accomplished
by serializing the execution of visualization actions. That is, only one visualization action
may execute at a time. We mandate (but do not enforce) a programming discipline in which
visualization action blocks terminate in a “timely” fashion. Since a visualization action may
activate animation primitives, the VisManager periodically handles rendering updates allowing
the initiating visualization action to terminate.

The evaluation of enter, exit, create, and become rules is straightforward: it can be immedi-
ately determined whether or not the actor event may be used to satisfy a visualization event.
For these rules, if an event is satisfied then the corresponding visualization action is immediately
invoked. Determining whether or not an action rule may fire is more involved. Action rules
are compiled into a list of basic message specifications, all of which must be satisfied before the
event may be satisfied. If a guard is present in the action rule, then the guard expression is
attached to this list. When a send or method dispatch actor event is received, the following

steps are taken for each action rule:

1. Test if it may be possible for the new message to satisfy a basic message specification. If
this is not possible (for example, there may be a local constraint on the basic message

specification which the message does not satisfy), then discard the event.
2. Add the message to the list of candidates.
3. While there is a permutation of causally ordered candidates which has not been tried, do:

(a) If the current permutation satisfies all the basic message specifications and the op-

tional rule guard is satisfied, then

e Fire the associated visualization action.

e Remove the used messages from any candidate list in which they are stored.

Note that the algorithm above adheres to the use earliest and use once policies as required by

the model.
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4.5 Discussion

The static reflective capabilities supported by BROADWAY provide a clean mechanism for adding
functionality to actors. In particular, note that the additions required by STAGEHAND are com-
pletely transparent to application code. All the required changes are implemented in the AClass
superstructure. Existing BROADWAY applications may be visualized simply by recompiling them
with the new AClass.

In terms of overhead, the event detection mechanisms require space and time overhead
which is proportional to the number of actor events which match a particular interaction. Only
a small constant amount of overhead is imposed on actors which are not being visualized. In
general, it is expected that each actor will have a relatively small local detect list, usually on
the order of five events or less. As a result, event detection will not impose an unreasonable
amount of overhead on visualized actors.

The vector clock protocol which implements causal delivery requires space and time overhead
which is proportional to the number of vector clock entries. We implement a vector clock
protocol, described in more detail in Appendix A, in which the number of vector clock entries
in a single actor will never be more than the number of visualized actors which are causally
related. That is, the size of the vector clock will only increase when an actor learns of other
visualized actors by receiving messages. In particular, isolated actors will always have a vector
clock with only a single entry.

Several design tradeoffs are possible in the implementation of the rule matching and vi-
sualization action execution mechanism. In particular, we could have chosen to implement
visualizers as separate actors rather than encapsulating them within a single VisManager actor.
The central approach has the advantage of simplifying causal delivery but results in a rather
bulky actor and serializes the execution of visualization actions. The distributed approach
neatly partitions visualizer code but increases overhead due to the need to synchronize the
delivery of causally related events to separate visualizers. Thus, we have utilized the central

approach in order to provide a straightforward implementation. Future work should consider
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the benefits of a distributed implementation such as concurrently executing visualization actions

when possible, and so on.

48



Chapter 5

Conclusion

5.1 Summary

The successful design and implementation of complex concurrent systems relies in large part on
the ability to understand and detect errors in interactions among components. To cope with
this issue, this thesis advances the concept of developing program visualizations of concurrent
algorithm execution which can be used to reason about causal behavior and coordination. We
have developed a model which emphasizes distributed detection of visualization events and
captures coordination activity with minimal overhead. The event-based model distributes the
visualization mechanism, but enforces a causal connection constraint on visualization actions
to allow the resulting program visualization to be used to reason about system behavior. We
introduce visualization groups as a technique for defining visualization events according to inter-
actions over groups of actors. Visualization groups provide appropriate abstraction mechanisms
for capturing both spatially and temporally defined coordination patterns.

Given that we wish to visualize a distributed computation based on local events, we have
developed linguistic support for encapsulating visualization paradigms for groups of actors. In
particular, a visualizer is a language construct, much in the spirit of abstract data types, which
defines visual abstractions and rules which modify these abstractions in response to interaction

patterns. Visualizers are specification transparent in that they need only refer to the interfaces
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of member actors and hence may be specified separately from algorithm code. Rules may be
specified within visualizers which respond to patterns of actor events. Moreover, visualizers
maintain state so that temporal patterns of interaction may be used to satisfy rules.

In order to demonstrate the transparent realization of the event-based model and our lan-
guage constructs, we have implemented STAGEHAND, a prototype environment for visualizing
distributed computations expressed in the BROADWAY actor-based environment. As per the
event-based model, actor events are detected locally and reported in causal order for the pur-
pose of visualization. STAGEHAND provides for ezxecution transparency by way of the static
reflective capabilities of BROADWAY and the low-overhead filtering of interface invocations by
the base actor. We utilize the same mechanism to guarantee the causal connection restriction

when triggering visualization actions.

5.2 Future Work

5.2.1 Linguistic Support for Event Patterns

We provided only rudimentary linguistic support for expressing event patterns in Chapter 3.
Our goal has been to express unambiguous patterns from which the participants and interactions
involved are readily discernible. However, a more comprehensive environment should include
more powerful event specification mechanisms. In particular, it should be possible to be able to
express general patterns over all actor events. Moreover, we might wish to allow more flexible
constraint mechanisms for specifying basic interactions. We continue to research more flexible
mechanisms for specifying interaction patterns among groups of actors. In addition to the
visualization context, we are also considering interaction patterns as applied to synchronization

and real-time constraints, fault-tolerance requirements, and load balancing and migration.

5.2.2 Internal Transition Events

The definition of actor events we have provided is particularly powerful in that it captures

coordination related behavior with breaking object encapsulation. However, as visualization
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becomes more integrated with the debugging process, events which are based on internal actor
transitions and state may become desirable. Allowing such an event may not require a complete
violation of object integrity, however. In particular, if the underlying actor system supports
reflective descriptions of actor state manipulation then it would be possible to customize reflec-
tively for the purpose of visualization. Although we have demonstrated that internal transitions
bias views of coordination behavior, we are considering adding reflective descriptions of state
for the purpose of supporting these internal events. Such events may prove particularly useful

in a distributed debugging context.

5.2.3 Comprehensive Modeling and Playback

We have concentrated on specifying visualization event specification and detection mechanisms
rather than specifying explicit graphics modeling support. However, a comprehensive modeling
and rendering environment is critical for allowing users to create the most appropriate visual
abstractions. In particular, features such as a visual control panel for monitoring the visual-
ization mechanism as well as more powerful rendering and modeling constructs are required.
Moreover, it should be possible to record visualization for later replay and analysis. A com-
plete environment should include multiple displays showing both a literal view of the involved
components and their interactions as well as a view showing the visualization generated.

We are currently investigating an extension of these ideas in which visualization would be
coupled with a distributed debugging environment. In such an environment, event detection
would be less passive and would allow execution to be retraced in order to discover features

such as race conditions, synchronization errors, and so on.
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Appendix A

A Simple Vector Clock Protocol

In order to guarantee that visualization preserves the causal order of the underlying execution,
we deliver actor events to the VisManager in causal order. This requires a mechanism for tagging
messages with causal information so that the mail queue can be ordered appropriately. A
straightforward mechanism for implementing causal delivery is to use vector clocks [23]. Vector
clocks are a well known mechanism for implementing causal delivery and several implementation
techniques have been suggested in the literature [28, 33, 7, 24]. The algorithm we describe here
is similar to that described in [23].

In a vector clock protocol, each participant maintains a local Lamport clock [17] as well
as a Lamport clock for each participant it has received a message from. One participant is
designated the observer and will use this vector of clock information from other participants to
causally receive messages. Initially, every participant (including the observer) has their vector
clock initialized with all zeros. When a message is sent to another participant, the message
is tagged with the vector clock being maintained locally. When a message is received from a
participant, the vector tag is inspected and all local clocks except for the recipient’s clock are
updated with the latest values.

When an interesting event occurs at a participant, the participant’s local clock is incre-

mented and an event message is sent to the observer tagged with the local vector clock. Using
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the observer’s own vector clock together with the vector clock tag of incoming messages, the

following delivery rule is used:

Delivery Rule: Let V, be the observer’s vector clock. Let Vi, ; be the vector clock tag of
message m sent from participant . Then, message m should be delivered as soon as both

of the following conditions are satisfied:
Vobs(’i) = Vmﬂ'(i) -1
Vobs(j) 2 Vm,z(]) V] 7£ 1

The first condition guarantees that all causally preceding messages from the sender have already
been delivered. Similarly, the second condition guarantees that all messages which causally
precede the message m have already been delivered.

The protocol given above is fairly straightforward to implement. However, two issues must
be resolved: first, how should participants be added to the protocol; and second, how should
vector clock information be stored. The first issue is fairly important when considering event-
based visualization since it is likely that participants will added to the protocol quite often. The
second issue is important when considering space overhead. In particular, recall that we desire
visualization mechanisms which do not require oppressive amounts of overhead. The remainder
of this appendix discusses how vector clocks are implemented in STAGEHAND.

Considering the first issue, observe that the knowledge that a new participant has joined
the protocol is only required by participants which interact with the new member. However,
this information will be naturally transmitted the first time the new member sends a message.
In particular, the new member will attach a vector clock tag which will always include its local
clock. Thus, new members will be discovered when other participants receive messages with
vector clock entries that are not present in the locally maintained list. The observer will learn of
new members in a similar fashion. In short, no extra overhead is required to add a participant
to the protocol, the new participant is simply told to begin maintaining a vector clock.

In light of the first issue, it seems logical to only require a participant to store clock in-

formation concerning participants which it has interacted with (i.e. received messages from).
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Thus, in STAGEHAND, a vector clock consists of a list of address-clock pairs where each entry
corresponds to vector clock information obtained from a received message, plus an extra entry
to maintain the participant’s own local clock. All other participants will have an implicit clock
value of zero which need not be stored in this list.

The implementation described above may be formalized as follows. Each participant tags
all outgoing messages with the local vector clock. When a participant 7 with vector clock V;

receives a message m with vector clock tag V,,, the following algorithm is performed:

1. For each address-clock pair (a, c) € V,, do the following:

(a) If a # ¢ and a is not an address in the local vector clock, then add (a, ¢) to the local

vector clock.

(b) If a # ¢ and ¢ > V;(a), then set V;(a) = c.
Similarly, upon receiving a message, the observer performs the following algorithm:

1. For each address-clock pair (a, c) € V,, do the following:

(a) If a is not an address in the local vector clock, then add (a,0) to the local vector

clock.
2. Add message m to the local mail queue.

3. Deliver all messages in the local mail queue which satisfy the vector clock delivery rules.

When message m from participant ¢ is delivered:

(a) Increment the value for ¢ in the local vector clock.

Note that in the case of the observer, when a new participant is discovered, the local clock is

initialized to zero. This guarantees that the observer will not miss any events.
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Appendix B

Modeling and Rendering Support

B.1 Overview

Visualization actions are invoked when a rule in a visualizer is satisfied by some interaction. The
purpose of visualization actions is to update the graphical display based on the algorithm event
detected. Components and their interactions are represented by graphical abstractions which
may be manipulated by multiple visualizers. Thus, linguistic constructs are necessary which
support both a wide range of modeling attributes as well as mechanisms for arbitrating shared
manipulation of models among visualizers. In STAGEHAND, visualization actions manipulate
objects in a hierarchical modeling environment [12]. Models are rendered in 3D with lighting
and animation which may be specified within visualization actions.

Visualization actions are specified as blocks of C++ code which are parameterized by identi-
fiers in the triggering event. Objects in the modeling environment are represented as instances
of special modeling classes which support object-specific attributes. User-defined attributes
may be assigned to modeling objects for customization. Models are organized into scene hier-
archies composed of objects from the modeling hierarchy. Scene hierarchies specify a view which
defines camera position and one or more lights or surfaces representing the scene. Figure B.1

illustrates the modeling hierarchy.
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Figure B.1: Model Hierarchy. Hierarchy of objects for creating visualization.

Each modeling object maintains a list of attributes which determines its appearance. Some
objects, such as groups and views, are not displayed and maintain parameters which determine

general features of the scene. We briefly describe each of the modeling objects below:

Group. A group object maintains a list of children objects and is used to build more complex,

hierarchical scenes.

View. A view object defines a camera in a scene and maintains parameters which determine
the position of the viewer. A view is a subclass of group and inherits the ability to manage

children. Only the children of a view are visible through its camera.

Point Light, Spot Light. These objects define light sources in a scene and maintain related

parameters such as position, color, brightness, and so on.

Polygon, Mesh, Cube, Sphere, Cone, Cylinder. These objects define actual visible ob-
jects and maintain parameters such as color, position, radius, shininess, surface normals,

and so on.

Each object requires specific attributes in order to define its position, appearance, and
structure. View and group objects are used to build and view scenes. Thus, view and group
objects define default settings for all properties which are inherited by the objects they organize.
In particular, the objects organized under a group or view may be manipulated as a single unit
by modifying group or view attributes. The following attributes are supported by STAGEHAND

modeling objects:
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Transform. This attribute defines the set of transformations which should be applied to the
object. Objects may be scaled, rotated or translated. All objects use the transform

attribute.

Camera. This attribute defines camera position, window size, view up and aspect. This

attribute is only used by view objects.

AmbientLight. This attribute defines the ambient contribution to the shading of all objects

in the current view. This attribute is only used by view objects.

SurfColor, SurfSpecColor, SurfShininess, SurfEmissiveColor, SurfAmbientColor.
These attributes define surface shading properties for any viewable object. These at-

tributes are only used by the polygon, mesh, cube, sphere, cone, and cylinder objects.

MeshData. This attribute defines surface properties for each facet of a mesh. This attribute

is only used by mesh objects.

CubeVertl, CubeVert2. These attributes define the opposite corners of a cube object. This

attribute is only used by cube objects.

LightStatus, LightColor, LightPosition, LightEzp, LightAngle, LightDir. These attributes
define properties of a light source. These attributes are only used by point and spot light

objects.

SphereRadius. This attribute is used to set the radius of a sphere object. This attribute is

only used by sphere objects.

CylRadius, CylHeight. These attributes define the radius and height of a cylinder object.

These attributes are only used by cylinder objects.

ConeRadius, ConeHeight. These attributes define the radius and height of a cone object.

These attributes are only used by cone objects.

Children. This attribute specifies a list of children objects. This attribute is only used by

view and group objects.
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PolyVerts. This attribute specifies the vertices of a planar polygon. This attribute is only

used by polygon objects.

In addition to the attributes above, each object supports the methods setPropVal and get-
PropVal which allow arbitrary data to be associated with an object and referenced by a string
name. This mechanism allows users to customize properties of each object.

The organization of objects into scene hierarchies allows for a natural approach to scene
modeling where objects are manipulated by local modeling transformations. In addition, scene
hierarchies are easy to transform into displays. In particular, a scene hierarchy is rendered by
way of a traversal [14]. A scene traversal is accomplished by the following pseudo-code function

which is called with the top object of the scene hierarchy and the empty list as initial arguments:

function SceneTraversal( Object top, TraversalStateList state) {
TraversalStatelList old;
old := state;
Update state from the attributes of top;
if ((top.type = view) or (top.type = group)) {
for each i in top.children
SceneTraversal(i, state);
} else
Render object using properties from state;

state := old;

Essentially, a stack of attributes is maintained using a TraversalStateList and passed recursively
down the scene hierarchy. In this fashion, attributes are inherited down the scene hierarchy

from parent objects.
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B.2 Using Modeling Objects

Modeling objects are created by instantiating the appropriate modeling hierarchy classes. Ob-
jects are maintained as part of the state of one or more visualizers. In particular, declarations
of modeling objects may be specified as part of the variable and initialization sections of a
visualizer. At a minimum, at least one wiew object must always be specified in order to view
modeling objects. Specific examples of the declaration and manipulation of modeling objects
are provided in Appendix C.

Because visualizers do not share state, but may share members, it may be the case that a
single visual representation is used to represent an actor which is a member of several visualizers.
Thus, we require a mechanism for obtaining references to modeling objects maintained by other
visualizers. The setPropVal and getPropVal support routines described above may be used to
support this functionality. In particular, the global support function FindObjectWithProp takes
as argument a list of property names and returns the list of objects in all scene hierarchies
which define the given properties. Similarly, the function FindObjectWithVal takes as argument
a list of property name/value pairs and returns the list of objects in all scene hierarchies in
which each given property in each object has the specified value.

Primitive animation support is provided for transforming modeling objects. The apply-
Transform function applies a given transformation to a modeling object a specified number
of times, rendering the scene after each application. Only one object at a time may be an-
imated using applyTransform. To allow multiple object transformations, the addAnimRequest
function may be used to specify several modeling objects and corresponding transformations.
Animation requests added in this fashion are processed concurrently by calling the function
processAnimRequests, which regenerates the scene after each transformation. The VisManager
actor periodically calls processAnimRequests to guarantee that any requests added within a

visualization action are eventually processed.
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B.3 Implementation

The modeling support described above is not tied to any specific computer graphics library.
In particular, the scene traversal algorithm is non-library specific. Only the actual rendering
routines must be customized for different computer graphics libraries. In light of this obser-
vation, we have implemented modeling support using a graphics library independent front-end
which may be linked to an appropriate graphics library specific back-end for handling display
generation.

We have implemented each modeling primitive as a C++ class which inherits from the Prop-
ertyManager class. The PropertyManager class manages instances of the properties described
above. Each primitive class defines a general set of modeling and rendering support routines
customized for the primitive. Actual rendering code, however, is specified as a stub which is
linked to an appropriate graphics library specific class method. Models are created and rendered
using the library independent interface where control is passed to the library specific routines
when rendering is required.

Using this approach, a general purpose front-end, and back-ends for the Tcl/Tk [22] and

GL graphics libraries have been implemented.
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Appendix C

Examples

In this chapter, we provide two fully coded examples of the use of STAGEHAND for specifying
visualization. For each example, we briefly describe what is being visualized, outline the corre-
sponding actor code, provide the full visualizer specification for visualizing the execution, and
provide screenshots from the actual visualization. In Section C.1, we visualize a simple dis-
tributed implementation of the Fibonacci function. In Section C.2, we visualize the two-phase

commit and primary backup protocols first introduced in Chapter 2.

C.1 A Distributed Fibonacci Application

The Fibonacci function represents a classic example of a recursive control structure. Actor-
based systems yield a natural distributed implementation of such structures. Figure C.1 illus-
trates a pseudo-code implementation of the Fibonacci function. A single Fibonacci actor (not
shown), called the server, is created to service all requests to compute the Fibonacci function.
Clients request computation by sending the method FibCall to the server. In order to service
the request, the server creates a FibWorker actor and passes the value requested along with
the address of the requesting customer. A FibWorker will immediatedly return a result if the

value requested is less than two. Otherwise, two additional FibWorkers are created to handle
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the recursive cases. Note that because each Fibonacci request is distributed, multiple requests
may be handled concurrently. Furthermore, recursive sub-requests are handled concurrently.

In order to demonstrate how Fibonacci requests are satisfied, we will create a simple vi-
sualization of the creation of FibWorkers and the delegation of tasks via message passing. In
particular, we will represent a Fibonacci request as a tree of FibWorkers and use animation to
show messages passed among the tree’s components. We will use color changes to indicate when
FibWorkers have completed various stages of their computation.

Figures C.2, C.4, and C.5 illustrate the complete code required to visualize the Fibonacci
function. Figure C.2 outlines the Fibonacci visualizer. We require global variables to manage
the view and the address of the first FibWorker created to satisfy a request. In the init section,
we initialize the position of the view. Figure C.4 gives the action rule block for the Fibonacci
visualizer. The rules defined in this block animate the exchange of information via message
passing between FibWorkers. In particular, the send portion of an exchange causes a visual
representation of the message to be moved from the sender halfway to the receiver. The corre-
sponding receive portion of an exchange causes the visual representation to be moved to the
receiver. To illustrate how state is affected by information exchange, the visual representation
of a FibWorker is colored red when it is created, yellow when it has received one reply from
a recursive sub-request, and green when it has received both replies and has sent its result
to its client. Finally, Figure C.5 gives the create rule block for the Fibonacci visualizer. The
create rule simply creates the visual representation for new FibWorkers. We assign properties to
the visual representation in order to maintain information about the corresponding FibWorker.
In particular, we store the value of the request that this FibWorker is processing. New visual
representations are positioned relative to the creating FibWorker so that a tree-like structure of
visual representations is maintained.

Figure C.3 shows several frames from the resulting visualization.
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C.2 Two-Phase Commit with Primary Backup

In Chapter 3 we introduced an example of a visualization of a primary backup protocol overlap-
ping with a two-phase commit protocol. In this section we give the complete code for generating
this visualization. Figure C.6 gives a pseudo-code specification of the relevant actors. In reality,
each actor would have several other application specific methods. However, we only illustrate
those methods pertinent to the visualization. Moreover, we assume that the coordinator peri-
odically sends state updates to its backup.

The Backup actor contains the single method update, which is called by the Coordinator in
order to pass state updates. The Participant actor defines the methods vote_request, commit,
and abort. The vote_request method is called by the Coordinator at the start of a two-phase
commit. The commit and abort methods are used by the Coordinator to notify the Participant as
to what action should be taken. Finally, the Coordinator actor defines the methods vote_commit
and vote_abort which are used by the Participants to register votes. As in Chapter 3 we assume
one Coordinator and five Participants.

We have described the specification of the PrimaryBackup and TwoPhaseCommit visualizers
in some detail in Chapter 3 thus we will not reiterate that discussion here. Figures C.8 and C.9
give the complete code for both visualizers. Figure C.7 shows several frames from the resulting

visualization.
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Actor FibWorker { Method FibReply(Int result) {

Int return_val; if finished then
Bool finished; send FibReply(result + return_val) to client;
Actor client; else {

finished = true;
return_val = result;

}
}

Method FibCall(Int request, Actor customer) {

if ( request < 1) then
send FibReply(1) to customer;

else {
left = create FibWorker; b
right = create FibWorker;
finished = false;
client = customer;
send FibCall(request - 1, self) to left;
send FibCall(request - 2, self) to right;

Figure C.1: A Distributed Implemention of Fibonacei. The Fibonacci actor receives
requests to compute the Fibonacci function. FibWorker actors are created dynamically to
service the request and return the result to the client.

// Visualizer for the fibonacci example begin init
visualizer fib_vis { // Set camera position
begin var vRoot.Camera_setVRP(0,0,0);
// Global Variables end init

viewVO vRoot;
Address root;

int start=false; ‘ Create rules: Figure C.S‘
end var

‘Action rules: Figure C.4‘

Figure C.2: Qutline of Fibonacci Visualizer. The structure of the Fibonacci visualizer.

Figure C.3: Fibonacci Screenshots. Blue circles indicate messages being passed between
FibWorkers. The first frame shows the status of a request shortly after it has begun: three
messages are in transit and no processing has been completed. The second frame shows partial
completion of the request: four FibWorkers have completed processing. The last frame indicates
that all but the far left FibWorkers have completed processing.
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begin action

// Send fib_call

local a -> b : fib_call do
// Find objects rep. sender and receiver
send=FindObjectWithVal(" address”, a);
rev=FindObjectWithVal(" address”, b);
pos_s=send->getPropVal(” pos”);
pos_r=recv->getPropVal(” pos”);

// Animate message send
mObj—=new sphereVO;
vRoot.addChild(mObj);
mObj->SurfColor_color(blue);
mObj->Transform_translate(pos_s);
rev->setPropVal(” call_msg”, mObj);
vRoot.animTranslate(mObj, pos_s,
0.5*pos.r);
end

// Receive fib_call

local b <- a : fib_call do
// Find objects rep. sender and receiver
send=FindObjectWithVal(" address”, a);
rev=FindObjectWithVal(" address”, b);
pos_s=send->getPropVal(” pos”);
pos_r=recv->getPropVal(” pos”);

// Finish animation of message delivery
mObj=rcv->getPropVal(” call_msg” );
vRoot.animTranslate(mObj, 0.5*pos_r,
pos.r);
vRoot.removeChild(mObj);
vRoot.renderObject();
end

s <- d : fib_call(Integer req) where !start do
// Event will be triggered on the initial request
root—=s; start=true;
new_sphere—new sphereVO;
new_sphere->SurfColor_color(red);
new_sphere->SphereRadius_setValue(10.0);

// Set sphere properties
new_sphere->setPropVal(" request”, req,
"address”, s, "child”, 0,
"pos”, (0,0,0));

vRoot.addChild(new _sphere);
vRoot.renderObject();
end

Figure C.4: Action Block for Fibonacei Visualizer.

visualizer.

// Send fib_reply

local a-> b : fib_reply do
// Find objects rep. sender and receiver
send=FindObjectWithVal(” address”, a);
rev=FindObjectWithVal(" address”, b);
pos_s=send->getPropVal(” pos”);
pos_r=recv->getPropVal(” pos”);

// Change color of sender
send->SurfColor_color(green);

// Animate message send
mObj—=new sphereVO;
vRoot.addChild(mObj);
mObj->SurfColor_color(blue);
mObj->Transform_translate(pos_s);
send->setPropVal("reply_msg”, mObj);
vRoot.animTranslate(mObj, pos_s,
0.5*pos.r);
end

// Receive fib_reply

local b <- a : fib_reply do
// Find objects rep. sender and receiver
send=FindObjectWithVal(” address”, a);
rev=FindObjectWithVal(" address”, b);
pos_s=send->getPropVal(” pos”);
pos_r=recv->getPropVal(” pos”);

// Finish animation of message delivery
mObj=send->getPropVal(” reply_msg” );
vRoot.animTranslate(mObj, 0.5*pos_r,
pos.r);

rev->>SurfColor_color(yellow);
vRoot.removeChild(mObj);
vRoot.renderObject();

end

s -> d : fib_reply where s == root do
// Result sent to client
rootObj=FindObjectWithVal(" address”, s);
rootObj->SurfColor_color(green);
vRoot.renderObject();

end

end action

Action rules for the Fibonacci
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Figure C.5: Create Block for Fibonacei Visualizer. A create rule for the

visualizer.

begin create
// Create rep. for new actor
on FibWorker from creator join fib_vis do
// Find the object representing our parent
parent=FindObjectWithVal(” address”, creator);

// Set up a new sphere for this actor
request—=parent->getPropVal("request”) - 1;
sub_space=powf(2, request - 1) * hor_spacing;
pos=parent->getPropVal(” pos”);
child=parent->getPropVal(” child");

us=new sphereVO;

us->SurfColor_color(red);

us->SphereRadius_setValue(10.0);

us->setPropVal(" request”, request,
" address”, self, " child”, 0);

pos.y -= vert_spacing;
if (child == 0)

pos.x -= 0.5 * sub_space;
else

pos.x += 0.5 * sub_space;
us->setPropVal(” pos”, pos);
parent->setPropVal(” child”, child + 1);

// Transform, add ourselves, and view
us->Transform_translate(pos);
vRoot.addChild(us);
vRoot.renderObject();
end
end create

Fibonacci
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Actor Backup {
Method update(State coord) {

Record state of coordinator
}
}

Actor Coordinator {
Method vote_commit(Address part) {
Record vote from participant

}

Method vote_abort(Address part) {

Record vote from participant

}
}

Actor Participant {
Method vote_request{(Address coord) {
Send our vote to the coordinator

}

Method commit {
Commit the transaction

}

Method abort {

Abort the transaction

}
}

Figure C.6: Primary Backup and Two-Phase Commit Actors. The Backup actor
periodically receives state updates from the Coordinator through the update method. The Co-
ordinator sends vote requests to participants and receives replies through the vote_commit and
vote_abort methods. Similarly, Participants return their vote when they receive a vote_request
and receive the Coordinator’s decision through the commit and abort methods.

Figure C.7: Two-Phase Commit with Primary Backup Screenshots. On the left, the
vote_request message has been broadcast and three participants are in the process of replying.
The coordinator and backup are consistent. On the right, all votes have been received and the
coordinator has broadcast the abort message.
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visualizer PrimaryBackup {
begin var
// Global variables
viewVO vRoot;
VO cur_rep;
sphereVO coord1;
cubeVO coord?;

// Consistent flag
int consistent;
end var
begin init
// Set camera position
vRoot.Camera_setVRP(0,0,0);
vRoot.setPropVal(” theView”, 0);
end init

begin enter

// Create coordinator representation

on coordinator do
coordl.SurfColor_color(green);
coord2.SurfColor_color(green);
coordl.SphereRadius_setValue(20.0);
coord2.CubeVert1_position(-15.0, -15.0, 0.0);
coord2.CubeVert2_position(15.0, 15.0, 0.0);

cur_rep = coordl;

vRoot.addChild(cur_rep);
vRoot.renderObject();
end

// Assume consistency initially
on backup do
consistent = true;
end
end enter

begin action
// Coord sends update
Coord -> Back : update do
consistent = true;
end

// Coord receives message
Coord <- P : vote_commit do
consistent = false;
if (cur_rep != coord2) {
vRoot.removeChild(coord1);
cur_rep = coord?2;
vRoot.addChild(cur_rep);
vRoot.renderObject();

}

end

Coord <- P : vote_abort do
consistent = false;
if (cur_rep != coord2) {
vRoot.removeChild(coord1);
cur_rep = coord?2;
vRoot.addChild(cur_rep);
vRoot.renderObject();

}

end

// Backup is consistent
Back <- Coord : update where consistent do
if (cur_rep != coordl) {
vRoot.removeChild(coord2);
cur_rep = coordl;
vRoot.addChild(cur_rep);
vRoot.renderObject();

}

end

// Backup is not consistent
Back <- Coord : update where !consistent do
// Do nothing, discards event
end
end action

}

Figure C.8: Visualizer for PrimaryBackup. Visualizer for primary backup interactions.




visualizer TwoPhaseCommit {
begin var
VO *view;
cubeVO parts[5];
coneVO funnel;
int cur_part;
end var
begin init
// Find the view, init primitives
view = FindObjectWithProp(”theView");
for (i=0; ij5; i++) {
parts[i].SurfColor_color(blue);

}
funnel.ConeHeight_setValue(70.0);

funnel.ConeRadius_setValue(100.0);
end init

parts[i]. Transform_translate(100, (2-i)*50, 0);

begin enter
// Create rep. for participant
on participant do
view->addChild(parts[cur_part]);
parts[cur_part].setPropVal(” address”, self);
parts[cur_part].setPropVal("y”,
(2-cur_part++)*50);
view->renderObject();
end
end enter

begin action

// Coord sends vote

coord -> pl : vote_request and

coord -> p2 : vote_request and

coord -> p3 : vote_request and

coord -> p4 : vote_request and

coord -> pb5 : vote_request do
funnel.SurfColor_color(red);
view->addChild(funnel);
view->renderObject();

end

// Coord sends commit decision
coord -> pl : commit and
coord -> p2 : commit and
coord -> p3 : commit and
coord -> p4 : commit and
coord -> p5 : commit do
funnel.SurfColor_color(yellow);
view->renderObject();
end

// Coord sends abort decision
coord -> pl : abort and
coord -> p2 : abort and
coord -> p3 : abort and
coord -> p4 : abort and
coord -> pb : abort do
funnel.SurfColor_color(cyan);
view->renderObject();
end

// Participant sends response
part -> coord : vote_commit do
P = FindObjectWithVal(" address”, part);
y = P->getPropVal("y");
reply = new sphereVO;
reply->SurfColor_color(magenta);
P->setPropVal(” msg”, reply);
view->addChild(reply);
view->anim Translate(reply,100,y,0,50,y/2,0);
end

part -> coord : vote_abort do
P = FindObjectWithVal(" address”, part);
y = P->getPropVal("y");
reply = new sphereVO;
reply->SurfColor_color(magenta);
P->setPropVal(” msg”, reply);
view->addChild(reply);
view->anim Translate(reply,100,y,0,50,y/2,0);
end

// Coord receives a reply

coord <- part : vote_.commit do
P = FindObjectWithVal(" address”, part);
y = P->getPropVal("y");
reply = P->getPropVal(”" msg”);
view->anim Translate(reply,50,y/2,0,0,0,0);
view->removeChild(reply);
view->renderObject();

end

coord <- part : vote_abort do
P = FindObjectWithVal(" address”, part);
y = P->getPropVal("y");
reply = P->getPropVal(”" msg”);
view->anim Translate(reply,50,y/2,0,0,0,0);
view->removeChild(reply);
view->renderObject();

end

end action

Figure C.9: Visualizer for TwoPhaseCommit. Visualizer for two-phase commit interactions.
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