

On Efficient Communication and Service Agent Discovery

in Multi-agent Systems

Myeong-Wuk Jang and Gul Agha
Department of Computer Science

University of Illinois at Urbana-Champaign
{mjang, agha}@uiuc.edu

Abstract

The paper studies two closely related problems: how
to support efficient message passing in large-scale
agent systems given that agents are mobile, and how to
facilitate the discovery of service agents in an open
environment where agents may enter and leave. The
Actor Architecture has been designed to study
simulations of large-scale agent systems where agents
obey the operational semantics of actors. We describe
the solutions to these two problems that have been
adopted in the Actor Architecture. The problem of
efficient message-passing is partially addressed by
using dynamic names for agents. Specifically, a part of
the name of a mobile agent changes continuously as a
function of the agent platform that it is currently hosted
by. This enables the agent platform of a sender to use
location information about the receiver agent in order
to optimize message delivery. The problem of agent
discovery is addressed by using a broker agent.
Moreover, the sender agent may reduce the
communication that is required between the sender
itself and a broker agent by sending the broker an
agent to localize the search for the appropriate service
agents. In order to mitigate security problems, this
search agent is very restricted in what operations it is
allowed to perform and is transmitted in the form of a
passive object. A description of the Actor Architecture
is given, focusing on these two ideas and their
preliminary evaluation.

Keywords: Open Distributed System, Multi-agent
System, Actor System, Message Passing, Brokering
Service.

1. Introduction

A number of multi-agent systems, including EMAF
[3], JADE [4], InfoSleuth [5], and OAA [6], support an
open agent systems, i.e., systems in which agents may
enter and leave at any time. Moreover, the growth of
computational power and networks has made large-
scale open agent systems a promising technology.
However, before this vision of scalable open agent

systems can be realized, two closely related problems
must be addressed:

• How can an agent efficiently discover service agents
which are previously unknown? In an open agent
system, the mail addresses or names of all agents are
not globally known; agents may not have the
addresses of other agents with whom they need to
communicate. This suggests that middle agent
services such as brokering and matchmaking are
necessary [14]. As we scale up agent systems,
efficiently implementing these services is a
challenge.

• How to efficiently send messages to agents which
have potentially moved? In mobile agent systems,
efficiently sending messages to an agent is not
simple because they move continuously from one
agent platform to another. For example, one obvious
solution, viz. requiring the agent platform on which
a mobile agent is created to manage location
information about that agent, may double the
message passing overhead.

We address the message passing problem for mobile
agents in part by providing a richer structure on names
which allows the names to dynamically evolve.
Specifically, the names of agents include information
about their current location. Moreover, rather than
simply sending data as messages, we allow an agent
system to use the data to find the location of an
appropriate receiver agent.

We have implemented our ideas in a Java-based
agent system called the Actor Architecture (or AA). AA
supports the actor semantics for agents: each agent is
an autonomous process with a unique name (address),
message passing between agents is asynchronous, new
agents may be dynamically created, and agent names
may be communicated [1]. AA is being used to develop
tools to facilitate large-scale simulations, but it may be
used for other large-scale open agent applications as
well; AA has been designed with a modular and
extensible, application-independent structure. The
primary features of AA are to provide a light-weight
implementation of agents, minimize communication

 27

mailto:agha}@uiuc.edu

overhead between agents, and enable service agents to
be located efficiently.

This paper is organized as follows. Section 2
introduces the overall structure and functions of AA
and the agent life cycle model in AA. Section 3
explains how to reduce the communication overhead in
AA, and Section 4 shows how to improve the middle
agent service in AA. Section 5 describes our
experiments with AA and evaluation of our approaches.
Finally, in Section 6 we discuss our preliminary
conclusions and research directions.

2. The Actor Architecture

AA provides a light-weight implementation of
agents as active objects or actors [1]. Actors can
provide the infrastructure for a variety of agent
systems; they are social and reactive, but they are not
explicitly required to be “autonomous” in the sense of
being proactive [16]. However, autonomous actors may
be implemented in AA and many of our experimental
studies require proactive actors. Although the term
agent has been used to mean proactive actors, for our
purposes, the distinction is not critical. In this paper, we
use terms ‘agents’ and ‘actors’ as synonyms.

The Actor Architecture consists of two main
components:

1. Actor execution environments called AA platforms.
AA platforms provide the system environment in
which actors exist and interact with other actors.
Specifically, AA platforms provide actor state
management, actor communication, actor migration,
and middle actor services.

2. An actor library which supports the development of
agents that are executed on AA platforms.

We describe the structure of AA in greater detail. An
AA platform consists of eight components (see Figure
1): Message Manager, Transport Manager, Transport
Sender, Transport Receiver, Delayed Message Manager,
Actor Manager, Actor Migration Manager, and
ATSpace.

A Message Manager (MM) handles message
passing between actors. Every message passes through
at least one Message Manager. If the receiver actor of a
message exists on the same AA platform, the MM of
the platform directly delivers the message to the
receiver actor. However, if the receiver actor is not on
the same AA platform, this MM delivers the message to
the MM of the platform where the receiver currently
resides, and finally the MM delivers the message to the
receiver. A Transport Manager (TM) maintains a
public port for message passing between different AA
platforms. When a sender actor sends a message to a
receiver actor on a different AA platform, the Transport
Sender (TS) residing on the same platform as the sender
receives the message from the MM of the sender actor
and delivers it to the Transport Receiver (TR) on the

AA platform of the receiver. When there is no a built-in
connection between these two AA platforms, the TS
contacts the TM of the AA platform of the receiver
actor to open a connection so that the TM can create a
TR for the new connection. Finally, the TR receives the
message and delivers it to the MM on the same
platform.

Figure1. The Architecture of an AA Platform

A Delayed Message Manager (DMM) temporarily

holds messages for mobile actors while they are
moving from their AA platform to other AA platforms.
An Actor Manager (AM) manages states of the actors
that are currently executing and the locations of the
mobile actors created on the AA platform. An Actor
Migration Manager (AMM) manages actor migration.

An ATSpace provides middle actor services, such as
matchmaking and brokering services. Unlike other
system components, an ATSpace is implemented as an
actor. Therefore, any actor can create an ATSpace, and
hence, an AA platform may have more than one
ATSpaces. The ATSpace created by an AA platform is
called the default ATSpace of the platform, and all
actors can obtain the actor names of default ATSpaces.
Once an actor has the name of an ATSpace, the actor

 AA Platform

 AA Platform

Actor Migration
Manager

Actor
Manager

Actor

Delayed Message
Manager

Message
Manager

ATSpace

Transport
Manager

Transport
Sender

Transport
Receiver

Transport
Manager

Transport
Receiver

Transport
Sender

 28

may send the ATSpace messages in order to use its
services.

In AA, actors are implemented as active objects and
ex

Figure 2. The Actor Life Cycle Model

. Optimized Communication

We describe the mechanisms used to support actor
co

3.1. Message Passing between Actors

fter a message has been created, the message is
ma

(Figure 3a). However, if the receiver is on a different

3.2.

r actors, it
ust know the names of the intended receiver actors. In

AA

rom the e actor exists
 the ho , and

na

Unknown

ecuted as threads; actors on an AA platform are
executed with that AA platform as part of one process.
Each actor has one actor life cycle state at any time (see
Figure 2). An actor may be static, meaning that it exists
on its original AA platform, or it may be mobile,
meaning that it has migrated from its original AA
platform. The state information of a static actor appears
within only its original AA platform while that of a
mobile actor appears both on its original AA platform
and on its current AA platform. When an actor is ready
to process a message its state becomes Active and
stays while the actor is processing the message. When a
mobile actor initiates migration, its state is changed to
Transit. Once the migration ends and the actor
restarts, its state becomes Active on the current AA
platform, and Remote on the original AA platform.
Following a user request, an actor in the Active state
may be Suspended state. In contrast to other agent life
cycle models (e.g. [7, 12]), AA’s life cycle model uses
the Remote state to indicate that an agent that was
created on the current AA platform is working on
another AA platform.

3

mmunication. Specifically, AA uses two approaches
to reduce the communication overhead for mobile
actors that are not on their original AA platforms:
namely, location-based message passing and delayed
message passing.

A
naged by the Message Manager. When the receiver

actor of a message is located on the same AA platform
where the sender actor exists, the message is directly
delivered to the receiver actor by the Message Manager

machine, the message is delivered to the receiver
through the Message Manager and the Transport Sender
of the sender actor, and the Transport Receiver and the
Message Manager of the receiver actor (Figure 3b).
Although these two approaches of message passing are
different at the system level, they are transparent to
actors, and hence, actors always use the same operator
to send their messages.

Figure 3. Procedure for Actor Communication

Location-based Message Passing

Before an actor can send messages to othe

m
, each actor has its own unique name called UAN

(Universal Actor Name). The UAN of an actor includes
the location information and unique identification
number of the actor as follows:

 uan://128.174.245.49:37

F above name, we can infer that th
on st whose IP address is 128.174.245.49
that the actor is distinguished from other actors on the
same platform with its unique identification number 37.

When the Message Manager of a sender actor
receives a message whose receiver actor has the above

me, it checks whether the receiver actor exists on the
same AA platform. If they are on the same AA platform,
the Message Manager finds the receiver actor on the
AA platform and delivers the message. If they are not,
the Message Manager of the sender actor delivers the
message to the Message Manager of the receiver actor.
In order to find the AA platform where the Message
Manager of the receiver actor exists, the location
information 128.174.245.49 in the UAN of the
receiver actor is used. When the Message Manager on

D
e

estroy

Create

Resum

or
Exe tecu

Suspend

Execute

Move Start

Move

Move Start

 End

Suspended

Active

Remote

Transit

Resume
b. External Actor Communication

a. Internal Actor Communication

AA platform of a sender actor

Message
Manager

Transport
Sender

Sender
Actor

AA platform of a receiver actor

Transport
Receiver

Message
Manager

Receiver
Actor

AA platform of a sender actor and a receiver actor

Sender
Actor

Message
Manager

Receive
Actor

r

 29

the AA platform with IP address 128.174.245.49
receives the message, it finds the receiver actor and
delivers the message.

The above actor naming and message delivery
scheme works correctly when all actors are static.
Ho

message delivery is that every message for a
mo

T
p

tor receives a
me

lt-tolerant; since messages for a mobile actor
ne

N should be correct. However,
mo

Actor

.3.

ing from one AA
latform to another, the current AA platform of the

act

ssage Manager in AA platform is used; the
Message Manager of the old AA platform delays the

a. UAN-

wever, because an actor may migrate from one AA
platform to another, we extend the basic behavior of the
Message Manager with a forwarding service; when a
Message Manager receives a message for a mobile
actor, it delivers the message to the current AA
platform of the mobile actor. To facilitate this service,
an AA platform maintains a table providing the current
locations of mobile actors that were created on the AA
platform.

The problem with using only the universal names of
actors for

bile actor that has moved from the original AA
platform where the actor was created still has to pass
through the original AA platform (Figure 4a). This kind
of indirection may happen even in case the receiver
actor exists on an AA platform that is close to (or the
same as) the AA platform of the sender actor. In fact,
message passing between actor platforms is relatively
expensive. AA uses Location-based Actor Naming
(LAN) for mobile actors in order to generally eliminate
the need for this kind of indirection. Specifically, a
LAN of an actor consists of its current location and its
UAN as follows:

lan://128.174.244.147//128.174.245.49:37

he current location of a mobile actor is set by an AA
latform when the actor arrives on the AA platform. If

the current location is the same as the location where an
actor was created, the LAN of the actor does not have
any special information beyond its UAN.

Under the location-based message passing scheme,
when the Message Manager of a sender ac

ssage for a remote actor that exists on the different
AA platform, it checks the current location of the
receiver actor with its LAN and delivers the message to
the AA platform where the receiver actor exists (Figure
4b). The rest of the procedure for the message passing
is similar to that in UAN-based message passing
scheme.

With location-based message passing, the system is
more fau

ed not pass through the original AA platform of the
actor, the messages may be correctly delivered to the
actor even when the actor’s original AA platform is not
working correctly.

In order to use LAN address scheme, the location
information in a LA

bile actors may move repeatedly, and a sender actor
may have old LANs of mobile actors. Thus a message
for a mobile actor may be delivered to the previous AA
platform from where the actor left. This problem is
addressed by having an old AA platform deliver the
message to the original AA platform where the actor
was created; the original platform always manages the

current address of an actor. There is no guarantee that
the location-based message passing will perform better
than the UAN-based message passing. Therefore, AA
allows an actor to decide which addressing scheme is
better for the current situation.

Figure 4. Message Passing to a Mobile

3 Delayed Message Passing

While a mobile actor is mov
p

or is not well defined. Therefore, when the Message
Manager of the original AA platform receives a
message for a mobile actor, it sends the message to the
Message Manager of the old AA platform. After the
Message Manager of the old AA platform receives the
message, it forwards the message to the Message
Manager of the original AA platform because it no
longer has information about the mobile actor’s current
location. An AA platform manages location
information about only the mobile actors that are
created on it. Thus, a message is continuously passed
between these two AA platforms until the mobile actor
updates location information with its new AA platform
by informing the Actor Manager of the original AA
platform.

In order to avoid unnecessary message passing, a
Delayed Me

based Message Passing

send a message to UAN2

AA Platform B:

b. Location-based Message Passing

send a message to LAN2://C/B:16

AA Platform B:

AA Platform A: AA Platform C:

UAN1://B:15 UAN2://B:16

AA Platform A: AA Platform C:

UAN1://B:15 UAN2://B:16

 30

me

l for supporting
een agents that are

 an open multi-agent system. Recall that in open
mu

ctor. An ATSpace actor allows a sender
ac

In many situations, moving the search algorithm

ss
xpensive than moving all the information about certain

ag

A platforms and actors have been implemented in
 independent

ctor mobility. We are using our actor system for large-
sca

ssage passing for a mobile actor while the state of
the actor is Transit. For this operation, the Actor
Manager of the old AA platform manages the state of
the mobile actor and the Delayed Message Manager
holds messages for the mobile actor until the actor
reports that its migration has ended. After an actor
finishes its migration, the new AA platform of the actor
sends its old AA platform and its original AA platform
a message to inform that the migration process has
ended. Whenever one of these two AA platforms
receives a message, the original AA platform changes
the state of the mobile actor from Transit to Remote
while the old AA platform removes information about
the mobile actor.

4. Active Brokering Service

A brokering service is usefu
attribute-based communication betw
in

lti-agent systems, service agents that support a
specific service may not be known to client agents; with
attribute-based communication, client agents may use
the attributes of the service they require instead of using
the names of the service agents. The attributes of the
service are delivered to a middle agent as a tuple
template, and the middle agent tries to find a service
agent or a set of service agents whose attributes are
matched with the tuple template. The agents selected by
the middle agent receive the message sent by the client
agent through the middle agent. This service is very
effective in open multi-agent systems, but the searching
ability of the middle agent is often very restrictive for
efficiency reasons; a middle agent typically provides
only template-based exact matching or regular
expression matching [2, 8, 11]. If a client agent requires
a more powerful search, the client agent must use a
matchmaking service instead of a brokering service; the
client receives all the information about service agents
and utilizes its own searching algorithm to locate
proper service agents. For example, consider a middle
agent that has information about seller agents with their
products and prices, and a buyer agent wants to find
seller agents that sell a computer with price greater than
$500 and less than $1,000. If the exact matching service
of the middle agent is not powerful enough to support
this function, the buyer agent has to obtain all
information about seller agents from the middle agent,
and then choose seller agents that sell their computers
within the price range. This sequence of operations
requires moving of all information about seller agents
from the middle agent to the buyer agent through the
network.

In order to reduce the communication overhead, AA
provides an active brokering service through an
ATSpace a

tor to send its own search algorithm instead of a
simple description for attributes of the service to locate
receiver actors, and the algorithms are executed in the

ATSpace actor. In Figure 5, the seller actors with
UAN2 and UAN3 are selected by the search algorithm,
and the ATSpace actor delivers sendComputerBrand
message to the actors. Finally, they will send
information about brand names of their computers to
the buyer actor.

Figure 5. An Example of Active Brokering Service

from the seller agent to the middle agent is le
e

ents from the middle agent to the sender agent. Since
a matching algorithm is provided by a sender agent and
the algorithm is executed on a middle agent, the middle
agent called an ATSpace actor can provide application
oriented brokering service more efficiently. Moving the
search algorithm may be accomplished by sending an
agent incorporating the search algorithm. However, this
extension introduces security threats for the data in the
ATSpace actor. AA provides some solutions to mitigate
such threats, in particular by not allowing arbitrary
agents to be sent; agents are sent as passive objects and
their functions are controlled by the ATSpace actor [9].

5. Experiments and Evaluation

A
Java language to support operating system
a

le UAV (Unmanned Aerial Vehicle) simulations. In
these simulations, we investigate the effects of different
collaboration behaviors among the large number of
micro UAVs during their surveillance missions on the
large number of targets [10]. For our experiments, we
execute more than 5,000 actors on four computers:
2500 micro UAVs, 2500 targets, and other simulation
purpose actors.

An ATSpace actor

UAN2, seller, computer, 950

UAN3, seller, computer, 650

UAN2, seller, printer, 120

UAN4, seller, computer, 1290

UAN1:buyer

UAN2:seller

UAN3:seller

UAN4:seller

?, seller, computer, [500 < ? < 1000]

sendComputerBrand

 31

The delayed message passing removes unnecessary
message passing for moving agents. When the delayed
message passing is used, the old AA platform of a
mo

t provides the same service
alon

. Conclusions

The location-based message passing scheme in AA
 of hops (AA platforms) that a

essage for a mobile actor goes through. The basic
me

ing Server to locate the receiver
act

message passing may be
mo

his research is sponsored by the Defense Advanced
cy under contract number

F3 -00-2-0586.

] G. Agha, Actors: A Model of Concurrent Computation
stems, MIT Press, Cambridge, Mass, 1986.

bile actor needs to manage its state information until
the actor finishes its migration, and the new platform of
the mobile actor needs to report the migration state of
the actor to its old AA platforms. In our experience, this
overhead is more than compensated; without the
delayed message passing the same message may get
delivered seven or eight times between the original AA
platform and the old AA platform in the local network
environment while a mobile actor is moving. If a
mobile actor takes more time for its migration, this
number may be even greater. Moreover, the extra hops
also make the message log files more complex and
reduce their readability.

The performance benefit of the active brokering
service can be measured by comparing it with the
matchmaking service tha

g four different dimensions: the number of
messages, the total size of messages, the total size of
memory space on two AA platforms for client and
middle actors, and the time for the whole operation.
First, in the matchmaking service, the number of
messages is n + 2, where n is the number of service
actors, while it is n + 1 in the active brokering service.
In the former, the number of messages for this
operation includes a service request message from the
client actor to the middle actor, a reply message from
the middle actor to the client actor, and multicast
messages from the client actor to n service actors. The
active brokering service does not require the reply
message, and hence, one message is unnecessary. It is a
small difference, but more significantly, the total size of
messages is very different. The service request message
in the active brokering service is a little larger than that
in the matchmaking service, because it includes the
code for a searching algorithm and the message to be
delivered to service actors. However, the reply message
in the matchmaking service to be communicated across
the network may be much larger than the difference of
service request messages in two approaches. Moreover,
the total size of storage space for the active brokering
service is less than that in the matchmaking service; in
the matchmaking service case a copy of the data exists
in the client actor, while in the active brokering service
such a copy need not exist in the client actor. However,
for the data safety, the active brokering service may
still keep a copy of the data. Finally, the difference in
operation times except communication times is
relatively small. Mainly, the computation in
matchmaking is off-loaded to the server side. However,
since the communication time is proportioned to the
total size of messages, the active brokering service is
more efficient in the time for the whole operation.

6

reduces the number
m

chanism of the location-based message passing is
similar to the message passing in Mobile IP [13],
although its application domain is different from ours.
The original and current AA platforms of a mobile
actor correspond to the home and foreign agents of a
mobile client in Mobile IP, and the UAN and LAN of a
mobile actor are similar to the home address and care-
of address of a mobile client in Mobile IP. However,
while the sender node in Mobile IP manages a binding
cache to map home addresses to care-of addresses, the
sender AA platform in AA does not have a mapping
table, and while the home agent communicates with the
sender node to update the binding cache, it does not
happen in AA.

Our work may also be compared to SALSA. In
SALSA, a sender actor may use a middle actor called
Universal Actor Nam

or [15]. SALSA’s approach requires the receiver
actor to register its location at a certain middle actor,
and the middle actor must manage the mapping table.
With the location-based message passing scheme in AA,
a LAN of an actor is changed automatically as a
function of an AA platform, and the mapping table does
not exist at any single place.

We are currently implementing and testing new
message passing mechanisms for mobile agents. For
example, the location-based

dified to allow a mobile agent to set its future
location address in its LAN and announce this to other
agents. For the delayed message passing, instead of the
old AA platform of a mobile agent, the new AA
platform of the mobile agent may hold messages for the
agent, and hence, when the agent finishes its migration
it receives the messages managed by the Delayed
Message Manager of the AA platform. We plan to
investigate various trade-offs and methods for
automatically selected best estimated message-passing
mechanism for a given situation.

Acknowledgements

T

Research Projects Agen
0602

References

[1
in Distributed Sy

[2] G. Agha and C.J. Callsen, “ActorSpaces: An Open
Distributed Programming Paradigm,” Proceedings of the 4th

 32

ACM Symposium on Principles & Practice of Parallel
Programming, May 1993, pp. 23-32.

[3] S. Baeg, S. Park, J. Choi, M. Jang, and Y. Lim,
Cooperation in Multiagent Systems,” Intelligent Computer

ine, A. Poggi, and G. Rimassa, “JADE - A
IPA-compliant Agent Framework,” Proceedings of

. Cichocki, J.
owler, A. Helal, V. Kashyap, T. Ksiezyk, G. Martin, M.

and S. Baeg, “An
pen Agent Architecture,” AAAI Spring Symposium, March

n for Intelligent Physical Agents, SC00023J:
IPA Agent Management Specification, December 2002.

e of Java in InfoSleuth:
gent-based Exploitation of Heterogeneous Information

Momen, and G. Agha, “ATSpace: A
iddle Agent to Support Application-Oriented Matchmaking

0] M. Jang, S. Reddy, P. Tosic, L. Chen, and G. Agha,"An

1] D.L. Martin, H. Oohama, D. Moran, and A. Cheyer,

2] D.G.A. Mobach, B.J. Overeinder, N.J.E. Wijngaards,

3] C.E. Perkins, “Mobile IP,” IEEE Communications

4] K. Sycara, K. Decker, and M. Williamson, “Middle-

5] C.A. Varela and G. Agha. “Programming Dynamically

6] M. Wooldridge, An Introduction to MultiAgent Systems,

“
Communications (ICC ’95), Cluj-Napoca, Romania, June
1995, pp. 1-12.

[4] F. Bellifem
F
Practical Application of Intelligent Agents and Multi-Agents
(PAAM ’99), London, April 1999, pp. 97-108.

[5] R.J. Bayardo Jr., W. Bohrer, R. Brice, A
F
Nodine, M. Rashid, M. Rusinkiewicz, R. Shea, C.
Unnikrishnan, A. Unruh, and D. Woelk, “InfoSleuth: Agent-
Based Semantic Integration of Information in Open and
Dynamic Environments,” ACM SIGMOD Record, Vol. 26,
No. 2, June 1997, pp. 195-206.

[6] P.R. Cohen, A.J. Cheyer, M. Wang,
O
1994, pp. 1-8.

[7] Foundatio
F
http://www.fipa.org/specs/fipa00023/

[8] N. Jacobs and R. Shea, “The Rol
A
Resources,” Proceedings of Intranet-96 Java Developers
Conference, April 1996.

[9] M. Jang, A. Abdel
M
and Brokering Services,” Technical Report UIUCDCS-R-

2004-2430, Department of Computer Science, University of
Illinois at Urbana-Champaign, April 2004.

[1
Actor-based Simulation for Studying UAV Coordination,"
15th European Simulation Symposium (ESS 2003), October
2003, pp. 593-601.

[1
“Information Brokering in an Agent Architecture,”
Proceedings of the Second International Conference on the
Practical Application of Intelligent Agents and Multi-Agent
Technology, April 1997, pp. 467-489.

[1
and F.M.T. Brazier, “Managing Agent Life Cycles in Open
Distributed Systems,” Proceedings of the 2003 ACM
symposium on Applied computing, Melbourne, Florida, 2003,
pp. 61-65.

[1
Magazine, Vol. 35, No. 5, May 1997, pp. 84-99.

[1
Agents for the Internet,” Proceedings of the 15th Joint
Conference on Artificial Intelligences (IJCAI-97), 1997, pp.
578-583.

[1
Reconfigurable Open Systems with SALSA,” ACM SIGPLAN
Notices: OOPSLA 2001 Intriguing Technology Track, Vol. 36,
No. 12, December 2001, pp. 20-34.

[1
John Wiley & Sons, Ltd, 2002.

 33

http://sharon.cselt.it/projects/jade/papers/PAAM.pdf
http://portal.acm.org/citation.cfm?id=253294&dl=ACM&coll=portal&CFID=19122394&CFTOKEN=53165959
http://portal.acm.org/citation.cfm?id=253294&dl=ACM&coll=portal&CFID=19122394&CFTOKEN=53165959
http://portal.acm.org/citation.cfm?id=253294&dl=ACM&coll=portal&CFID=19122394&CFTOKEN=53165959
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf
http://www.isrl.uiuc.edu/~gasser/courses/amd2003/website/papers/decker+sycara-middle-agents-ijcai97.pdf

