Thread Contracts for Safe Parallelism *

Rajesh K. Karmani

P. Madhusudan

Brandon M. Moore

University of Illinois at Urbana-Champaign

{rkumar8,madhu,bmmoore}@illinois.edu

Abstract

We build a framework of thread contracts, called ACCORD, that
allows programmers to annotate their concurrency co-ordination
strategies. ACCORD annotations allow programmers to declara-
tively specify the parts of memory that a thread may read or write
into, and the locks that protect them, reflecting the concurrency
co-ordination among threads and the reason why the program is
free of data-races. We provide automatic tools to check if the
concurrency co-ordination strategy ensures race-freedom, using
constraint-solvers (SMT solvers). Hence programmers using AC-
CORD can both formally state and prove their co-ordination strate-
gies ensure race freedom.

The programmer’s implementation of the co-ordination strat-
egy may however be correct or incorrect. We show how the formal
ACCORD contracts allow us to automatically insert runtime asser-
tions that serve to check, during testing, whether the implementa-
tion conforms to the contract.

Using a large class of data-parallel programs that share memory
in intricate ways, we show that natural and simple contracts suffice
to document the co-ordination strategy amongst threads, and that
the task of showing that the strategy ensures race-freedom can be
handled efficiently and automatically by an existing SMT solver
(Z3). While co-ordination strategies can be proved race-free in
our framework, failure to prove the co-ordination strategy race-
free, accompanied by counter-examples produced by the solver,
indicates the presence of races. Using such counterexamples, we
report hitherto undiscovered data-races that we found in the long-
tested applu_1 benchmark in the Spec OMP2001 suite.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming—~Parallel program-
ming; D.2.4 [SOFTWARE ENGINEERING]: Software/Program
Verification—Programming by contract; FE3.1 [LOGICS AND
MEANINGS OF PROGRAMS]: Specifying and Verifying and Rea-
soning about Programs

General Terms Reliability, Verification

Keywords concurrent contracts, constraint solvers, data-races,
testing

* This work was funded partly by the Universal Parallel Computing Re-
search Center at the University of Illinois at Urbana-Champaign, sponsored
by Intel Corp. and Microsoft Corp., and NSF Career Award #0747041.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’11, February 12-16, 2011, San Antonio, Texas, USA.

Copyright © 2011 ACM 978-1-4503-0119-0/11/02. .. $10.00

1. Introduction

Perhaps the most generic error in shared-memory concurrent pro-
grams is that of a data-race— two concurrent accesses to a memory
location, where at least one of them is a write. The primary reason
why data-races must be avoided is that memory models of many
high-level programming languages do not assure sequential con-
sistency in the presence of data-races [16]. In some cases, like the
new semantics of C4+, the semantics of programs is not even de-
fined when data-races are present [5, 7]. Consequently, data-races
in high-level programming languages are almost always (if not al-
ways) symptomatic of bugs in the program, and are best avoided
by mainstream programmers. However, there is no really accept-
able shared-memory programming paradigm today that allows pro-
grammers to write certifiably race-free code.

ACCORD:
While there have been several attempts to build new shared-
memory programming languages that avoid races by design (see
Guava [4] and DPJ [6] for example), we propose in this work to
instead work with the languages that are currently available, but
provide an annotation framework, similar to code contracts for se-
quential programs [17, 18], that allows a programmer to express
the concurrency co-ordination strategy amongst threads, and prove
them race-free.

Intuitively, a programmer’s attempt to parallelize a piece of
sequential code consists of two phases:

(a) to come up with a co-ordination strategy of the computation
amongst threads (for example, deciding what parts of the mem-
ory each thread will work on, the locks they will employ to have
mutually exclusive access to data, etc.), and

(b) to implement the co-ordination strategy in terms of real code.

Unfortunately, the results of the first phase often remain undoc-
umented. A diligent programmer may spell out the strategy in com-
ments written in a natural language, but often the strategy is lost in
the code.

In this paper, we propose a formal annotation language called
ACCORD (Annotations for Concurrent Co-ORDination), using
which the programmer can express the concurrent co-ordination
strategy. We postulate that doing this has multiple benefits in en-
suring correctness. First, we propose automatic solutions to the
problem of checking whether the strategy is correct (i.e. ensures
race-freedom). Second, we propose automatic insertion of asser-
tions in a program that can be used during testing to check if the
program conforms to the annotated co-ordination strategy.

The philosophy behind ACCORD specifications is to document
memory-access contracts between threads. When several threads
are spawned at a point, an ACCORD annotation expresses two
aspects of the sharing strategy: (a) the set of memory locations
that each thread 7" will read and write to without mutexes such
as locks, and (b) the memory locations that each thread 7" will

access only when possessing an associated lock. These read/write
regions can be conservative, in that the programmer can specify a
superset of the regions actually touched, as long as the annotations
are sufficient to argue that the program is race-free. The key idea
is that such thread contracts are extremely natural to write (indeed,
the programmers clearly know this when they come up with the co-
ordination strategy, even before they write the code), and moreover,
is sufficient to argue and establish that the strategy ensures race-
freedom.

In this paper, we are primarily concerned with highly paral-
lel programs written for speed (as opposed to programs that are
inherently concurrent, like client-server programs). Examples of
popular shared-memory programming languages in this domain
are OPENMP, CILK, and TBB. The ACCORD annotation frame-
work works for a restricted class of array-based parallel programs
that employ fork-join parallelism. Such programs are the most
commonly used paradigm for writing shared-memory parallel pro-
grams. For instance, OPENMP primarily allows fork-join paral-
lelism and most programs written in OPENMP tend to work by
partitioning arrays in intricate ways to exploit parallelism, and
moreover the forked threads seldom communicate in any way until
the join-point. The restriction to fork-join parallelism allows for a
much simplified syntax of annotations to express the co-ordination
strategy that is both intuitive as well as easy to write.

ACCORD specifications are written both at forking points of
threads as well as function boundaries. Annotations at function
boundaries describe also the read and write regions and the locking
strategy in the function, and are useful for modular reasoning and
testing.

Verifying co-ordination strategies: The idea of writing AC-
CORD annotations is that it captures formally the concurrency co-
ordination strategy between threads, and hence is amenable to anal-
ysis. In particular, an important question to ask is whether the an-
notated co-ordination strategy is adequate to ensure race-freedom;
we call this the annotation adequacy check.

Our primary contribution in this paper is to show that anno-
tation adequacy for many array-based fork-join programs can be
proved automatically using constraint solvers. Intuitively, proving
whether the co-ordination strategy ensures race-freedom reduces
to the problem of verifying whether two threads are allowed by
the strategy to simultaneously access a variable, with one of the
accesses being a write. This can be compiled into a constraint sat-
isfaction problem (often using integer arithmetic constraints, unin-
terpreted functions, and array theories) and hence can be handled
by constraint solvers based on SMT-solving technology (such as
the solver Z3, from Microsoft Research [10]). Furthermore, consis-
tency checks of various ACCORD annotations at different points in
the program (such as checking if the read/write sets of an parallel
loop is a superset of the read/write sets of an inner loop or a func-
tion called within) can also be posed as constraints that state the
inclusion of regions, and can be verified using an SMT solver.

Expressing the co-ordination strategy formally and using auto-
matic static-checking to show that the strategy maintains concur-
rency safety and is internally consistent goes a long way in writing
correct programs.

Compiling co-ordination strategy to assertions for testing: The
documentation of the co-ordination strategy using a formal syntax
also serves as a specification of the code implementing the strategy.
We show in this paper that we can automatically transform an
annotated parallel program to one with assertions that tests whether
the threads conform to the co-ordination strategy expressed as
ACCORD annotations. The function-level annotations allow us to
modularly check the ACCORD annotations at runtime against the
local regions defined for the function (given that the consistency of

the annotations has been checked). This allows us to check whether
the program meets the co-ordination strategy during the testing of
the program on test inputs. Any violations during such tests would
indicate that the co-ordination strategy hasn’t been implemented
correctly in the program.

Experience and Evaluation: We have applied our framework over
several non-trivial data-parallel algorithms that employ fork-join
concurrency with extremely intricate sharing of data.

The first suite of programs include simple matrix multiplication
routines, a race-free implementation of quicksort that uses paral-
lel rank computation to partition an array with respect to a pivot,
the successive over-relaxation (SOR) program that uses an intri-
cate checker-board separation of a 2D-array combined with barri-
ers, and an LU Factorization program. Our second suite includes
benchmarks from the Java Grande Forum benchmark suite [27].
This includes a Montecarlo algorithm that uses locks as well as
separation to achieve race-free parallelism and sparse matrix mul-
tiplication, where the concurrent sharing strategy is dynamically
determined using indirection arrays. We also include in our suite
buggy variants of the above correct programs, which at first glance
seem correct but have subtle errors.

On a third suite of benchmarks, we examine large programs
written in OPENMP and annotate them to prove race-freedom.
These examples comprise thousands of lines of code, but require
very little annotation (at most 37 for a program), and are sufficient
to capture the co-ordination strategy in sufficient detail to argue
why it ensures race-freedom. While annotating these programs, we
found one that couldn’t pass our verification tools, which led us
to find subtle data-races in a SPEC OMP2001 benchmark called
applu_l that has escaped detection for more than 10 years (the
NAS benchmark suite, however, seems to have a correct version).

Our experience has been that ACCORD specifications are ex-
tremely natural to write by the programmer (we wrote annotations
for large programs that we didn’t even write), and it captures the
sharing strategy directly using a simple declarative language. Fur-
thermore, the automatic constraint-solvers such as Z3 can easily
and efficiently prove that the co-ordination strategies imply race-
freedom. As programmers, we found we gained considerable con-
fidence that the program is free of data-races by knowing the co-
ordination strategies ensured race-freedom and that the program
conformed to the co-ordination strategy in the testing phase.

In summary, our proposal is that programmers formally write, us-
ing a succinct declarative notation, the co-ordination strategy they
are implementing. Doing this allows the effective use of analyses
tools: one that proves that the co-ordination strategy indeed does
ensure race-freedom, and the other that, during the testing phase,
checks if the program implements the co-ordination strategy. We
believe that this greatly helps in writing race-free code, and through
experience on annotating a large suite of programs, we show that
correct programs have succinct annotations that can be proved to
ensure race-freedom, and that failure to provide verifiable annota-
tions leads to finding bugs.

2. An Illustrative Example

In this section, we provide an overview of ACCORD approach
using a simple example. Listing 1 shows the implementation of
parallel matrix multiplication algorithm in an imperative, C-like
language (ignoring the reads, writes, where clauses for now).
The program takes two matrices A[m,n] and B[n, p] as input, and
computes the product as C[m, p].

ACCORD contract for read and write sets Lines 3-5 and 8-9 are
ACCORD annotations. The annotation has a reads clause (line 8)
and a writes clause (line 9) that declaratively specify, for every

parallel iteration of the foreach statement at line 7, the set of mem-
ory locations that are read and written by the iteration, respectively.
For each iteration &, the read and write annotations specify the loca-
tions that the thread corresponding to iteration k will access. Note
that the annotation is allowed to refer to all program variables that
are in scope. This feature allows a simple and succinct annotation
for this program.

Listing 1 Fully parallel implementation of matrix multiplication

void mm (int[m,n] A, int[n,p] B) {
foreach (int i := 0; i <m; i:=i+1)
reads A[i,$x],B[$x,8%y],C[i,8y] writes C[i,S$y]
where 0 <= $x and $x < n
and 0 <= $y and $y < p {
for (int j := 0; j <n ; j:=j+1)
foreach (int k := 0; k < p; k:=k+1)
reads A[i,j].B[j.k].C[i,k]
writes C[i,k] {
Cli.k] := C[i,k] + (A[i,j] = B[j,k]);
Prood

Observe that the annotation at lines 3-5 also introduce auxiliary
variables ($x and $y); these are implicitly universally quantified.
This annotation also demonstrates the usage of a where clause.
A where clause constrains (specifies bounds for) the variables in
the reads and writes clauses. This annotation declares that the
parallel computation corresponding to index ¢ can read A[i, $z],
B[3x, $y| and Ci, $y], and write to C[i, $y], for any values of $x
and $y that satisfy the condition: 0 < $z < nand 0 < $y < p.

Notice that the annotation for this program is a simple and
natural way to declare the co-ordination (sharing strategy) among
threads, and indeed, the programmer ought to have this separation
of memory in mind when reasoning about race-freedom. While the
sharing strategy in this program is not hard (and static analysis tools
can synthesize them for this example), the strategy is often very
complex in larger examples: the regions can be complex (defined
using complex arithmetical and logical constraints), they can be
dictated by data stored in arrays (like in parallelism using indirec-
tion arrays), can be predicated by conditions that change the sharing
strategy (for example, code may decide to handle certain instances
using parallelism while others are handled sequentially when there
is little parallelism to exploit), etc. Moreover, in order to see that
the sharing strategy ensures race-freedom, we may require prop-
erties of data computed just before the fork-point: for example, in
programs that parallelize using indirection arrays, the annotation
may say that each thread 4 writes to B[A[i]], and we may need to
know that the array A[] has distinct values in order to realize that
the forked threads will not cause races. The latter condition is cap-
tured using a requires clause in the ACCORD annotations.

Proving the co-ordination strategy ensures race-freedom (anno-
tation adequacy) We automatically generate a logical formula
from the annotation (not the program) that serves as a verification
condition for checking whether the co-ordination strategy ensures
race-freedom. Specifically, the formula is a conjunction of two sub-
formulas: (a) there exist no two threads such that one of them reads
and the other writes to the same location, and (b) there exist no
two threads such that both write to the same location (see §5 for
details on generating the formula). The negation of such a formula
is provided to a constraint-solver, like the SMT solver Z3. A simi-
lar check is done to ensure that all locations protected under locks
are protected under a uniform lock amongst all threads. If the for-
mula can be satisfied, there is a race allowed by the annotation.
Otherwise, the co-ordination strategy expressed in the annotation

ensures race-freedom, and if the program satisfies the annotation, it
would be race-free as well.

For example, consider the outer-most loop at line 2 in Listing 1.
Here we present the race freedom condition for two write accesses
only. Two threads, corresponding to say indices ¢; and 72 can access
Cli1, $y] and Cliz, $y], provided $y satisfies the where clause. We
hence form a constraint that asks whether there are two distinct i1
and 42 that may result in writing to the same position in C":

Elz’l,ig,$y.(i17éi2/\$y20/\$y<p/\i1:i2/\$y:$y)

It is evident that this formula cannot be satisfied. This is verified
by feeding the formula to Z3. Hence, there is no race among the
threads spawned at line 2, as long as the threads conform to the
specified contract.

An example with a data race A natural question a program-
mer may wonder about is whether the middle loop in the algo-
rithm in Listing 1 can be parallelized. If the for loop at Line 6 is
changed to foreach loop, its annotation would look like: reads
Ali, 3], Blj, $y], Cli, $y] writes C]i, $y]. The annotation ade-
quacy phase will however fail.

Transforming the program to test if it conforms to the co-
ordination strategy (testing annotation correctness): While the
verification that the co-ordination strategy ensures race-freedom
gives some degree of assurance, we still do not know whether the
program itself adheres to this strategy. In other words, we would
like to be able to check whether the program satisfies its ACCORD
specification, i.e. we want to verify whether the set of memory lo-
cations that may be accessed by a thread is contained in the set of
memory locations specified in its annotation.

In order to answer this question, we propose to transform the
formal ACCORD specification to assertions in the parallel program,
so that checking these assertions at runtime during testing will in
effect check whether the program meets the co-ordination strategy.
ACCORD annotations of functions allow us to insert these asser-
tions locally, checking whether the accesses at any point in the pro-
gram are in accordance with the read and write regions specified by
the local annotation in scope.

For example, we can transform the program in Listing 1 such
that every access to a shared variable by a thread is preceded by a
check that verifies that the access conforms to its ACCORD annota-
tions. In general, this will require storing the values of variables at
the fork-points, and inserting appropriate assertions in the code us-
ing these memoized variables. The parallel program with assertions
corresponding to Listing 1 is given (on page 8) in Listing 6.

3. Parallel Programs

We define a simple parallel programming language, given by
the following grammar, that resembles an imperative language
like C, but with only boolean and integer types, and their multi-
dimensional arrays, and with parallel-loop constructs and locks.
The language also has the ACCORD annotation language built in.

(pgm) = (decl)" (fun)"
(fun) u= (type) f((decl)*)[requires (¢p)](annot)™{(stmt)}
(stmty = (decl) | (loc) := (expr) |

if (bexpr) then (stmt) else (stmt) |
skip | return(ezpr) | (stmt); (stmt) |
while (bexpr) do {(stmt)} | (parstmt) |
for((type)i := (expr); (bexpr); (stmt)){(stmt)} |
synchronized (I){(stmt)}
(parstmt) ::= thread(annot)” {{stmt) }

| foreach((type)i := (expr); (bexpr); (stmt))
[requires (¢)](annot)*{(stmt)}

| par [requires (¢)]{(parstmt) with (parstmt)}

(loc) u=1 | i[{aexpr)”]
(expr) = (aeapr) | (bespr) | f({espr)*)requires (4)]
(bexpr) ::=true | false | {aezpr)(rop){aezpr) |

(bezpr) or (bexpr) | (bexpr) and (bexpr) | not (bexpr)
(®) w=foralliin [(aezpr), (aezpr)].(¢) |

exists i in [(aexpr), (aexpr)].(¢) |

(9) and() | (#) or (¢) | not (¢) | (bewpr)
(aexpr) =c € N| (loc) | (aexpr)(aop)(aexpr)
(decl) = (type)i
(type) :=1int | bool | lock |

int[{aezpr)”] | bool[(aexpr)*]

(annot)
(region) ::=

= (reads | writes)(region) [under lock [*]

(loc) [where ()]

i, f, [are identifiers
(aop): arithmetic operators, like 4+, —, *, /, % (modulo), etc.
(rop): relational operators on numbers, like <, =, etc.

A program has a sequence of global variable declarations fol-
lowed by a list of functions. Each function has a return type, a
name and a declaration of local variables followed by a sequence
of statements, where statements include assignments, condition-
als, sequential loops, synchronized blocks, or parallel statements.
A parallel statement can be a foreach loop, which forks a sep-
arate thread for executing each different iteration of the loop. We
assume foreach loops specify a lower bound, an upper bound, and
a stride, which is similar to Fortran loops. All the threads spawned
at this point must finish before the subsequent statement is exe-
cuted. Hence foreach loops implicitly give fork-join parallelism.
(Note that the runtime may actually schedule these parallel itera-
tions on system threads in any manner; all that is assured is the
causal dependence of the tasks and the fork- and join-points.) A
parallel statement can also be defined using the with construct,
which is a parallel composition operator that executes two state-
ments in parallel. The language allows expressing nested fork-join
parallelism.

The synchronized (I) block statement allows accesses the
block to execute under a lock /. Note that this syntax allows nested
locking only and furthermore, given any point in a function of the
program, we can syntactically determine the set of locks that have
been acquired since the beginning of the function.

The foreach construct can be optionally augmented with an
annotation ({annot)). Such a parallel-loop annotation declares, for
each thread spawned at this point, the set of memory locations it
will access (read and write). A write access is considered stronger
than a read access; therefore if a location is both read and written to,
it only needs be specified as a write annotation. An optional where
clause specifies bounds for the variables in the reads and writes
clauses. The under lock clause expresses that a memory location
is accessed only when the prescribed lock is held by the executing
thread. The annotation language also has a requires clause that
allows making general assumptions on the state of the program
variables when the forking happens. These are pre-conditions that
the programmer asserts they know at the forking-point and are
needed to argue why the co-ordination strategy is race-free (for
example, this clause may say that the values in the array A[] are
all distinct, in a program with parallelism using indirection arrays).
The where and requires clauses are allowed to have bounded
quantifiers to state properties about entire arrays, etc. However,
we require that all auxiliary variables mentioned in the clause are
quantified. The bounded range of the quantification is required to
test the property at runtime.

Function declarations can also be annotated with read/write
regions (the memory locations read and written by the function).
For nested parallel blocks, we require that the outer parallel loop’s

annotation declares access to program variables (without holding
any locks) that are used in inner blocks’ annotation. Although the
annotation language describes the general syntax, we abuse the
notation a bit by grouping locations and regions in our examples
(e.g. reads z, y stands for reads x reads y).

The annotation language has no execution semantics; it is solely
designed to help the programmer annotate the precise parts of
the memory accessed by each thread, along with the assumptions
it makes, in order to argue that the strategy results entails race-
freedom.

Let us assume that there is a main function, where the program
starts, and that there are no calls to this function. Let us also assume
that foreach loop indices (and other variables mentioned in the
loop declaration) are never modified in the loop body. Notice that
we do not support any form of aliasing in our language nor do we
allow throwing exceptions. Handling aliasing in our framework can
be achieved, and will basically proceed through an integrated static
region-based alias analysis. However, in our current framework
we require that parameters of a function do not alias. Exception
handling can also be achieved in our framework by ensuring that
an exception in one thread does not abort the execution of parallel
threads. However, these will make the exposition of our thesis too
complex, and we delegate this to future work.

Semantics The semantics of a program is the natural one: assign-
ments, conditionals, loops etc. have the normal semantics; calls to
functions are call-by-value. Assignments occur atomically even if
they read multiple shared variables and write to a shared variable; it
turns out that this is not unreasonable, as if we can prove a program
race-free under these semantics, then the program with non-atomic
assignments would also be race-free.

There is an implicit barrier at the end of the foreach loop
and the with construct. The semantics ensures that all threads
complete before the next statement is executed. The semantics
of synchronized blocks is that the specified lock is acquired and
released at the start and end of the block respectively.

An execution is hence a partial order of events that respects the
above rules for the foreach and with constructs (i.e. events across
the fork or across a barrier are ordered in the right way) and the
locking mechanism, and furthermore is sequentially consistent (i.e.
events in one thread must respect the program order).

Data Race Two operations in an execution that are not acquisi-
tions or releases of locks are said to be in conflict if they access
the same memory location and at least one of them is a write. A
program has a data-race if there is some sequentially consistent
execution which has two operations in conflict that are not ordered
(in other words, there is a sequentially consistent execution after
which two conflicting operations are enabled). A program is data-
race free if it has no data-races.

The above definition of data-races using an ideal sequentially
consistent semantics is the standard one (see [2] for instance). Note
that races on locks are not considered data-races. Programming lan-
guages such as Java and C++ have similar semantics and definition
of data-races; furthermore, the memory model of these languages
assures us that if the program is data-race free (according to the
sequentially-consistent memory model as above), the actual mem-
ory model will ensure sequential consistency. This seemingly cir-
cular definition (data-races are defined using the sequentially con-
sistent model and lack of data-races ensures the weak memory
model assures sequential consistency) is standard and known as the
data-race freedom guarantee (DRF guarantee). Our goal is to write
programs with annotations that we can prove data-race free, and
hence assure sequential-consistency in any memory model that has
a DRF-guarantee.

1
2
3
4
5
6
7
8
9

20
21

4. AccCORD Annotations for Parallel Programs

In this section, we present several examples of data-parallel pro-
grams and annotate them using ACCORD contracts. The programs
illustrate the expressiveness and succinctness of our annotation lan-
guage. The suite includes a modified version of the successive over-
relaxation (SOR) algorithm, a fully parallel quicksort algorithm
(with parallel partitioning and sorting) [21], a parallel implementa-
tion of the MonteCarlo simulation program (only the parallel com-
ponent) from the Java Grande benchmark suite [27], and a sparse
matrix multiplication routine with parallelism using indirection ar-
rays. Note that the programs have been annotated by the authors.

4.1 Successive Over-Relaxation with Red-Black Ordering

Successive over-relaxation (SOR) is a variant of the Gauss-Siedel
method for solving a linear system of equations, which results
in faster convergence. The elements in the equation matrix can
be reordered in such a way that alternate elements are marked
as red and black (hence the name red-black ordering), giving a
checker board pattern. Importantly, in each iteration of SOR all the
red elements can be updated in parallel while reading the black
elements, followed by a barrier and then an update of the black
elements while reading the red elements, thus avoiding races.

Listing 2 shows a parallel implementation of the routine that
is executed in each iteration of the SOR algorithm. The program
takes a matrix A[m,n] as input, and updates the elements in the
matrix A. This code expresses very fine-grained parallelism since
all elements of one kind (red or black) are updated in parallel.

Listing 2 Successive Over-Relaxation with Red-Black Ordering

void sor (int[m,n] A, int w) {

//update red

foreach (int id := 1; id < m; id:=id+1)

reads w, A[id,$j],A[id—1,$j],A[id+1,$j],
Alid,$j —11,A[id,$j+1] writes A[id,$]]

where 0 <= $j and $j < n and ((id+$j) % 2 =

0){

foreach(int k := 2—(id%2); k < n; k := k+2){

reads w, A[id, k], A[id—-1,k], A[id+1,k],
Alid ,k—1], Alid ,k+1]

writes A[id , k]

requires ((id + k) % 2 = 0) {
Alid ,k] := (1 — w) % A[id ,k] + w * 0.25 =%
(Alid —1,k]+A[id+1,k]+A[id ,k—1]+A[id ,k+11);
I
//update black
Py

The foreach loop at line 4 divides the matrix among threads in
a row-wise fashion. In each iteration of this loop, the red elements
in a given row are read and written, while the adjacent black
elements are read only. In a checker board pattern, a simple way to
check the membership of each element is to test whether the sum
of its indices (z, y) is odd or even, which can be expressed using
arithmetic constraints (an element (x, y) is red iff (x 4+ y)%2 = 0).
As Listing 2 suggests (lines 5-7), ACCORD annotations can express
such a sharing strategy by allowing complex modulo arithmetic
constraints in the where clause. Also note that the annotation uses
an auxiliary variable $7, which is free, to specify the columns that
will be accessed by a thread.

The inner foreach loop (line 9), which further divides the
elements in a row among threads, is annotated similarly. The only

difference is that the natural way to write this annotation is to use
the two loop variables to specify the memory locations read and
written by each thread (id and k). The second outer loop (beginning
at line 20 and not shown here) is similar to the first loop except that
it reads both red and black elements, and updates black elements
only.

4.2 Quicksort

We implement a race-free, fully parallel algorithm for quick-
sort [21]. While many parallel implementations of quicksort only
exploit the inherent divide-and-conquer parallelism, our implemen-
tation performs the partitioning of the array around a pivot in par-
allel as well, using a parallel rank (prefix sum) algorithm.

Listing 3 shows our implementation. The main function takes
an array A[n| and sorts its contents by recursively calling itself.
Due to limited space, we have not shown the functions rel_pos_rec
and write_pos_rec, which exhibit a similar recursive parallelism.

Listing 3 Quicksort algorithm with parallel partitioning.

void qgsort (int[n] A, int i, int j) reads i, j
writes A[$k] where (i <= $k and $k < j) {
if (j—i < 2) return;

int pivot := A[i]; //first element
int p_index := dyn_partition (A, pivot, i, j);
// swap 1st element and element at p_index

par requires p_index >= i and p.index < j {

thread writes A[$k] where (i<=$k and $k<p_index)
{ qsort(A, i, p-index); }

with

thread writes A[$k] where (p.index<$k and $k<j)
{ qsort(A, p-index + 1, j); }

}
int dyn_partition(int[n] A,int pivot,int i,int j)
reads i, j, pivot
writes A[$k] where (i<=$k and $k< j) {
int[n] temp, B;
int smalls := rel_pos_rec (A,temp,pivot ,i,j);
write_pos_rec (A,B,temp, pivot ,i,j,0,smalls);
A := B;
return smalls;
}

In addition to being a complex program, it highlights some in-
teresting features of our annotation language. The thread state-
ment can be annotated (lines 9 and 12), similarly to the foreach
statement, and the annotation specifies the set of memory locations
read and written by the thread. This example also requires anno-
tating functions (lines 2 and 18-19). Function annotations, which
include reads and writes clauses, are important as they give lo-
cal read and write regions that can be used for modularly testing
the program against the annotations. The quicksort program also
shows that recursive partitioning can be handled by our annotation
language in addition to iterative partitioning of data.

4.3 MonteCarlo Simulation

MonteCarlo is a multi-threaded benchmark from the Java Grande
suite. It uses Monte Carlo techniques to find the price of a product
based on the price of an underlying asset. The given code sequen-
tially generates NV tasks, each with a different parameter. During
the parallel phase, these tasks are divided among a group of threads
in a block fashion. At the end of processing each task, the cor-
responding thread writes the simulation result back into a list of

20
21

results, which is shared among the threads. The accesses are pro-
tected by a lock. After the parallel phase, the results are reduced in
a sequential fashion.

Listing 4 Simplified version of the MonteCarlo simulation code
from Java Grande.

void main(int[nTasks] tasks) {

int slice := (nTasks+nThreads —1)/nThreads;
foreach (int i:=0;i<nThreads;i:=i+1)
reads next under lock gl,tasks[$k]
writes next,results[$j] under lock gl
where (ixslice)<= $k and $k<((i+1)*xslice)
and 0 <= $j and $j < nTasks {
int ilow := ixslice;
int iupper := (i+l)xslice;
if (i = nThreads—1) iupper := nTasks;
for (int run:=ilow; run<iupper; run:=run+1){
int result := simulate(tasks[run]);
synchronized (gl) {
next := next + 1;
results [next] := result;
}
Pro}

Listing 4 shows a simplified version of the program for illustra-
tion. Some functions have not been shown due to limited space. The
main function takes an array tasks[n] as input and processes each
element within the array using parallel threads. Note the program
acquires a lock at line 16 before writing to the shared variables
next and results, and then releases the lock implicitly at line 19.

4.4 Sparse Matrix Multiplication

In Listing 5, we show the simplified core of the Sparse Matrix Mul-
tiplication program from the Java Grande suite. The annotation on
lines 7-8 specifies that each thread writes to yt[row[$;]], hence the
answer to whether the loop is race-free depends on the runtime con-
tents of the indirection array row|]. The subsequent pre-condition
(lines 10-14) specifies a property of this array which helps in firmly
establishing the race-freedom of the loop. We conjecture that such a
complex strategy is in the programmer’s mind during the design or
implementation of the algorithm, but is hard to statically infer au-
tomatically. By declaring it using ACCORD’s annotation language
makes it easier to reason about the race-freedom of the program.

5. Annotation Adequacy: Generating
Non-interference Conditions

The annotation adequacy phase in ACCORD checks whether the
contract implies race-freedom, i.e. whether any program that satis-
fies the contract is race-free. We construct a verification condition
from the annotation which is then checked by Z3, an SMT solver
from Microsoft Research. The verification condition is constructed
such that it is satisfiable if the annotations are insufficient to prevent
a memory race at some particular memory location. Hence, if the
condition is satisfied, then a satisfying solution gives valuable de-
bugging information: two threads and a memory location involved,
and a program state sufficient for both thread annotations to grant
simultaneous access to the location. On the other hand, if the con-
ditions are unsatisfiable then no two concurrent threads that satisfy
the annotation can race.

The verification condition is constructed in two parts. One part
checks the regions written to by one thread are disjoint from the

1
2
3
4
5
6
7
8

17
18

Listing 5 Simplified version of the Sparse Matrix Multiplication
code from Java Grande.

void sparsematmult(int nThreads,
int[] yt, int[] x, int[] val,
int[m] row, int[n] col,
int[] lowsum, int[] highsum) {
foreach (int id = 0; id < nThreads; id:=id+1)

reads x[col[$j]], val[$j] writes yt[row[$j]]
where $j >= lowsum[id] and $j < highsum[id]
requires (forall $tl1 in [0,nThreads —1],
$t2 in [0,nThreads —1]. ($tl != $t2 implies
(forall $x1 in [lowsum[$tl1],highsum[$t1]—1],
$x2 in [lowsum[$t2],highsum[$t2]—1].
row[$x1] != row[$x2]))) {

for (int i=lowsum[id]; i<highsum[id]; i:=i+1){
yt[row[i]] 4= x[col[i]] % val[i];
Yo}

regions read or written by any other thread created in the same par-
allel construct. Thus no data race involves sibling threads. The next
part checks that the regions declared for a function call or parallel
statement are subsets of the regions declared for the surrounding
thread. By induction up to a common ancestor, this ensures no two
threads which might execute concurrently can have a data race.

5.1 Non-interference with a parallel statement

Consider a parallel loop of the form: foreach(int i:=1, cond(i),
ir=i+1) with a requires formula), a set of read annotations R and
a set of write annotations W. Given an annotation a in one of these
sets, let arr(a) be the array mentioned in the annotation (scalar vari-
ables are treated as 0-dimensional arrays), and locks(a) be the set
of locks on the annotation (which may be empty). The annotation is
parameterized over the loop index 7; a(4) is the formula describing
the region for iteration ¢. The array indices are formal parameters of
this formula. It may include program variables, however, any other
variables must be quantified.

We treat par blocks similarly to a foreach loop with the index
ranging from 1 to 2, with appropriately adapted annotations.

Let Conforms(A, Z,), abbreviated [A[Z] € ¢], be the formula
that expresses that access to the location A[Z] is allowed by the
annotation . The formula is simply false if the A is not the array
mentioned in the annotation, otherwise the formula is formed by
replacing the formal parameters in the boolean expression in ¢ with
the corresponding expressions in .

For instance, consider the writes annotation for C on line
3 in Listing 1. Then, for a parallel iteration with loop-index i1,
[Cli, k] € (Clz,y] where 0 <z Az <nA0<yAy<p)]
=0<iNni<nAO<EkAEk<p).

We are now ready to define the constraint that is satisfiable
iff the annotation on a single parallel foreach construct allows
a race between child threads. Consider a foreach loop with read
annotations R, write annotations W, and a requires clause 1. Then
we generate the following constraint:

YA TG, 2 [(0 F G)N

V1A € w(] A [Ald] € a(i)])]
weW,ae RUW
arr(w)=arr(a)
locks(w)Nlocks(a)=0
The formula asserts that there is a single location which two
distinct iterations ¢ and j either both write into, or one of them

Vol

Aearr(R)Uarr(W)

writes to and the other reads from, without holding some common
locks. For each parallel block, the above formula is constructed,
translated into the SMT-LIB[23] syntax accepted by Z3, and then
checked. This formula is satisfiable iff the annotation permits races.

5.2 Checking inclusion of nested annotations

The previous section describes the check that the regions described
in the annotations for each thread created by a parallel statement
are disjoint. However, we also want the annotations at various
levels in a program be consistent with each other. Apart from
ensuring the sanity of the annotations, this check is important for
the testing phase, as we can simply check whether the program at
any point reads and writes to the region specified in the annotation
immediately surrounding the access. This check is done by writing
a formula which can be satisfied only if there is some location
which may be accessed under the child annotations but not the
parent’s annotation.

If the child statement is a function call the function annotation
will be written in terms of the formal parameters of the function.
The actual parameters in the call statement need to be substituted
for the actual parameters before checking inclusion. Also, function
annotations may give the surrounding context if we are checking a
child statement which is not lexically within any parallel construct.

One complication is that a program variable may be mentioned
in both sets of annotations, but have different values at the two
different points. This can be handled by substituting fresh variables
for free variables corresponding to program variables that may be
modified. In particular, we prohibit assignments to the index of a
foreach loop, so these variables may be shared. To handle locks,
we find the set L of additional locks held at the child statement, and
refer to it while constructing the verification condition.

The check will be described for the most general case, which is a
pair of nested foreach loops. A function annotation can be treated
as if it came from a loop with a single iteration, whose annotation
does not mention the loop index.

Inclusion fails if access to some location is granted by one of
the child’s annotations, but not by any of the parent’s annotations.
Let R, and W, be the read and write annotations for the parent,
R. and W, be the read and write annotations for the child, and .
and), be the requires formula for the child and parent. Note the
child annotations may be parameterized over an inner and an outer
thread index. The formula for checking read annotations is

34, J, T. [e A YpA

V lontlal e ri il A=V Tl € (0])
rER, PER,UW),

arr(p)=arr(r)
locks(p) C LUlocks(r)

and for write annotations

34, J, T [e A YpA

\ [[arr(w)[f]ew(i,mw(\ Harr(w)[f]Ep(i)]]>]
weW, peW{Ur N
Iuck?{;()pg) zfj l(gcks?(w)

If the parent annotations contain no existentially quantified aux-
iliary variables, this formula contains no nested quantifiers. Other-
wise, negating membership in the parent regions produces univer-
sal quantifiers. This can be avoided if auxiliary variables are only
used on annotations for function or parallel statements which con-
tain no function calls or parallel statements. In our experiments, all
inclusion checks resulted in formulas with only existential quantifi-
cation, and can thus be handled reliably by an SMT solver.

6. Transforming Programs for Testing Against
Annotations

While the previous phase ensures that the co-ordination strategy
ensures race-freedom, it does not ensure that the program itself
implements the strategy correctly. The objective of this section is
to describe how to transform a parallel program with ACCORD
annotations to one with assertions, such that on any test run, the
assertions check whether the program correctly implements the co-
ordination strategy.

Note that testing tools can, of course, check whether executions
have data-races or not. However, the testing that we are achieving
here is more general— we are checking whether the executions
meet the co-ordination strategy. Therefore, even if a certain run
does not exhibit data-races, the run could still violate the declared
co-ordination strategy, and thus hint at the presence of data-races
in other executions in the program.

For example, consider a forking point that creates two threads
T, and T5, and consider an execution where T writes to x, fol-
lowed by a lock-protected access to y, and then 7> does a lock-
protected access to y followed by a write to z. In this execution,
there is no data-race, as the lock-protected accesses to y make the
accesses to x causally ordered (and an accurate testing tool that
keeps track of the happens-before relation will not detect the race).
However, there is no way to annotate the threads in any way such
that the annotation implies race-freedom and the execution satisfies
the annotation (indeed, such an annotation cannot allow 737 and 7%
to both write to without being under a common lock).

The transformation of the parallel program to one with asser-
tions is done by specializing the annotation to each thread and
translating them to runtime assertions which are then inserted in
the thread body.

We do not give a formal description of how the assertions
are inserted, but go through the main components and insertion
procedures. First, note that in a function, we need to check whether
the accesses in the function correspond to only the annotation of
the function, and need not check whether the annotation of a caller
of the function is also satisfied. This is primarily because of the fact
that our inclusion checks ensure that the annotations of the function
define subregions of the regions defined by any caller. Similarly,
inside nested parallel loops, we need to check accesses against only
the annotations at the innermost parallel loop.

Next, in order to check the requires clauses in the annotation,
note that they allow only bounded quantification over ranges, and
hence can be checked using a series of nested loops that range
over the domains. We can then insert assertions that check if the
specified pre-condition holds.

Finally, turning to the accesses, one complication that arises is
that an access to an array A[Z] may be within an annotation a,
but the program variables used in a may have changed before the
access. We hence insert, at the point of the annotation, assignments
to new variables that cache the value of the program variables at the
annotation site. These variables never get modified, and are used at
the access points to check if the indices & satisfy the conditions
demanded by the annotations. More precisely, for every access
to A[Z], we first figure out statically the set L of locks acquired
since the beginning of the foreach loop or function immediately
surrounding this access. If the access is a read access we insert an
assertion that checks the following formula, where R and W are the
enclosing set of read and write annotations, and ¢ is the index of the
enclosing loop (replace p(i) with p if the access is not surrounded
by a loop).

V [A[7] € p(0)]
pERUW
arr(p)=A,locks(p)CL

Table 1. Summary of results from evaluating ACCORD.

Annotations Adequacy phase
Lines # Parallel # reads/ # where #lock # Pre Logic Time Success? Proven
of Loops/Function writes used taken (Yes/No) Race
code Annotation clauses clauses clauses cond. Free?
MatMult 25 2 2/2 1 0 0 QF_LIA <ls Yes Yes
MatMult (buggy) 30 3 3/3 1 0 0 QF_LIA <lIs No No
SOR 45 4 4/4 4 0 2 QF_NIA <ls Yes Yes
Quicksort 100 - 4/7 9 0 0 QF_LIA <Is Yes Yes
LuFact 35 1 171 1 0 0 QF_LIA <ls Yes Yes
LuFact (buggy) 35 1 1/1 1 0 0 QF_LIA <ls No No
montecarlo-jgf 255 1 1/1 1 1 0 QF_UFLIA+MA <Is Yes Yes
sparsematmult-jgf 50 1 1/1 1 0 1 AUFLIA <ls Yes Yes
series-jgf 800 1 1/1 1 0 0 QF_UFLIA+MA <ls Yes Yes
moldyn-jgf 1300 6 5/6 6 0 0 QF_LIA <ls Yes Yes
wupwise_1 1029 16 14/14 0 1 4 QF_NIA <ls Yes Yes
swim_1 275 12 12/12 0 0 0 QF_LIA <ls Yes Yes
mgrid_1 722 22 21/20 0 0 0 QF_LIA <lIs Yes Yes
applu-1 2586 33/4 30/34 4 0 0 QF_NIA <lIs No No (8)
gafort_1l 691 9/4 12/13 0 1 1 QF_LIA <Is Yes Yes
art_1 1594 5/7 12/11 1 1 0 QF_LIA <lIs Yes Yes

QF_LIA - Quantifier Free Linear Integer Arithmetic, QF_NIA - Quantifier Free Non-Linear Integer Arithmetic, AUFLIA - Arrays and Linear Integer Arithmetic
with Uninterpreted Functions, QF_UFLIA+MA - Quantifier Free Linear Integer Arithmetic with Uninterpreted Functions and Multiplication Axioms

In this expression, the program variables are replaced by the cached
program variables to build the assertion (and bounded quantifica-
tion in where clauses are converted to loops). Similarly, for a write
access to A[Z], insert an assertion that checks the following for-
mula.

V [A[Z] € p(i)]
peW
arr(p)=A,locks(p)CL
Consider the matrix multiplication program given in Listing 1.
The transformed program with assertions is given in Listing 6. The
first three assertions (lines 7-9) correspond to the first annotation
and the accesses to A, B and C, while the last three assertions
(lines 11-13) correspond to the second annotation.

Listing 6 Transformed parallel program with assertions corre-
sponding to the parallel implementation of matrix multiplication
in Listing 1

void mm (int[m,n] A, int[n,p] B) {

foreach (int i := 0; i <m; i:=i+1) {
n’:=n; p’:=p;
for (int j = 0; j < n ; j:=j+1)
foreach (int k := 0; k < p; k:i=k+1) {
assert(i=i and 0<=j and j<n’);
assert(0<=j and j<n’ and O<=k and k<p’);
assert(i=i and O<=k and k<p’);
assert(i=i and j=j);
assert(j=j and k=k);
assert(i=i and k=k);
Cli.k] := Cl[i,k] + (A[i,j] = B[j.k]);
Frod

Races in the transformed program: The transformed program
P’ could have data-races. However, we argue that this does not
interfere with checking whether the original program P satisfies its
annotations.

First, let us assume that in any annotation, the variables men-
tioned in the annotation are included in the read-set defined by the
immediately surrounding annotation. Let us also assume that the
annotation adequacy phase passes, and hence we know that if P
satisfies its annotations, then it is race-free.

Next, note that P satisfies its annotations iff P’ satisfies its
assertions on all sequentially consistent runs. This follows from
the fact that we have introduced assertions precisely to check the
annotations.

We now want to argue that P satisfies its annotation iff P’
satisfies its assertions in any run on a memory model with a DRF
guarantee.

First, we argue that if P satisfies its annotations, then P’ will be
race-free. This is easy to see; P’ reads from variables mentioned in
the annotation which are already covered by the surrounding read
annotation, and hence P’ accesses only variables that are allowed
by the annotation of P, which ensures race-freedom. Hence P’ is
race-free, and hence we can run P’ on any memory model with
a DRF guarantee, which will result only in sequentially consistent
runs, and hence satisfy all its assertions.

Conversely, if a run of P’ (on a DRF memory model) fails an
assertion, then either the run is sequentially consistent or not. In
the former case, we know that P also does not meet its annotation
on a sequentially consistent run. In the latter case, by the DRF
guarantee P’ must not be race-free, and hence by the argument
above P cannot satisfy its annotations.

Hence, we can test whether P satisfies its annotations by testing
P’ on any memory model that has a DRF guarantee.

7. Evaluation

In this section, we describe our experience in augmenting paral-
lel programs with ACCORD in order to check race-freedom. We
provide statistics of annotation burden and show that the ACCORD
annotations are minimal and do not put an undue burden on the pro-
grammer, and that the annotation language can express the sharing
in complex and realistic programs. We evaluated over three suites
of benchmarks, which we describe below.

Suite 1: Apart from the examples that we have described in sections
§2 and §4 (matrix multiplication, SOR, and QuickSort), we also
annotated and checked parallel LU Factorization (LuFact).

Suite 2: This includes four programs from the Java Grande Fo-
rum (JGF) benchmark suite: montecarlo (MonteCarlo simula-
tion), series (which computes Fourier coefficients of a func-
tion), moldyn (an N-body code modeling interacting particles) and
sparsematmult. These programs are parameterized by the num-
ber of threads: during execution, the threads divide the data among
themselves by computing a non-linear formula over the total num-

ber of threads and the size of the data. This formula forms the re-
gion of computation for each thread.
Suite 3: The last suite of benchmarks is part of the Spec OMP2001

Suite (v3.2), consisting of fairly large programs written in OPENMP.

It was significantly harder to understand and annotate the co-
ordination strategy in these programs, though the number of an-
notations required were only a small fraction of the code.

We were able to annotate all these programs and check them
for race-freedom using ACCORD. Table 1 presents the results of
our evaluation. The name and the code size of our benchmarks are
given in the first two columns. Some benchmarks also require an-
notating functions that are called from parallel blocks for modular
reasoning. Note that these are considerably larger programs (up to
2586 LOC and up to 33 fork-join loops).

Annotations The next five columns (labeled Annotations) of Ta-
ble 1 provide information about the annotations required for these
programs. The fourth column records the number of total reads
and total writes clauses required to annotate each program. The
number of where and lock clauses in each program are listed in the
next column. The last column under Annotations lists the number
of pre-conditions in the program.

The annotation statistics show that the additional burden on the
programmer incurred in writing ACCORD annotations is not much,
especially in the larger programs. These results and our experience
suggest that the annotations themselves are a natural way to express
the parallel co-ordination strategy. We tested the annotations for
several of these programs by transforming the parallel program to
include assertions (as described in Section 6), and by executing
them on test inputs. We believe ACCORD annotations can simplify
both manual and automatic reasoning significantly.

Checking Annotation Adequacy: As discussed earlier, we gen-
erate a verification condition which is fed to Z3 in order to prove
that the annotations imply race-freedom. The columns under the
adequacy phase in Table 1 show the results of checking constraints
generated for non-interference between sibling threads. Note that
we did not find nested parallel blocks in any of the programs.

The first column in the adequacy phase gives the logic used to
prove whether the verification condition is satisfiable. We use the
SMT_LIB notation [23]. Note that most programs are proved race-
free using linear integer constraints. Proving the SOR, wupwise_1
and applu_l program requires non-linear integer arithmetic. The
verification condition for certain benchmarks includes multiplica-
tion and division, which Z3 is unable to handle. Therefore, we use
a linear integer arithmetic with uninterpreted functions (UF), and
model multiplication as an uninterpreted function with basic ax-
ioms that capture its properties. This allowed us to prove the race-
freedom property of MonteCarlo, series and sparsematmult.

The next column reports the time taken by Z3 per parallel loop
(the time taken is minimal), and whether the annotations implied
race-freedom. The last column reports whether ACCORD could
prove the program to be race-free. For both buggy programs, the
annotation adequacy check failed i.e., Z3 is able to prove the
existence of a data-race, given the verification condition generated
from the program annotations. While we intentionally introduced a
race in the matrix multiplication algorithm (see §2), the data-race in
the LU Factorization was an unintended bug in our implementation.
The data-race occurs due to an overlap between a read set and a
write set (of different threads) due to a subtle boundary condition.

Finally, and surprisingly, we also discovered a set of (eight)
previously unknown data-races in the applu_1 benchmark from
the Spec OMP2001 suite, which has been available as a benchmark
for more than 10 years. The bugs have been reported and duly
acknowledged. Seven of these data-races have a similar bug pattern,
which is triggered only under certain interleavings (the bug is

caused because of the removal of a barrier between two for-each
loops using a nowait clause). This further strengthens our claim
that annotating programs with ACCORD can help discover bugs due
to complex sharing strategies.

8. Related Work

There is a rich literature on using type analysis in order to ensure
race-freedom [3, 4, 6, 8, 12, 13, 20]. Ownership types that stati-
cally enforce object-level encapsulation, combined with effect sys-
tems that capture computational effects, have been used to define
nested regions, separate them, and ensure race-freedom. These sys-
tems have been extended for locks to statically ensure deadlock-
freedom. The Deterministic Parallel Java language [6] combines
types and effects to give the user the ability to give distinct names
for regions, including nested regions, specify read and write effects
on regions by parallel threads, and by ensuring disjointedness of
regions, ensure race-freedom and even determinacy.

The main difference between our work and that of type systems
is that our annotations allow dynamic and complex logical parti-
tioning of the heap into different regions. It would be very hard
to type check, for example, the Successive Over-Relaxation (SOR)
example. The regions in SOR are dynamic (due to the phases) and
even within a phase, the regions are not nested and are instead spec-
ified using logical constraints (row + col is even/odd). Realizing
such a program using static types or type annotations, even with dy-
namic ownership, is quite challenging, unless the program is rewrit-
ten using different data-structures or using copying data between
different structures that have different regions. The complexity of
course comes at a price— our analyses tackle an undecidable prob-
lem (while usually type-analysis is often decidable and fast), and
we trade this in order to be able to express complex separation con-
straints. We instead rely on the emerging class of software verifica-
tion and SMT solver technology to be effective in practice.

SharC [3] is a type system that assigns different kinds of sharing
modes to objects, and these are enforced using a combination of
static and dynamic techniques (dynamic techniques kick in when
the static analyses fail). The work in [14] proposes contracts which
allow fractional permissions, which can be verified using an SMT
solver. These approaches deal with objects that are shared among
different threads during their lifetime, and employ mutual exclusion
synchronization primitives such as locks for correct behavior. In
this paper, we need annotations for sharing complex sub-regions
that are logically defined and dynamically evolve, and hence the
mechanisms proposed in the above work do not suffice. However,
combining our annotations with the annotations above to handle
static simple region separation and locks would be interesting.

There is some recent work [15] that proposes inferring the read
and write regions from loop-free (SPMD) CUDA [1] programs,
and using SMT solvers to check whether these regions do not
intersect. Note that CUDA programs are recursion free and function
pointer free. We believe that such an inference may be very hard for
larger programs with complex control and data structures. We have
instead proposed annotation mechanisms that the user can write for
a fairly general purpose programming language.

Separation logic [24] is a Hoare logic for reasoning about heap
structures, especially separation, and hence is very relevant as a
means of annotation to separate threads. Separation logic has been
primarily used to separate dynamic heaps using recursion. When
moving to programs with dynamic data, we certainly envisage
using logics for separation.

There is a rich literature on checking concurrent programs for
data-races, a posteriori, with no extra user annotations, using static
analysis, testing and model-checking: lock-set based algorithms as
in Eraser [25], vector-clock based algorithms [26], hybrid algo-
rithms [22, 29], Goldilocks [11], and static-analysis algorithms [9].

Data-race-freedom or the similar property of non-interference
has also been the focus of parallel compilers community under the
broader problem of dependency analysis for loops and operations
over arrays [28]. The primary motivation in their work is to au-
tomatically extract parallelism. We believe manual annotations go
a long way in simplifying the problem (for instance, kernels like
sparse matrix). In addition, we use sophisticated theorem provers
to prove race-freedom. However, we believe that techniques from
the auto-parallelization community can help in inferring many sim-
ple ACCORD annotations.

9. Discussion and Future Work

Race-freedom is a generic correctness condition for concurrent
programs and, given that languages like the next version of C++
consider programs with races erroneous and do not even offer
semantics for them, there is an urgent need for software engineering
techniques to ensure programs are race-free.

We have, in this paper, proposed a mechanism by which a
programmer can formally express the intended concurrency co-
ordination strategy, for array-based programs with fork-join par-
allelism working over complex read/write regions. Expressing the
co-ordination strategy formally allows us to check automatically if
the strategy ensures race-freedom and also allows automatic inser-
tion of assertions to test if the program conforms to the strategy.
We believe that the ACCORD thread contracts and the accompa-
nying reasoning mechanisms presented in this paper are elegant in
capturing complex region separation for data-parallel programs to
prove race-freedom.

The ACCORD annotations programmers write can have benefits
other then ensuring race-freedom. There is a promising line of work
that suggests that the annotations can make programs run faster—
for instance, information about the separation of data can be made
available through the compiler to the underlying architecture in
order to provide efficient runtime execution mechanisms. The new
architecture framework DeNovo being developed at Illinois aims to
utilize precisely this kind of separation information and assurance
of race-freedom to build simple cache-coherence and faster runtime
architectures [19].

The ACCORD language proposed here is a first step towards
building a language that can express concurrency co-ordination
strategies. ACCORD has currently several limitations— the lan-
guage cannot handle read/write regions of dynamically allocated
heaps, and cannot handle non-fork-join parallelism. These are not
inherent limitations to our approach; for example, there are sim-
ple mechanisms, such as the inductively-defined nested regions in
DPJ [6], or separation logic annotations that can express regions of
the dynamic heap. In fact, in ongoing work, we are pursuing an ex-
tension of the work presented in this paper with researchers work-
ing on DPJ [6], to design a more general and full-fledged annotation
language, with associated static-checking and testing mechanisms.

References

[1] NVIDIA CUDA programming
http://www.nvidia.com/cuda, 2010.

[2] S. Adve, M. Hill, B. Miller, and R. Netzer. Detecting data races on
weak memory systems. In The 18th Annual International Symposium
on Computer Architecture, 1991., pages 234-243, 1991.

[3] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC: checking data
sharing strategies for multithreaded c. In PLDI '08, pages 149-158.
ACM New York, NY, USA, 2008.

[4] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava: A dialect of java
without data races. In OOPSLA '00. ACM Press, 2000.

guide version 3.0.

[5] P. Becker. Working draft, standard for programming language C++.
Technical report, ISO/IEC JTC 1, Information Technology, Subcom-
mittee SC 22, 2010.

[6] R. Bocchino and V. A. et al. A type and effect system for deterministic
parallel java. In OOPSLA ’09. ACM, 2009.

[7] H.-J. Boehm and S. V. Adve. Foundations of the c++ concurrency
memory model. In PLDI ’08, New York, NY, USA, 2008. ACM.

[8] C.Boyapati and M. Rinard. A parameterized type system for race-free
java programs. In OOPSLA ’01, pages 56—69. ACM, 2001.

[9] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Srid-
haran. Efficient and precise datarace detection for multithreaded
object-oriented programs. In PLDI ’02, pages 258-269, 2002.

[10] L. de Moura and N. Bjgrner. Z3: An efficient smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems, volume
4963/2008 of LNCS, pages 337-340. Springer Berlin, April 2008.

[11] T. Elmas, S. Qadeer, and S. Tasiran. = Goldilocks: a race and
transaction-aware java runtime. In J. Ferrante and K. S. McKinley,
editors, PLDI ’07, pages 245-255. ACM, 2007.

[12] C. Flanagan and M. Abadi. Object types against races. In CONCUR,
volume 1664 of LNCS, pages 288-303. Springer, 1999.

[13] C. Flanagan and S. N. Freund. Type-based race detection for java. In
PLDI ’00, pages 219-232, New York, NY, USA, 2000. ACM.

[14] K. R. Leino and P. Miiller. A basis for verifying multi-threaded
programs. In ESOP ’09, pages 378-393, Berlin, Heidelberg, 2009.
Springer-Verlag.

[15] R. Lublinerman and S. Tripakis. Checking equivalence of spmd
programs using non-interference. Technical Report UCB/EECS-2009-
42, EECS Department, University of California, Berkeley, Mar 2009.

[16] J. Manson, W. Pugh, and S. Adve. The Java memory model. In POPL
’05, pages 378-391. ACM New York, NY, USA, 2005.

[17] B. Meyer. Applying “design by contract”. Computer, 25(10):40-51,
1992. ISSN 0018-9162. doi: http://dx.doi.org/10.1109/2.161279.

[18] Microsoft Corporation. Code Contracts.
http://research.microsoft.com/en-us/projects/contracts/, 2008-10.

[19] Parallel@Illinois. Denovo: Rethinking hardware for disciplined par-
allelism. http://rsim.cs.illinois.edu/denovo/, 2008-10.

[20] P. Permandla, M. Roberson, and C. Boyapati. A type system for pre-
venting data races and deadlocks in the java virtual machine language:
1. In LCTES 07, page 10, New York, NY, USA, 2007. ACM.

[21] D. Powers. Parallelized Quicksort and Radixsort with Optimal
Speedup. In Proceedings of the International Conference on Paral-
lel Computing Technologies, 1991., pages 167-176, 1991.

[22] E. Pozniansky and A. Schuster. Efficient on-the-fly data race detection
in multithreaded c++ programs. In PPoPP '03, pages 179-190, New
York, NY, USA, 2003. ACM.

[23] S. Ranise and C. Tinelli. The smt-lib standard: Version 1.2. 2006.

[24] J. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In Logic in Computer Science, 2002. Proceedings., pages 55-74,
2002.

[25] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs.
ACM Transactions on Computer Systems (TOCS), 1997.

[26] D. Schonberg. On-the-fly detection of access anomalies. In PLDI ’89,
pages 285-297. ACM New York, NY, USA, 1989.

[27] L. A. Smith and J. M. Bull. A multithreaded java grande benchmark
suite. In In Proceedings of the Third Workshop on Java for High
Performance Computing, pages 97-105, 2001.

[28] M. J. Wolfe. High Performance Compilers for Parallel Computing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995. ISBN 0805327304.

[29] Y. Yu, T. Rodeheffer, and W. Chen. Racetrack: efficient detection of
data race conditions via adaptive tracking. SIGOPS Oper. Syst. Rev.,
39(5):221-234, 2005.

