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Abstract

We describe the problem of data dissemination in
stream-oriented applications where the required filteris a
function of the current state. We call such functions dy-
namic filters. A State Aware Data Dissemination Net-
work (SA-DDN) is proposed to support dynamic filters.
Two approaches Single-level Filtering (SF) and Multi-
level Filter Decomposition (MFD) are proposed to facil-
itate the data dissemination. We show how MFD im-
proves performance over SF. We then describe a real-
ization of SA-DDN on top of an improved bi-directional
Chord overlay with a built-in multicast mechanism. An
application of stock price monitoring is implemented
based on SA-DDN and real life stock quotes are collected
to demonstrate the feasibility of our system. Extensive
simulations are performed to compare the performance
of both approaches and provide insight into the advan-
tages of MFD.

1. Introduction

The advancement of the P2P paradigm has proved
it to be a feasible means for data dissemination and
file storage. Recently, there has been an increased in-
terest in applying P2P techniques to publish/subscribe
systems [3, 17, 5, 7, 12, 1]. One common character-
istic shared by all the above applications is that the
data filter is static: once a subscriber submits a filter,
the filter no longer changes. In this work, however, we
consider applications where subscribers register consis-
tency requirements to the Data Dissemination Network
(DDN). The consistency value indicates the maximum
inconsistency allowed between the data source and des-
tinations. We call this type of filters dynamic filters: the
value of the filter varies with the current state of indi-
vidual subscribers. We use this setting to study appli-
cations where the consistency of data could be traded
for communication overhead.

In the case of streaming data, such as stock quotes
or sensor readings, we see an opportunity for a new
pattern of data dissemination. Observe that with the
data that is generated continuously in large quantities,

it is infeasible to deliver every piece of datum gener-
ated. Fortunately, for such data sets, subscribers are
not interested in exact values of the data stream, but
in a quantitative approximation to these values. For
example, in a distributed sensor network that continu-
ously monitors environmental conditions such as light
and temperature, a bounded approximation of sensor
readings could greatly reduce the communication over-
head and hence prolong the lifespan of sensors’ bat-
teries. Other targeted applications may include stock
quotes services, sports score monitoring, wide-area re-
source accounting, etc.

Dynamic filters are filters moving with the current
state of each subscriber and hence a naive way to sup-
port dynamic filters in Pub/Sub systems with static
filters is to continuously de-register and re-register the
filters as the underlying state changes. Such repeated
registration incurs a high publication cost. The obvious
way to reduce such publication cost is to store the filter
in terms of the consistency requirement together with
the local states last communicated to each subscriber.
We call this scheme Single-level Filtering (SF). We im-
prove on SF by proposing Multi-level Filter Decomposi-
tion (MFD). MFD decomposes the filters in such a way
that proper structures could be constructed to prune
the dissemination.

The main contributions of our work are twofold.
First, we recognize the importance of supporting dy-
namic filters in Pub/Sub systems. To the best of our
knowledge, this paper is the first to study dynamic
filters over structured overlays. Second, we describe
two approaches, namely SF and MFD, to address the
problem. Comprehensive experiments are conducted to
compare the performance and demonstrate the feasi-
bility of our approaches in medium-sized networks. We
implement our system using bi-directional Chord with
a built-in multicast mechanism.

It is important to point out some limitations of our
approach. First, the approach is targeted for quantita-
tive data streams only. Qualitative data streams such
as news feed, blog entries would need to be dealt with
differently. Second, MFD in particular, only works with
symmetric consistency bounds (i.e. where the consis-
tency value defines half the consistency range).



The rest of the paper is organized as follows. Sec-
tion 2 discusses some of the related work. Section 3,
formally defines dynamic filters. Section 4 presents the
overall system design and various aspects of building
the system. Section 5 shows our evaluation methodol-
ogy and results. Section 6 concludes the paper with a
brief discussion and future work.

2. Related Work

Recent years have seen an increased interest in
building Pub/Sub systems on top of structured P2P
overlays. Much of the previous work has leveraged the
self organization, scalability and fault tolerance capa-
bilities of structured overlays to build Data Dissemina-
tion Networks (DDNs). Scribe [3] and Bayeux [17] are
two earlier attempts to build subject-based pub/sub
systems on top of Pastry[9] and Tapestry [16] respec-
tively. More recent work focuses on content-based
pub/sub systems, which support more expressive sub-
scriptions of finer granularity and possibly range
constraints. These approaches differ in the choice
of underlying overlays and how subscriptions are
mapped to overlay addresses. In particular, [5] sup-
ports subscriptions of range constraints by convert-
ing a n-dimensional range to a point in 2n-dimensional
space and deriving a proper scheme to map logical par-
titions to CAN [8] nodes. [7] builds over Pastry [9]. By
choosing the right combination from foward and re-
verse path of subscription and advertisement, it
supports both subject-based and content-based sub-
scriptions. Both [12] and [1] use Chord [11] as the
underlying overlay. [12] proposes an order preserv-
ing Chord where each attribute domain occupies a
continuous segment of the Chord ring, while [1] intro-
duces a general architecture that adopts an abstract
stateless mapping.

All these previous works deal with static filters. Al-
though dynamic filters or equivalent ideas are emerging
as a new pattern in data dissemination and collection,
to the best of our knowledge, no significant works have
been dedicated to study dynamic filters over structured
overlays. We consider [10] as most related to our work.
[10] defines the notion of coherence, which is equiva-
lent to the notion of consistency in our work. However,
[10] builds on unstructured overlays , where the data
assignment and the client assignment problem are con-
sidered separately. With the help of structured P2P
overlays, we could address both problems using a uni-
fied framework with performance guarantee.

We observe the counterparts of dynamic fil-
ters in other research contexts, with different concerns
and solutions. [6] addresses the problem of persis-
tent queries with precision requirements over contin-
uous data streams. However, their approach is cen-
tralized, which does not scale to large networks. In
the context of replicated network service, [15] fo-
cuses on algorithms to efficiently bound absolute

error among replicated services using only local infor-
mation. However, they are not concerned with data
dissemination or other network issues such as self or-
ganization, scalability. [2] and [14] have studied con-
sistency maintenance in the context of web caching. In
web caching, the staleness of the data object is mea-
sured by time while in our context, it is measured by
value. Maintaining consistency based on time is con-
sidered as a simpler problem since time only monoton-
ically increases while values could fluctuate in both
directions.

3. Problem Statement

A typical content based subscription is usually rep-
resented in a range form: d € [2,5], suppose d repre-
sents the data item that the subscriber is interested
in. Once the filter is registered into the network, it
remains the same throughout its lifetime. In a SA-
DDN, however, situations change. A subscriber s spec-
ifies a maximum consistency value cgq for d, which
can be translated to a content based subscription as
[©3(t) — coa, ©3(t) + csal, where OF(t) denotes the state
of subscriber s for data source d at time ¢. Only data
values that fall outside this range are to be delivered
to the subscriber s. After each content delivery, the
state of the subscriber is refreshed and the filter is re-
centered. Hence in SA-DDN, the filter moves with the
state of the subscribers.

To formally define the problem, we let D denote the
set of all data items and let d range over D. Each data
item d represents a data source which continuously gen-
erates a data stream vy and vy (t) returns the value at
time t. We use S to denote the set of subscribers and
let s range over S. One data item might be interest-
ing to many subscribers and one subscriber might be
interested in many data items. We use Dy to repre-
sent the subset of data items that s is interested in.

A subscription is a vector (subI D, d, ¢4, $). To guar-
antee the uniqueness of each subl D, we keep a counter
at individual subscriber. The subI D is constructed by
concatenating the subscriber s with the sequence num-
ber. The consistency value csq indicates how much in-
consistency that the subscriber is willing to tolerate be-
tween the value at the data source and locally.

For each data item d € Djs, subscriber s keeps
a sequence of local states ©j which is a subset of
vg. In an ideal situation where there is no message
delay, this inequality holds for any time instance t¢:
[va(t) — ©5(t)| < csq- Based on the local state ©5(t)
and the consistency value czq, we can compute the con-
sistency range () as [©5(t) — csq, O5(t) + csa]. The
consistency range defines a safe zone for the subscriber
centered at ©7(t). csq defines half of the range width.

Some basic assumptions are made which are com-
monly adopted by most of today’s DDN when building
our system. First, each subscriber or publisher knows
at least one broker node, the bootstrap node. Second,



we assume unique data source or multiple data sources
with no data conflicts. The problem to integrate con-
flicting data from multiple sources is in itself an open
research problem and hence orthogonal to the prob-
lem that we are to address here. Third, without loss of
generality, data values are converted to integers. Indi-
vidual data items and hence the consistency values are
bounded, although may be of different range.

4. System Design

Data Dissemination Layer

Publication Layer || Subscription Layer

Multicast Mechanism

Bi-directional Chord Layer

Figure 1. The System Design of the DDN

Figure 1 shows the block design diagram of SA-
DDN. The underlying layer is the bi-directional chord
routing layer. We believe that multicast is an intrin-
sic mechanism for our problem. Since multicast is not
part of the Chord protocol, we build another multi-
cast mechanism on top of the Chord layer. The main
part of our system is the DDN layer, which consists
of two functional layers: the publication and the sub-
scription layer. In the rest of this section, we will dis-
cuss each layer in detail.

4.1. Bi-directional Chord Layer

Chord [11] is one of the most influential overlay in
the realm of Distributed Hash Tables (DHTSs). Rout-
ing in original Chord is uni-directional, which is not
optimal. [4] discussed optimal routing in Chord which
routes in both directions along the circular ring. For
base 2, the optimal average path length is O(b/3) where
b is the diameter of the ring. However, in order to re-
alize such algorithm, we need to double the size of the
finger table. To keep the size of original finger table,
instead of base 2, we use base 4 and create fingers
for both directions. For either direction, the ith en-
try stores information about those nodes which is at
least 4'~1 apart from the current node. Once we get
the entries for both directions, the final finger table is
constructed by sorting all the fingers from both direc-
tions and remove the duplicates. Figure 2 shows the de-
tailed greedy bi-directional routing algorithm. CLOSES-
TFINGER(k) returns the finger closest to k in terms of
absolute distance. The absolute distance is computed
by taking the minimum of distances computed in both
clockwise and anti-clockwise directions. The original
Chord uses only clockwise distance.

Figure 3 shows the comparison of uni-directional
chord and our bi-directional chord in terms of aver-

n.FINDSucc*(k) :
if k € (n,n.successor|
return n.successor;
elseif k € (n.predecessor,n]
return n;
else
return n.CLOSESTFINGER (k);

Figure 2. The algorithm for finding the successor
of key £ on each node
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Figure 3. Comparison of bi-directional and uni-
direction Chord in terms of average path length

age path length. We also show the performance of op-
timal routing for comparison purpose. The number of
nodes increases from 100 to 3200, doubling each run.
Our bi-directional Chord gives a performance which is
close to optimal.

4.2. Multicast Layer

As Chord is mainly designed as a point-to-point pro-
tocol, it lacks a basic multicast mechanism which is in-
dispensable in a data dissemination network. Since in
Chord a linear order is imposed on all the participat-
ing nodes to form the ring, this characteristic could be
used to construct an efficient multicast primitive.

If we view broadcast in Chord as forming a span-
ning tree rooted at the node which initiates the ac-
tion, multicast in Chord effectively prunes the span-
ning tree to explore only those branches which lead to
required destinations. [1] implements a multicast prim-
itive with uni-directional Chord. We now show how we
implement a generic multicast primitive based on bi-
directional Chord. Given a list of destinations and a
sorted finger table, each finger node is only responsi-
ble for forwarding messages to those destinations whose
ChordID is the closest. Hence if in multicast with uni-
directional Chord, the responsibility range of each fin-
ger f[i] is (f[¢], f[i+1]], in multicast with bi-directional
Chord, the respounsibility range of finger f[i] changes to
(fli — 1]+ (£l = £li — 11)/2, 71i] + (/i + 1] - FIi)/2].
Figure 4 demonstrates such difference. The arrowed
lines show the responsibility range. Figure 5 gives
the detailed multicast algorithm. For illustration sim-



plicity, we treat current node as f[0] in finger ta-
ble. PROCESS(d) is a generic function indicating the
processing of data once they reach the destination.

a) Uni-directional Chord b) Bi-directional Chord

Figure 4. Comparison of responsibility range for
uni-directional and bi-directional Chord

Murricast{data, dlist} :
d = EXTRACTDESTS(dlist, n.predecessor,n);
ifd#0
dlist = dlist \ d;
n.PROCESS(d);
d = EXTRACTDESTS(dlist, n, n.successor);
ifd#0
dlist = dlist \ d;
send MurticasT{data, d} to n.successor;
fori =1tom —1
d = EXTRACTDESTS(dlist,
n.fli — 1]+ (n.fli] — n.fli — 1)/2,
n.fli] + (£l + 1) mod 2m] — . £[1)/2);
iftd#0
send MurticasT{data, d} to n.f[i];

n.EXTRACTDESTS(dlist, n1,n2) :
return {k € dlist|k € (n1,n2]};

Figure 5. Multicast algorithm on each node

4.3. Data Dissemination Layer

Since publishers and subscribers are distrib-
uted across the network, efficient data delivery usually
requires a form of directory service. The directory ser-
vice of SA-DDN differs from that of general DDN in
that they keep not only the subscriptions, their tar-
geted locations, but also the current state of each
subscriber.

A centralized directory service was used in earlier
DDNs. However, as the DDN expands to much larger
scale, a centralized solution is no longer feasible. The
directory has to be partitioned and stored at individual
nodes. Requirements for doing such partition and stor-
age are twofold: first, both publishers and subscribers
should be able to locate the relevant directory service
easily without global knowledge; no single node should
become a performance bottleneck. With these require-
ments in mind, we propose two approaches to orga-
nize the directory information. MFD is an improve-
ment over SF. Both approaches share the same hash-
ing scheme, which maps whatever logical structure they
have to a number of nodes falling within a continuous

segment of the Chord ring. In the rest of this section,
we will discuss the common hashing scheme adopted
by both approaches first and then describe the two dif-
ferent approaches in detail.

4.3.1. Stateless Ring Segment Mapping
Scheme We define the hashing function as:
h(d,0) = hi(d) + h2(0), where d is the data item
and 0 is some numeric value pertaining to d. This
hash function consists of two portions. We use SHA-1
as hi to map data item d to a number k in Chord
space, which marks the beginning of the ring seg-
ment that d will occupy. The effect of hy is to ran-
domly distribute individual data items within the
Chord space to achieve load balancing. Depend-
ing on the § value, hy determines which node within
the ring segment is used to store the informa-
tion. The range of hy is bounded by L, the length
of the ring segment. We use a simple linear func-
tion as ho where ho(0) = ad and a = L/max(0).

4.3.2. Single-level Filtering (SF) Our Single-level
Filtering(SF) approach is straightforward. We simply
replace § by consistency value ¢ in hashing function
h introduced in Section 4.3.1. Intuitively, higher con-
sistency value means more tolerance to the inconsis-
tency between source and the local value. Hence if a
newly published value doesn’t pass through the filter
of low consistency value, it shouldn’t pass through that
of higher consistency value. If this intuition holds, the
order preserving property of function ho could help us
in pruning the ring segment. However, Figure 6 shows
that this might not be the case.

[10162125302519138- - |

1016251913 - - -
10218---

Figure 6. Example to show data delivered to sub-
scribers with different consistency requirements

Data stream:

Delivered to s1(c1 = 5):

Delivered to s2(c2 = 10):

In Figure 6, the first row shows the time series data
generated at the source. The rest rows show the ac-
tual data values delivered to subscriber s; and so, with
consistency values 5 and 10 respectively. Note that al-
though value 8 does not pass through the filter of 5, it
passes through the filter of 10, in contradiction to our
intuition.

An implication from this observation is: if we treat
consistency values as single-level filters without decom-
position, a structured organization of filters most prob-
ably won’t help to prune the search space. This is why
a newly published value v4(t) has to be sent to the en-
tire ring segment rather than to only a portion of it.

The subscription layer is straightforward for SF.
Given a subscription (subI D, d, csq, $), we use h(d, csq)
to decide the target node for storing the subscription.



The subscriber is assigned an initial state for data item
d based on the most recent value of d at the source.

The publication layer is more involved. Each time
data source d refreshes its data, this new value is mul-
ticast to the entire ring segment. The underlying mul-
ticast mechanism shown in Figure 5 could be used
with only minor modifications: instead of accepting
a set of destinations, it accepts a destination range.
The resulting message is MCAST2SEG{data, R}, where
R = [k,k 4+ L), k is the beginning and L the length
of the destination range. Replacing all the sets with
ranges and set operations with range operations, we
derive the algorithm for McasT2SEG{data, R}.

Once the newly published data value is delivered to
the ring segment, it is checked against the directory in-
formation stored at each node. The data value is deliv-
ered to those out-of-sync subscribers using the under-
lying multicast layer.

4.3.3. Multi-level Filter Decomposition (MFD)
SF shows that if we treat each consistency value as a
single-level filter, it is hard if not impossible to con-
struct a structure to facilitate pruning of the search
space. In this section, we attempt to derive a scheme
where each filter can be decomposed into a hierarchy
of sub-filters, and these sub-filters function together to
achieve the result which satisfies our consistency re-
quirements, but usually not optimal.

We still use the data stream presented in Figure 6.
Suppose we want to achieve a consistency value of 10.
We may decompose it as 4 + 6, a two-level hierarchy of
sub-filters 4 and 6. Figure 7 shows the result.

Data stream: [10162125302519138 - |

(101621302519 138 --- |

102130198 ---

Figure 7. An example of a two-level filter

Sampled when ¢; = 4:

Sampled further at co = 6:

The main feature that this hierarchy of filters pos-
sess is that the output of the lower level is the input
of the higher level, hence only those values that pass
through the lower level filter will be delivered to the
higher level. This feature makes it feasible to build a
structure which prunes some part of the ring segment
during data dissemination, an improvement over SF.

Theorem 1. The correctness of the decomposi-
tion C, = 31", ¢;, wheren is the number of sub-filters.

Proof: Proof by induction.
The initial case when n = 1 is trivially true.
Assume at level n — 1, we achieve a filter C,_1 =

Z?:_ll ¢;. We want to prove that at level n, we achieve
a filter C,, = C,,_1 + cp.

C1
Cnfl

Cn—1 80, St—1,8t """

Cn S0, St -

Since only the output of level n —1 is passed onto level
n, the states at level n is a subset of states at level n—1.
Suppose s is the initial state, among the states sy - - - s¢
passing through level n—1, only s; passes through level
n. Hence the following inequalities hold:

|s — si—1] > Cna
|st—1 — so| < cn

If we solve these two inequalities, we have: |s;—sg| >
Ch—1+ ¢, Since the current state only depends on the
previous state, we could treat s; as sg and continue the
same argument for the rest of the states at level n — 1.
Hence we achieve a filter C,, = C,,_1+c¢, at level n. O

In the previous proof, some other inequalities hold:
|5 = so0| > e for all ¢ € [1,¢t — 1]
[s; — so| < cn

Since the LHS of both inequalities are the same, in or-
der for these inequalities to hold, we require ¢, > ¢,,_1.
This leads to our Corollary 1.

Corollary 1. The decomposition C' = . c; requires
that c;y1 > ¢; for alli.

Various schemes could be designed as long as it sat-
isfies Corollary 1. In the rest of this section, we will de-
scribe the scheme that we adopt.

Logical Structure As discussed, we need to derive
a multi-level structure to fit in all consistency val-
ues in [1,max(c)] that satisfy the decomposition de-
scribed in Corollary 1. One easy way of decomposi-
tion is to represent the consistency value as a num-
ber in base 4. The reason why base 4 is chosen is that
it strives for a balance between the number of logi-
cal nodes at each level and the number of levels gen-
erated. Based on the base 4 encoding, we could eas-
ily decide the decomposition of any consistency value.
For instance, 2119y = 1114 = 001 + 010 + 100y,
34(10) = 202¢4) = 002 + 200(4).

Based on the encoding, we could decide which node
within the logical structure that this consistency value
¢ should be stored. First, the number of non-0s within
the encoding decides the number of composing sub-
filters and hence the level at which the subscription
with ¢ is stored. For instance, a ¢ value of 21(;09) =
1114) should be stored at level 3 while 34(109) = 2024
stored at level 2. After deciding on the level, the lead-
ing non-0 digit decides on which node at that level ¢
resides. Figure 8 shows a structure of three levels to
store subscriptions with maximum consistency value
of 63 (inclusive).

Mapping Scheme The mapping is straightforward.
A linear order is imposed on the nodes of multi-level
structure from left to right and lower level to higher



Leading 1 Leading 2 Leading 3

001 002 003

010 020 030

Level 1 100 200 300
011101110 021201210 031301310
Level 2 |012102120| 1022202220 | |032302320
013103130 | |023203230| |033 303330
11112113 211212213 311312313
Level 3 |121122123| |221222223 321322323
131132133 | | 231232233 331332333

Figure 8. The logical multi-level filter structure

level, starting from 0. We call this the index of the logi-
cal node. Given the index number ¢, we apply h(d,t) =
hi(d) + ha(t), where ha(t) = av and a = L/max(¢).
The Chord node whose ChordID immediately succeeds
h(d, ) stores the logical node ¢. It’s possible that sev-
eral logical nodes are mapped to a single physical node.

Subscription Given a subscription ¢(subl D, d, cs4, ),
we convert cggq to base 4 encoding. Based on the encod-
ing, we determine the index ¢ of the logical node and
use h(d,t) to decide the target physical node for stor-
ing the subscription.

However, as opposed to SF, the registration of a
single subscription may involve registration at multi-
ple logical nodes at different levels. This is due to the
fact that in MFD, the filters at higher level can only be
achieved by passing through a path from level 1. For in-
stance, in order to establish a filter of consistency value
2110y = 1114, we need to establish filters of 0114y and
0014 if they do not already exist. We call these fil-
ters prozy filters. We represent proxy filters as p(d, c).
Note that this representation shows that although mul-
tiple subscriptions to data item d with the same con-
sistency value ¢ may coexist, only one proxy filter ex-
ist for a (d, ¢) pair. The sole purpose of the proxy filters
is to achieve filters at higher levels. Hence proxy filters
should be replaced by real subscriptions with (x, d, ¢, *)
if such subscriptions are issued later.

Publication The logical structure of MFD is built in
such a way that the output of nodes at level [ should
be sent to all nodes at level [ 4+ 1. To allow maximum
parallelism, the output of level [ should be multicast to
I+ 1 and each node at level [ + 1 can process the input
simultaneously. However, we do not want to create too
many messages by allowing each of the node at level [
to send messages to level [ + 1. Hence we use the last
node at each level as a leader to compile the output
from all nodes at the same level, and only the compiled
result is multicast to all nodes at the next level. If no
output is generated at level [, no further forwarding is
necessary.

The mapping schemes that we adopt guarantee that
the logical nodes at the same level will be mapped to
a continuous ring segment. Hence the multicast can

be easily achieved using McAST2SEG{data, R}, where
R = [k, k + ) discussed in Section 4.3.2 by changing k
for each level and fixing | = L/max(level).

5. Performance Evaluation

In order to evaluate performance of our proposed
system architecture in a psudo-reality setting, we build
a stock monitoring application based on SA-DDN. The
stock price data were provided by [13], which are real
life stock quotes collected from Yahoo Finance. The
original dataset consists of 30 different stocks, collected
in 1 minute interval from Nov. 11th, 2002 to Sep. 12th,
2003. The total data size is about 108M B. We tailored
the dataset such that each stock within a single day
are treated as a separate data source. Hence we cre-
ated a large pool of 5453 data sources. Since how fast
the time series data change over time affects the per-
formance of SA-DDN, we classify these generated data
sources into 10 groups based on the standard devia-
tion. During our evaluation, data sources are picked
from these groups. Two types of distributions are gen-
erally more interesting than others: the uniform dis-
tribution, where every group has an equal chance of
getting picked, and the power law distributions, where
certain preferences are exhibited by the users, which
makes some groups much more frequently picked than
others. We use Pareto distribution in this category.

In order to model the subscriptions, we need to con-
sider the following aspects: the rate of subscription is-
suance and the distribution of consistency value. We
model the arrival of subscriptions as a poisson process;
the inter-arrival time is exponentially distributed, thus
resulting in highly dynamic network traffic. Again, two
types of distributions are used to model the distribu-
tion of consistency value, uniform and Pareto.

We evaluate the system performance of SA-DDN us-
ing the following metrics: the average cost in terms of
subscription cost and publication cost; the average up-
date delay from the time data is published to the time
data is delivered to individual subscribers if such deliv-
ery is necessary. The subscription cost includes not only
the registration cost, but also the cost to maintain the
proper structure to facilitate data delivery. The pub-
lication cost includes the cost to publish the data to
the network and deliver data to the individual sub-
scribers. The average update delay is an indication of
how closely local states conform to the data sources.
All these metrics are measured in terms of messages ex-
changed (or hop counts). The reason time is not used
is that it heavily depends on hop delays, and irregu-
lar hop delays caused by irrelevant factors may bias
our evaluation.

5.1. Impact of Different Distributions

In this set of experiments, we would like to study
the impact of different consistency value and data dis-
tributions on the system performance. Each uses two



distributions: uniform and Pareto. Hence we have four
combinations: Uni-Uni, Uni-Par, Par-Uni and Par-Par.
The first term indicates the distribution of consistency
value and the second the distribution of data source se-
lection. The maximum consistency value varies from 16
to 64, with 16 incremental. We fix the network config-
uration with 400 SA-DDN nodes, 200 data sources and
200 subscribers. Each data source generates data at
1 minute intervals, and subscribers generate new sub-
scriptions with mean inter-arrival time of 10 minutes.
The simulation length is 4 hours.

Figure 9 shows the performance of both SF and
MFED each with 4 different combinations. We leave the
comparison between SF and MFD to Section 5.2 since
all four combinations exhibit the same trend and fo-
cus on comparisons among 4 combinations within each
approach. Both SF and MFD do not exhibit signifi-
cant difference for average subscription cost and up-
date delay as shown in Figures 9a and 9c. However,
the average publication costs in Figure 9b vary signif-
icantly. For both SF and MFD, the combination Par-
Uni gives the highest publication cost, while Uni-Par
gives the lowest. To understand this result, we need
to understand what these different distributions im-
ply in our context. A Pareto distribution of consis-
tency value implies preference on smaller consistency
value, hence more subscriptions are sensitive to even
a small data value change. However, a Pareto distri-
bution of data source means a preference in select-
ing low variation data streams, which implies less lo-
cal updates to subscribers. Therefore, a combination
of Par-Uni necessitates the largest number of updates
and hence causes the highest publication cost. In con-
trast, Uni-Par causes the lowest publication cost.

There is another message conveyed by this set of ex-
periments: a higher publication cost does not neces-
sarily imply a higher update delay. The reason behind
this deserves some discussion. The update delay mea-
sures the gap between the time data is published and
the time data reaches the subscriber, while the publica-
tion cost is the cost to deliver the newly refreshed data
to all interested subscribers. Hence if we are only con-
cerned with reducing the update delay, broadcast might
not be a bad choice since the maximum delay for indi-
vidual nodes is the diameter of the network. However,
the publication cost is prohibitively high. Parallelism
might help to reduce individual update delay. To re-
duce the publication cost, however, we may want to
combine as many messages as possible, which may in-
hibit the parallelism.

5.2. Impact of Network Size

In this set of experiments, we fix the distribution of
data source selection and consistency value and study
the impact of network size on the system performance.
We increase the SA-DDN nodes from 100 to 1600, dou-
bling each time. Since the Par-Uni combination causes
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Figure 9. Performance of SF and MFD with 4 dif-
ferent combinations

the highest publication cost, we use this combination
throughout the experiments. Note that we use log as
the x-axis in all figures of this section, hence a line
trend implies a logarithmic behavior.

Figure 10a shows the average subscription cost of
SF and MFD as the network size increases. The sub-
scription cost of MFD is slightly higher than SF due
to the fact that MFD may require extra message ex-
changes to establish the path from level 1 to higher
level subscription at initial stage. Figure 10b shows the
average update delay. Both approaches give similar av-
erage update delay, with MFD a slightly better perfor-
mance. This shows that while striving for low publica-
tion cost, MFD does not sacrifice the performance of
update delay.

Figure 10c shows the average publication cost of
both approaches. Compared to SF, MFD significantly
reduces the average publication cost by 20 — 40% in
medium sized networks. Although the decomposition
of filters may produce more local updates than those
in SF, the multi-level structure that we constructed is
effective in pruning the filter space. However, as the
network size increases, and so does the average hop
counts between any two nodes, the pruning of the fil-
ter space may no longer compensate the effect of possi-
bly more local updates. We expect the improvement of
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Figure 10. Performance of SF and MFD as the network size increases

MFD to become insignificant when the network size in-
creases to millions.

To summarize, the logarithmic behavior in all three
performance metrics demonstrates good scalability of
both approaches. In a medium-sized data dissemina-
tion network where data publication is much more fre-
quent than subscriptions, MFD gives a much better
performance. To better understand the real life impli-
cation of these performance figures, based on the result
from Figure 10c, a network of 1,000,000 nodes with 200
data sources and an event rate of 1200 subscriptions
per hour, publication cost could be kept under 60 mes-
sages. If we assume a few milliseconds single hop de-
lay on the internet, the publication delay could be well
kept under half a second, which demonstrates the fea-
sibility of our system.

6. Conclusion and Future Work

We have proposed a State-Aware Data Dissemina-
tion Network (SA-DDN) to address the problem of
dynamic filters. Our simulation suggests that the ap-
proach is feasible with reasonable expected delay. Al-
though not currently implemented in SA-DDN, load
balancing could be achieved under significant traf-
fic churn by dynamically adjusting the length of the
ring segments assigned to each data source. It would
be interesting to model the expected performance of
SA-DDN analytically. A random walk model of data
streams could be a good starting point for such a prob-
abilistic analysis.

The separation of logical structure and physical
structure in SA-DDN makes it relatively easy to adapt
our approach to other research contexts. In particular,
in distributed sensor networks, Chord is no longer the
reasonable choice for the underlying network structure:
Chord assumes uniform hop delays between Chord
nodes, and this is usually not the case in sensor net-
works. Observe that the geographic routing in sensor
networks achieves a O(v/N) performance, which makes
the publication cost even higher. In this case, reducing
the publication cost for efficient data dissemination is
even more crucial. Our multi-level filter decomposition
method could help to achieve such a goal.
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