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Abstract. We analyse how inheritance of synchronization constraints should
be supported. The conclusion of our analysis is that inheritance of synchro-
nization constraints should take the form of incrementally more restrictive
constraints for derived subclasses. Our conclusion is based on the view that
combinations of behavior in object-oriented languages yield subclasses that
extend superclass behavior. We give a notation for describing synchronization
constraints. In our notation, synchronization constraints can be inherited and
aggregated. We present a number of examples that illustrate the fundamental
concepts captured by our notation. Synchronization constraints are described
as restrictions that apply to invocation of methods. Application of restric-
tions is pattern-based, which allows the same restriction to apply to multiple
methods and multiple restrictions to apply to the same method.

1 Introduction

Synchronization constraints provide for data consistency on a per object basis in
a concurrent system. Synchronization constraints specify the circumstances under
which an object’s methods may be invoked. A method that may be invoked according
to the synchronization constraints is said to be enabled.

Inheritance 1s a key structuring mechanism in object-oriented languages. In con-
current object-oriented languages, it is desirable to inherit synchronization con-
straints whenever possible, to avoid reimplementation of superclass synchronization
constraints in subclasses. The synchronization constraints associated with a given
method (name) in a superclass may need to be changed in subclasses. In that case,
inheritance of synchronization constraints requires that synchronization constraints
can be incrementally modified, i.e. changed without being (re)implemented from
scratch in subclasses.

Derivation of methods is one reason why synchronization constraints may need to
be incrementally modified in subclasses. A derived method is one whose declaration
results in a vertical name collision [8] and is a common phenomena in object-oriented
programs. Virtual methods in Beta [9], virtual functions in C+4 [18] and methods
in Smalltalk [5] are all examples of derivable methods. A derived method has an
ancestor method: the method in a superclass whose name is shadowed in a sub-
class. Derivation of methods means that a name bound to a given behavior (method



body) in a superclass may be bound to a different behavior in subclasses. Therefore,
the synchronization constraints associated with that name may need to change in
subclasses.

Integration of inheritance and synchronization constraints has been investigated
in a number of recent papers [13] [4] [16] [12]. However, all of these proposals are
insufficient since they do not support incremental modification of synchronization
constraints. In all of the proposals, synchronization constraints are specified as acti-
vation conditions: a boolean expression associated with each method. The expression
1s evaluated prior to method invocations and if the expression evaluates to true, the
invocation is legal. In the above proposals, activation conditions can not be in-
crementally modified or reused in the definition of other activation conditions. In
particular, the activation condition of a derived method is always specified from
scratch. In this paper we present a framework in which synchronization constraints
can be incrementally modified and thereby inherited.

In Section 2, we present insights about the specification of synchronization con-
straints in object-oriented concurrent languages. We analyse how to express syn-
chronization constraints so that they can be inherited. The analysis 1s conducted
in a language independent manner. In particular, no specific inheritance mechanism
is assumed. The framework presented in Section 3 builds on our analysis. In order
to give our ideas a more concrete form, we provide a notation for describing syn-
chronization constraints. The notation is deliberately kept simple to illustrate the
concepts that we find important when specifying synchronization constraints. We
give a number of examples that present the fundamental principles of our notation.
Section 4 concludes and relates our framework to other approaches.

2  Analysis

Incremental modification of synchronization constraints should take a form that
integrates well with the way in which object-oriented languages support combination
of behaviors. Most object-oriented languages support derivation of methods that
extend the behavior of ancestor methods. Extension of behavior is directly supported
by the INNER construct used in Beta [10]. The super pseudo variable of Smalltalk
gives a more flexible way of combining behaviors, but the semantics of super still
supports extension of ancestor methods. For a more in-depth discussion of different
ways of combining method behaviors, refer to [2].

Execution of a method that extends the behavior of an ancestor method might
result in data inconsistency in situations where the ancestor would leave the object
in a consistent state. Extension of behavior means that additional actions are exe-
cuted and each additional action may potentially result in data inconsistency. Since
the purpose of synchronization constraints is to prevent inconsistencies, a language
that supports extension of behavior should also support incremental restriction of
synchronization constraints. Therefore, incremental modifications should give more
restrictive synchronization constraints. The synchronization constraints specified in
a superclass should denote an upper limit on permissible method invocations in all
subclasses.

An important aspect of inheritance is factorization of common properties into
superclasses. Factorization means that properties described in superclasses will also



hold for subclasses. Factorization makes it possible to reason about class hierarchies
in terms of the generic properties that hold for the (abstract) superclasses of the
hierarchy.

Synchronization constraints denote properties that we refer to as synchroniza-
tion properties. Synchronization constraints for a superclass should be specified in
a way so that the resulting synchronization properties hold in all subclasses. Suppose
that synchronization constraints are specified as conditions that enable methods.
Then synchronization properties could be defined in terms of the following pseudo
notation:

property P : condition C enables Method

However, property P will not hold in subclasses where the synchronization constraints
for Method are made more stringent. Thus, if synchronization constraints are speci-
fied as conditions that enable methods, the resulting synchronization properties do
not necessarily hold in subclasses and, as such, can not be factored out.

For synchronization properties to hold in subclasses, synchronization constraints
must be specified as conditions that disable methods. Such synchronization con-
straints give rise to the following pseudo notation for synchronization properties:

property P : condition ¢ disables Method

Properties of this kind hold for subclasses when the synchronization constraints
for Method are made increasingly more restrictive. Methods that are disabled in a
superclass will always be disabled in a subclass.

Although necessary, supporting incremental modification of synchronization con-
straints is not sufficient to guarantee their inheritance. If the behavior of a derived
method totally redefines the behavior of its ancestor, it would be meaningless to
inherit the synchronization constraints of the ancestor method. If redefinition of
behavior is possible, redefinition of synchronization constraints should be possible.

In summary, we have argued that synchronization constraints should be speci-
fied in terms of disabling restrictions instead of enabling conditions. Furthermore,
inheritance of synchronization constraints should yield more restrictive constraints
in subclasses. In the following section we present a framework that captures these
two principles.

3 A Framework for Synchronization Constraints

In this section we present the concepts and principles that we believe constitute an
appropriate platform for describing synchronization constraints. The concepts and
principles are made concrete in the form of a notation for describing synchronization
constraints. Our notation only captures synchronization constraints. Other entities
of a language such as classes and methods are not described since their concrete
representation is immaterial to our framework.

Section 3.1 gives some assumptions on which the notation is based. In Section 3.2,
the basics of our notation are introduced. Inheritance of synchronization constraints
within our notation is illustrated in Section 3.3. Finally, Section 3.4 shows how syn-
chronization constraints may be defined as aggregates of other synchronization con-
straints.



3.1 Assumptions for the Framework

It 1s immaterial to the framework whether invocations are synchronous or asyn-
chronous. Invocation requests can arrive at an object any time and independently of
the object’s state. As depicted in Figure 1, part of each object is a controller that
intercepts invocation requests arriving for that object. A controller is an active com-
ponent of an object that makes sure that incoming invocation requests are scheduled
according to the synchronization constraints of the object. If an invocation request
can not be scheduled right away, it is put into a pending queue by the controller. The
controller may attempt to (re)schedule invocation requests in the pending queue at
a later point in time (e.g. after each method invocation).

Object
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Fig. 1. The structure of active objects

To keep our notation as simple as possible, we ignore the following aspects of
synchronization constraints:

— Priorities and fairness. We do not describe strategies for choosing between multi-
ple invocation request that may all be scheduled according to the synchronization
constraints.

— Thread control. We assume precautions are taken by the controller to control
the number of concurrent threads running within an object. Thread control as
part of the controller means that all objects employ the same kind of thread
control and is the strategy used in Beta, PROCOL [22] and POOL-I [1]. In
some languages, thread control is user-defined and often described within the
constructs that define synchronization constraints for classes of objects. User-
defined thread control is possible in Guide [4], Mediators [6] and Synchronizing



Actions [13]. We have ignored thread control for reasons of simplicity. However, in
the conclusion we argue that user-defined thread control can in fact be smoothly
incorporated into our framework.

Objects are instantiated from classes. Classes may be hierarchically organized ac-
cording to an inheritance relation. Synchronization constraints are specified on per
class basis and all objects instantiated from the same class have synchronization con-
straints with similar functionality. We assume that synchronization constraints are
specified as a separate part of class descriptions. In fact, synchronization constraints
is the only part of a class that is specified in our notation.

Having separate specification of synchronization constraints is generally desir-
able to avoid the “inheritance anomaly” [11] [12]. The anomaly manifests itself as
subclasses in which specification of correct synchronization constraints require re-
definition of method behavior that would otherwise be reusable. The anomaly may,
for example, occur if synchronization constraints are specified as part of method
behaviors. In that case, superclass synchronization constraints can not be changed
in subclasses without also changing the methods of which the synchronization con-
straints are part. For a more elaborate discussion of the inheritance anomaly and its
causes, refer to [12].

3.2 Notation

Our notation for describing synchronization constraints is given in Figure 2. Synchro-
nization constraints define restrictions on the acceptance of invocation requests. In-
vocation requests are called “invocations” and they contain the name of the method
to be invoked and the actual parameter values of the invocation.
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Fig. 2. Abstract syntax for our notation

We assume arbitrary expressions and we only use simple arithmetic and boolean
expressions in our examples. Furthermore, we assume that construction of invoca-
tions is an eager operation. There is nothing in our framework, however, that prevents
expressions from being evaluated in a lazy fashion. As an example, the invocation



Oper(4,5) denotes an invocation of the method Oper with argument expressions
that evaluate to the values 4 and 5.

A restriction applies to all invocations that match its pattern. Pattern-based
application of restrictions means that the same restriction may apply to multiple
methods and that multiple restrictions may apply to the same method. Pattern
matching is defined according to these rules:

— The pattern n(xq,...,#;) matches invocations of a method with name n. Fur-
thermore, the names 1, . .., zy are bound to the values of a matching invocation.

— The pattern all-except p matches all invocations that do not match the pattern
p.

— The pattern n is used in situations where a restriction does not depend on any
of the actual parameter values.

The above way of describing patterns is deliberately made simple to focus on the
synchronization aspects. More advanced pattern matching facilities may be desirable
in a “real” language, such as the type-based pattern matching found in Linda [3].
Another extension would be to make patterns first class values so that patterns may
be named and composed.

The expression associated with a restriction is called the condition of the restric-
tion. A condition is a boolean expression evaluated in a context with the variables
in the pattern bound to the values in a matching invocation. The evaluation context
of conditions also includes the instance variables of the class in which the restriction
is defined. Thus, the legality of a given invocation may depend on the actual pa-
rameter values of the invocation and the state of the object to which the request is
made. Restrictions that depend on an object’s invocation history can be expressed
by introducing special instance variables that record the invocation history. A given
invocation may cause multiple conditions to be evaluated, but we should not assume
anything about the order in which conditions are evaluated. Thus, implementations
of our framework should ensure that conditions are side-effect free.

A restriction is like a “negative” guard. When the condition of a restriction is
true for an invocation that match the pattern of the restriction, the invocation may
not be serviced. For an invocation to be legal, it may not match the pattern of
any restriction with a true condition. It only takes one true condition to prevent an
invocation from being serviced. Put formally:

disabled i = condition; or ... or condition,,

Where condition; ... condition,, are the boolean values that result from evaluating
the condition-expressions of the restrictions whose pattern ¢ matches. disabled is a
predicate that gives the legality of accepting a given invocation.

FEzample 1. Consider the classical example of a bounded buffer. Using our notation,
the synchronization constraints of a bounded buffer can be specified using these two
restrictions:

( size
( size

MAX ) prevents put
0) prevents get



size is an instance variable denoting the current number of elements in the buffer.
MAX 1s a constant expression giving the maximum number of elements that a buffer
can hold. The data consistency that must be maintained for the buffer is: 0 < size <
MAX. O

3.3 Inheritance of Restrictions

Synchronization constraints are specified in a way so that they can be incrementally
modified. The restrictions applicable to a given method name in a superclass can
be supplemented by additional restrictions for the same method name in subclasses.
Thus, our framework supports the view that synchronization constraints become
increasingly more stringent in subclasses. Example 2 and Example 3 below present
situations in which synchronization constraints may be inherited.

FEzample 2. A simple example in which synchronization constraints can be reused is
the following. Suppose a subclass with a get-2 method is derived from the bounded
buffer of Example 1. The semantics of get-2 is to atomically get two elements from
the buffer. This means that get-2 is not enabled when there is 1 or 0 elements in

the buffer.
( size < 1 ) prevents get-2

Note that the behavior of the put and get methods need not be changed in order
to describe the synchronization constraints for the get-2 method. O

FEzample 3. Consider the concept of a resource administrator. A number of client
processes compete for a number of resources. In order to maintain properties like
security, exclusive access, etc. the resources are accessed through an administrator
object. In Figure 3, an inheritance hierarchy of resource administrators is depicted.
In the following, we illustrate how synchronization constraints may be inherited in
this hierarchy.

The class resource-administrator is most general. It defines two methods
access and free. A client issues requests for resources through the access method.
After use, a client puts a resource back to the pool of available resources by calling
the free method. The consistency notion of the resource-administrator class is
that 1t can not hand out more than the maximum number of resources. The syn-
chronization constraints for resource-administrator are given by the restriction:

( resources-given-out > maximum-resources ) prevents access

The different-resources subclass administers and makes a distinction be-
tween different kinds of resources. For simplicity, this example just involves two kinds
of resources: heavyweight and lightweight. An instance of the different-resources
class is illustrated in Figure 3. Since heavy-weight resources are more expensive in
terms of physical resources like memory, at most two such resources can be accessed.
In order to distinguish between the different kinds of resource requests, the access
and free methods are refined by derivation in the different-resources subclass.
The synchronization constraints of the resource-administrator class also applies
to the different-resources class: no more than the available resources can be
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accessed. In addition, the synchronization constraints of the different-resources
should reflect the fact that only 2 heavyweight resources may be accessed. Thus,
the different-resources subclass further restricts the invocations of the access
method by this restriction:

( kind-of(request) = heavyweight and heavyweight-given-out = 2 )
prevents access(request)

The deadlock-avoidance subclass of different-resources runs some dead-
lock avoidance algorithm before granting a request for resources. Any deadlock
avoidance algorithm suffice, but, to make the description more concrete, the bankers
algorithm [17] is used. The methods of different-resources need not be changed
in order to derive this subclass. The synchronization constraints, however, need to be
made more restrictive. In the deadlock-avoidance class, requests are not granted
just because they are available; they are only granted if that will leave the system in
a “safe” state (i.e. a state that can not lead to deadlock). The additional synchro-
nization constraints that express deadlock avoidance is given in this restriction:

may-lead-to-deadlock(request) prevents access(request)

We assume that may-lead-to-deadlock is a function that runs the bankers al-
gorithm. Restrictions in the different-resources and resource-administrator
classes are inherited in the deadlock-avoidance class. In the resource administra-
tor hierarchy the synchronization constraints become increasingly more restrictive in
subclasses. This example illustrates that the restriction-based approach supports in-
cremental modification of synchronization constraints. The access method defined
in different-resources and deadlock-avoidancereuse the restrictions associated
with the ancestor method. O



The pattern all-except is useful when describing synchronization properties that
should hold uniformly for all methods ever to be defined in subclasses. Describing
such generic synchronization properties will be difficult without the all-except pat-
tern since the names of the restricted methods can not be referred to directly. The
following example illustrates a case for which the all-except pattern comes in handy:

FEzample 4. Lockability is an example of a generic synchronization property that
involves all methods ever to be defined in subclasses. If a subclass inherits the lock
property then none of its methods are enabled when the class is locked. An abstract
lock class can be described like this:

( not locked ) prevents unlock
( locked ) prevents all-except unlock

An instance variable, locked, is declared. This variable is set to true by the lock
method and to false by the unlock method. The restrictions specify that an object
can not be unlocked unles it is locked, and that unlock is the only method that can
be called when the object is locked. O

Some class hierarchies may require selective inheritance of restrictions, i.e. the
ability not to inherit certain restrictions from certain classes. Selective inheritance
is necessary if superclass methods are redefined from scratch in subclasses or if a
class has multiple superclasses (multiple inheritance). However, selective inheritance
1s not necessary for all inheritance mechanisms and therefore, it is not part of our
notation. Still, the principles of our framework are general and flexible enough for
selective inheritance to be smoothly integrated.

One possible way to describe selective inheritance is for a class to set up iron-
curtains that limit the inheritance of certain restrictions from certain superclasses.
Iron-curtains could point out restrictions not to be inherited in the form invocation
patterns. One possible semantics would be to have all invocations that match a given
pattern not be restricted by the synchronization constraints applying in a specified
superclass. We will not discuss iron-curtains any further. We only want to point out
that our framework does not preclude integration of mechanisms that allow selective
inheritance of superclass constraints.

3.4 Aggregation of Restrictions

In this section we argue that the predicate disabled introduced in Section 3.2,
should be available as a function that may be called explicitly.

Calling disabled as part of a condition makes it possible to describe a restriction
as an aggregate of other restrictions. Aggregation of restrictions is important since
it may cater for reuse by composition as a supplement to reuse by inheritance. Also,
aggregation more directly allows the expression of relations between the restrictions
associated with different methods. The following two examples illustrate the use of
aggregation.

Frample 5. Consider Example 2 with a get-2 method in a subclass of a bounded
buffer. With aggregation we can directly express the fact that get-2 is disabled
whenever get is disabled:



( size < 1) or ( disabled get) prevents get-2

In that way no exact knowledge is needed in the subclass about the restrictions
that apply to get. Additional restrictions may be added to the bounded buffer’s get
method and these additional restrictions will also apply to the subclass and get-2
without changing the subclass description. In general, aggregation allows subclasses
to maintain the consistency notion of a superclass without knowing its exact na-
ture. O

FEzample 6. Suppose another method, access-specific, is added to one of the re-
source administrator classes in Example 3. The parameters to access-specific
contain a reference to a resource and access—specific makes it possible for clients
to access that specific resource. An invocation of access-specific is only allowed
when the requested resource is available. A motivation for having two access meth-
ods is a scenario in which some clients can use any resource while other clients must
use one specific resource. The restrictions associated with access—specific can be
conveniently described in terms of the restrictions associated with access.

( not available(request)) or ( disabled access(request))
prevents access-specific(request)

The function available computes the availability of a given resource. O

4 Concluding Remarks and Related Work

In summary, we found that inheritance of synchronization constraints requires in-
cremental restriction of synchronization constraints. Our framework for describing
synchronization constraints exhibits the following basic principles:

— Inheritance of synchronization constraints described by pattern-based applica-
tion of restrictions.

— Aggregation of synchronization constraints by explicit inquiry about the legality
of given invocations.

We believe these two principles constitute an appropriate basis for specification
of synchronization constraints in concurrent object-oriented languages. Part of the
framework has been implemented in an experimental Actor language [7]. The view
that synchronization constraints get increasingly more restrictive in subclasses has
proven useful in practice.

It may seem that our notion of increasingly restrictive synchronization constraints
may violate substitutability properties of subclasses. In [15] and [14], for example, it
is argued that subclasses should contain at least the “input offers” of superclasses,
implying that synchronization constraints get increasingly less restrictive in sub-
classes. The motivation for this approach is subtype substitutability in the following
sense: the type of a server object denotes contractual obligations between clients and
that server. A server type guarantees clients that certain input-offers will be made by
the server. The guarantees given by a servers type must be maintained by subtypes
of the server. Otherwise, subtypes would not be substitutable for supertypes.



With our approach to subclassing and the above typing scheme, subclasses would
not be subtypes. However, it is debatable, in general, whether subclasses always
need to be subtypes. Furthermore, it is an open question whether synchronization
constraints should have any significance for the types of objects. First of all, a type
violation yields an error whereas a “violation” of the synchronization constraints
most often causes an invocation to be delayed. Secondly, it is not obvious that the
type of a server can give communication guarantees to any one client in a system
where multiple clients may share the server. Interference between clients in the form
of interleaving of service requests may undermine such type-guarantees.

Few object-oriented concurrent languages support incremental modification of
synchronization constraints. In Rosette [20], synchronization constraints are de-
scribed as enabled sets: data structures that denote the currently enabled methods.
Subclasses can incrementally add methods to enabled sets defined in superclasses.
As opposed to our framework, synchronization constraints in Rosette get less re-
strictive in subclasses. Beta [9] and the language proposed by Thomsen [19] contain
explicit input actions similar to the accept statements of Ada [21]. Subclasses can
incrementally add more input actions, which again means that synchronization con-
straints get less restrictive in subclasses. The author does not know of any other
framework that supports the view that synchronization constraints get increasingly
more restrictive in subclasses.

To keep the framework as simple and general as possible, the issue of serializing
method invocations was deliberately ignored. It should be noted, however, that re-
strictions in concurrent invocations can easily be expressed within the framework.
For example, conditions in restrictions could refer to synchronization counters [4].
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