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Abstract 
 

An important problem for agents in open multiagent systems is how to find agents that 
match certain criteria. A number of middle agent services, such as matchmaking and 
brokering services, have been proposed to address this problem. However, the search 
capabilities of such services are relatively limited since the match criteria they use are 
relatively inflexible. We propose ATSpace, a middle agent to support application-

oriented matchmaking and brokering services. Application agents in ATSpace deliver 
their own search algorithms to a public tuple space which holds agent property data; 
the tuple space executes the search algorithms on this data. We show how the ATSpace 
model increases the dynamicity and flexibility of middle agent services. Unfortunately, 
the model also introduces security threats: the data and access control restrictions in 
ATSpace may be compromised, and system availability may be affected. We describe 
some mechanisms to mitigate these security threats. 

 
Keywords: Agent Coordination, Agent Interaction, Middle Agents, Brokering 
Services, Matchmaking Services. 

 
 

1. Introduction 
 
In multiagent systems, agents need to communicate with each other to accomplish their goals. An 
important problem in open multiagent systems is the connection problem: how to find agents that 
match given criteria [Dav83]. When agents are designed or owned by the same organization, 
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developers may be able to design agents which explicitly know the names of other agents that they 
need to communicate with. However in open systems, because different agents may dynamically 
enter or leave a system, it is generally not feasible to let agents know the names of all other agents 
that they need to communicate with at some point. 

For solving the connection problem, Decker classifies middle agent services as either 
matchmaking (also called Yellow Page) services or brokering services [Dec96, Syc97]. 
Matchmaking services (e.g. Directory Facilitator in FIPA platforms [Fip02]) are passive services 
whose goal is to provide a client agent with a list of names of agents whose properties match its 
supplied criteria. The agent may later contact the matched agents to request services. On the other 
hand, brokering services (e.g. ActorSpace [Cal94]) are active services that directly deliver a 
message (or a request) to the relevant agents on their clients’ behalf. 

In both types of services, an agent advertises itself by sending a message which contains its 
name and a description of its characteristics to a middle agent. A middle agent may be implemented 
on top of a tuple space model such as Linda [Car89]; this involves imposing constraints on the 
format of the stored tuples and using Linda-supported primitives. Specifically, to implement 
matchmaking and brokering services on top of Linda, a tuple template may be used by the client 
agent to specify the matching criteria. However, the expressive power of a template is very limited; 
it consists of value constraints for its actual parameters and type constraints for its formal 
parameters. In order to overcome this limitation, Callsen's ActorSpace implementation used regular 
expressions in its search template [Agh93, Cal94]. Even though this implementation increased 
expressivity, its capability is still limited by the power of its regular expressions. 

We propose ATSpace1 (Active Tuple Spaces) to empower agents with the ability to provide 
arbitrary application-oriented search algorithms to a middle agent for execution on the tuple space. 
While ATSpace increases the dynamicity and flexibility of the tuple space model, it also introduces 
some security threats as codes developed by different groups with different interests are executed in 
the same space. We will discuss the implication of these threats and how they may be mitigated. 

This paper is organized as follows. Section 2 explains the ATSpace architecture and introduces 
its primitives. Section 3 describes security threats occurred in ATSpace and addresses how to 
resolve them. Section 4 illustrates the power of the new primitives by describing experiments with 
using ATSpace on UAV (Unmanned Aerial Vehicle) simulations. Section 5 evaluates the 

                                                           
1 We will use ATSpace to refer the model for a middle agent to support application-oriented service, while we 

use an atSpace to refer an instance of ATSpace. 
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performance of ATSpace and compares it with a general middle agent. Section 6 discusses related 
work, and finally, we conclude this paper with a summary of our research and future work. 
 

2. ATSpace 
 

2.1 A MOTIVATIVE EXAMPLE 
 

We present a simple example to motivate the ATSpace model. In general, a tuple space user with a 
complex matching query is faced with the following two problems: 
 

1. Expressiveness problem because a matching query cannot be expressed using the tuple 
space primitives. 

2. Incomplete information problem because evaluating a matching query requires information 
which is not available for a tuple space manager. 

 
For example, assume that a tuple space has information about seller agents and the prices of the 

products they sell; each tuple has the following attributes (seller name, seller city, 
product name, product price). Buyer agents can access the tuple space in order to find 

seller agents that sell, for instance, computers or printers. Also, a buyer agent wants to execute the 
following query: 

 
Q1: What are the best two (in terms of prices) sellers that offer computers and whose locations are 
roughly within 50 miles from me? 
 

A generic tuple space may not support the request of this buyer agent because, firstly, it may 
not support the “best two” primitive (problem 1), and secondly, it may not have information about 
the distance between cities (problem 2). Faced with these difficulties the buyer agent with the query 
Q1 has to transform it to a tuple template style query (Q2) to be accepted by the general tuple space. 
This query Q2 will retrieve a superset of the data that should have been retrieved by Q1. 
 
Q2: Find all tuples about seller agents that sell computers.  
 

The buyer agent then evaluates its own search algorithm on the returned data to find tuples that 
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satisfy Q1. In our example, the buyer agent would first filter out seller agents whose locations are 
less than 50 miles from the location of its user, and then choose the best two sellers from the 
remaining ones. To select seller agents located within 50 miles, the buyer agent has a way of 
estimating roughly distances between cites. Finally, it should send these seller agents a message to 
start the negotiation process.  

An apparent disadvantage of the above approach is the movement of large amount of data from 
the tuple space to the buyer agent. When the tuple space includes large amount of tuples related to 
computer sellers, the size of the message to be delivered is also large. In order to reduce 
communication overhead, ATSpace allows a client agent to send an object containing its own search 
algorithm, instead of a tuple template. In our example, the buyer agent would send mobile code that 
inspects tuples in the tuple space and selects the best two sellers that satisfy the buyer criteria; the 
mobile code also carries information about distances to the near cities. 

In Figure 1, the seller agents with AN2 and AN3 names are selected by the search algorithm, 
and the atSpace agent delivers sendComputerBrand message to them as a brokering service. 

Finally, the seller agents send information about brand names of their computers to the buyer agent.  
 

ATSapce 

AN2, Champaign, computer, 950 

AN3, Urbana, computer, 650 

AN4, Urbana, printer, 420

AN5, Austin, computer, 1290 

 

Figure 1: An Example of ATSpace 
 

<find best two sellers in neighboring cities> sendComputerBrand 

AN1:buyer 

AN5:sellerAN3:seller

AN2:seller 
AN4:seller
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2.2 OVERALL ARCHITECTURE 
 
ATSpace consists of three components: a tuple space, a message queue, and a tuple space manager 
(see Figure 2).  
 

ATSpace 

Tuple Space message queue 

 

Figure 2: Basic Architecture of ATSpace 
 

The tuple space is used as a shared pool for agent tuples, npppa ,...,,, 21 , which consists of a 

name field, a, and a property part, P = p1, p2, …, pn where n ≥ 1; each tuple represents an agent 
whose name is given by the first field and whose characteristics are given by the subsequent fields. 
ATSpace enforces the rule that there cannot be more than one agent tuples whose agent names and 
property fields are identical. However, an agent may register itself with different properties 
(multiple tuples with the same name field), and different agents may register themselves with the 
same property fields (multiple tuples with the same property part). 

)]..()..&(&)..()..[(:, atatPtPtPtPtatatjitt jijijijiji ≠→=≠→=→≠∀  

The message queue contains input messages that are received from other agents. Messages are 
classified into two types: data input messages and service request messages. A data input message 
includes a new agent tuple for insertion into the tuple space. A service request message includes 
either a tuple template or a mobile object. The template (or, alternately, the object) is used to search 
for agents with the appropriate agent tuples. A service request message may optionally contain 
another field, called the service call message field, to facilitate the brokering service. A mobile 
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object is an object that is provided by a service-requesting agent or client agent; such objects have 
pre-defined public methods, such as find. The find method is called by the tuple space manager 

with tuples in its atSpace as a parameter, and this method returns names of agents selected by the 
search algorithm specified in the mobile object. 

The tuple space manager retrieves names of service agents whose properties match a tuple 
template or which are selected by a mobile object. In case of a matchmaking service, it returns the 
names to the client agent. In case of a brokering service, it forwards the service call message 
supplied by the client agent to the service agents. 
 

2.3 OPERATION PRIMITIVES 
 

General Tuple Space Primitives 
 
The ATSpace model supports three basic primitives: write, read, and take. write is used to 
register an agent tuple into an atSpace, read is used to retrieve an agent tuple that matches a given 
criteria, and take is used to retrieve a matched agent tuple and remove it from the atSpace. When 

there are more than one agent tuples whose properties are matched with the given criteria, one of 
them is randomly selected by the agent tuple manager. When there is no a matched tuple, these 
primitives return immediately with an exception. In order to retrieve all agent tuples that match a 
given criteria, readAll or takeAll primitives should be used. The format2 of these primitives is 

as follows: 
 

void write(AgentName anATSpace, TupleData td); 
AgentTuple read(AgentName anATSpace, TupleTemplate tt); 
AgentTuple take(AgentName anATSpace, TupleTemplate tt); 
AgentTuple[] readAll(AgentName anATSpace, TupleTemplate tt); 
AgentTuple[] takeAll(AgentName anATSpace, TupleTemplate tt); 

 

where AgentName, TupleData, AgentTuple, and TupleTemplate are data objects defined in 

ATSpace. A data object denotes an object that includes only methods to set and retrieve its member 
variables. When one of these primitives is called in an agent, the agent class handler creates a 
corresponding message and sends it to the atSpace specified as the first parameter, anATSpace. The 
write primitive causes a data input message while the others cause service request messages. Note 
that the write primitive does not include an agent tuple but a tuple that contains only the agent’s 

                                                           
2 The current ATSpace implementation is developed in the Java programming language, and hence, we use the 
Java syntax to express primitives. 
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properties. This is to avoid the case where an agent tries to register a property using another agent 
name to an atSpace. This tuple is then converted to an agent tuple with the name of the sender agent 
before the agent tuple is inserted to an atSpace. 

In some applications, updating agent tuples happens very often. For such applications, 
availability and integrity are of great importance. Availability insures that at least one agent tuple 
exist at any time whereas integrity insures that old and new agent data do not exist simultaneously 
in an atSpace. Implementing the update request using two tuple space primitives, take and write, 
could result in one of these properties not being satisfied. If update is implemented using take 
followed by write, then availability is not met. On the other hand, if update is implemented using 
write followed by take, integrity is violated for a small amount of time. Therefore, ATSpace 
provides the update primitive to insure that take and write operations are performed as one 

atomic operation. 
 

void update(AgentName anATSpace, TupleTemplate tt, TupleData td); 
 

Matchmaking and Brokering Service Primitives 
 

In addition, ATSpace also provides primitives for middle agent services: searchOne and 
searchAll for matchmaking services, and deliverOne and deliverAll for brokering services. 

Primitives for matchmaking are as follows: 
 

AgentName searchOne(AgentName anATSpace, TupleTemplate tt); 
AgentName searchOne(AgentName anATSpace, MobileObject ao); 
AgentName[] searchAll(AgentName anATSpace, TupleTemplate tt); 
AgentName[] searchAll(AgentName anATSpace, MobileObject ao); 

 

The searchOne primitive is used to retrieve the name of a service agent that satisfies a given 
criteria, whereas the searchAll primitive is used to retrieve all names of service agents that match 

a given property. 
Primitives for brokering service are as follows: 

 
void deliverOne(AgentName anATSpace, TupleTemplate tt, Message msg); 
void deliverOne(AgentName anATSpace, MobileObject ao, Message msg); 
void deliverAll(AgentName anATSpace, TupleTemplate tt, Message msg); 
void deliverAll(AgentName anATSpace, MobileObject ao, Message msg); 

 

The deliverOne primitive is used to forward a specified service call message msg to the 
service agent that matches the given criteria, whereas the deliverAll primitive is used to send 

this message to all such service agents. 
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Note that our matchmaking and brokering service primitives allow agents to use mobile objects 

to support application-oriented search algorithm. We call matchmaking or brokering services used 
with mobile objects active matchmaking or brokering services. MobileObject is an abstract class 

that defines the interface methods between a mobile object and an atSpace. One of these methods is 
find, which may be used to provide the search algorithm to an atSpace. The format of the find 

method is defined as follows: 
 

AgentName[] find(final AgentTuple[] ataTuples); 

 

Service Specific Request Primitive 
 

One drawback of the previous brokering primitives (deliverOne and deliverAll) is that they 

cannot support service-specific call messages. In some situations, a client agent cannot supply an 
atSpace with a service call message to be delivered to a service agent beforehand because it needs to 
examine the service agent properties first. Another drawback of the deliverAll primitive is that 

it stipulates that the same message should be sent to all service agents that match the supplied 
criteria. In some situations a client agent needs to send different messages to each service agent, 
depending on the service agent’s properties. A client agent with any of the above requirements can 
use neither brokering services with tuple templates nor active brokering services with mobile 
objects. Therefore, the agent has to use the readAll primitive to retrieve relevant agent tuples and 

then create appropriate service call messages to send service agents selected. However, this 
approach suffers from the same problems as a general tuple space does. 

To address the above shortcomings, we introduce the exec primitives. This primitive allows a 

client agent to supply a mobile object to an atSpace; the supplied mobile object has to implement 
the doAction method. When the method is called by an atSpace with agent tuples, it examines the 

properties of agents using the client agent application logic, creates different service call messages 
according to the agent properties, and then returns a list of agent messages to the atSpace to deliver 
the service call messages to the selected agents. Note that each agent message consists of the name 
of a service agent as well as a service call message to be delivered to the service agent. The formats 
of exec primitive and the doAction method are as follows. 
 

void exec(AgentName anATSpace, MobileObject ao); 
AgentMessage[] doAction(AgentTuple[] ataTuples); 
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3. SECURITY ISSUES 
 

By allowing a mobile object to be supplied by an application agent, ATSpace supports application-
oriented matchmaking and brokering services, which increases the flexibility and dynamicity of the 
tuple space model. However, it also introduces new security threats; we address some of these 
security threats and describe some ways to mitigate them. There are three important types of 
security issues for ATSpace: 
 

 Data Integrity: A mobile object may not modify tuples owned by other agents. 
 Denial of Service: A mobile object may not consume two much processing time or space 

of an atSpace, and a client agent may not repeatedly send mobile objects, thus overloading 
an atSpace. 

 Illegal Access: A mobile object may not carry out unauthorized access or illegal 
operations. 

 
We address the data integrity problem by blocking attempts to modify tuples. When a mobile 

object is executed by a tuple space manager, the manager makes a deep copy of tuples and then 
sends the copy to the find or doAction method of the mobile object. Therefore, even when a 

malicious agent changes some tuples, the original tuples are not affected by the modification. 
However, when the number of tuples in a tuple space is very large, this solution requires extra 
memory and computational resources. For better performance, the creator of an atSpace may select 
the option of delivering to mobile objects a shallow copy of the original tuples instead of a deep 
copy, although this will violate the integrity of tuples if an agent tries to delete or change tuples. We 
are currently investigating under what conditions a use of a shallow copy may be sufficient. 

To address denial of service by consuming all processor cycles, we deploy user-level thread 
scheduling. Figure 3 depicts the extended architecture of ATSpace. When a mobile object arrives, 
the object is executed as a thread, and its priority is set to high. If the thread executes for a long time, 
its priority is continually downgraded. Moreover, if the running time of a mobile object exceeds a 
certain limit, it may be destroyed by the Tuple Space Manager; in this case, a message is sent to the 
sender agent of the mobile object to inform it about the destruction of the object. To incorporate 
these restrictions, we have extended the architecture of ATSpace by implementing job queues--thus 
making their semantics similar to that of actors. Other denial of service issues are still our on-going 
research. 
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message queueATSpace 

Figure 3: Extended Architecture of ATSpace 
 
To prevent unauthorized access, an atSpace may be created with an access key; if an atSpace is 

created with an access key, then this key must accompany every message sent from service 
requester agents. Also, an atSpace may limit agents to modify only their own tuples. 

 

4. Experiments 
 

We have applied the ATSpace model in a UAV (Unmanned Aerial Vehicle) application which 
simulates the collaborative behavior of a set of UAVs in a surveillance mission [Jan03]. During the 
mission, a UAV needs to communicate with other neighboring UAVs within its local 
communication range (see Figure 4). We use the brokering primitives of ATSpace to accomplish 
this broadcasting behavior. Every UAV updates information about its location on an atSpace at 
every simulation step using the update primitive. When local broadcast communication is needed, 
the sender UAV (considered a client agent from the ATSpace perspective) uses the deliverAll 
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primitive and supplies as a parameter a mobile object3 that contains its location and communication 
range. When this mobile object is executed in the atSpace, the find method is called by the tuple 
space manager to find relevant receiver agents. The find method computes distances between the 

sender UAV and other UAVs to find neighboring ones within the given communication range. When 
the tuple space manager receives names of service agents, neighboring UAVs in this example, from 
the mobile object, it delivers the service call message given by the client agent--the sender UAV in 
this example--to them. 
 

 

Figure 4: Simulation of Local Broadcast Communication 
 
We also use ATSpace to simulate the behavior of UAV radar sensors. Each UAV should detect 

targets within its sensing radar range (see Figure 5). The SensorSimulator, which is the simulator 
component responsible for accomplishing this behavior, uses the exec primitive to implement this 
task. The mobile object4 supplied with the exec primitive computes distances between UAVs and 

targets, and decides neighboring targets for each UAV. It then creates messages each of which 
consists of the name of its receiver UAV and a service call message to be sent its receiver UAV 
agent. This service call message is simply the environment model around this UAV (neighboring 
targets in our domain). Finally, the mobile object returns these set of messages to the tuple space 
manager which in turn sends them to respective agents. 

 

                                                           
3 The code for this mobile object is in Appendix A. 
4 The code for this mobile object is in Appendix B. 
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Figure 5: Simulation of Radar Sensor 
 

5. Evaluation 
 

The performance benefit of ATSpace can be measured by comparing its active brokering service 
with the data retrieval service of the template-based tuple space model along four different 
dimensions: the number of messages, the total size of messages, the total size of memory space on 
the clients’ and middle agents’ computers, and the time for the entire computation. To analytically 
evaluate ATSpace, we use the scenario described in section 2.1 where a service-requesting agent has 
a complex query that is not supported by the template-based model. 

Let the number of service agents that satisfy this complex query be n. In the template-based 
tuple space model, the number of messages is n + 2. The details are as follows: 

 Service_Requesttemplate: a template-based service request message that includes Q2.  

A service-requesting agent sends this message to a tuple space to bring a superset of its 
final result. 

 Service_Replytemplate: a reply message that contains agent tuples satisfying Q2. 
 n Service_Call: n service call messages to be delivered by the service-requesting agent 

to the agents that match its original criteria Q1. 

In ATSpace, the total number of messages is n + 1. This is because the service-requesting agent 
need not worry about the complexity of his query and only sends a service request message 
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(Service_RquestATSpace) to an atSpace. This message contains the code that represents its criteria 

along with a service call message which should be sent the agents that satisfy the criteria. The last n 
messages have the same explanation as in the template based model except that the sender is the 
atSpace instead of the service-requesting agent. 

While the difference in the number of messages delivered in the two approaches is 
comparatively small, the difference in the total size of these messages may be huge. Specifically, the 
difference in bandwidth consumption (BD: Bandwidth Difference) between the template-based 
model and the ATSpace one is given by the following equation: 

BD = [size(Service_Requesttemplate) – size(Service_RequestATSpace) ] + 
size(Service_Replytemplate) 

In general the ATSpace service request message is larger, as it has the matching code, and thus 
the first component is negative. As such, ATSpace will only result in a bandwidth saving if the 
increase in the size of its service request message is smaller than the size of the service reply 
message in the template-based approach. This is likely to be true if the original query (Q1) is 
complex such that turning it into a simpler one (Q2) to retrieve a superset of the result would incur a 
great semantic loss and as such would retrieve a lot of the tuples from the template-based tuple 
space manager. 

The amounts of the storage space used on the client agent’s and middle agent’s computers are 
similar in both cases. In the general tuple space, a copy of the tuples exists in the client agent, and 
an atSpace also requires a copy of the data for the mobile object to address the data integrity issue. 
However, if a creator of an atSpace opts to use a shallow copy of the data, the size of such a copy in 
the atSpace is much less than that of the copy in the client agent. 

The difference in computation times of the entire operation in the two models depends on two 
factors: the time for sending messages and the time for evaluating queries on tuples. As we 
explained before, ATSpace will usually reduce the total size of messages so that the time for 
sending messages is in favor of ATSpace. Moreover, the tuples in the ATSpace are only inspected 
once by the mobile object sent by the service-requesting agent. However, in the template-based 
approach, some tuples are inspected twice: first, in order to evaluate Q2, the template-based tuple 
space manager needs to inspect all the tuples that it has, and second, the service-requesting agent 
inspects these tuples that satisfy Q2 to retain the tuples that also satisfy Q1. If Q1 is complex then 
Q2 may not filter tuples properly. Therefore, even though the time to evaluate Q2 against the entire 
tuples in the tuple space is smaller than the time needed to evaluate them by the mobile object, most 
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of the tuples on the tuple space manager may pass Q2 and be re-evaluated again by the service-
requesting agent. This re-evaluation may have nearly the same complexity as running the mobile 
object code. Thus we can conclude that when the original query is complex and external 
communication cost is high, ATSpace will result in time saving. 

Apart from the above analytical evaluation, we also evaluated the saving in computational time 
resulting from using the ATSpace in the UAV domain using the settings mentioned in section 4. 
Figure 6 shows the benefit of ATSpace compared to a general tuple space that provides the same 
semantic in the UAV simulation. In these experiments, UAVs use either active brokering service or 
data retrieval service to find their neighboring UAVs. In both cases, the middle agent includes 
information about locations of UAVs and targets. In case of the active brokering service, UAVs send 
mobile objects to the middle agent while UAVs using data retrieval service send tuple templates. 
The simulation time for each run is around 40 minutes, and the wall clock time depends on the 
number of agents. When the number of agents is small, the difference between the two approaches 
is not significant. However, as the number of agents is increased, the difference becomes large. 
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Figure 6: Wall Clock Time for ATSpace and Tuple Space 
 

Figure 7 shows the number of messages, and Figure 8 shows the total size of messages in the 
two approaches, although the number of messages required is similar in both cases. However, a 
general tuple space requires more data movement than ATSpace, the shapes of these two lines in 
Figure 8 is similar to those in Figure 6. Therefore, we can hypothesize that there are strong 
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relationship between the total size of messages and the wall clock time of simulations. 
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Figure 7: The Number of Messages for ATSpace and Tuple Space 
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Figure 8: The Total Size of Messages for ATSpace and Tuple Space 
 

6. Related Work 
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In this section we compare our ATSpace model with three related approaches: Other tuple space 
models, the Java Applet model, and finally mobile agents. 
 

6.1 ATSpace Vs. Other Tuple Space Models 
 
Our work is related to Linda [Car89, Gel85] and its variants, such as JavaSpaces and TSpaces 
[Leh99, Sun03]. In these models, processes communicate with other processes through a shared 
common space called a blackboard or a tuple space without considering references or names of 
other processes [Car89, Pfl98]. This approach was used in several agent frameworks, for example 
OAA and EMAF [Bae95, Mar97]. However, these models support only primitive features for 
anonymous communication among processes or agents.  

From the middle agent perspective, Directory Facilitator in the FIPA platform and Broker Agent 
in InfoSleuth are related to our research [Fip02, Jac96]. However, these systems do not support 
customizable matching algorithm.  

Some work has been done to extend the matching capability in the tuple space model. Berlinda 
allows a concrete entry class to extend the matching function [Tol97], and TS uses policy closures in 

a Scheme-like language to customize the behavior of tuple spaces [Jag91]. However, these 
approaches do not allow the matching function to be changed during execution. OpenSpaces 
provides a mechanism to change matching polices during execution [Duc00]. OpenSpaces groups 
entries in its space into classes and allows each class to have its individual matching algorithm. A 
manager for each class of entries can change the matching algorithm during execution. All agents 
that use entries under a given class are affected by any change to its matching algorithm. This is in 
contrast to ATSpace where each agent can supply its own matching algorithm without affecting 
other agents. Another difference between OpenSpaces and ATSpace is that the former requires a 
registration step before putting a new matching algorithm into action. Object Space allows 
distributed applications implemented in the C++ programming language to use a matching function 
in its template [Pol93]. This matching function is used to check whether an object tuple in the space 
is matched with the tuple template given in rd and in operators. However in ATSpace, the client 

agent supplied mobile objects can have a global overview of the tuples stored in the shared space, 
and hence, it can support global search behavior rather than one tuple based matching behavior 
supported in Object Space. For example, using ATSpace a client agent can find the best ten service 
agents according to its criteria whereas this behavior cannot be achieved in Object Space. 

TuCSoN and MARS provide programmable coordination mechanisms for agents through Linda-
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like tuple spaces to extend the expressive power of tuple spaces [Cab00, Omi98]. However, they 
differ in the way they approach the expressiveness problem; while TuCSoN and MARS use reactive 
tuples to extend the expressive power of tuple spaces, ATSpace uses mobile objects to support 
search algorithms defined by client agents. A reactive tuple handles a certain type of tuples and 
affects various clients, whereas a mobile object handles various types of tuples and affects only its 
creator agent. Also, these approaches do not provide an execution environment for client agents.  
Therefore, these may be considered as orthogonal approaches and can be combined with our 
approach. 
 

6.2 The ATSpace Model vs. the Applet Model 
 
ATSpace allows the movement of a mobile object to the ATSpace manager, and thus it can be 
confused with the Applet model. However, a mobile object in ATSpace quite differs from a Java 
applet: a mobile object moves from a client computer to a server computer while a Java applet 
moves from a server computer to a client computer. Also, the migration of a mobile object is 
initiated by its owner agent on the client computer, but that of a Java applet is initiated by the 
request of a client Web browser. Another difference is that a mobile object receives a method call 
from an atSpace agent after its migration, but a Java applet receives parameters and does not receive 
any method call from processes on the same computer. 

 
6.3 Mobile Objects vs. Mobile Agents 
 
A mobile object in ATSpace may be considered as a mobile agent because it moves from a client 
computer to a server computer. However, the behavior of a mobile object differs from that of a 
mobile agent. First of all, the behavior of objects in general can be compared with that of agents as 
follows: 

 An object is passive while an agent is active, i.e., a mobile object does not initiate activity.  
 An object does not have the autonomy that an agent has: a mobile object executes its method 

whenever it is called, but a mobile agent may ignore a request received from another agent. 
 An object does not have a universal name to communicate with other remote objects; therefore, 

a mobile object cannot access a method on the remote object, but a mobile agent can 
communicate with agents on other computers. However, note that some object-based 
middleware may provide such functionality: e.g., objects in CORBA or DCOM [Vin97, Tha99] 
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may refer remote objects. 
 The method interface of an object is precisely predefined, and this interface is directly used by 

a calling object.5 On the other hand, an agent may use a general communication channel to 
receive messages. Such messages require marshaling and unmarshaling, and have to be 
interpreted by receiver agents to activate the corresponding methods. 

 While an object is executed as a part of a processor or a thread, an agent is executed as an 
independent entity; mobile objects may share references to data, but mobile agents do not. 

 An object may use the reference passing in a method call, but an agent uses the value passing; 
when the size of parameters for a method call is large, passing the reference to local data is 
more efficient than passing a message, because the value passing requires a deep copy of data.  

Besides the features of objects, we impose additional constraints on mobile objects in ATSpace: 

 A mobile object can neither receive a message from an agent nor send a message to an agent. 
 After a mobile object finishes its operation, the mobile object is destroyed by its current middle 

agent; a mobile object is used exactly once.  
 A mobile object migrates only once; it is prevented from moving again. 
 The identity of the creator of a mobile object is separated from the code of the mobile agent. 

Therefore, a middle agent cannot send a mobile object to another middle agent with the 
identity of the original creator of the object. Thus, even if the code of a mobile object is 
modified by a malicious server program, the object cannot adversely affect its creator. 
Moreover, since a mobile object cannot send a message to another agent, a mobile object is 
more secure than a mobile agent.6 However, a mobile object raises the same security issues for 
the server side. 

In summary, a mobile object loses some of the flexibility of a mobile agent, but this loss is 
compensated by increased computational efficiency and security. 

 

7. Conclusion and Future Work 
 

In this technical report we presented ATSpace, Active Tuple Space, which works as a common 
shared space to exchange data among agents, a middle agent to support application-oriented 

                                                           
5 Methods of a Java object can be detected with the Java reflection mechanism. Therefore, the predefined 
interface is not necessary to activate a method of a Java object. 
6 [Gre98] describes security issues of mobile agents in detail. 
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brokering and matchmaking services, and an execution environment for mobile objects utilizing 
data on its space. Our experiments with UAV surveillance simulations show that the model may be 
effective in reducing coordination costs. We have described some security threats that arise when 
using mobile objects for agent coordination, along with some mechanisms we use to mitigate them. 
We are currently incorporating memory use restrictions into the architecture and considering 
mechanisms to address denial of service attacks that may be caused by flooding the network [Shi02]. 
We also plan to extent ATSpace to support multiple tuple spaces distributed across the Internet (a 
feature that some Linda-like tuple spaces [Omi98, Sny02] already support). 
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Appendix A: Mobile Object for Local Broadcast Communication 
 
public class CommunicationMobileObject implements MobileObject 
{ 
 protected final static double BROADCAST_RANGE = 50000.0; 
     //  range for broadcast communication  
 
 private Point m_poPosition; 
     //  location of the current location of a UAV 
 
 /** 
 *  Creates a mobile object with the location of the caller UAV agent. 
  */ 
 public CommunicationMobileObject(Point p_point) 
 { 
  m_poPosition = p_point; 
 } 
 
 /** 
 *  Defines the 'find' method. 
 */ 
 public AgentName[] find(AgentTuple[] p_ataTuples) 
 { 
     double dEWDistance = m_poPosition.getX(); 
     double dNSDistance = m_poPosition.getY(); 
      
  LinkedList llReceivers = new LinkedList(); 
 
  for (int i=0; i<p_ataTuples.length; i++) { 
   if (p_ataTuples[i].sizeOfElements() == 1) { 
    Object objItem = p_ataTuples[i].getElement(0); 
 
    try { 
     // 
     //  check the type of a field of a tuple. 
     // 
     if ( (Class.forName("app.task.uav.Point").isInstance(objItem)) ) { 
      Point poObject = (Point) objItem; 
      double dDistance =  
       Math.sqrt( Math.pow((poObject.getX() - dEWDistance), 2.0) + 
       Math.pow((poObject.getY() - dNSDistance), 2.0) ); 
 
      // 
     //  compute the distance between the caller UAV and another. 
     // 
      if ( dDistance <= BROADCAST_RANGE) { 
       llReceivers.add(p_ataTuples[i].getAgentName()); 
      } 
     } 
    } catch (ClassNotFoundException e) { 
     System.err.println(">> Investigator.search: " + e); 
    } 
   } 
  } 
 
  // 
  //  return the names of neighboring UAV agents. 
  // 
  AgentName anaReceivers[] = new AgentName[llReceivers.size()]; 
  llReceivers.toArray(anaReceivers); 
  return anaReceivers; 
 } 
} 
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Appendix B: Mobile Object for Sensors of UAVs. 
 
public class SensorMobileObject implements MobileObject 
{ 
 public final static double RADAR_SENSOR_RANGE = 25000.0; 
      //  range for radar sensing 
 
 private final static double RADAR_SENSOR_ALTITUDE = 2000.0; 
      //  minimum altitude of a UAV to detect an object by a radar 
 
 private ObjectInfo[] m_oiaNeighboringObject; 
 
 /** 
 * Defines the 'doAction' method. 
  */ 
 public AgentMessage[] doAction(final AgentTuple[] p_ataAgentTuples) 
 { 
  LinkedList llMsgs = new LinkedList(); 
 
  // 
     //  classify the tuples into UAVs or Targets. 
     // 
     LinkedList llUAVs = new LinkedList(); 
     LinkedList llTargets = new LinkedList(); 
      
     for (int i=0; i<p_ataAgentTuples.length; i++) { 
         if (p_ataAgentTuples[i].sizeOfElements() == 1) { 
          try { 
              Object objItem = p_ataAgentTuples[i].getElement(0); 
               
     // 
     //  check the type of a field of a tuple. 
     // 
              if ( (Class.forName("app.task.uav.Point").isInstance(objItem))) { 
               // 
         //  if a UAV is lower than the predefined minimum altitude, 
         //      then ignore the UAV. 
         // 
               Point poUAV = (Point) objItem; 
            if (poUAV.getZ() >= RADAR_SENSOR_ALTITUDE) { 
       llUAVs.add(p_ataAgentTuples[i]); 
      } 
     } else if (Class.forName("app.task.uav.ObjectInfo").isInstance(objItem)) { 
      ObjectInfo oiTarget = (ObjectInfo) objItem;  
      llTargets.add(oiTarget); 
     } 
          } catch (ClassNotFoundException e) { 
              System.err.println(">>SensorMobileObject.doAction: " + e); 
          } 
   } 
  } 
      
     // 
     //  change LinkedList-type data to Array-type data.  
     // 
      AgentTuple[] ataUAVs = new AgentTuple[llUAVs.size()]; 
     llUAVs.toArray(ataUAVs); 
      
     ObjectInfo[] oiaTargets = new ObjectInfo[llTargets.size()]; 
     llTargets.toArray(oiaTargets); 
      
  // 
  //  compute horizontal distance and vertical distance among UAVs. 
  // 
     m_oiaNeighboringObject = new ObjectInfo[oiaTargets.length]; 
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  for (int i=0; i<ataUAVs.length; i++) {      
      // 
      //  collect neighboring objects, such as targets. 
      // 
         int iNumNeighboringObjects = 0; 
 
      Point pointUAV = (Point) ataUAVs[i].getElement(0); 
      double dX = pointUAV.getX(); 
      double dY = pointUAV.getY(); 
 
      for (int j=0; j<oiaTargets.length; j++) { 
    double dDistance =  
        java.lang.Math.sqrt( 
      Math.pow(dX - oiaTargets[j].getEWDistance(), 2.0) + 
      Math.pow(dY - oiaTargets[j].getNSDistance(), 2.0) ); 
 
    if ( (i != j) &&  
         (dDistance < RADAR_SENSOR_RANGE) ) { 
        oiaTargets[j].setHDistance(dDistance); 
        oiaTargets[j].setVDistance(0); 
    
        m_oiaNeighboringObject[iNumNeighboringObjects++] = oiaTargets[j]; 
    } 
      } 
  
      // 
      //  if there are more than one neighboring objects, 
      //      then create a message to send information about them to the UAV. 
      // 
      if (iNumNeighboringObjects > 0) { 
    ObjectInfo[] oiaObjectDetected = new ObjectInfo[iNumNeighboringObjects]; 
   
    System.arraycopy(m_oiaNeighboringObject, 0,  
             oiaObjectDetected, 0,  
             iNumNeighboringObjects); 
 
    Object[] objaArgs = { oiaObjectDetected }; 
   
    llMsgs.add(createAgentMessage(ataUAVs[i].getAgentName(), "alarm", objaArgs)); 
   } 
  } 
 
  // 
  //  return agent messages to ATSpace. 
  // 
  AgentMessage anaMsgs[] = new AgentName[llMsgs.size()]; 
  llReceivers.toArray(anaMsgs); 
  return anaMsgs; 
 } 
} 
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