
Inheritance of Synchronization Constraints inConcurrent Object-Oriented ProgrammingLanguagesSvend Fr�lundDepartment of Computer Science1304 W. Spring�eld AvenueUniversity of Illinois at Urbana-ChampaignUrbana, IL 61801, USAEmail: frolund@cs.uiuc.eduAbstract. We analyse how inheritance of synchronization constraints shouldbe supported. The conclusion of our analysis is that inheritance of synchro-nization constraints should take the form of incrementally more restrictiveconstraints for derived subclasses. Our conclusion is based on the view thatcombinations of behavior in object-oriented languages yield subclasses thatextend superclass behavior. We give a notation for describing synchronizationconstraints. In our notation, synchronization constraints can be inherited andaggregated. We present a number of examples that illustrate the fundamentalconcepts captured by our notation. Synchronization constraints are describedas restrictions that apply to invocation of methods. Application of restric-tions is pattern-based, which allows the same restriction to apply to multiplemethods and multiple restrictions to apply to the same method.1 IntroductionSynchronization constraints provide for data consistency on a per object basis ina concurrent system. Synchronization constraints specify the circumstances underwhich an object's methods may be invoked. A method that may be invoked accordingto the synchronization constraints is said to be enabled.Inheritance is a key structuring mechanism in object-oriented languages. In con-current object-oriented languages, it is desirable to inherit synchronization con-straints whenever possible, to avoid reimplementation of superclass synchronizationconstraints in subclasses. The synchronization constraints associated with a givenmethod (name) in a superclass may need to be changed in subclasses. In that case,inheritance of synchronization constraints requires that synchronization constraintscan be incrementally modi�ed, i.e. changed without being (re)implemented fromscratch in subclasses.Derivation of methods is one reason why synchronization constraints may need tobe incrementally modi�ed in subclasses. A derived method is one whose declarationresults in a vertical name collision [8] and is a common phenomena in object-orientedprograms. Virtual methods in Beta [9], virtual functions in C++ [18] and methodsin Smalltalk [5] are all examples of derivable methods. A derived method has anancestor method: the method in a superclass whose name is shadowed in a sub-class. Derivation of methods means that a name bound to a given behavior (method

body) in a superclass may be bound to a di�erent behavior in subclasses. Therefore,the synchronization constraints associated with that name may need to change insubclasses.Integration of inheritance and synchronization constraints has been investigatedin a number of recent papers [13] [4] [16] [12]. However, all of these proposals areinsu�cient since they do not support incremental modi�cation of synchronizationconstraints. In all of the proposals, synchronization constraints are speci�ed as acti-vation conditions: a boolean expression associated with each method. The expressionis evaluated prior to method invocations and if the expression evaluates to true, theinvocation is legal. In the above proposals, activation conditions can not be in-crementally modi�ed or reused in the de�nition of other activation conditions. Inparticular, the activation condition of a derived method is always speci�ed fromscratch. In this paper we present a framework in which synchronization constraintscan be incrementally modi�ed and thereby inherited.In Section 2, we present insights about the speci�cation of synchronization con-straints in object-oriented concurrent languages. We analyse how to express syn-chronization constraints so that they can be inherited. The analysis is conductedin a language independent manner. In particular, no speci�c inheritance mechanismis assumed. The framework presented in Section 3 builds on our analysis. In orderto give our ideas a more concrete form, we provide a notation for describing syn-chronization constraints. The notation is deliberately kept simple to illustrate theconcepts that we �nd important when specifying synchronization constraints. Wegive a number of examples that present the fundamental principles of our notation.Section 4 concludes and relates our framework to other approaches.2 AnalysisIncremental modi�cation of synchronization constraints should take a form thatintegrates well with the way in which object-oriented languages support combinationof behaviors. Most object-oriented languages support derivation of methods thatextend the behavior of ancestor methods. Extension of behavior is directly supportedby the INNER construct used in Beta [10]. The super pseudo variable of Smalltalkgives a more
exible way of combining behaviors, but the semantics of super stillsupports extension of ancestor methods. For a more in-depth discussion of di�erentways of combining method behaviors, refer to [2].Execution of a method that extends the behavior of an ancestor method mightresult in data inconsistency in situations where the ancestor would leave the objectin a consistent state. Extension of behavior means that additional actions are exe-cuted and each additional action may potentially result in data inconsistency. Sincethe purpose of synchronization constraints is to prevent inconsistencies, a languagethat supports extension of behavior should also support incremental restriction ofsynchronization constraints. Therefore, incremental modi�cations should give morerestrictive synchronization constraints. The synchronization constraints speci�ed ina superclass should denote an upper limit on permissible method invocations in allsubclasses.An important aspect of inheritance is factorization of common properties intosuperclasses. Factorization means that properties described in superclasses will also

hold for subclasses. Factorization makes it possible to reason about class hierarchiesin terms of the generic properties that hold for the (abstract) superclasses of thehierarchy.Synchronization constraints denote properties that we refer to as synchroniza-tion properties. Synchronization constraints for a superclass should be speci�ed ina way so that the resulting synchronization properties hold in all subclasses. Supposethat synchronization constraints are speci�ed as conditions that enable methods.Then synchronization properties could be de�ned in terms of the following pseudonotation:property P : condition C enables MethodHowever, property Pwill not hold in subclasses where the synchronization constraintsfor Method are made more stringent. Thus, if synchronization constraints are speci-�ed as conditions that enable methods, the resulting synchronization properties donot necessarily hold in subclasses and, as such, can not be factored out.For synchronization properties to hold in subclasses, synchronization constraintsmust be speci�ed as conditions that disable methods. Such synchronization con-straints give rise to the following pseudo notation for synchronization properties:property P : condition C disables MethodProperties of this kind hold for subclasses when the synchronization constraintsfor Method are made increasingly more restrictive. Methods that are disabled in asuperclass will always be disabled in a subclass.Although necessary, supporting incremental modi�cation of synchronization con-straints is not su�cient to guarantee their inheritance. If the behavior of a derivedmethod totally rede�nes the behavior of its ancestor, it would be meaningless toinherit the synchronization constraints of the ancestor method. If rede�nition ofbehavior is possible, rede�nition of synchronization constraints should be possible.In summary, we have argued that synchronization constraints should be speci-�ed in terms of disabling restrictions instead of enabling conditions. Furthermore,inheritance of synchronization constraints should yield more restrictive constraintsin subclasses. In the following section we present a framework that captures thesetwo principles.3 A Framework for Synchronization ConstraintsIn this section we present the concepts and principles that we believe constitute anappropriate platform for describing synchronization constraints. The concepts andprinciples are made concrete in the form of a notation for describing synchronizationconstraints. Our notation only captures synchronization constraints. Other entitiesof a language such as classes and methods are not described since their concreterepresentation is immaterial to our framework.Section 3.1 gives some assumptions on which the notation is based. In Section 3.2,the basics of our notation are introduced. Inheritance of synchronization constraintswithin our notation is illustrated in Section 3.3. Finally, Section 3.4 shows how syn-chronization constraints may be de�ned as aggregates of other synchronization con-straints.

3.1 Assumptions for the FrameworkIt is immaterial to the framework whether invocations are synchronous or asyn-chronous. Invocation requests can arrive at an object any time and independently ofthe object's state. As depicted in Figure 1, part of each object is a controller thatintercepts invocation requests arriving for that object. A controller is an active com-ponent of an object that makes sure that incoming invocation requests are scheduledaccording to the synchronization constraints of the object. If an invocation requestcan not be scheduled right away, it is put into a pending queue by the controller. Thecontroller may attempt to (re)schedule invocation requests in the pending queue ata later point in time (e.g. after each method invocation).
Synchronization

Constraints

Controller

Data

and

Methods

State
Dependence

Evaluate

Object

Incoming
Requests

Pending Queue

System Buffer

Schedule

Fig. 1. The structure of active objectsTo keep our notation as simple as possible, we ignore the following aspects ofsynchronization constraints:{ Priorities and fairness.We do not describe strategies for choosing between multi-ple invocation request that may all be scheduled according to the synchronizationconstraints.{ Thread control. We assume precautions are taken by the controller to controlthe number of concurrent threads running within an object. Thread control aspart of the controller means that all objects employ the same kind of threadcontrol and is the strategy used in Beta, PROCOL [22] and POOL-I [1]. Insome languages, thread control is user-de�ned and often described within theconstructs that de�ne synchronization constraints for classes of objects. User-de�ned thread control is possible in Guide [4], Mediators [6] and Synchronizing

Actions [13]. We have ignored thread control for reasons of simplicity.However, inthe conclusion we argue that user-de�ned thread control can in fact be smoothlyincorporated into our framework.Objects are instantiated from classes. Classes may be hierarchically organized ac-cording to an inheritance relation. Synchronization constraints are speci�ed on perclass basis and all objects instantiated from the same class have synchronization con-straints with similar functionality. We assume that synchronization constraints arespeci�ed as a separate part of class descriptions. In fact, synchronization constraintsis the only part of a class that is speci�ed in our notation.Having separate speci�cation of synchronization constraints is generally desir-able to avoid the \inheritance anomaly" [11] [12]. The anomaly manifests itself assubclasses in which speci�cation of correct synchronization constraints require re-de�nition of method behavior that would otherwise be reusable. The anomaly may,for example, occur if synchronization constraints are speci�ed as part of methodbehaviors. In that case, superclass synchronization constraints can not be changedin subclasses without also changing the methods of which the synchronization con-straints are part. For a more elaborate discussion of the inheritance anomaly and itscauses, refer to [12].3.2 NotationOur notation for describing synchronization constraints is given in Figure 2. Synchro-nization constraints de�ne restrictions on the acceptance of invocation requests. In-vocation requests are called \invocations" and they contain the name of the methodto be invoked and the actual parameter values of the invocation.i 2 Invocationsn 2 Method namese 2 Expressionsv 2 Valuesx 2 Variablesp 2 Invocation patternsr 2 Restrictionsi ::= n(v1; : : : ; vm)p ::= n(x1; : : : ; xk) j all-except p j nr ::= e prevents pFig. 2. Abstract syntax for our notationWe assume arbitrary expressions and we only use simple arithmetic and booleanexpressions in our examples. Furthermore, we assume that construction of invoca-tions is an eager operation. There is nothing in our framework, however, that preventsexpressions from being evaluated in a lazy fashion. As an example, the invocation

Oper(4,5) denotes an invocation of the method Oper with argument expressionsthat evaluate to the values 4 and 5.A restriction applies to all invocations that match its pattern. Pattern-basedapplication of restrictions means that the same restriction may apply to multiplemethods and that multiple restrictions may apply to the same method. Patternmatching is de�ned according to these rules:{ The pattern n(x1; : : : ; xk) matches invocations of a method with name n. Fur-thermore, the names x1; : : : ; xk are bound to the values of a matching invocation.{ The pattern all-except p matches all invocations that do not match the patternp.{ The pattern n is used in situations where a restriction does not depend on anyof the actual parameter values.The above way of describing patterns is deliberately made simple to focus on thesynchronization aspects. More advanced pattern matching facilities may be desirablein a \real" language, such as the type-based pattern matching found in Linda [3].Another extension would be to make patterns �rst class values so that patterns maybe named and composed.The expression associated with a restriction is called the condition of the restric-tion. A condition is a boolean expression evaluated in a context with the variablesin the pattern bound to the values in a matching invocation. The evaluation contextof conditions also includes the instance variables of the class in which the restrictionis de�ned. Thus, the legality of a given invocation may depend on the actual pa-rameter values of the invocation and the state of the object to which the request ismade. Restrictions that depend on an object's invocation history can be expressedby introducing special instance variables that record the invocation history. A giveninvocation may cause multiple conditions to be evaluated, but we should not assumeanything about the order in which conditions are evaluated. Thus, implementationsof our framework should ensure that conditions are side-e�ect free.A restriction is like a \negative" guard. When the condition of a restriction istrue for an invocation that match the pattern of the restriction, the invocation maynot be serviced. For an invocation to be legal, it may not match the pattern ofany restriction with a true condition. It only takes one true condition to prevent aninvocation from being serviced. Put formally:disabled i = condition1 or : : : or conditionnWhere condition1 : : : conditionn are the boolean values that result from evaluatingthe condition-expressions of the restrictions whose pattern i matches. disabled is apredicate that gives the legality of accepting a given invocation.Example 1. Consider the classical example of a bounded bu�er. Using our notation,the synchronization constraints of a bounded bu�er can be speci�ed using these tworestrictions:(size � MAX) prevents put(size � 0) prevents get

size is an instance variable denoting the current number of elements in the bu�er.MAX is a constant expression giving the maximum number of elements that a bu�ercan hold. The data consistency that must be maintained for the bu�er is: 0 � size �MAX. 23.3 Inheritance of RestrictionsSynchronization constraints are speci�ed in a way so that they can be incrementallymodi�ed. The restrictions applicable to a given method name in a superclass canbe supplemented by additional restrictions for the same method name in subclasses.Thus, our framework supports the view that synchronization constraints becomeincreasingly more stringent in subclasses. Example 2 and Example 3 below presentsituations in which synchronization constraints may be inherited.Example 2. A simple example in which synchronization constraints can be reused isthe following. Suppose a subclass with a get-2 method is derived from the boundedbu�er of Example 1. The semantics of get-2 is to atomically get two elements fromthe bu�er. This means that get-2 is not enabled when there is 1 or 0 elements inthe bu�er.(size � 1) prevents get-2Note that the behavior of the put and get methods need not be changed in orderto describe the synchronization constraints for the get-2 method. 2Example 3. Consider the concept of a resource administrator. A number of clientprocesses compete for a number of resources. In order to maintain properties likesecurity, exclusive access, etc. the resources are accessed through an administratorobject. In Figure 3, an inheritance hierarchy of resource administrators is depicted.In the following, we illustrate how synchronization constraints may be inherited inthis hierarchy.The class resource-administrator is most general. It de�nes two methodsaccess and free. A client issues requests for resources through the access method.After use, a client puts a resource back to the pool of available resources by callingthe free method. The consistency notion of the resource-administrator class isthat it can not hand out more than the maximum number of resources. The syn-chronization constraints for resource-administrator are given by the restriction:(resources-given-out � maximum-resources) prevents accessThe different-resources subclass administers and makes a distinction be-tween di�erent kinds of resources. For simplicity, this example just involves two kindsof resources: heavyweight and lightweight. An instance of the different-resourcesclass is illustrated in Figure 3. Since heavy-weight resources are more expensive interms of physical resources like memory, at most two such resources can be accessed.In order to distinguish between the di�erent kinds of resource requests, the accessand free methods are re�ned by derivation in the different-resources subclass.The synchronization constraints of the resource-administrator class also appliesto the different-resources class: no more than the available resources can be

Resource
Administrator

Different
Resources

Deadlock
Avoidance

Administrator

Heavyweight
Resources

.

.

.

Clients

Access

Free

Instance of ‘‘Different Resources’’

Lightweight
Resources

Class Hierarchy

Fig. 3. Resource Administratorsaccessed. In addition, the synchronization constraints of the different-resourcesshould re
ect the fact that only 2 heavyweight resources may be accessed. Thus,the different-resources subclass further restricts the invocations of the accessmethod by this restriction:(kind-of(request) = heavyweight and heavyweight-given-out = 2)prevents access(request)The deadlock-avoidance subclass of different-resources runs some dead-lock avoidance algorithm before granting a request for resources. Any deadlockavoidance algorithm su�ce, but, to make the description more concrete, the bankersalgorithm [17] is used. The methods of different-resources need not be changedin order to derive this subclass. The synchronization constraints, however, need to bemade more restrictive. In the deadlock-avoidance class, requests are not grantedjust because they are available; they are only granted if that will leave the system ina \safe" state (i.e. a state that can not lead to deadlock). The additional synchro-nization constraints that express deadlock avoidance is given in this restriction:may-lead-to-deadlock(request) prevents access(request)We assume that may-lead-to-deadlock is a function that runs the bankers al-gorithm. Restrictions in the different-resources and resource-administratorclasses are inherited in the deadlock-avoidance class. In the resource administra-tor hierarchy the synchronization constraints become increasingly more restrictive insubclasses. This example illustrates that the restriction-based approach supports in-cremental modi�cation of synchronization constraints. The access method de�nedin different-resources and deadlock-avoidance reuse the restrictions associatedwith the ancestor method. 2

The pattern all-except is useful when describing synchronization properties thatshould hold uniformly for all methods ever to be de�ned in subclasses. Describingsuch generic synchronization properties will be di�cult without the all-except pat-tern since the names of the restricted methods can not be referred to directly. Thefollowing example illustrates a case for which the all-except pattern comes in handy:Example 4. Lockability is an example of a generic synchronization property thatinvolves all methods ever to be de�ned in subclasses. If a subclass inherits the lockproperty then none of its methods are enabled when the class is locked. An abstractlock class can be described like this:(not locked) prevents unlock(locked) prevents all-except unlockAn instance variable, locked, is declared. This variable is set to true by the lockmethod and to false by the unlock method. The restrictions specify that an objectcan not be unlocked unles it is locked, and that unlock is the only method that canbe called when the object is locked. 2Some class hierarchies may require selective inheritance of restrictions, i.e. theability not to inherit certain restrictions from certain classes. Selective inheritanceis necessary if superclass methods are rede�ned from scratch in subclasses or if aclass has multiple superclasses (multiple inheritance). However, selective inheritanceis not necessary for all inheritance mechanisms and therefore, it is not part of ournotation. Still, the principles of our framework are general and
exible enough forselective inheritance to be smoothly integrated.One possible way to describe selective inheritance is for a class to set up iron-curtains that limit the inheritance of certain restrictions from certain superclasses.Iron-curtains could point out restrictions not to be inherited in the form invocationpatterns. One possible semantics would be to have all invocations that match a givenpattern not be restricted by the synchronization constraints applying in a speci�edsuperclass. We will not discuss iron-curtains any further. We only want to point outthat our framework does not preclude integration of mechanisms that allow selectiveinheritance of superclass constraints.3.4 Aggregation of RestrictionsIn this section we argue that the predicate disabled introduced in Section 3.2,should be available as a function that may be called explicitly.Calling disabled as part of a condition makes it possible to describe a restrictionas an aggregate of other restrictions. Aggregation of restrictions is important sinceit may cater for reuse by composition as a supplement to reuse by inheritance. Also,aggregation more directly allows the expression of relations between the restrictionsassociated with di�erent methods. The following two examples illustrate the use ofaggregation.Example 5. Consider Example 2 with a get-2 method in a subclass of a boundedbu�er. With aggregation we can directly express the fact that get-2 is disabledwhenever get is disabled:

(size � 1) or (disabled get) prevents get-2In that way no exact knowledge is needed in the subclass about the restrictionsthat apply to get. Additional restrictions may be added to the bounded bu�er's getmethod and these additional restrictions will also apply to the subclass and get-2without changing the subclass description. In general, aggregation allows subclassesto maintain the consistency notion of a superclass without knowing its exact na-ture. 2Example 6. Suppose another method, access-specific, is added to one of the re-source administrator classes in Example 3. The parameters to access-specificcontain a reference to a resource and access-specificmakes it possible for clientsto access that speci�c resource. An invocation of access-specific is only allowedwhen the requested resource is available. A motivation for having two access meth-ods is a scenario in which some clients can use any resource while other clients mustuse one speci�c resource. The restrictions associated with access-specific can beconveniently described in terms of the restrictions associated with access.(not available(request)) or (disabled access(request))prevents access-specific(request)The function available computes the availability of a given resource. 24 Concluding Remarks and Related WorkIn summary, we found that inheritance of synchronization constraints requires in-cremental restriction of synchronization constraints. Our framework for describingsynchronization constraints exhibits the following basic principles:{ Inheritance of synchronization constraints described by pattern-based applica-tion of restrictions.{ Aggregation of synchronization constraints by explicit inquiry about the legalityof given invocations.We believe these two principles constitute an appropriate basis for speci�cationof synchronization constraints in concurrent object-oriented languages. Part of theframework has been implemented in an experimental Actor language [7]. The viewthat synchronization constraints get increasingly more restrictive in subclasses hasproven useful in practice.It may seem that our notion of increasingly restrictive synchronization constraintsmay violate substitutability properties of subclasses. In [15] and [14], for example, itis argued that subclasses should contain at least the \input o�ers" of superclasses,implying that synchronization constraints get increasingly less restrictive in sub-classes. The motivation for this approach is subtype substitutability in the followingsense: the type of a server object denotes contractual obligations between clients andthat server. A server type guarantees clients that certain input-o�ers will be made bythe server. The guarantees given by a servers type must be maintained by subtypesof the server. Otherwise, subtypes would not be substitutable for supertypes.

With our approach to subclassing and the above typing scheme, subclasses wouldnot be subtypes. However, it is debatable, in general, whether subclasses alwaysneed to be subtypes. Furthermore, it is an open question whether synchronizationconstraints should have any signi�cance for the types of objects. First of all, a typeviolation yields an error whereas a \violation" of the synchronization constraintsmost often causes an invocation to be delayed. Secondly, it is not obvious that thetype of a server can give communication guarantees to any one client in a systemwhere multiple clients may share the server. Interference between clients in the formof interleaving of service requests may undermine such type-guarantees.Few object-oriented concurrent languages support incremental modi�cation ofsynchronization constraints. In Rosette [20], synchronization constraints are de-scribed as enabled sets: data structures that denote the currently enabled methods.Subclasses can incrementally add methods to enabled sets de�ned in superclasses.As opposed to our framework, synchronization constraints in Rosette get less re-strictive in subclasses. Beta [9] and the language proposed by Thomsen [19] containexplicit input actions similar to the accept statements of Ada [21]. Subclasses canincrementally add more input actions, which again means that synchronization con-straints get less restrictive in subclasses. The author does not know of any otherframework that supports the view that synchronization constraints get increasinglymore restrictive in subclasses.To keep the framework as simple and general as possible, the issue of serializingmethod invocations was deliberately ignored. It should be noted, however, that re-strictions in concurrent invocations can easily be expressed within the framework.For example, conditions in restrictions could refer to synchronization counters [4].AcknowledgementsThe author is sponsored by a research fellowship from the Natural Science Facultyof �Arhus University in Denmark and generous support from the Danish ResearchAcademy.The research described in this paper was carried out at the University of IllinoisOpen Systems Laboratory (OSL). The work at OSL is supported by grants fromthe O�ce of Naval Research (ONR contract number N00014-90-J-1899), DigitalEquipment Corporation, and by joint support from the Defense Advanced ResearchProjects Agency and the National Science Foundation (NSF CCR 90-07195).The author is grateful to Gul Agha, Chris Houck, Ole Agesen, Christian Callsen,Rune Dahl, Nayeem Islam and Daniel Sturman for inspiring discussions about syn-chronization constraints and careful reading of this paper.References1. P. America and F. van der Linden. A Parallel Object-Oriented Language with In-heritance and Subtyping. In OOPSLA '90 Proceedings, 1990.2. G. Bracha and W. Cook. Mixin-based Inheritance. In OOPSLA '90 Proceedings,1990.

3. N. Carriero, D. Gelernter, and J. Leichter. Distributed Data Structures in Linda.In POPL '86 Proceedings, 1986.4. D. Decouchant, P. Le Dot, M. Rivelli, C. Roisin, and X. Rousset de Pina. A Syn-chronization Mechanism for an Object Oriented Distributed System. In EleventhInternational Conference on Distributed Computing Systems. IEEE, 1991.5. A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implementation.Addison-Wesley, 1983.6. J. E. Grass and R. H. Campbell. Mediators: A Synchronization Mechanism. InSixth International Conference on Distributed Computing Systems. IEEE, 1986.7. C. Houck. Run-Time Support for Distributed Actor Programs. Master's thesis,University of Illinois at Urbana-Champaign, 1992. Forthcoming.8. J. L. Knudsen. Name Collision in Multiple Classi�cation Hierarchies. In ECOOP'88European Conference on Object-Oriented Programming. Springer Verlag, 1988.9. B. B. Kristensen, O. L. Madsen, B. M�ller-Pedersen, and K. Nygaard. The BETAProgramming Language. In B. D. Schriver and P. Wegner, editors, Research Direc-tions in Object-Oriented Programming. MIT Press, 1987.10. B. B. Kristensen, O. L. Madsen, B. M�ller-Pedersen, and K. Nygaard. Classi�cationof Actions or Inheritance Also for Methods. In ECOOP'87 European Conference onObject-Oriented Programming. Springer Verlag, 1987.11. S. Matsuoka, K. Wakita, and A. Yonezawa. Analysis of Inheritance Anomalyin Concurrent Object-Oriented Languages. ECOOP/OOPSLA'90 Workshop onObject-Based Concurrent Systems, August 1990.12. S. Matsuoka, K. Wakita, and A. Yonezawa. Synchronization Constraints With In-heritance: What is Not Possible | So What is? Technical Report 10, Departmentof Information Science, the University of Tokyo, 1990.13. C. Neusius. Synchronizing Actions. In ECOOP'91 European Conference on Object-Oriented Programming. Springer Verlag, 1991.14. O. Nierstrasz and M. Papathomas. Towards a Type Theory for Active Objects. InD. Tsichritzis, editor, Object Management. University of Geneva, 1990.15. O. Nierstrasz and M. Papathomas. Viewing Objects as Patterns of CommunicatingAgents. In OOPSLA '90 Proceedings, 1990.16. E. Shibayama. Reuse of Concurrent Object Descriptions. In A. Yonezawa andT. Ito, editors, Concurrency: Theory, Language, and Architecture. Springer Verlag,1991. LNCS 491.17. A. Silberschatz, J. Peterson, and P. Galvin. Operating Systems Concepts. Addison-Wesley, third edition, 1991.18. B. Stroustrup. An Overview of C++. Sigplan Notices, October 1986.19. K. S. Thomsen. Inheritance on Processes, Exempli�ed on Distributed TerminationDetection. International Journal of Parallel Programming, 16(1), February 1987.20. C. Tomlinson and V. Singh. Inheritance and Synchronization with Enabled-Sets. InOOPSLA '89 Proceedings, 1989.21. United States Department of Defense. Reference Manual for the Ada Language,draft, revised mil-std 1815 edition, july 1982.22. J. van den Bos and C. La�ra. PROCOL, a Concurrent Object-Oriented Languagewith Protocols Delegation and Constraints. Acta Informatica, 28:511 { 538, 1991.This article was processed using the LaTEX macro package with LLNCS style

