
Barrier Synchronization Pattern

Rajesh K. Karmani *
rkumar8@illinois.edu

Nicholas Chen *
nchen@illinois.edu

Bor-Yiing Su **
subrian@eecs.berkeley.edu

Amin Shali *
shali1@illinois.edu

Ralph Johnson *
johnson@cs.uiuc.edu

* Computer Science Department
University of Illinois at Urbana-Champaign

** EECS Department
University of California, Berkeley

May 11, 2009

1 Problem

How does one synchronize concurrent UEs which are mutually dependent on each other across
phases of a computation?

2 Context

Parallel algorithms divide the work into multiple, concurrent tasks. These tasks or UEs may execute
in parallel depending on the physical resources available. It is common for UEs to proceed in phases
where the next phase cannot start until all UEs complete the previous phase. This is typically due
to mutual dependency on the data written during the previous phase by concurrent UEs. Since UEs
may execute at different speeds, there is a need for UEs to wait for one another before proceeding
to the next phase.

Barriers are commonly used to enforce such waiting. Figure 1 illustrates how a barrier works.
A UE executes its code until it reaches a barrier. Then it waits until all other UEs have reached
that barrier before proceeding.

Consider the Barnes-Hut [BH86] N-body simulation algorithm. This is an iterative algorithm
with well-defined phases: building the octree, calculating the forces between bodies, updating the
positions and velocities of each body. One way to parallelize the algorithm is to have multiple UEs
perform the three different phases. However, no UE can proceed to the next phase until all UEs
complete executing the previous phase. After all, it does not make sense to update the position
when some UEs are still calculating the forces between bodies. A barrier where all UEs wait for
each other to reach the barrier before continuing with their respective computation, is called a
global barrier.

We distinguish a global barrier from another kind of barrier called local barrier, where a parent
task waits for all the child tasks to finish before it can continue.

1



Figure 1 Conceptually a barrier synchronizes all UEs due to mutually dependencies across phases
of a computation

Consider the quicksort divide-and-conquer algorithm. The parent task divides the array into
two and spawns child tasks to sort each half of the array. The child tasks subdivide their respective
arrays into two halves and hand each half to their own child tasks and so on. A parent task must
wait for both its child tasks to complete before continuing. Recursively, this argument applies to
all the child tasks in the computation tree except the leaves.

Conceptually, after spawning the child tasks, the parent tasks enters a barrier where it waits
for all the child tasks to finish before it can use the array.

Both kinds of barriers can be implemented using the other. In practice though, some problems
like divide-and-conquer algorithms are naturally expressed using a local barrier, while many algo-
rithms in scientific computing are candidates for global barriers. We provide examples and discuss
usage implications in Section 6 to clarify the distinction.

A variant of the barrier is an implicit barrier. An implicit barrier is typically used to synchronize
UEs at the end of a code block or parallel for loop.

Implementing barrier synchronization can be quite complex, and may prove to be a performance
bottleneck if the programmer is not careful [HS98]. Anyhow, a barrier is an expensive synchro-
nization mechanism since the semantics of barrier require the computation to wait for the slowest
UE to arrive before the rest can proceed. Figure 2 shows how barrier synchronization can cause
performance degradation by making all UEs to wait for the slowest UE. When performance is a
major concern, use barriers judiciously [Tse95, SMS96].

3 Forces

Dilemma of abstraction For some programs, barrier synchronization is stronger than the syn-
chronization needed for correct execution of the program. The programmer may still be
tempted to use a barrier abstraction due to its availability in the parallel programming en-
vironment and the resulting succinctness. In such scenarios, relaxed barrier synchronization
schemes such as split barrier or custom synchronization schemes such as neighborhood syn-
chronization may perform better.

Locality Locality of reference may be exploited across calls to a Barrier. This is commonly
the case when barriers are used to synchronize UEs between different parallel iterations of

2



Figure 2 Barrier makes the fastest UE to wait for the slowest UE before it can proceed

a computation (See Section 6.2 for details). The placement and scheduling policy of the
parallel development environment needs to be carefully reviewed in order to avoid performance
degradation due to poor locality.

Know thy environment Parallel programming environments like OpenMP and Cilk provide im-
plicit barrier semantics at the end of code blocks, parallel for loops etc. Due to the two forces
discussed above, it is very important for the developers to be aware of any implicit barriers
in their code.

4 Solution

Use the barrier abstraction if barrier synchronization is unavoidable (for program correctness or
program maintenance or shortage of time) and one is provided by the parallel programming environ-
ment. Barrier synchronization is such a common pattern in parallel and concurrent programming
that it is available as an abstraction in almost all parallel programming environments. Table 1 lists
the ways in which barrier abstraction can be expressed in different environments.

Although the underlying architecture and the run-time placement of the UEs are important
factors in the efficiency of barrier synchronization, the implementation of Barrier abstraction that
is available in a programming environment can be considered to perform well for many programs.

For some programs though, a barrier abstraction may succinctly express the intent of the pro-
grammer but it could be a performance bottleneck. See Section 4.1 for a discussion on implementing
barrier synchronization. Relaxed barrier synchronization schemes such as split barrier, topological
barrier, or custom synchronization schemes such as neighbors synchronization or pairwise syn-
chronization could be more efficient than a full barrier and yet sufficient for correct execution of
the program. The caveat is that custom synchronization code is generally hard to write, debug,
understand and maintain.

Deciding which barrier (local or global) to use can be quite tricky. Programs such as quicksort
and other divide-and-conquer algorithms which have a tree-like task graph are naturally expressed
using local barriers. On the other hand, many scientific and numerical applications, where com-
putations proceeds in phases or iterations, are a natural fit for global barriers. Also, programs
in which locality may be exploited across barriers may perform poorly, if they are implemented
näıvely using local barriers.

3



Environment Explicit Barrier Implicit Barrier
MPI int MPI Barrier(MPI Comm comm) Some MPI Collective

Communication con-
structs a

OpenMP #pragma omp barrier for directive
Charm++ void contribute() None
CUDA syncthreads() End of kernel function
Cilk sync keyword End of Cilk procedure
FJ Framework void join() void coinvoke()
Intel’s TBB void wait for all() and variants void parallel for()
Java Thread API void join() None
Java5 Concurrency API CyclicBarrier and CountDownLatch None

aAccording to Section 4.1 of the MPI: A Message-Passing Interface Standard report (version 1.1) the presence of
an implicit barrier during a collective communication call is implementation specific. For correctness and portability,
a programmer should not rely on the presence of an implicit barriers. On the other hand, for efficiency, a programmer
has to account for the possibility that a particular implementation includes implicit barriers for those constructs.

Table 1: Barrier abstraction in parallel programming environments

Many environments also provide implicit barrier at the end of constructs such as parallel for
loop or a code block. Programmers should be aware of any implicit barriers in their programs,
specially given the implications of barriers on execution performance as discussed above.

4.1 Implementation

Barrier synchronization on distributed, message-passing systems such as MPI is commonly imple-
mented using a tree-based approach [XMN92], having logarithmic cost in terms of messages and
latency. On shared memory systems, the butterfly algorithm [Bro86] or its variant is commonly
used. The algorithm is shown to have logarithmic scaling properties for large number of processors
and avoid hot-spots associated with a tree-like approach. The butterfly approach has also been
adapted to work for barrier synchronization on distributed nodes.

5 Invariants

Precondition A collection of concurrent UEs that need to be synchronized at a point in the
program.

Invariant A UE that reaches the barrier does not continue until all other UEs corresponding to
the same barrier hit the barrier.

Postcondition The blocked UEs continue their corresponding computation only after all the other
UEs involved in the barrier reach the barrier point.

4

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html


6 Examples

In this section, we present examples which show usage of different kinds of barriers i.e global, local
and implicit barriers.

6.1 Quicksort with Cilk using local barrier

Listing 1 shows quicksort algorithm implemented in Cilk language [FLR98]. The program uses the
built-in primitive sync for expressing a local barrier.

Listing 1 Quicksort Example Using sync in Cilk

1 void main ( int [ ] A, int n) {
2 qso r t (A, 0 , n ) ;
3 // 0 i n c l u s i v e , n e x l u s i v e
4 }
5

6 c i l k void qso r t ( int [ n ] A, int i , int j ) {
7 i f ( j−i < 2) return ;
8 int pivot = A[ i ] ; // f i r s t e lement
9 int p index = pa r t i t i o n (A, pivot , i , j ) ;

10

11 spawn qso r t (A, i , p index ) ;
12 spawn qso r t (A, p index , j ) ;
13

14 sync ; // l o c a l b a r r i e r in Ci l k
15

16 // p r i n t the so r t ed array
17 }
18 }
19

20 int pa r t i t i o n ( int [ ] A, int pivot , int i , int j ) {
21 . . .
22 }

6.2 Successive-over-relaxation in OpenMP using implicit local barrier

Successive over-relaxation is a kernel used in numerical method computation to speed up the con-
vergence of Gauss-Seidel [Gau] method. In order to parallelize this kernel, a reordering is performed
on the elements such that alternate elements can be “over-relaxed” in parallel, followed by the re-
maining elements. These two phases can be repeated until the desired convergence threshold is
reached. This ordering is called the Red-Black ordering.

Listing 2 describes successive over-relaxation in OpenMP. The grid is divided row-wise among
the UEs using the parallel for directive. An implicit barrier at the end of for loop synchronizes
the parallel UEs.

A downside of using local barriers for synchronizing UEs across iterations or phases is that local
barriers typically wait for the UEs to finish before the master UE can proceed. A new set of UEs
is, hence created for the next iteration which may be placed on a processor different from the one
executing the previous iteration. This results in poor locality and can hurt performance severely.

5



Listing 2 Successive over-relaxation Example Using implicit barrier in OpenMP

1 void main ( int [ ] [ ] A, int m, int n , int n I t e r a t i o n s ) {
2

3 for ( int i = 0 ; i < n I t e r a t i o n s ; i++) {
4

5 // update red
6 #pragma omp paral le l for
7 for ( int j = 0 ; j < m; j++) {
8

9 for ( int k = 0 ; k < n ; k++) {
10 i f ( ( j + k ) % 2 == 0) // v e r i f y i t i s red
11 A[ j ] [ k ] = 0 .25 ∗
12 (A[ j ] [ k ] + A[ j ] [ k ] + A[ j ] [ k−1] + A[ j ] [ k+1 ] ) ;
13 }
14 } // imp l i c i t b a r r i e r here
15

16 // update b l a c k
17 #pragma omp paral le l for
18 for ( int j = 0 ; j < m; j++) {
19

20 for ( int k = 0 ; k < n ; k++) {
21 i f ( ( j + k ) % 2 == 1) // v e r i f y i t i s b l a c k
22 A[ j ] [ k ] = 0 .25 ∗
23 (A[ j −1] [ k ] + A[ j +1] [ k ] + A[ j ] [ k−1] + A[ j ] [ k+1 ] ) ;
24 }
25 } // imp l i c i t b a r r i e r here
26 }
27 }

Realizing this performance penalty, OpenMP, Intel’s TBB provide constructs for declaring affinity
of UEs to processors.

6.3 Successive over-relaxation in MPI using global barrier

Alternatively, a programmer can statically map the UEs to processors in MPI, and then employ
global barriers to synchronize the UEs. This preserves locality of reference across the barrier syn-
chronization. Listing 3 shows the successive over-relaxation program written in MPI that employs
a global barrier.

6.4 Successive over-relaxation using neighbor synchronization

On carefully observing the successive-over-relaxation algorithm, one can notice that the parallel
UEs access the data of their neighbors only. Hence, it is sufficient to synchronize each UE with
its two neighbors only. Barrier synchronization is stronger than the synchronization required for
correct semantics of the successive over-relaxation algorithm. Also, barrier synchronization is ex-
pensive in terms of overhead. Therefore, when performance is a concern, programs like successive-
over-relaxation are implemented using custom synchronization schemes. An implementation of
successive over-relaxation in Java using neighbor synchronization can be found in Java Grande
Benchmarks [SBO01]. As discussed earlier, custom synchronization code is generally hard to write,

6



Listing 3 Successive over-relaxation Example Using a global barrier in MPI

8 int main ( int argc , char∗ argv [ ] ) {
9

10 int my id ;
11 int number o f p roce s so r s ;
12

13 // SOR with row−wise agg lomerat ion
14 //
15 // I n i t i a l i z e MPI and s e t up SPMD programs
16 //
17 MPI Init(&argc ,&argv ) ;
18 MPI Comm rank(MPI COMM WORLD, &my id ) ;
19 MPI Comm size (MPI COMM WORLD, &number o f p roce s so r s ) ;
20

21 i f ( my id == MASTER NODE) {
22 // broadcas t A to the s l a v e nodes
23 }
24 else { // s l a v e nodes perform the SOR computation
25

26 // r e c e i v e the broadcas t con ta in ing A from the master node
27

28 for ( int i = 0 ; i < ITERATIONS; i++) {
29 // update red
30 for ( int k = 1 ; k < n ; k++) {
31 i f ( ( my id + k) % 2 == 0) // v e r i f y i t i s red
32 A[ my id ] [ k ] = 0 .25 ∗
33 (A[ my id ] [ k ] + A[ my id ] [ k ] + A[ my id ] [ k−1] + A[ my id ] [ k+1 ] ) ;
34 }
35

36 MPIBARRIER(MPICOMMWORLD) ;
37

38 // update b l a c k
39 for ( int k = 1 ; k < n ; k++) {
40 i f ( ( my id + k) % 2 == 1) // v e r i f y i t i s b l a c k
41 A[ my id ] [ k ] = 0 .25 ∗
42 (A[ my id ] [ k ] + A[ my id ] [ k ] + A[ my id ] [ k−1] + A[ my id ] [ k+1 ] ) ;
43 }
44 MPIBARRIER(MPICOMMWORLD) ;
45 }
46 }
47

48 MPI Final ize ( ) ;
49 return 0 ;
50 }

debug, understand and maintain.

6.5 Conway’s Game of Life in CUDA using implicit global barrier

Conway’s game of life is a cellular automaton first proposed by the British mathematician John
Horton Conway in 1970. The game is a simulation on a two-dimensional grid of cells. Each cell
starts off as either alive or dead. The state of the cell changes depending on the state of its each

7



neighbors in the grid. At each time-step, we update the state of each cell according to the following
four rules.

1. A live cell with fewer than two live neighbors dies due to underpopulation.

2. A live cell with more than three live neighbors dies due to overpopulation.

3. A live cell with two or three live neighbors survives to the next generation.

4. A dead cell with exactly three live neighbors becomes a live cell due to breeding.

Figure 3 shows an example of the Conway’s Game of Life. The example starts with a cross and
evolves through two time steps.

Listing 4 shows a parallel implementation of the game of life in CUDA. The program generates
threads equal to the number of cells, and updates the status of each cell independently. Listing
5 shows how we update the status of each grid. Before proceeding to the next time step, it is
necessary that all the grids have been updated. This requirement can be ensured by using a global
barrier for all threads. CUDA provides an implicit global barrier at the end of execution of each
kernel function as shown in listing 4.

Figure 3 2 time steps of a life game starting with the topology of a cross

7 Known Uses

SIMD computations proceed in lock-step fashion and therefore, have an implicit barrier.

8 Related Patterns

Collective Synchronization Barrier provides a way for synchronizing a set of UEs. It is a
basic pattern for the Collective Synchronization [OPL] pattern.

Reduction In some parallel programming environments such as Charm++ [Cha], the Reduction
abstraction is used with a NULL operator to effectively behave as a Barrier.

Rendezvous A Rendezvous is a special case of barrier synchronization in which only two UEs
are involved. This distinction is sometimes not rigidly observed.

8



Listing 4 Routine for Game of Life simulation

42 void GameOfLife ( int t imePeriod , int width , int height , int∗ devInputArray ,
43 int∗ devOutputArray )
44 {
45 dim3 blockDim (BLOCKX, BLOCKY) ;
46 dim3 gridDim ( ( width+BLOCKX − 1)/BLOCKX, ( he ight+BLOCKY− 1)/BLOCKY) ;
47

48 for ( int i = 0 ; i < t imePeriod ; i++)
49 {
50 UpdateStatus<<<gridDim , blockDim>>>(width , height , devOutputArray ) ;
51 // Imp l i c i t Globa l Barr ier Here .
52 cudaMemcpy( devInputArray , devOutputArray , s izeof ( int )∗width∗height ,
53 cudaMemcpyDeviceToDevice ) ;
54 }
55 }

Listing 5 Routine for updating the status of a grid

13 g l o b a l void UpdateStatus ( int width , int height , int∗ devArrayOutput )
14 {
15 int x = IMUL( blockDim . x , b lockIdx . x ) + threadIdx . x ;
16 int y = IMUL( blockDim . y , b lockIdx . y ) + threadIdx . y ;
17 int id = y∗width+x ;
18 int count = 0 ;
19 for ( int i = −1; i < 2 ; i++)
20 {
21 for ( int j = −1; j < 2 ; j++)
22 {
23 int xnext = x + i ;
24 int ynext = y + j ;
25 i f ( ( xnext >= 0 && xnext <=width ) &&
26 ( ynext >= 0 && ynext <=he ight ) &&
27 ( ! ( i == 0 && j == 0) ) )
28 {
29 i f ( tex1Dfetch ( texStatus , ynext∗width+xnext ) == 1)
30 count++;
31 }
32 }
33 }
34

35 devArrayOutput [ id ] = 0 ;
36 i f ( count == 3)
37 devArrayOutput [ id ] = 1 ;
38 i f ( count == 2)
39 devArrayOutput [ id ] = tex1Dfetch ( texStatus , id ) ;
40 }

References

[BH86] J. Barnes and P. Hut. A Hierarchical O(NlogN) Force-Calculation Algorithm. Nature,
324:446–449, December 1986.

9



[Bro86] E.D. Brooks. The butterfly barrier. International Journal of Parallel Programming,
15(4):295–307, 1986.

[Cha] Charm++ Parallel Programming Model. http://charm.cs.uiuc.edu/.

[FLR98] M. Frigo, C.E. Leiserson, and K.H. Randall. The implementation of the Cilk-5 multi-
threaded language. ACM SIGPLAN Notices, 33(5):212–223, 1998.

[Gau] Gauss-Seidel Method. http://mathworld.wolfram.com/Gauss-SeidelMethod.html.

[HS98] JMD Hill and DB Skillicorn. Practical barrier synchronisation. In Parallel and Distributed
Processing, 1998. PDP’98. Proceedings of the Sixth Euromicro Workshop on, pages 438–
444, 1998.

[OPL] Berkeley Pattern Language for Parallel Programming. http://parlab.eecs.berkeley.
edu/wiki/patterns/patterns.

[SBO01] LA Smith, JM Bull, and J. Obdrizalek. A parallel Java Grande benchmark suite. In
Supercomputing, ACM/IEEE 2001 Conference, pages 6–6, 2001.

[SMS96] M.L. Scott, M.M. Michael, and ROCHESTER UNIV NY DEPT OF COMPUTER
SCIENCE. The Topological Barrier: A Synchronization Abstraction for Regularly-
Structured Parallel Applications, 1996.

[Tse95] C.W. Tseng. Compiler optimizations for eliminating barrier synchronization. In Pro-
ceedings of the fifth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pages 144–155. ACM New York, NY, USA, 1995.

[XMN92] H. Xu, P.K. McKinley, and L.M. Ni. Efficient implementation of barrier synchroniza-
tion in wormhole-routed hypercube multicomputers. Journal of Parallel and Distributed
Computing, 16:172–172, 1992.

10

http://charm.cs.uiuc.edu/
http://mathworld.wolfram.com/Gauss-SeidelMethod.html
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns

	Problem
	Context
	Forces
	Solution
	Implementation

	Invariants
	Examples
	Quicksort with Cilk using local barrier
	Successive-over-relaxation in OpenMP using implicit local barrier
	Successive over-relaxation in MPI using global barrier
	Successive over-relaxation using neighbor synchronization
	Conway's Game of Life in CUDA using implicit global barrier

	Known Uses
	Related Patterns

