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AbstractConcurrent systems maintain a distributed state and thus require coordination and synchro-nization between components to ensure consistency. To provide a coherent design approach toconcurrent systems, recent work has employed an object-based methodology which emphasizesinteractions through well-de�ned interfaces. The Actor model has provided formal reasoningabout distributed object systems. Nonetheless, due to the complex interactions among compo-nents and the high volume of observable information produced, understanding and reasoningabout concurrent algorithms in terms of simple interactions is a di�cult task. Coordinationpatterns, which abstract over simple interactions, are not biased by low-level event orderingsand are the appropriate mechanism for reasoning about concurrent algorithms. In this thesis,we present a methodology for visualizing coordination patterns in concurrent algorithms whichemphasizes observable interactions and causal connections between objects. We introduce vi-sualization groups as an intuitive notion for mapping coordination patterns to visualization.Visualization groups are speci�ed linguistically using visualizers. Visualizers are speci�ed sep-arately from algorithm code and thus respect code integrity. Moreover, visualizers may beimplemented strictly in terms of object interfaces and thus preserve object encapsulation. Wedescribe the implementation of stagehand, a prototype environment which supports visual-izers for the purpose of specifying visualization over actor computations implemented on theactor platform broadway.
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Chapter 1Introduction1.1 IntroductionTwo distinctive features of today's concurrent systems are their distributed nature and theiremphasis on interactions through well-de�ned interfaces. Because state is distributed in suchsystems, coordination and synchronization are needed in order to ensure consistency. Coordi-nation patterns, which consist of point-to-point interactions, synchronization, and local statechange, drive any distributed computation. However, due to the complex interactions amongcomponents and the high volume of observable information produced, attempting to under-stand and reason about concurrent algorithms in terms of simple interactions is a di�cult task.Moreover, conventional sequential tools do not readily extend to distributed systems.As a simple example of how complexity in distributed algorithms establishes the need forspecial analysis tools, consider a distributed protocol such as two-phase commit. Two-phasecommit may be expressed algorithmically as follows [6] (see Figure 1.1):1. A coordinator sends the message vote to each component participating in the protocol.2. Upon receiving vote, each component sends either the message commit or abort to thecoordinator. 1
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abortFigure 1.1: Two-phase Commit. The coordinator collects votes and decides on an action.All participants execute the same action.3. After collecting all responses from all participating components, the coordinator broad-casts the message commit if all components voted to commit, and abort otherwise.Two-phase commit proceeds in two stages delineated by rounds of message passing. Un-derstanding and reasoning about two-phase commit requires the ability to correlate componentstate with phases of the algorithm. However, during the voting procedure, the coordinator candetermine only when a stage has ended but can not establish the exact state of the protocol inthe middle of a phase. Similarly, no participant can establish protocol state based solely on itsinteractions. Hence typical sequential analysis techniques which emphasize component-centricviews are not su�cient. Such systems lack a multi-component context which correlates stateover multiple components with their causal relationships established by interactions. Thus anyanalysis tool for distributed systems must be based on the combined state of all participatingcomponents and their interactions.Similarly, components in a distributed system often require multiple interaction protocols.Typically, protocols will overlap (see Figure 1.2). As a result, interactions at a single componentmay consist of intermingled interactions involving several protocols. Thus, an analysis tool mustprovide abstraction mechanisms for identifying and separating interactions according to theirsemantic content. Moreover, large complex systems generate a large volume of observable2
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Figure 1.2: Overlapping Protocols. The components participating in protocol A overlapwith those participating in protocol B.information. Abstraction mechanisms must therefore exist for varying granularity and �lteringinteractions.Program visualization, the animated display of various aspects of algorithm execution, hasbeen utilized in an attempt to provide appropriate analysis tools [27, 32]. In particular, programvisualization has been applied to such diverse applications as computer science instruction [9],visual debugging [21], program veri�cation and reasoning [27], and educational software [16].Typical visual environments use pictorial abstractions to represent program components andtheir interactions, showing the various stages of a program in execution. Note that a visual-based analysis tool provides a multi-component context. Moreover, extending such systemswith an appropriate speci�cation language allows analysis which �lters speci�c interactions.That is, visualization may provide abstraction mechanisms which capture high-level behaviorwhereas typical analysis tools, such as trace-based systems, tend to be biased to representinglow-level execution details.Current visualization environments adopt the view that program visualization represents amapping from computational state to visual representation [26]. Constructing this map involvesthe following three tasks: �rst, identifying interesting program states; second, de�ning visualrepresentations corresponding to these states; and �nally, de�ning a mapping mechanism whichlinks program state to visual representation. We call this the state-transition approach. Underthe state-transition approach, visualization is synchronized with the transition of a program3



among computational states. Thus, when used to visualize concurrent execution, the state-transition approach requires a global snapshot of algorithm state. Unfortunately, in distributedenvironments global snapshots are costly due to distributed state and asynchrony, and maynot correspond to any state entered by the underlying execution [23]. Moreover, semanticallyequivalent execution behavior may yield di�erent state transitions. As a result, the state-transition approach is costly to implement and does not e�ectively abstract over the relevantbehavior in distributed systems.A more natural model for visualizing distributed algorithms is one in which visualizationis triggered according to the occurrence of events at participating objects. An event consistsof a basic transition which e�ects global state; message passing and the dynamic creation ofnew objects are speci�c examples. We call such a visualization model an event-based approach.By considering patterns of local events, an event-based approach emphasizes coordination pat-terns and hence captures the salient behavior of distributed systems. Due to asynchrony anddistributed state, only a partial order of events is available in a distributed system [17]. Thusin order for event-based visualization to be meaningful, some form of consistency must be en-forced between the ordering of events and the visualization they trigger. In particular, correctlycharacterizing the causal relationships of the underlying execution is critical to providing a toolfor reasoning about distributed execution [28].In this thesis we develop an event-based environment for specifying and implementing visu-alization of distributed object-based systems. In our environment, visualization is synchronizedwith causally ordered coordination patterns among objects. Moreover, granularity is not �xedin our environment; visualization may be speci�ed over simple low-level interactions as well ascomplex interaction patterns over a dynamically changing set of objects. Unlike most contem-porary environments, our model allows a transparent implementation separating visualizationdesign concerns from algorithm code. We demonstrate the utility of our model by way ofstagehand, a speci�cation language and supporting run-time mechanisms for specifying on-line program visualization over a distributed computation. Online means that visualization isgenerated in real-time in response to events in the underlying execution. Using stagehand,4



users de�ne the set of interactions which trigger a particular visual transition as well as the spe-ci�c manipulations of visual modeling entities. Speci�cally, stagehand embodies the followingset of design goals:Generality. We may visualize sequential components and their interaction patterns in dis-tributed systems.Consistency. Visualization preserves the causal order of events that it represents.Flexibility. Events which trigger visualization range from local component interactions to arbi-trary patterns involving interactions among distributed components. The set of visualizedcomponents may be dynamic.Transparency. Visualization mechanisms are both speci�cation and execution transparent tothe system being visualized:Speci�cation. Object integrity is preserved. Visualization is speci�ed separately fromalgorithm code.Execution. Low-overhead event detection mechanisms are used. Synchronization prop-erties among components are not altered.By allowing generality while ensuring consistency, our environment encompasses visualiza-tion of general distributed systems which preserves the characteristic features of the underlyingexecution. In particular, reasoning about coordination behavior requires preserving the causalrelationships among interacting components. Causal order can be determined succinctly interms of the partial order of events in a distributed system [17]. Thus, our environment guar-antees consistency by requiring that visualization observe the same partial order of events asthat of the algorithm execution. Moreover, visualizing coordination behavior requires exibil-ity in specifying both the events which trigger visualization as well as the set of componentsto be visualized. Speci�cally, we require the ability to specify visualization for a possibly dy-namic set of algorithm components and their interaction patterns. Hence, the scope of our5



environment is such that abstract patterns of interaction may be visualized over arbitrary (i.e.dynamic) groups of components. Finally, an important aspect of a visualization tool is that itnot introduce further complication into a system. In particular, visualization should be speci-�able over algorithms without side-e�ects; algorithms should retain approximately the sameexecution behavior regardless of whether or not they are being visualized. Large performanceoverhead a�ects message passing and may mask race conditions. Our environment naturallyseparates visualization design objectives from the system under analysis by allowing transparentimplementation.The remainder of this thesis is organized as follows. This chapter discusses background in-formation and related work: Section 1.2 discusses the Actor model of computation; Section 1.3discusses the concept of reection; Section 1.4 discusses related work in program visualization.In Chapter 2 we describe how our visualization model is de�ned over a distributed computation.In particular, we develop an event-based model for visualizing actor-based systems. In Chap-ter 3 we describe the speci�cation language portion of stagehand for de�ning visualization.Chapter 4 describes the implementation of stagehand. We conclude in Chapter 5.1.2 ActorsOur goal is to visualize encapsulated, possibly distributed, objects which interact via messagepassing. Actors [1] provide a general and exible model of concurrency which captures all suchsystems, thus we base our visualization mechanisms on actor-based computation. Actors areencapsulated, interactive, autonomous components of a computing system that communicateby asynchronous message passing. Conceptually, an actor encapsulates a state, a thread ofcontrol, and a set of procedures which manipulate the state. Actors provide an interface whichmay be used to invoke encapsulated procedures. Procedures which are accessed through thisinterface are called methods (see Figure 1.3).Actors coordinate by asynchronous message passing. Each actor has a unique mail addressand a mail bu�er to receive messages. Actors compute by serially processing messages queued6
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Figure 1.3: Actor Model. Actors encapsulate state and a thread of control. The interfaceis comprised of public methods which operate on the state.in their mail bu�ers. An actor blocks if its mail bu�er is empty. Each message invokes a speci�cmethod within an actor. Within the body of a method, there are two basic actions which anactor may perform that a�ect the concurrent computational environment1:� send messages asynchronously to acquaintances, and� create actors with speci�ed behaviors.Communication is point-to-point and is assumed to be weakly fair: executing a send even-tually causes the message to be bu�ered in the mail queue of the recipient although messagesmay arrive in an order di�erent from the one in which they are sent. Actor names are �rst classentities which specify the mail address of an actor and may be communicated within messages1Those familiar with the Actor model may notice that become is missing. In recent work [5], become hasbeen replaced by a continuation passing style transform and the speci�cation of a replacement behavior. Weassume a similar convention in this thesis. 7



allowing dynamic recon�guration of the communication topology. The create primitive createsa new actor with a speci�ed behavior. Initially, the new actor is an acquaintance only of thecreating actor (i.e. only the creating actor knows the name of the new actor). As describedabove, the name of the new actor may be communicated to other actors.The actor primitives de�ned above provide a simple yet powerful mechanism for expressingconcurrency. External concurrency is provided by asynchronous send and the ability to createnew actors. Internal concurrency may be mimicked by creating a new actor to asynchronouslyprocess the remainder of the current computation while the original actor begins processing anew message. Actors provide a model of concurrent computation upon which a wide variety ofconcurrent abstractions can be developed [2]. Hence, the visualization mechanisms describedin this thesis readily extend to computational models supporting synchronous communication,remote procedure call, migrating processes, and so on. More importantly, actors provide auniform view of concurrency: every object, including system-level objects, are actors. Ourvisualization mechanisms may be installed on any actor in a system, hence visualization maybe used to monitor computations at any arbitrary level of abstraction ranging from system-levelto high-level application speci�c interactions.For the purposes of this thesis, we model actors as residing in one of two states: ready orprocessing. The ready state simply indicates that an actor is ready to process the next messagein its mail queue. An actor is in the processing state when it is processing a message. Thesestates serve no other purpose than to allow us to de�ne two basic actor transitions. A methoddispatch corresponds to the transition from the ready state to the processing state. Intuitively,the actor gets the next message o� its mail queue and begins processing. A method completioncorresponds to the transition from the processing state to the ready state. Intuitively, theactor has �nished processing the current message and is ready for the next message. We makeno assumptions as to when these transitions occur other than that an actor may only beginprocessing a message by being in the ready state and performing a method dispatch, and thatafter processing a message an actor must eventually transition to the ready state by performinga method completion. We also assume that all actors initially start in the ready state.8



1.3 ReectionReection refers to the ability of an object to manipulate a causally connected description ofitself [18, 29]. Causal connection implies that changes to the description have an immediatee�ect on the described object. The reective capabilities of a language are referred to as themeta-architecture of the language and are embodied by meta-objects which customize speci�cattributes of their base-object. For example, in the case of actors, a meta-object may be usedto control how the mail bu�er functions. Another meta-object might be used to control hownew actors are created. Using reection, such meta-objects may be customized at run-timeand replaced with user de�ned meta-objects yielding a dynamically recon�gurable computationenvironment.From the perspective of program visualization, reection has the advantage of allowing ex-ibility while respecting object integrity. In particular, meta-level objects may be manipulatedwithout requiring access to base-object internals. This feature will allow us to transparentlyinstall visualization on objects. Speci�cally, we reectively manipulate the meta-level objectsdescribing communication, method dispatch, and actor creation. Conceptually, we encapsulatethese meta-level objects into an observer, a meta-level object which reports the occurrence ofevents we are interested in for visualization purposes. broadway supports a limited form ofreection which allows the run-time customization of communication-related attributes usingcompiled objects. stagehand speci�cations are compiled into appropriate observers which areinstalled on visualized actors at run-time.1.4 Related WorkMost of the work related to the visualization of parallel and distributed programs has con-centrated on performance analysis and instrumentation. The ParaGraph [15] and Pablo [25]systems are representative of this work. These approaches tend to emphasize largely applicationindependent performance issues. In this thesis we focus our attention on application-speci�cprogram visualization. That is, we are primarily concerned with user-de�nable abstraction9



mechanisms which aid in the comprehension of concurrent algorithms. As such, we will notdiscuss visualization for tuning performance.The majority of work on program visualization has been concerned with visualizing sequen-tial program execution. Although we are concerned with visualizing parallel and distributedprograms, it is still useful to contrast and compare with these sequential systems in order toreveal di�erences in expressiveness and speci�cation techniques.Representative sequential environments include BALSA [9] and its descendent ZEUS [10],and TANGO [31]. Technically, these environments are not restricted to visualizing sequentialprograms. However, none of the named systems includes explicit mechanisms for dealing withconcurrency. The strength of these systems tends to lie not in their visualization speci�cationmechanisms, but rather in their support of exible and expressive modeling primitives forcreating complex imagery. BALSA and ZEUS provide perhaps the most complete mechanismsin terms of specifying arbitrary visual layouts. TANGO, on the other hand, contributes anatural and exible animation facility using the notion of path transitions [30]. The emphasisof this thesis is on speci�cation techniques rather than modeling and rendering visualization.Hence stagehand contains a rather basic set of primitives for generating images. Nonetheless,any complete visualization system should include a comprehensive modeling and renderingenvironment. The systems named above are prime examples of the type of exibility whichshould be supported.The sequential systems named above all use code annotation to identify visualization events(in BALSA these are called interesting events). That is, the programmer indicates, usingspecial syntax, where in the source code visualization should take place. As a result, visual-ization is produced as a side e�ect of algorithm execution. In contrast, stagehand supportstransparent realizations and requires no explicit code modi�cation. Moreover, visualization isimplemented reectively over source components and hence respects object integrity. Althoughcode annotation is undesirable from a software engineering perspective, overall it provides themost exibility and allows the �nest control of when to trigger visualization. However, wehave argued that coordination behavior is the most relevant attribute in concurrent systems.10



Our techniques demonstrate that code modi�cation is not necessary to capture synchronizationand coordination. Moreover, annotated code biases the resulting visualization to a particularexecution history. By emphasizing patterns as a basis for visualization events, stagehandspeci�cations avoid bias and provide an abstraction mechanism for viewing interactions.The concept of synchronizing visualization with the causal relationships of the underlyingexecution has been recognized as critical to understanding concurrent algorithms. Turner andCai have described a visualization mechanism based on the logical clock traces of interactingprocesses [38]. Similarly, the PVM [35] distributed computing environment has been extendedwith PVaniM [36] to support timestamp based visualization. The Conch [8] system has beenextended in a similar fashion in [37]. All of these environments are based on post-mortem visu-alization. That is, events are recorded in a log during execution and visualized after the fact.Thus, a shallow di�erence between these systems and stagehand is that stagehand allowsvisualization during system execution. Note that many important and interesting distributedsystems never \terminate". stagehand was designed to be online in the interest of allow-ing visualization to be added dynamically at run-time. The latter two systems both employPOLKA [32] as a visualization front-end. POLKA is a descendent of TANGO intended for ani-mations of programs executing on parallel architectures. POLKA is a relatively straightforwardextension of the sequential model of TANGO for a concurrent setting; the most notable additionis the support of concurrent, overlapping animation and more modular constructs for creatingvisual representations. The visualization support provided by POLKA is more complete thanthat supplied by stagehand. However, the two systems described above provide no mecha-nisms for abstracting over low-level interactions. Such abstraction must be implemented as partof the visualization mechanism in POLKA. Furthermore, PVaniM utilizes a code annotationapproach, the tradeo�s of which we have already discussed; whereas the approach describedin [37] modi�es system level routines to record events. In the latter case, there are no conve-nient mechanisms for �ltering events, thus every potentially interesting event must be recorded.stagehand represents a signi�cant step in the direction of integrating language support forspecifying visualization with the run-time mechanisms necessary to implement this support. In11



particular, stagehand provides modular visualization constructs which respect object integrityand allow the user to specify the granularity of events. Furthermore, by utilizing a reectivearchitecture, stagehand constructs are transparently integrated with applications, obviatingthe need for code annotation.The concurrent visualization environments we have described above all employ a rathertraditional view of process-based concurrent computation. The PAVANE [26] system repre-sents a coherent approach to visualizing concurrent program execution based on a tuple-spaceenvironment similar to Linda [11]. Moreover, PAVANE has been designed explicitly to aid pro-grammers in reasoning about program execution. In PAVANE, a con�guration of tuple-spacerepresents the current state of an algorithm in execution. Visualization event detection followsa rule-based approach where visualization rules match based on the contents of tuple-spaceand create graphic representation tuples in a separate visualization space. Animation may becreated by annotating tuples in visualization space with animation information. Note that PA-VANE enjoys all the advantages of a rule-based approach. In particular, visualization rules donot interfere with algorithm code and are completely reusable.The main di�erences between stagehand and PAVANE are the model of concurrency andthe expressiveness of the visualization event detection mechanism. The PAVANE model of con-currency is completely synchronized, thus global program state is readily obtainable. Changesto tuple-space in PAVANE are synchronized according to groups of executing \processes."Thus tuple-space (i.e. program state) may be sampled after each process group has completedexecution. stagehand speci�cations, on the other hand, specify visualization for distributedenvironments. Moreover, abstraction is di�cult to de�ne using the PAVANE mapping approachbecause transitions among computational states correspond directly to transitions among visu-alization states. In particular, abstractions expressed using temporal relations are di�cult todescribe. stagehand speci�cations, on the other hand, allow event patterns which depend onmutable state making temporal relationships easy to detect.From a somewhat di�erent tradition than program visualization, event diagrams have been aprevalent mechanism for visualizing actor computation. Augmented Event Diagrams were used12



by Manning in the Traveler observatory to support the debugging of actor programs [19]. Ina related fashion, predicate transition nets have been used to visualize actor computation [20].However, both approaches su�er from two key weaknesses: there are no coordination abstrac-tion mechanisms; and, representations rather than models are generated. Event diagrams donot abstract over low-level execution details and tend to be unnecessarily complex. Predicatetransition nets do not retain the history of the computation and only visualize actor behav-ior change. Moreover, both approaches �x the visualization mechanism and limit exibility.stagehand provides a foundation upon which explicit views of concurrent computation maybe developed; stagehand speci�cations may be used to create both event diagram and predi-cate transition net representations.
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Chapter 2An Event-Based Model for ProgramVisualizationWe formulate visualization of actor systems in terms of actor events. We are primarily interestedin interaction patterns. Thus, we de�ne actor events in terms of those transitions observableexternally to each actor. Speci�cally, an actor event may be either a message send, a methoddispatch, a method completion, or dynamic creation of new actors1. We disallow events basedon actor internals in order to preserve object integrity. This design tradeo� is discussed in somedetail in Chapter 5.Our model of program visualization relates visualization events to visualization actions byway of a visualization mechanism. Each of these terms is de�ned below:Visualization Event: A visualization event corresponds to a pattern of actor events. Visu-alization events are used to indicate con�gurations of the system at which visualizationshould take place.Visualization Action: A visualization action corresponds to some rendering or animationactivity which updates the current display of an algorithm. Typically, a visualizationaction is parameterized by the visualization event which invokes it.1Formally, actor events are only receive events [3]. However, for the sake of clarity we abuse terminology here.14



Visualization Mechanism: The visualization mechanism speci�es the relationship betweenvisualization events and visualization actions. In particular, the visualization mechanismis responsible for detecting visualization events and determining the appropriate visual-ization action to trigger.Figure 2.1 illustrates the relationship among each of these components.
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EventsFigure 2.1: Program Visualization. Visualization events are mapped to visualizationactions by the visualization mechanism.Our task is to de�ne our model for program visualization so that each of these componentsis speci�ed in a manner consistent with the goals stated in Chapter 1. In Section 2.1 weconsider actor events in more detail. In particular, we discuss the features of the visualizationmechanism necessary to preserve consistency in the resulting visualization. A model basedsolely on local actor events is satisfactory for visualization but is too low-level for practical use.In Section 2.2, we introduce visualization groups, an abstraction mechanism for encapsulatinginteraction patterns in the spirit of abstract data types. Finally, in Section 2.3 we develop thearchitecture of the visualization mechanism required to implement our model.2.1 EventsActor events represent the most �ne-grain elements which may trigger visualization. As a result,some care must be taken in their de�nition. In particular, it is expected that a large volumeof actor events will be generated by an executing system. Thus, actor events must be de�nedso that their detection incurs little overhead without sacri�cing expressive ability. Moreover,we require that actor events capture the low-level interactions used to express coordination.Formally, actor events are de�ned as follows: 15



Actor Event: An actor event corresponds to one of the following:� A message send.� A method dispatch.� A method completion.� The creation of a new actor.A message send corresponds to the invocation of the send actor primitive. A method dispatchcorresponds to the transition of an actor from the ready state to the processing state. Similarly,a method completion corresponds to the transition of an actor from the processing state tothe ready state. Finally, a creation event corresponds to the invocation of the create actorprimitive. Each actor event corresponds to an externally observable interaction between theactor and the underlying run-time environment. For example, an actor invoking send must callthe interprocess communication library supported by the system. Hence, each actor event maybe detected on a local basis while preserving object integrity. Moreover, actor events correspondto the relevant local activities associated with coordination among components: in two-phasecommit, for example, coordination was expressed using vote-reply-decision message patterns.Detecting actor events on a local basis eliminates the necessity of querying global state.Moreover, as we demonstrate in Chapter 4, actor events may be detected transparently. Inparticular, we detect actor events by distributing the visualization mechanism so that each actoris monitored by an independent observer. Observers are objects which �lter actor interactionsand trigger visualization when speci�c actor events are detected.Visualization triggered by actor events serves to visually identify changes in local state inresponse to interactions with other actors. However, because actors are distributed entities,visualization is triggered in an asynchronous fashion. From the perspective of reasoning aboutprograms, this is an undesirable feature since it is not clear how the visualization character-izes the underlying execution. The causal relationships between interacting components in adistributed system are a critical feature for reasoning about distributed interactions [28, 7]. Inparticular, causal relationships indicate a chain of interactions which corresponds to the progress16



of a distributed algorithm. To capture this feature in the resulting visualization, we require avisualization mechanism which ensures that visualization actions characterize the causality ofthe underlying execution. This requirement may be stated in terms of the following restrictionon visualization actions:Causal Connection Restriction: The invocation order of visualization actions must pre-serve the causal order of actor events which trigger them.Note that under the casual connection restriction, the resulting visualization always correspondsto a consistent cut [23] of the triggering events in the underlying execution.
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C1 C2Figure 2.2: Event Diagram. Three actors A, B and C are shown together with theirvisualization events.Figure 2.2 illustrates how the causal connection restriction a�ects visualization. The eventdiagram displays a total order of actor events for three actors A, B and C. The causal con-nection restriction states that if two actor events are causally connected, then their associatedvisualization actions must be invoked in a causally consistent order. Thus visualization actionscorresponding to events A1 and B1 (which we call v(A1) and v(B1) respectively) are causallyconnected. Moreover, v(B1) may not be invoked until v(A1) is. However, there is no causalconnection between events A1 and C1 thus v(A1) and v(C1) do not restrict one another. Amore subtle relationship is that between C1, C2 and A1. In this case, v(C2) must wait for theexecution of both v(A1) and v(C1) (as well as v(B1) and v(B2)).The detection of actor events locally, together with the causal connection restriction com-pletely de�nes a model of visualization for actor-based systems:17



Actor Event Model:� Actor events are detected locally at each component.� Invoked visualization actions are executed according to the causal connection restric-tion.In the actor event model, there is a one-to-one correspondence between actor events and vi-sualization. However, as discussed above, actor events represent the most �ne-grain elementof visualization. Speci�cally, we anticipate a large volume of actor events. Unfortunately, theactor event model provides no mechanisms for abstracting over these �ne-grain elements. Inparticular, we are forced to view every actor event. In the next section, we consider constructsfor de�ning abstractions over patterns of actor events.2.2 Visualization GroupsThe actor event model provides a foundation for generating visualization and ensuring consis-tency but lacks constructs for abstracting over low-level events. In order to capture patterns ofevents, we organize actors into visualization groups which specify visualization events in termsof patterns of actor events. Moreover, visualization groups associate state with event patternsto facilitate temporal and guarded visualization events. Formally:Visualization Group: A visualization group is de�ned as the actors over whom a set ofvisualization events are speci�ed. A visualization group maintains state which may bereferenced and modi�ed by visualization actions de�ned for the group. In particular,predicates over group state may be used to guard visualization events.Figure 2.3 illustrates the functionality of visualization groups. Recall that observers areentities associated locally with each actor. Conceptually, actors in a visualization group aremonitored by observers and a coordinator, which manages state for the group. Observers detectactor events and report them to the coordinator. The coordinator collects local actor events18
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For example, for two actors participating in message passing, the send event at one actor andthe receive event at the other may be composed to form a single visualization event.In addition to visualization events, visualization groups give rise to several meta-events.For example, an actor may move from one visualization group to another. Strictly speaking,these transitions are not visualization events but may a�ect the visual metaphor being pre-sented. Thus, in order to provide exibility, the following events may also be used to triggervisualization:Group Event: A group event corresponds to one of the following:� A group enter event.� A group exit event.A group enter event corresponds to the addition of an actor to a visualization group. A groupexit event, on the other hand, corresponds to the removal of an actor from a visualization group.Actors are added and removed from visualization groups dynamically at run-time in one of twoways: explicitly using the language constructs joinGroup and leaveGroup; or, implicitly asa result of the visualization action associated with a create actor event. We discuss these twomechanisms for manipulating group membership in more detail in Chapter 3. Note that actorsmay only modify their own visualization group membership or the group membership of actorsthey create at the time of creation.As an example of how visualization groups can be used to specify visualization, consider thetwo-phase commit example from above where the coordinator for the commit protocol is alsoa participant in a primary backup protocol. The following example illustrates how we mightde�ne visualization groups for the participants of these two protocols.Example: Two-Phase Commit and Primary Backup. In order to visualize these twoprotocols we create two visualization groups, a PrimaryBackup group and a TwoPhaseCommitgroup (see Figure 2.4). For the PrimaryBackup group we will only be interested in updatemessages which are periodically sent by the coordinator to the backup. For visualization pur-poses, we will denote the coordinator with a circle when both the coordinator and its backup20
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Figure 2.4: Group Organization. Organization of primary backup and two-phase commitparticipants.are consistent, otherwise we will denote the coordinator with a square. The backup actor willnot have a visual representation.For the TwoPhaseCommit group will be interested in each of the message rounds of theprotocol. Each participant in the protocol will have an explicit visual representation (a squarefor this example). We will visualize the message rounds as follows. When the coordinatorbroadcasts the vote message we will generate a \funnel" originating from the coordinator.When a participant replies with a commit or abort and the coordinator receives the replywe will draw a line from the participant to the coordinator. Finally, when the coordinatorbroadcasts the decision in the �nal stage of the protocol we will draw another funnel. Theshading of the funnel will indicate whether the decision was to commit or abort. Figure 2.5shows several frames from the resulting visualization. Notice that the visualization capturessuch dynamics as the fact that some participants may reply before all participants have receivedthe vote request, but the coordinator may only reply after receiving all votes.We will delay a detailed discussion of how visualization events are speci�ed for this exampleuntil Chapter 3. However, we can provide the following intuitive description. The visualizationevent for processing update messages consists of a send event followed by a method dispatch21
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::::::Figure 2.5: Visualization. On the left, the coordinator has broadcast a vote message,two participants have replied, and the backup is not consistent with the coordinator. On theright, the coordinate has broadcast the commit decision, and the backup and coordinatorare consistent.event guarded by the state variable consistent de�ned in the PrimaryBackup visualization group.When the coordinator sends the update message (detectable via a send event) we set consistentto true. For any message received by the coordinator we set consistent to false and changethe coordinator's visual representation to be a square. When the backup processes an updatemessage (detectable via a method dispatch event) we check the consistent ag. If consistent istrue we change the coordinator's visual representation to be a circle, otherwise we do nothing.The visualization events for the TwoPhaseCommit group are speci�ed in a similar fashion. Thevisualization event for the broadcast of the vote and decision messages consists of the set ofall message sends from the coordinator to each participant. Replies to a vote request are justthe send/method dispatch pairs originating at participants. 2As the example above demonstrates, visualization groups provide the appropriate abstrac-tion mechanism for �ltering actor events to isolate interesting behavior. However, visualizationgroups require a two-layered approach in order to implement visualization: actor events are �rstdetected locally at each actor, then patterns are detected at the group coordinator. Introducinga new layer between the observed actors and the resulting visualization implies new consistency22



requirements for the visualization mechanism. In the �nal section we develop the architectureof the visualization mechanism necessary for implementing this multi-layered approach.2.3 Visualization MechanismVisualization groups are constructs which allow for abstract events. That is, events which arede�ned as patterns of actor events. As a result, we need to re�ne the notion of causal relationbetween events. For actor events, causal relationships were well de�ned because actor eventsare indivisible relative to one another. That is, actor events are atomic. Abstract events, on theother hand, may consist of multiple actor events and may share multiple causal relationshipswith other abstract events. In particular, it is not clear what the \right" causal relationship isbetween abstract events. The purpose of this section is to develop the visualization mechanismfor the event-based model, and, in doing so, de�ne the causal relationship between abstractevents. Speci�cally, we de�ne how events are detected and how they are used to trigger visual-ization.Figure 2.6 illustrates the architecture of the event-based model. The visualization monitorrepresents the modeling and rendering environment and generates the user display. In this�gure, we have identi�ed observers, coordinators, and the display as separate objects althoughthey need not be implemented in this manner. The causal connection restriction guarantees thatobservers deliver events in causal order to all coordinators. Coordinators, in turn, collect eventsand determine if any visualization event for the visualization group they manage is satis�ed.Satis�ed visualization events cause the invocation of their corresponding visualization action.Actor events invoke visualization actions exactly in the manner de�ned above. Abstractevents, on the other hand, may require multiple actor events to be satis�ed (i.e. a set of actorevents) and may be guarded by a predicate over group state (i.e. a guarded event). As a result,actor events delivered to a coordinator must be held by that coordinator until they may beused to satisfy an abstract event or it is determined that they may never be used. Moreover,23
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The use earliest policy guarantees that actor events won't be used in a single visualization groupin a manner contradictory to the underlying causal order of the execution. That is, visualizationwithin a group is always generated according to a consistent cut of actor events. The use oncepolicy guarantees that as soon as an actor event is used to satisfy a visualization event it will bediscarded. By enforcing these policies it is unambiguous at the time of invocation which actorevents were used to satisfy a visualization event. However, neither policy places any restrictionon the relation between visualization events in separate visualization groups.As a �nal consideration, note that visualization actions may modify state. Thus we requirethat the visualization mechanism execute visualization actions atomically so that each actionhas a consistent view of visualization group state. We may summarize the event-based modelas follows:Event-Based Model:� Actors are organized into visualization groups.� For each visualization group, visualization events are de�ned as patterns of actorevents over the set of member actors.� Actor events are detected locally and delivered in causal order to coordinators.� Coordinators invoke visualization actions by matching visualization events using the\use earliest" and \use once" policies.� Visualization actions are executed atomically.The de�nition of visualization events in terms of visualization groups and the requirement thatcausal orders be preserved in visualization provides a coherent model for reasoning about coordi-nation. By forcing visualization actions to preserve the partial order of the visualization eventswhich invoke them we may use visualization to reason about the causal interactions amongcomponents. The resulting emphasis on causal connections shifts the focus of visualizationto communication and coordination which serves as the driving mechanism in any distributedcomputation. 25



Chapter 3Specifying VisualizationIn this chapter we discuss linguistic support for specifying visualization of actor-based systems.Our goal is to develop unambiguous speci�cation mechanisms which do not require access toactor internals, and which support visualization activated by the event structure we describedin the previous chapter. There are two aspects to specifying visualization: de�ning visualizationevents, and de�ning visualization actions which are triggered by these events. In this chapterwe only consider language constructs for de�ning visualization events. Developing linguisticsupport for specifying visualization actions depends to a large degree on the modeling andrendering library in use as well as the demands of the user. However, the degree of supportprovided and the syntactic mechanisms required for specifying visualization actions is not ger-mane to the development of event detection language support. Moreover, it is our intention toprovide speci�cation mechanisms which are not constrained by the computer graphics supportavailable in the system. Thus, we will leave issues related to specifying visualization actionsuntil Chapter 4. Note that none of the constructs de�ned here rely on graphics library speci�csupport.For the purposes of this chapter, we will assume a simple C-like syntax for the base actorlanguage. Note that none of the constructs we de�ne are inextricably tied to this base language.All that we require is a syntax for identifying an actor's behavior, and the methods and messagecontents used in message passing. We will identify an actor's behavior with a simple text string.26



For example, an actor implementing the Fibonacci function would be labeled Fibonacci. Whenwe refer to the type of an actor, we are referring to its behavior. Methods within an actorwill be de�ned much in the same fashion as a C function prototype without a return value.For example, the function sort which takes as arguments an array and its boundaries would beidenti�ed as:sort(Array A, Integer lower, Integer upper)We may also refer to the same method as just sort when we are not interested in the arguments.When we refer to the address of an actor we are referring to the unique identi�er used to sendmessages to the actor.3.1 VisualizersThe notion of a visualization group is captured by the Visualizer language construct. Visualizersare de�ned in a fashion similar to classes in the object-oriented sense. Speci�cally, visualizersmaintain a list of members (instances if you like), local state, and a set of rule blocks whichde�ne visualization events. Members of a visualizer are added or removed dynamically usingsyntax described below and in Chapter 4. Our language de�nes rule blocks for three classes ofevents:Membership Change. Each visualizer maintains a list of member components. Visualizationmay be triggered when an actor joins the group or when a current member leaves.Actions. An action is de�ned to be either a message send or a method dispatch and is meant toindicate a direct interaction between two actors. Visualization may be triggered accordingto patterns of actions which may depend on visualizer state and the contents of messages.Dynamic Behavior. Dynamic behavior corresponds to the creation of new actors (i.e. in-voking create) or method completion. Visualization may be triggered when members ofa visualizer create new actors or complete the processing of a method (i.e. coarse grainstate change). 27



When a member of a visualizer exhibits an appropriate behavior, each rule in the related ruleblock is evaluated in order until a rule matches or the list of rules is exhausted. Only the �rstmatching rule is invoked. The rules in a visualizer are evaluated independently for each memberwhen speci�c behavior is detected. Figure 3.1 provides an abstract syntax for visualizers.visualizer ::= visualizer name flocal variablesinitializationmembership rulesaction rulesdynamic behavior rulesgFigure 3.1: Visualizers. Rule blocks are used to organize visualization actions accordingto the type of visualization events which trigger them.The speci�cation of a visualizer may include any, all, or none of the rule blocks identi�edin Figure 3.1. When a member of a visualizer exhibits one of the behaviors speci�ed above,that object is referred to as the target. In general, rules de�ned in a visualizer match basedon conditions de�ned on the target. For example, membership rules match based on the typeof the target and whether the target is joining or leaving the visualizer. Some rules may havemultiple targets. For example, actions may specify communication patterns involving multipleobjects. Where it is unambiguous, the address of the target is always bound to the identi�erself. Otherwise, speci�c identi�ers must be introduced to identify separate components withina rule. Note that because actor addresses are unique, self may be used to identify individualactors within a rule.The speci�cation of a visualizer allows for the de�nition of both local variables (encapsulatedwithin the visualizer) as well as an initialization block which is executed when the visualizer iscreated. In general, the syntax of these two sections will depend on the base actor language inuse. Thus we will not provide a syntax for specifying local variables or their initialization untilChapter 4. For this chapter, assume that local variables may simply be referenced by namewhen necessary. 28



membership rules ::= begin enterfbehavior ruleg�end enterbegin exitfbehavior ruleg�end exit behavior rule ::= on behavior dovis actionendFigure 3.2: Membership Change Syntax. Abstract syntax for visualization events whichmatch membership change.3.1.1 Membership RulesMembership rules are used to invoke visualization actions in response to membership changesin a visualizer. In particular, two types of rules may be de�ned. An enter rule speci�es avisualization action triggered when an actor becomes a member of the visualizer. Similarly, anexit rule is triggered when an actor leaves the visualizer. Both rules are matched based on thetype of the actor. Moreover, the identi�er self is bound to the address of the actor within eachvisualization action which is triggered. Figure 3.2 gives an abstract syntax for membershiprules. The meaning of the syntax is described below:� vis action speci�es a visualization action.� on behavior do ::: de�nes a behavior rule. If the target actor has type matchingbehavior then the associated visualization action is invoked.3.1.2 Action RulesAction rules are used to invoke visualization actions in response to the detection of messagepatterns. An action rule speci�es a message pattern to detect and a corresponding visualizationaction to invoke. Message patterns are speci�ed using basic patterns which represent theinteraction of two components. More complex patterns are created from basic patterns usingguards and conjunction. Because rules are evaluated in the order they are speci�ed, detectinga disjunction of patterns is implicit. Figure 3.3 gives an abstract syntax for de�ning actions.29



action rules ::= begin action8><>: pattern f where expr g dovis actionend 9>=>;�end actionpattern ::= msg specj msg spec1 and ... and msg specnmsg spec ::= flocalg idt  id : methodj flocalg idt ! id : methodmethod ::= method namej method name(arg list)Figure 3.3: Actions Syntax. Abstract syntax for actions.Actions are structured according to individual component-to-component interactions. Ac-tors communicate by invoking named methods on other actors. Method identi�es a methodof an actor and speci�es the method name and, optionally, an argument list speci�ed by args.Recalling our example from above, sort is a valid method and so is sort(Array A, Integer lower,Integer upper). The purpose of this syntax is to be able to de�ne actions based on the messagespassed among actors as well as the contents of those messages. Note that by convention, selfis never de�ned within an action rule. The remainder of the syntax is de�ned as follows:� flocalg idt  id :method and flocalg idt ! id :method specify a msg spec whichmatches a single message interaction. A  speci�es a method dispatch. A ! speci�esa message send. The keyword local, if present, requires that both participants in theinteraction be members of the visualizer within which this msg spec appears. Methodspeci�es the message passed between the two participants as described above. A msg specis said to match an interaction if:1. The optional local keyword is satis�ed.2. The interaction is a send or method dispatch as appropriate.3. The passed message satis�es the speci�cation of method.30



If the interaction is matched, then idt is bound to the address of the member of thevisualizer sending or dispatching the method in the interaction, and id is bound to theaddress of the other participant in the interaction. If method includes an argument list,then each argument is bound appropriately according to the contents of the message.Note that messages in an actor's mail queue will not match a method dispatch msg specuntil the actor is about to begin processing the method.� msg spec1 and : : :and msg specn de�nes a pattern which matches if and only ifmsg spec1through msg specn may be satis�ed.� pattern f where expr g speci�es the complete visualization event for an action rule.The where expr syntax indicates an optional guard speci�ed as a predicate over the stateof the visualizer and the bindings of any argument list in amsg spec in pattern. If no guardis present, then the event is matched when pattern is satis�ed. If a guard is speci�ed,then the event is matched when pattern is satis�ed and the guard evaluates to true.As mentioned above, patterns are created by assembling msg specs using conjunction andguards. Actions are unique in that they may require multiple interactions before triggering avisualization action. As a result, each time a member of a visualizer is involved in a messageinteraction, the status of each action rule is updated in order. If an action is completelymatched, the appropriate visualization action is invoked. Recall from Chapter 2 that visualizersare required to implement both the use earliest and use once policies. That is, a message maybe used to satisfy a msg spec only if no causally preceding message may be used in its place,and a message may be used to match only one action rule. Until an interaction is used in rulematching it is available to any action rule.3.1.3 Dynamic Behavior RulesDynamic behavior rules are invoked when member components complete the processing of amessage (called a become rule for historical reasons), or when a member of a visualizer instan-tiates a new actor using create (called a create rule). Create rules, in addition to triggering a31



visualization action, may specify the visualizer membership of the new actor. Dynamic behaviorrules de�ne visualization in response to the dynamically changing computational environment.In particular, create rules allow visualizers to update visual abstractions in response to new sys-tem components, while become rules can be used to indicate changes in these abstractions inresponse to coarse grain state change. Figure 3.4 gives an abstract syntax for dynamic behaviorrules. dyn beh rules ::= begin createfcreate ruleg�end createbegin becomefbecome ruleg�end becomecreate rule ::= on behavior from id fjoin vis1,...,visng dovis actionendbecome rule ::= after flocalg id : method dovis actionendFigure 3.4: Dynamic Behavior Syntax. Abstract syntax for dynamic behavior rules.Create rules have two targets, namely, the newly created actor and the member of thevisualizer which created it. Become rules have a single target: the member of the visualizerwhich just completed processing a method. For create rules, self is bound to to the address ofthe newly created actor. For become rules, self is bound to the address of the member of thevisualizer which just completed the method. In addition, for create rules, an identi�er may bebound to the address of the creating actor and the initial visualizer membership of the createdactor may be speci�ed. Similarly, for become rules, an identi�er may be bound to the addressof the actor which invoked the method. In addition, the arguments of the completed methodare accessible within the visualization action triggered by a become rule. The meaning of thesyntax is described below: 32



� on behavior from id fjoin vis1; :::;visng do ::: de�nes a create rule. A create rulematches if the newly created actor has type matching behavior. When the rule matches,self is bound as described above and id is bound to the address of the member of thevisualizer which created the new actor. The optional expression join vis1; :::; visn speci�esa list of visualizers to which the new actor should be added after it has been created. Notethat adding actors in this fashion causes an enter event to be triggered in each visualizer.� after flocalg id : method do de�nes a become rule. When the rule matches, self isbound as described above and id is bound to the actor which invoked the method whichhas just completed. The optional keyword local, if speci�ed, requires that the invokingactor must be a member of the visualizer in which the rule is de�ned. Method refers to avalid method speci�cation as de�ned for action rules above.3.2 ExampleThe linguistic constructs we have described above are suitable for detecting the types of eventswe de�ned in Chapter 2. In particular, visualizers completely encompass the notion of visual-ization groups. Our approach has two key strengths:� Our linguistic constructs respect object integrity and do not provide any functionalitywhich breaks object encapsulation� Action rules are particularly powerful for visualizing coordination as they may triggervisualization actions based on both message patterns and their contents.Moreover, any identi�ers bound in membership, dynamic behavior or action rules remain boundwithin the scope of the triggered visualization action. Thus, our linguistic constructs e�ectivelyparameterize the visualization which they trigger.To illustrate how visualizers are speci�ed syntactically, consider the visualization of pri-mary backup and two-phase commit from Chapter 2. We de�ned two visualization groups,a PrimaryBackup and a TwoPhaseCommit visualization group. Naturally, we will de�ne two33



corresponding visualizers which capture the appropriate interaction patterns. Figure 3.5 givesthe complete code for the PrimaryBackup and TwoPhaseCommit visualizers.The PrimaryBackup visualizer captures interactions between the coordinator and the backup.We use the consistent ag to determine when the two are consistent. In particular, if the backupdispatches an Update message before the coordinator receives any further messages, the twoare consistent. We capture this behavior by setting consistent to true when the coordinatorsends an update, and testing the value of consistent when the backup receives the update. In asimilar fashion, the TwoPhaseCommit visualizer captures interactions between the coordinatorand each participant. We capture the broadcast of a vote request or decision by creating aconjunctive event consisting of all the individual message sends to each participant. Note thatby the use once policy, each message used to satisfy the conjunctive event must be unique.Thus the event is only satis�ed when all messages in the round have been sent. We capture theindividual replies from each participant using a simple message speci�cation event.3.3 DiscussionThe speci�cation of the PrimaryBackup and TwoPhaseCommit visualizers reiterates how visual-ization may be speci�ed within the event-based model without requiring access to componentinternals. In particular, note that none of the event speci�cations required access to actorinternals. All that we require is a speci�cation of the actor's interface. However, the aboveexample also illustrates some of the limitations of the speci�cation language we have provided.For example, it would be more convenient to express the broadcast of a Vote message usinga \wild-card" operator which captures multiple messages invoking the same method. In ourspeci�cation language, such patterns may only be expressed by explicitly listing each of themessages involved.In general, the language we have provided should be extended with more powerful combi-nators for expressing interaction patterns. Nonetheless, our goal in this chapter was to providea basic speci�cation language which could be used to develop visualization for the event-based34



model. The language constructs we have illustrated above completely satisfy this requirement.Furthermore, within each event, the participants and the interactions involved are readily dis-cernible from the description of the event. This allows an unambiguous description of therelationship between execution behavior and the resulting visualization. In the next chapter,we describe the implementation of stagehand, a prototype visualization environment whichimplements the event-based model and completely supports the language described above.
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visualizer PrimaryBackup fbegin varbool consistent;end varbegin enteron Coordinator doDraw circle for coordinatorendon Backup do// Assume consistency initiallyconsistent = true;endend enterbegin action// Coord sends updateCoord ! Back : Update doconsistent = true;end// Coord receives messageCoord  Part : VoteCommit doconsistent = false;Draw square for coordinatorendCoord  Part : VoteAbort doconsistent = false;Draw square for coordinatorend// Backup is consistentBack  Coord : Update where consistent doDraw circle for coordinatorend// Backup is not consistentBack  Coord : Update where !consistent do// Do nothing, discards eventendend actiong

visualizer TwoPhaseCommit fbegin enteron Participant doDraw square for participantendend enterbegin action// Coord sends voteCoord ! P1 : Vote andCoord ! P2 : Vote andCoord ! P3 : Vote andCoord ! P4 : Vote andCoord ! P5 : Vote doDraw vote \funnel"end// Coord sends commit decisionCoord ! P1 : Commit andCoord ! P2 : Commit andCoord ! P3 : Commit andCoord ! P4 : Commit andCoord ! P5 : Commit doDraw commit \funnel"end// Coord sends abort decisionCoord ! P1 : Abort andCoord ! P2 : Abort andCoord ! P3 : Abort andCoord ! P4 : Abort andCoord ! P5 : Abort doDraw abort \funnel"end// Coord receives a replyCoord  Part : VoteCommit doDraw connection to participantendCoord  Part : VoteAbort doDraw connection to participantendend actiongFigure 3.5: PrimaryBackup and TwoPhaseCommit Visualizers. Visualization eventsare de�ned for Backup, Coordinator, and Participant actors. Visualization actions are repre-sented by italicized pseudo-code. 36



Chapter 4Implementationstagehand is a visualization environment designed to extend actor-based systems in orderto support online event-based program visualization. In particular, stagehand implementsthe event-based model described in Chapter 2 and supports the speci�cation of visualizationusing the language constructs de�ned in Chapter 3. In order to test our mechanisms, wechose to extend broadway [34], a prototype environment for building actor-based systems.The accessibility and strict object-oriented design of broadway make it an ideal platform fortesting our ideas.In this chapter, we provide a detailed discussion of the implementation mechanisms used inbuilding stagehand. Section 4.1 provides an overview of the structure of broadway. A moredetailed description of the design methodology which inspired broadway is available in [34].In Section 4.2 we describe the overall architecture of stagehand visualizers. In particular, weprovide a general description of how visualizers are implemented and how broadway actorsare added to visualizers. The implementation of visualizers can be roughly divided into twocomponents: actor event detection and delivery, and rule matching and execution. In Section 4.3we describe the stagehand mechanisms added to broadway in order to implement eventdetection and causal delivery. In Section 4.4 we describe implementation mechanisms for rulematching and visualization action execution. In Appendix C, we provide several fully codedexamples and screen shots using stagehand. 37



4.1 Broadwaybroadway is a prototype programming and run-time support environment implemented inC++ for developing actor-based applications. In particular, broadway provides support fordistributed actor programs including asynchronous communication, dynamic actor creation,and scheduling of actors. Basic actor functionality is augmented with support for migration,exception handling [4], synchronization constraints [13], and modular speci�cation of interactionpolicies [34]. The platform currently runs on Ultrix for DEC MIPS workstations, on Solaris forSUN Sparcstations, and IRIX 5 for SGI workstations.Broadway supports basic actor functionality using a multi-thread scheduler, distributedname service, and platform independent communication service. These facilities are imple-mented using class hierarchies that simplify adding new features to the system. For example,the visualization mechanisms we describe below were implemented as a subclass of the standardactor behavior.Each actor is implemented as a C++ object: the state and methods of the actor are thestate and methods of the C++ object. Each actor also maintains a mail queue to bu�erincoming messages. When an actor is ready to process its next message, the scheduler invokesthe correct method in the C++ object as a new thread. With one notable exception | repliesfrom RPC invocations | only one method may be active for a single actor: there is no internalconcurrency.In addition to run-time functionality, broadway includes a library of system actors. Theseactors include an i/o and �le system interface, a failure detector, and a migration controller.Application actors interact with the system actors using standard asynchronous message pass-ing.4.1.1 Reection in BroadwayIn addition to supporting basic actor application development, broadway is designed to sup-port a limited form of reection using compiled objects. Reection has two manifestations in38



broadway: a dynamic form of reection which allows compositional modi�cations to the actorcommunication mechanism, and a static form of reection which allows transparent interactionwith superclass structures which all actors contain as part of their instantiation. The formermechanism is dynamic because it may be customized on a per-actor basis at run-time. Thelatter mechanism is static because the superclass structure of all actors is �xed at run-time. Inthe next section, we discuss how stagehand utilizes the static reective capabilities suppliedby broadway for the purpose of local actor event detection1.4.2 Visualizer ArchitectureTo provide for a straightforward implementation, we organize visualizers within a single broad-way actor called a VisManager. Upon creation, the VisManager calls the initialization block ofeach visualizer. The VisManager is responsible for managing the membership of all visualizers,collecting actor events and distributing them to the appropriate visualizer, ensuring that visu-alizers see events in the correct causal order, and providing an interface to the modeling andrendering library. In general, stagehand visualization proceeds in three interacting stages:�rst, actor events are detected locally at each application actor and delivered in causal order tothe VisManager; second, the VisManager distributes each actor event to the appropriate visual-izer; and third, each visualizer is given an opportunity to determine if any rules have matchedand to trigger appropriate visualization actions. Figure 4.1 illustrates the relationship betweenapplication actors and the VisManager.In broadway, each application actor is developed as a specialization of the class AClasswhich encapsulates an actor superstructure. The actor superstructure consists of a \fat" classhierarchy using multiple inheritance to allow the customization of several features of the ac-tor run-time system. Figure 4.2 illustrates this superstructure. AClass provides an interface forstandard actor functionality (send, create, etc.) to all subclasses (i.e. application actor classes).1Interested readers should refer to [34] for applications of the dynamic form of reection for the modularspeci�cation of interaction policies. 39
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Event Detection. The VisEvent class determines when the local actor has participated in aninteraction which matches an event in the local detect list, and sends information aboutthe event to the VisManager.Causal Information. The VisEvent class updates local causal information in response to in-teractions with other actors and events caused by the local actor.Figure 4.3 illustrates the functionality of the VisEvent class.
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4. Event speci�c information:� Send, method dispatch, and method completion events require the name of themethod to be detected.� Create events require the type of the actor created.Each visualizer maintains a list of actor events, called a member detect list, which speci�es theexact set of events which its members should detect locally. Actors are added to a visualizer bysending the member detect list to the VisEvent component of the actor which, in turn, adds thelist of events to its local detect list. Actors are removed from a visualizer by simply reversingthe process.Requests to add or remove actors are processed by the VisManager. Actors are added tovisualizers in one of three ways: �rst, an actor may add itself to a visualizer; second, an actormay add another actor to a visualizer if it knows its address2(i.e. an acquaintance); and third,an actor may be implicitly added to a visualizer as a result of a create visualization event.In order to maintain consistency, it is necessary to synchronize the installation or removal ofan actor from a visualizer. This is done via remote procedure calls (RPC) among the involvedactors. Speci�cally, when an actor wishes to change its own membership it initiates an RPCwith the VisManager which adds the actor to the appropriate visualizer and returns the memberdetect list to the calling actor. The caller adds the list to its own local detect list before exitingthe RPC. If an actor wishes to modify the membership of an acquaintance, it again initiatesan RPC with the VisManager. The VisManager, in turn, initiates an RPC with the actor whosevisualizer membership will be modi�ed and passes the appropriate member detect list. Themodi�ed actor performs the appropriate modi�cations to its local detect list and the RPCsunwind to the original calling actor. In the case of an implicit add due to a create, the samescheme is used where the creator calls the VisManager which in turn calls the created actor.2Technically, this feature is not supported by the language constructs de�ned in Chapter 3. However, to helpbootstrap visualization we have added this feature to the implementation of stagehand.43



As discussed above, local events are detected by modifying the send, method dispatch,method completion and create methods in AClass. Speci�cally, when an actor invokes one ofthese methods, control is eventually passed to the local VisEvent instantiation. VisEvent checksto see if the interaction should be reported and returns immediately if no action is required. Ifthe local event should be reported then local causal information is updated, and appropriateinformation about the event is packaged together with causal information and sent to theVisManager. The local detect list is stored as a hash table so that it can quickly be determinedwhether or not an event should be reported. In the case of a create event, some overhead mayresult due to the necessity of adding the created actor to a visualizer. This is unfortunatebut necessary in order to preserve the causal relationship between the create event and anysubsequent interactions involving the created actor.A rather straightforward vector clock protocol, described in Appendix A, is used to storelocal causal information and implement causal delivery at the VisManager. Speci�cally, theVisEvent portion of each visualized actor maintains a local vector clock which is updated in re-sponse to local events and interactions with other actors. The VisEvent portion of non-visualizedactors also maintains a vector clock but only updates the clock in response to information ob-tained from messages received from other actors. This preserves causal relationships betweenvisualized actors who interact through a non-visualized actor.4.4 Rule Matching and ExecutionIn stagehand, visualizers are managed by the VisManager using an interface for relaying eventsreceived from individual actors. Each visualizer speci�cation is compiled into a class with eventhandler methods corresponding to each of the visualization events de�ned for the visualizer.In addition, a visualizer class instance maintains structures which track a list of candidateactor events which may be used to satisfy some visualization event de�ned by the visualizer.Figure 4.4 presents C++ pseudo-code illustrating the basic structure of a visualizer class.44



class compiled_visualizer : public visualizer fpublic:ActorEventList Candidates;Variables from var block copied here/* Constructor calls init code block */compiled_visualizer();/* These methods invoked by VisManager* when a new actor event is received.*/HandleSend();HandleDispatch();HandleCompletion();HandleCreate();/* Visualization action methods for each visualization event.* Code block for each action is invoked by these methods.*/EventEnter_1(); ... EventEnter_n();EventExit_1(); ... EventExit_n();EventAction_1(); ... EventAction_n();EventCreate_1(); ... EventCreate_n();EventBecome_1(); ... EventBecome_n();gFigure 4.4: Compiled Visualizer Class. Each visualizer speci�cation is compiled into aclass with methods for handling each of the various actor events. A list of candidate actorevents which may be used to satisfy a visualization event is maintained by the class.When the VisManager is created (at system startup), an instance of each visualizer speci�cclass is created and initialized by calling the initialization block de�ned in the correspondingvisualizer speci�cation. Each event handler is responsible for determining if an incoming actorevent may satisfy a particular visualization event. When a visualization event is matched,appropriate bindings are generated according to the speci�cation of the related visualizer rule,and the corresponding visualization action is activated. In stagehand, visualization actionsare speci�ed as C++ code blocks. Visual representations are created and manipulated using asimple graphics library described in Appendix B. Note that the event-based model de�ned in45



Chapter 2 requires that visualization actions be atomic. In stagehand, this is accomplishedby serializing the execution of visualization actions. That is, only one visualization actionmay execute at a time. We mandate (but do not enforce) a programming discipline in whichvisualization action blocks terminate in a \timely" fashion. Since a visualization action mayactivate animation primitives, the VisManager periodically handles rendering updates allowingthe initiating visualization action to terminate.The evaluation of enter, exit, create, and become rules is straightforward: it can be immedi-ately determined whether or not the actor event may be used to satisfy a visualization event.For these rules, if an event is satis�ed then the corresponding visualization action is immediatelyinvoked. Determining whether or not an action rule may �re is more involved. Action rulesare compiled into a list of basic message speci�cations, all of which must be satis�ed before theevent may be satis�ed. If a guard is present in the action rule, then the guard expression isattached to this list. When a send or method dispatch actor event is received, the followingsteps are taken for each action rule:1. Test if it may be possible for the new message to satisfy a basic message speci�cation. Ifthis is not possible (for example, there may be a local constraint on the basic messagespeci�cation which the message does not satisfy), then discard the event.2. Add the message to the list of candidates.3. While there is a permutation of causally ordered candidates which has not been tried, do:(a) If the current permutation satis�es all the basic message speci�cations and the op-tional rule guard is satis�ed, then� Fire the associated visualization action.� Remove the used messages from any candidate list in which they are stored.Note that the algorithm above adheres to the use earliest and use once policies as required bythe model. 46



4.5 DiscussionThe static reective capabilities supported by broadway provide a clean mechanism for addingfunctionality to actors. In particular, note that the additions required by stagehand are com-pletely transparent to application code. All the required changes are implemented in the AClasssuperstructure. Existing broadway applications may be visualized simply by recompiling themwith the new AClass.In terms of overhead, the event detection mechanisms require space and time overheadwhich is proportional to the number of actor events which match a particular interaction. Onlya small constant amount of overhead is imposed on actors which are not being visualized. Ingeneral, it is expected that each actor will have a relatively small local detect list, usually onthe order of �ve events or less. As a result, event detection will not impose an unreasonableamount of overhead on visualized actors.The vector clock protocol which implements causal delivery requires space and time overheadwhich is proportional to the number of vector clock entries. We implement a vector clockprotocol, described in more detail in Appendix A, in which the number of vector clock entriesin a single actor will never be more than the number of visualized actors which are causallyrelated. That is, the size of the vector clock will only increase when an actor learns of othervisualized actors by receiving messages. In particular, isolated actors will always have a vectorclock with only a single entry.Several design tradeo�s are possible in the implementation of the rule matching and vi-sualization action execution mechanism. In particular, we could have chosen to implementvisualizers as separate actors rather than encapsulating them within a single VisManager actor.The central approach has the advantage of simplifying causal delivery but results in a ratherbulky actor and serializes the execution of visualization actions. The distributed approachneatly partitions visualizer code but increases overhead due to the need to synchronize thedelivery of causally related events to separate visualizers. Thus, we have utilized the centralapproach in order to provide a straightforward implementation. Future work should consider47



the bene�ts of a distributed implementation such as concurrently executing visualization actionswhen possible, and so on.
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Chapter 5Conclusion5.1 SummaryThe successful design and implementation of complex concurrent systems relies in large part onthe ability to understand and detect errors in interactions among components. To cope withthis issue, this thesis advances the concept of developing program visualizations of concurrentalgorithm execution which can be used to reason about causal behavior and coordination. Wehave developed a model which emphasizes distributed detection of visualization events andcaptures coordination activity with minimal overhead. The event-based model distributes thevisualization mechanism, but enforces a causal connection constraint on visualization actionsto allow the resulting program visualization to be used to reason about system behavior. Weintroduce visualization groups as a technique for de�ning visualization events according to inter-actions over groups of actors. Visualization groups provide appropriate abstraction mechanismsfor capturing both spatially and temporally de�ned coordination patterns.Given that we wish to visualize a distributed computation based on local events, we havedeveloped linguistic support for encapsulating visualization paradigms for groups of actors. Inparticular, a visualizer is a language construct, much in the spirit of abstract data types, whichde�nes visual abstractions and rules which modify these abstractions in response to interactionpatterns. Visualizers are speci�cation transparent in that they need only refer to the interfaces49



of member actors and hence may be speci�ed separately from algorithm code. Rules may bespeci�ed within visualizers which respond to patterns of actor events. Moreover, visualizersmaintain state so that temporal patterns of interaction may be used to satisfy rules.In order to demonstrate the transparent realization of the event-based model and our lan-guage constructs, we have implemented stagehand, a prototype environment for visualizingdistributed computations expressed in the broadway actor-based environment. As per theevent-based model, actor events are detected locally and reported in causal order for the pur-pose of visualization. stagehand provides for execution transparency by way of the staticreective capabilities of broadway and the low-overhead �ltering of interface invocations bythe base actor. We utilize the same mechanism to guarantee the causal connection restrictionwhen triggering visualization actions.5.2 Future Work5.2.1 Linguistic Support for Event PatternsWe provided only rudimentary linguistic support for expressing event patterns in Chapter 3.Our goal has been to express unambiguous patterns fromwhich the participants and interactionsinvolved are readily discernible. However, a more comprehensive environment should includemore powerful event speci�cation mechanisms. In particular, it should be possible to be able toexpress general patterns over all actor events. Moreover, we might wish to allow more exibleconstraint mechanisms for specifying basic interactions. We continue to research more exiblemechanisms for specifying interaction patterns among groups of actors. In addition to thevisualization context, we are also considering interaction patterns as applied to synchronizationand real-time constraints, fault-tolerance requirements, and load balancing and migration.5.2.2 Internal Transition EventsThe de�nition of actor events we have provided is particularly powerful in that it capturescoordination related behavior with breaking object encapsulation. However, as visualization50



becomes more integrated with the debugging process, events which are based on internal actortransitions and state may become desirable. Allowing such an event may not require a completeviolation of object integrity, however. In particular, if the underlying actor system supportsreective descriptions of actor state manipulation then it would be possible to customize reec-tively for the purpose of visualization. Although we have demonstrated that internal transitionsbias views of coordination behavior, we are considering adding reective descriptions of statefor the purpose of supporting these internal events. Such events may prove particularly usefulin a distributed debugging context.5.2.3 Comprehensive Modeling and PlaybackWe have concentrated on specifying visualization event speci�cation and detection mechanismsrather than specifying explicit graphics modeling support. However, a comprehensive modelingand rendering environment is critical for allowing users to create the most appropriate visualabstractions. In particular, features such as a visual control panel for monitoring the visual-ization mechanism as well as more powerful rendering and modeling constructs are required.Moreover, it should be possible to record visualization for later replay and analysis. A com-plete environment should include multiple displays showing both a literal view of the involvedcomponents and their interactions as well as a view showing the visualization generated.We are currently investigating an extension of these ideas in which visualization would becoupled with a distributed debugging environment. In such an environment, event detectionwould be less passive and would allow execution to be retraced in order to discover featuressuch as race conditions, synchronization errors, and so on.
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Appendix AA Simple Vector Clock ProtocolIn order to guarantee that visualization preserves the causal order of the underlying execution,we deliver actor events to the VisManager in causal order. This requires a mechanism for taggingmessages with causal information so that the mail queue can be ordered appropriately. Astraightforward mechanism for implementing causal delivery is to use vector clocks [23]. Vectorclocks are a well known mechanism for implementing causal delivery and several implementationtechniques have been suggested in the literature [28, 33, 7, 24]. The algorithm we describe hereis similar to that described in [23].In a vector clock protocol, each participant maintains a local Lamport clock [17] as wellas a Lamport clock for each participant it has received a message from. One participant isdesignated the observer and will use this vector of clock information from other participants tocausally receive messages. Initially, every participant (including the observer) has their vectorclock initialized with all zeros. When a message is sent to another participant, the messageis tagged with the vector clock being maintained locally. When a message is received from aparticipant, the vector tag is inspected and all local clocks except for the recipient's clock areupdated with the latest values.When an interesting event occurs at a participant, the participant's local clock is incre-mented and an event message is sent to the observer tagged with the local vector clock. Using52



the observer's own vector clock together with the vector clock tag of incoming messages, thefollowing delivery rule is used:Delivery Rule: Let Vobs be the observer's vector clock. Let Vm;i be the vector clock tag ofmessagem sent from participant i. Then, messagem should be delivered as soon as bothof the following conditions are satis�ed:Vobs(i) = Vm;i(i)� 1Vobs(j) � Vm;i(j) 8j 6= iThe �rst condition guarantees that all causally preceding messages from the sender have alreadybeen delivered. Similarly, the second condition guarantees that all messages which causallyprecede the message m have already been delivered.The protocol given above is fairly straightforward to implement. However, two issues mustbe resolved: �rst, how should participants be added to the protocol; and second, how shouldvector clock information be stored. The �rst issue is fairly important when considering event-based visualization since it is likely that participants will added to the protocol quite often. Thesecond issue is important when considering space overhead. In particular, recall that we desirevisualization mechanisms which do not require oppressive amounts of overhead. The remainderof this appendix discusses how vector clocks are implemented in stagehand.Considering the �rst issue, observe that the knowledge that a new participant has joinedthe protocol is only required by participants which interact with the new member. However,this information will be naturally transmitted the �rst time the new member sends a message.In particular, the new member will attach a vector clock tag which will always include its localclock. Thus, new members will be discovered when other participants receive messages withvector clock entries that are not present in the locally maintained list. The observer will learn ofnew members in a similar fashion. In short, no extra overhead is required to add a participantto the protocol, the new participant is simply told to begin maintaining a vector clock.In light of the �rst issue, it seems logical to only require a participant to store clock in-formation concerning participants which it has interacted with (i.e. received messages from).53



Thus, in stagehand, a vector clock consists of a list of address-clock pairs where each entrycorresponds to vector clock information obtained from a received message, plus an extra entryto maintain the participant's own local clock. All other participants will have an implicit clockvalue of zero which need not be stored in this list.The implementation described above may be formalized as follows. Each participant tagsall outgoing messages with the local vector clock. When a participant i with vector clock Vireceives a message m with vector clock tag Vm, the following algorithm is performed:1. For each address-clock pair (a; c) 2 Vm do the following:(a) If a 6= i and a is not an address in the local vector clock, then add (a; c) to the localvector clock.(b) If a 6= i and c > Vi(a), then set Vi(a) = c.Similarly, upon receiving a message, the observer performs the following algorithm:1. For each address-clock pair (a; c) 2 Vm do the following:(a) If a is not an address in the local vector clock, then add (a; 0) to the local vectorclock.2. Add message m to the local mail queue.3. Deliver all messages in the local mail queue which satisfy the vector clock delivery rules.When message m from participant i is delivered:(a) Increment the value for i in the local vector clock.Note that in the case of the observer, when a new participant is discovered, the local clock isinitialized to zero. This guarantees that the observer will not miss any events.54



Appendix BModeling and Rendering SupportB.1 OverviewVisualization actions are invoked when a rule in a visualizer is satis�ed by some interaction. Thepurpose of visualization actions is to update the graphical display based on the algorithm eventdetected. Components and their interactions are represented by graphical abstractions whichmay be manipulated by multiple visualizers. Thus, linguistic constructs are necessary whichsupport both a wide range of modeling attributes as well as mechanisms for arbitrating sharedmanipulation of models among visualizers. In stagehand, visualization actions manipulateobjects in a hierarchical modeling environment [12]. Models are rendered in 3D with lightingand animation which may be speci�ed within visualization actions.Visualization actions are speci�ed as blocks of C++ code which are parameterized by identi-�ers in the triggering event. Objects in the modeling environment are represented as instancesof special modeling classes which support object-speci�c attributes. User-de�ned attributesmay be assigned to modeling objects for customization. Models are organized into scene hier-archies composed of objects from the modeling hierarchy. Scene hierarchies specify a view whichde�nes camera position and one or more lights or surfaces representing the scene. Figure B.1illustrates the modeling hierarchy. 55
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LightFigure B.1: Model Hierarchy. Hierarchy of objects for creating visualization.Each modeling object maintains a list of attributes which determines its appearance. Someobjects, such as groups and views, are not displayed and maintain parameters which determinegeneral features of the scene. We briey describe each of the modeling objects below:Group. A group object maintains a list of children objects and is used to build more complex,hierarchical scenes.View. A view object de�nes a camera in a scene and maintains parameters which determinethe position of the viewer. A view is a subclass of group and inherits the ability to managechildren. Only the children of a view are visible through its camera.Point Light, Spot Light. These objects de�ne light sources in a scene and maintain relatedparameters such as position, color, brightness, and so on.Polygon, Mesh, Cube, Sphere, Cone, Cylinder. These objects de�ne actual visible ob-jects and maintain parameters such as color, position, radius, shininess, surface normals,and so on.Each object requires speci�c attributes in order to de�ne its position, appearance, andstructure. View and group objects are used to build and view scenes. Thus, view and groupobjects de�ne default settings for all properties which are inherited by the objects they organize.In particular, the objects organized under a group or view may be manipulated as a single unitby modifying group or view attributes. The following attributes are supported by stagehandmodeling objects: 56



Transform. This attribute de�nes the set of transformations which should be applied to theobject. Objects may be scaled, rotated or translated. All objects use the transformattribute.Camera. This attribute de�nes camera position, window size, view up and aspect. Thisattribute is only used by view objects.AmbientLight. This attribute de�nes the ambient contribution to the shading of all objectsin the current view. This attribute is only used by view objects.SurfColor, SurfSpecColor, SurfShininess, SurfEmissiveColor, SurfAmbientColor.These attributes de�ne surface shading properties for any viewable object. These at-tributes are only used by the polygon, mesh, cube, sphere, cone, and cylinder objects.MeshData. This attribute de�nes surface properties for each facet of a mesh. This attributeis only used by mesh objects.CubeVert1, CubeVert2. These attributes de�ne the opposite corners of a cube object. Thisattribute is only used by cube objects.LightStatus, LightColor, LightPosition, LightExp, LightAngle, LightDir. These attributesde�ne properties of a light source. These attributes are only used by point and spot lightobjects.SphereRadius. This attribute is used to set the radius of a sphere object. This attribute isonly used by sphere objects.CylRadius, CylHeight. These attributes de�ne the radius and height of a cylinder object.These attributes are only used by cylinder objects.ConeRadius, ConeHeight. These attributes de�ne the radius and height of a cone object.These attributes are only used by cone objects.Children. This attribute speci�es a list of children objects. This attribute is only used byview and group objects. 57



PolyVerts. This attribute speci�es the vertices of a planar polygon. This attribute is onlyused by polygon objects.In addition to the attributes above, each object supports the methods setPropVal and get-PropVal which allow arbitrary data to be associated with an object and referenced by a stringname. This mechanism allows users to customize properties of each object.The organization of objects into scene hierarchies allows for a natural approach to scenemodeling where objects are manipulated by local modeling transformations. In addition, scenehierarchies are easy to transform into displays. In particular, a scene hierarchy is rendered byway of a traversal [14]. A scene traversal is accomplished by the following pseudo-code functionwhich is called with the top object of the scene hierarchy and the empty list as initial arguments:function SceneTraversal( Object top, TraversalStateList state) fTraversalStateList old;old := state;Update state from the attributes of top;if ((top.type = view) or (top.type = group)) ffor each i in top.childrenSceneTraversal(i, state);g elseRender object using properties from state;state := old;gEssentially, a stack of attributes is maintained using a TraversalStateList and passed recursivelydown the scene hierarchy. In this fashion, attributes are inherited down the scene hierarchyfrom parent objects. 58



B.2 Using Modeling ObjectsModeling objects are created by instantiating the appropriate modeling hierarchy classes. Ob-jects are maintained as part of the state of one or more visualizers. In particular, declarationsof modeling objects may be speci�ed as part of the variable and initialization sections of avisualizer. At a minimum, at least one view object must always be speci�ed in order to viewmodeling objects. Speci�c examples of the declaration and manipulation of modeling objectsare provided in Appendix C.Because visualizers do not share state, but may share members, it may be the case that asingle visual representation is used to represent an actor which is a member of several visualizers.Thus, we require a mechanism for obtaining references to modeling objects maintained by othervisualizers. The setPropVal and getPropVal support routines described above may be used tosupport this functionality. In particular, the global support function FindObjectWithProp takesas argument a list of property names and returns the list of objects in all scene hierarchieswhich de�ne the given properties. Similarly, the function FindObjectWithVal takes as argumenta list of property name/value pairs and returns the list of objects in all scene hierarchies inwhich each given property in each object has the speci�ed value.Primitive animation support is provided for transforming modeling objects. The apply-Transform function applies a given transformation to a modeling object a speci�ed numberof times, rendering the scene after each application. Only one object at a time may be an-imated using applyTransform. To allow multiple object transformations, the addAnimRequestfunction may be used to specify several modeling objects and corresponding transformations.Animation requests added in this fashion are processed concurrently by calling the functionprocessAnimRequests, which regenerates the scene after each transformation. The VisManageractor periodically calls processAnimRequests to guarantee that any requests added within avisualization action are eventually processed. 59



B.3 ImplementationThe modeling support described above is not tied to any speci�c computer graphics library.In particular, the scene traversal algorithm is non-library speci�c. Only the actual renderingroutines must be customized for di�erent computer graphics libraries. In light of this obser-vation, we have implemented modeling support using a graphics library independent front-endwhich may be linked to an appropriate graphics library speci�c back-end for handling displaygeneration.We have implemented each modeling primitive as a C++ class which inherits from the Prop-ertyManager class. The PropertyManager class manages instances of the properties describedabove. Each primitive class de�nes a general set of modeling and rendering support routinescustomized for the primitive. Actual rendering code, however, is speci�ed as a stub which islinked to an appropriate graphics library speci�c class method. Models are created and renderedusing the library independent interface where control is passed to the library speci�c routineswhen rendering is required.Using this approach, a general purpose front-end, and back-ends for the Tcl/Tk [22] andGL graphics libraries have been implemented.
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Appendix CExamplesIn this chapter, we provide two fully coded examples of the use of stagehand for specifyingvisualization. For each example, we briey describe what is being visualized, outline the corre-sponding actor code, provide the full visualizer speci�cation for visualizing the execution, andprovide screenshots from the actual visualization. In Section C.1, we visualize a simple dis-tributed implementation of the Fibonacci function. In Section C.2, we visualize the two-phasecommit and primary backup protocols �rst introduced in Chapter 2.C.1 A Distributed Fibonacci ApplicationThe Fibonacci function represents a classic example of a recursive control structure. Actor-based systems yield a natural distributed implementation of such structures. Figure C.1 illus-trates a pseudo-code implementation of the Fibonacci function. A single Fibonacci actor (notshown), called the server, is created to service all requests to compute the Fibonacci function.Clients request computation by sending the method FibCall to the server. In order to servicethe request, the server creates a FibWorker actor and passes the value requested along withthe address of the requesting customer. A FibWorker will immediatedly return a result if thevalue requested is less than two. Otherwise, two additional FibWorkers are created to handle61



the recursive cases. Note that because each Fibonacci request is distributed, multiple requestsmay be handled concurrently. Furthermore, recursive sub-requests are handled concurrently.In order to demonstrate how Fibonacci requests are satis�ed, we will create a simple vi-sualization of the creation of FibWorkers and the delegation of tasks via message passing. Inparticular, we will represent a Fibonacci request as a tree of FibWorkers and use animation toshow messages passed among the tree's components. We will use color changes to indicate whenFibWorkers have completed various stages of their computation.Figures C.2, C.4, and C.5 illustrate the complete code required to visualize the Fibonaccifunction. Figure C.2 outlines the Fibonacci visualizer. We require global variables to managethe view and the address of the �rst FibWorker created to satisfy a request. In the init section,we initialize the position of the view. Figure C.4 gives the action rule block for the Fibonaccivisualizer. The rules de�ned in this block animate the exchange of information via messagepassing between FibWorkers. In particular, the send portion of an exchange causes a visualrepresentation of the message to be moved from the sender halfway to the receiver. The corre-sponding receive portion of an exchange causes the visual representation to be moved to thereceiver. To illustrate how state is a�ected by information exchange, the visual representationof a FibWorker is colored red when it is created, yellow when it has received one reply froma recursive sub-request, and green when it has received both replies and has sent its resultto its client. Finally, Figure C.5 gives the create rule block for the Fibonacci visualizer. Thecreate rule simply creates the visual representation for new FibWorkers. We assign properties tothe visual representation in order to maintain information about the corresponding FibWorker.In particular, we store the value of the request that this FibWorker is processing. New visualrepresentations are positioned relative to the creating FibWorker so that a tree-like structure ofvisual representations is maintained.Figure C.3 shows several frames from the resulting visualization.62



C.2 Two-Phase Commit with Primary BackupIn Chapter 3 we introduced an example of a visualization of a primary backup protocol overlap-ping with a two-phase commit protocol. In this section we give the complete code for generatingthis visualization. Figure C.6 gives a pseudo-code speci�cation of the relevant actors. In reality,each actor would have several other application speci�c methods. However, we only illustratethose methods pertinent to the visualization. Moreover, we assume that the coordinator peri-odically sends state updates to its backup.The Backup actor contains the single method update, which is called by the Coordinator inorder to pass state updates. The Participant actor de�nes the methods vote request, commit,and abort. The vote request method is called by the Coordinator at the start of a two-phasecommit. The commit and abort methods are used by the Coordinator to notify the Participant asto what action should be taken. Finally, the Coordinator actor de�nes the methods vote commitand vote abort which are used by the Participants to register votes. As in Chapter 3 we assumeone Coordinator and �ve Participants.We have described the speci�cation of the PrimaryBackup and TwoPhaseCommit visualizersin some detail in Chapter 3 thus we will not reiterate that discussion here. Figures C.8 and C.9give the complete code for both visualizers. Figure C.7 shows several frames from the resultingvisualization.
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Actor FibWorker fInt return val;Bool �nished;Actor client;Method FibCall(Int request, Actor customer) fif ( request � 1) thensend FibReply(1) to customer;else fleft = create FibWorker;right = create FibWorker;�nished = false;client = customer;send FibCall(request - 1, self) to left;send FibCall(request - 2, self) to right;gg
Method FibReply(Int result) fif �nished thensend FibReply(result + return val) to client;else f�nished = true;return val = result;ggg

Figure C.1: A Distributed Implemention of Fibonacci. The Fibonacci actor receivesrequests to compute the Fibonacci function. FibWorker actors are created dynamically toservice the request and return the result to the client.// Visualizer for the �bonacci examplevisualizer �b vis fbegin var// Global VariablesviewVO vRoot;Address root;int start=false;end var begin init// Set camera positionvRoot.Camera setVRP(0,0,0);end initAction rules: Figure C.4Create rules: Figure C.5gFigure C.2: Outline of Fibonacci Visualizer. The structure of the Fibonacci visualizer.Figure C.3: Fibonacci Screenshots. Blue circles indicate messages being passed betweenFibWorkers. The �rst frame shows the status of a request shortly after it has begun: threemessages are in transit and no processing has been completed. The second frame shows partialcompletion of the request: four FibWorkers have completed processing. The last frame indicatesthat all but the far left FibWorkers have completed processing.64



begin action// Send �b calllocal a -> b : �b call do// Find objects rep. sender and receiversend=FindObjectWithVal("address", a);rcv=FindObjectWithVal("address", b);pos s=send->getPropVal("pos");pos r=rcv->getPropVal("pos");// Animate message sendmObj=new sphereVO;vRoot.addChild(mObj);mObj->SurfColor color(blue);mObj->Transform translate(pos s);rcv->setPropVal("call msg", mObj);vRoot.animTranslate(mObj, pos s,0.5*pos r);end// Receive �b calllocal b <- a : �b call do// Find objects rep. sender and receiversend=FindObjectWithVal("address", a);rcv=FindObjectWithVal("address", b);pos s=send->getPropVal("pos");pos r=rcv->getPropVal("pos");// Finish animation of message deliverymObj=rcv->getPropVal("call msg");vRoot.animTranslate(mObj, 0.5*pos r,pos r);vRoot.removeChild(mObj);vRoot.renderObject();ends <- d : �b call(Integer req) where !start do// Event will be triggered on the initial requestroot=s; start=true;new sphere=new sphereVO;new sphere->SurfColor color(red);new sphere->SphereRadius setValue(10.0);// Set sphere propertiesnew sphere->setPropVal("request", req,"address", s, "child", 0,"pos", (0,0,0));vRoot.addChild(new sphere);vRoot.renderObject();end

// Send �b replylocal a -> b : �b reply do// Find objects rep. sender and receiversend=FindObjectWithVal("address", a);rcv=FindObjectWithVal("address", b);pos s=send->getPropVal("pos");pos r=rcv->getPropVal("pos");// Change color of sendersend->SurfColor color(green);// Animate message sendmObj=new sphereVO;vRoot.addChild(mObj);mObj->SurfColor color(blue);mObj->Transform translate(pos s);send->setPropVal("reply msg", mObj);vRoot.animTranslate(mObj, pos s,0.5*pos r);end// Receive �b replylocal b <- a : �b reply do// Find objects rep. sender and receiversend=FindObjectWithVal("address", a);rcv=FindObjectWithVal("address", b);pos s=send->getPropVal("pos");pos r=rcv->getPropVal("pos");// Finish animation of message deliverymObj=send->getPropVal("reply msg");vRoot.animTranslate(mObj, 0.5*pos r,pos r);rcv->SurfColor color(yellow);vRoot.removeChild(mObj);vRoot.renderObject();ends -> d : �b reply where s == root do// Result sent to clientrootObj=FindObjectWithVal("address", s);rootObj->SurfColor color(green);vRoot.renderObject();endend actionFigure C.4: Action Block for Fibonacci Visualizer. Action rules for the Fibonaccivisualizer. 65



begin create// Create rep. for new actoron FibWorker from creator join �b vis do// Find the object representing our parentparent=FindObjectWithVal("address", creator);// Set up a new sphere for this actorrequest=parent->getPropVal("request") - 1;sub space=powf(2, request - 1) * hor spacing;pos=parent->getPropVal("pos");child=parent->getPropVal("child");us=new sphereVO;us->SurfColor color(red);us->SphereRadius setValue(10.0);us->setPropVal("request", request,"address", self, "child", 0);pos.y -= vert spacing;if (child == 0)pos.x -= 0.5 * sub space;elsepos.x += 0.5 * sub space;us->setPropVal("pos", pos);parent->setPropVal("child", child + 1);// Transform, add ourselves, and viewus->Transform translate(pos);vRoot.addChild(us);vRoot.renderObject();endend createFigure C.5: Create Block for Fibonacci Visualizer. A create rule for the Fibonaccivisualizer.
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Actor Backup fMethod update(State coord) fRecord state of coordinatorggActor Coordinator fMethod vote commit(Address part) fRecord vote from participantgMethod vote abort(Address part) fRecord vote from participantgg
Actor Participant fMethod vote request(Address coord) fSend our vote to the coordinatorgMethod commit fCommit the transactiongMethod abort fAbort the transactionggFigure C.6: Primary Backup and Two-Phase Commit Actors. The Backup actorperiodically receives state updates from the Coordinator through the update method. The Co-ordinator sends vote requests to participants and receives replies through the vote commit andvote abort methods. Similarly, Participants return their vote when they receive a vote requestand receive the Coordinator's decision through the commit and abort methods.

Figure C.7: Two-Phase Commit with Primary Backup Screenshots. On the left, thevote request message has been broadcast and three participants are in the process of replying.The coordinator and backup are consistent. On the right, all votes have been received and thecoordinator has broadcast the abort message. 67



visualizer PrimaryBackup fbegin var// Global variablesviewVO vRoot;VO cur rep;sphereVO coord1;cubeVO coord2;// Consistent agint consistent;end varbegin init// Set camera positionvRoot.Camera setVRP(0,0,0);vRoot.setPropVal("theView", 0);end initbegin enter// Create coordinator representationon coordinator docoord1.SurfColor color(green);coord2.SurfColor color(green);coord1.SphereRadius setValue(20.0);coord2.CubeVert1 position(-15.0, -15.0, 0.0);coord2.CubeVert2 position(15.0, 15.0, 0.0);cur rep = coord1;vRoot.addChild(cur rep);vRoot.renderObject();end// Assume consistency initiallyon backup doconsistent = true;endend enterbegin action// Coord sends updateCoord -> Back : update doconsistent = true;end

// Coord receives messageCoord <- P : vote commit doconsistent = false;if (cur rep != coord2) fvRoot.removeChild(coord1);cur rep = coord2;vRoot.addChild(cur rep);vRoot.renderObject();gendCoord <- P : vote abort doconsistent = false;if (cur rep != coord2) fvRoot.removeChild(coord1);cur rep = coord2;vRoot.addChild(cur rep);vRoot.renderObject();gend// Backup is consistentBack <- Coord : update where consistent doif (cur rep != coord1) fvRoot.removeChild(coord2);cur rep = coord1;vRoot.addChild(cur rep);vRoot.renderObject();gend// Backup is not consistentBack <- Coord : update where !consistent do// Do nothing, discards eventendend actiongFigure C.8: Visualizer for PrimaryBackup. Visualizer for primary backup interactions.68



visualizer TwoPhaseCommit fbegin varVO *view;cubeVO parts[5];coneVO funnel;int cur part;end varbegin init// Find the view, init primitivesview = FindObjectWithProp("theView");for (i=0; i<5; i++) fparts[i].SurfColor color(blue);parts[i].Transform translate(100, (2-i)*50, 0);gfunnel.ConeHeight setValue(70.0);funnel.ConeRadius setValue(100.0);end initbegin enter// Create rep. for participanton participant doview->addChild(parts[cur part]);parts[cur part].setPropVal("address", self);parts[cur part].setPropVal("y",(2-cur part++)*50);view->renderObject();endend enterbegin action// Coord sends votecoord -> p1 : vote request andcoord -> p2 : vote request andcoord -> p3 : vote request andcoord -> p4 : vote request andcoord -> p5 : vote request dofunnel.SurfColor color(red);view->addChild(funnel);view->renderObject();end// Coord sends commit decisioncoord -> p1 : commit andcoord -> p2 : commit andcoord -> p3 : commit andcoord -> p4 : commit andcoord -> p5 : commit dofunnel.SurfColor color(yellow);view->renderObject();end

// Coord sends abort decisioncoord -> p1 : abort andcoord -> p2 : abort andcoord -> p3 : abort andcoord -> p4 : abort andcoord -> p5 : abort dofunnel.SurfColor color(cyan);view->renderObject();end// Participant sends responsepart -> coord : vote commit doP = FindObjectWithVal("address", part);y = P->getPropVal("y");reply = new sphereVO;reply->SurfColor color(magenta);P->setPropVal("msg", reply);view->addChild(reply);view->animTranslate(reply,100,y,0,50,y/2,0);endpart -> coord : vote abort doP = FindObjectWithVal("address", part);y = P->getPropVal("y");reply = new sphereVO;reply->SurfColor color(magenta);P->setPropVal("msg", reply);view->addChild(reply);view->animTranslate(reply,100,y,0,50,y/2,0);end// Coord receives a replycoord <- part : vote commit doP = FindObjectWithVal("address", part);y = P->getPropVal("y");reply = P->getPropVal("msg");view->animTranslate(reply,50,y/2,0,0,0,0);view->removeChild(reply);view->renderObject();endcoord <- part : vote abort doP = FindObjectWithVal("address", part);y = P->getPropVal("y");reply = P->getPropVal("msg");view->animTranslate(reply,50,y/2,0,0,0,0);view->removeChild(reply);view->renderObject();endend actiongFigure C.9: Visualizer for TwoPhaseCommit. Visualizer for two-phase commit interactions.69
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