
A Markov Reward Model for Software Reliability ∗

YoungMin Kwon and Gul Agha
Department of Computer Science

University of Illinois at Urbana Champaign
{ykwon4, agha}@cs.uiuc.edu

Abstract

A compositional method for estimating software reliability
of many threaded programs is developed. The method uses es-
timates of the reliability of individual modules and the proba-
bility of transitions between the modules to estimate the relia-
bility of a program in terms of its current state. The reliability
of a program is expressed using iLTL, a probabilistic linear
temporal logic whose atomic propositions are linear inequal-
ities about transitions of the probability mass function of a
Discrete Time Markov Chain. We then use a Markov reward
model to estimate software reliability. The technique is illus-
trated in terms of some examples.

1 Introduction

It is well known that fixing a fault in a program becomes in-
creasingly expensive in later phases of software development
[4]. It is much more cost effective to fix as many faults as
possible before releasing a program. Unfortunately, because it
becomes harder to detect a fault as the software becomes more
reliable, the cost of testing also increases [4]. Thus, at some
point, testing is no longer cost-effective and the software has
to be released. It has also been observed that modular testing
is a good strategy [6]. Moreover, as the lines of code increase,
the testing effort required to fix a fault grows superlinearly [4].
Hence, modular testing with fewer lines of code would signif-
icantly reduce the overall effort required for testing.

We address the problem of accurately estimating reliability
of large-scale software systems and, at the same time, improv-
ing the effectiveness of the testing process. We assume that
we can estimate the control transition probabilities between
modules using operational profiling. Together with estimated
module reliabilities, these transition probabilities notonly en-
able us to estimate system reliability, they also help us focus
testing on modules that may more effectively increase the re-
liability of the entire system.

A many threaded program, such as a server program, differs
from a single threaded program in that its current state is bet-
ter abstracted by aprobability mass function (pmf). A naive

∗This research has been supported in part by the DARPA IXO NESTpro-
gram under contract F33615-01-C-1907, by NSF under grant CNS 05-09321
and by ONR under DoD MURI award N0014-02-1-0715.

representation of the program state as a product of the states
of each thread results in a state explosion. Suppose that a pro-
gram with 100 thread is modeled as a 3 state state-machine;
this results in a program with an unwieldy 3100 states. Ob-
serve that the threads are executed concurrently; thus the cur-
rent state of each thread execution may be represented as a
random variable that has a stochastic behavior. We can use
this representation to express the reliability of a programmore
precisely as a conditional probability given the current pmf of
the states of the program.

Our approach uses a tool based oniLTL, a probabilistic lin-
ear temporal logic, that can check whether a discrete time
Markov chain (DTMC) is a model for aniLTL specification
or not. The atomic propositions of theiLTL are linear inequal-
ities about the probability mass function (pmf) transitions of a
given DTMC.

There are many probabilistic verification approaches such as
probabilistic LTL, pCTL, pCTL*, CSL, Markov reward model
and its variations [1, 2, 5, 9, 8, 11]. These approaches assign
probability measures to paths of computation and check prob-
abilistic specifications on these paths. We useiLTL since our
primary interest is not path behavior but reasoning about the
pmf transitions to establish (conditional) program reliability.
iLTL allows us to express specifications such as: “given the
current pmf estimation, eventually a certain property willbe
satisfied.” Specifically, we add fault states and check for the
probability of transition to these states.

The outline of the paper is as follows. Section 2 defines the
Markov Reward Model and discusses the modeling assump-
tions we make. Section 3 defines a specification logic and
provides a verification algorithm for it. Section 4 illustrates
our approach by means of an example executed on aniLTL
checker. The final section summarizes some open problems.

2 A Markov Reward Model for Software Reli-
ability

We first show how we construct a Markov model for soft-
ware reliability based on the reliability of components andthe
probability of transitions between them. We make the model-
ing assumptions explicit and illustrate our approach by means
of an example.

1

2.1 Markov Model

We assume that a program consists of a set of modules and
that control flow of a program is represented as a sequence of
these modules. The particular control flow depends on the
input and the logics of the modules. We may assume that
there are different probabilities for different possible inputs.
Moreover, for a given input, there is a transition probabili-
ties between modules and we can assume that these transition
probabilities are known. This assumption is not a unrealistic
one since we can build an operational profile that provides the
transition probabilities between modules [6].

With a set of modules and transition probabilities between
modules, we can model a program as a Markov chain. Re-
call that aMarkov process is a stochastic process whose past
has no influence on the future, except as it is represented in the
present. AMarkov chain is a Markov process that has a count-
able number of states. We represent aDiscrete Time Markov
Chain (DTMC) X as a tuple (S ,M) whereS = {s1, . . . , sn} is a
set of finite states andM ∈ �n×n is a Markov transition matrix
that governs the transitions of probability mass function (pmf).
SinceM is a Markov matrix, its elements are non-negative and
its column sums are all one: 0≤ Mi j ≤ 1 for 1 ≤ i, j ≤ n and
∑n

i=1 Mi j = 1 for 1≤ j ≤ n. Let x ∈ �n×1
= [x1(t), . . . , xn(t)]T

be a pmf ofX at timet such thatxi(t) = P{X(t) = si}. Thus,

x(t + 1) = M · x(t)

If a program consists of a set of modulesS = {s1, . . . , sn}

and transition probabilities between modules are represented
by a matrixM then we can model the program by a DTMC
X = (S ,M), whereMi j is the probability that control transfers
from modulesi to modules j : P{X(t + 1) = s j|X(t) = si}.
We assume thatsn is a terminating state that every successful
execution arrives at. Note thatsn is an absorbing state:P{X(t+
1) = sn|X(t) = sn} = 1.

We regard the reliability of a module as the probability thata
module does not produce a fault when a control is passed to it.
Note that this reliability is independent of the transitionprob-
abilities. Moreover, unlike the transition probabilities, relia-
bilities are usually unknown and we have to estimate them. A
simple reliability model is a NHPP (Non-homogeneous Pois-
son Process) exponential model. This model is based on the
following simplifying assumptions:

• The faults in a program are mutually independent, at least
from the point of view of failure detection.

• The number of failures detected at any time is propor-
tional to the current number of faults in a program. In
other words, the probability of failures that occur due to
faults is constant.

• Faults that are detected are isolated and removed prior to
further testing.

• Each time a software failure occurs, the software error
which caused it is immediately removed, and no new er-
rors are introduced as a result of this removal.

Note that these simplifying assumptions need not always
hold. However, since we are dealing with probabilities, if they
are hold with a sufficiently high probability, our reliability es-
timation technique may nevertheless be reasonable.

Under these assumption, the expected number of errors de-
tected by timet is: m(t) = a(1− e−bt), wherea is the expected
total number of faults that exist in the software before testing
andb is the failure detection rate or the failure intensity of a
fault. Given the number of failures and the detection times for
a module, we can estimatea andb for that module. Using
these parameters, we can estimate the reliability of a module
as R̂(x|t) = e−â(e−b̂t−e−b̂(t+x)), where the reliabilityR(x|t) is the
probability that a module does not have a failure during the
time intervalt to t + x [4].

During the interval between between correction of errors,
we assume that the reliability of a module over a fixed sam-
pling intervalx, R(x|t), remains constant. For example, sup-
pose the software is released to a market. Then, as long as
no errors are corrected, the reliabilities of the modules donot
change.

We can extend our DTMC modelX = (S ,M) in order to
check the reliability of a program. Letri be the reliability of
a modulesi. We add one more states:S ′ = S ∪ { f } where
f represents afail state. Then the extended transition matrix
such thatM′i j = r j · Mi j for n ≤ i, j ≤ 0, M′(n+1) j = 1− r j for
n ≤ j ≤ 0, M′i(n+1) = 0 for n ≤ i ≤ 0, andM′(n+1)(n+1) = 0.

Because a terminating statesn cannot result in a failure,Min

is 0 if i , n and 1 if i = n andrn is 1. The extended matrix
M ′ is also a probability matrix: each element is non-negative
and the sum of each column is 1. One can easily check that
∑n

i=1 r j · Mi j + 1− r j = 1 for 1≤ j ≤ n since
∑n

i=1 Mi j = 1.
The reliability of a program is the probability that a program

eventually arrives at the final success statesn: P{X(∞) = sn}.
This probability can be computed by:

r = M n∗ · lim t→∞
∑t

i=1 M i
∗ · x(0),

whereM ∗ is a sub-matrix ofM that comprises the firstn − 1
rows and the firstn − 1 columns ofM , M n∗ is anth row vector
of M with first n−1 elements, andx(0) is an initial probability
mass function ofX(0). Note that the reliability of a program
is a function of initial pmfx(0).

Kemeny and Snell [7] showed that an arbitrary matrixM
with the property limt→∞M t

= 0 satisfies the equation:

lim t→∞
∑t

i=0 M i
= (I −M)−1.

They also proved that if all elements of a matrixM satisfy
0 ≤ Mi j < 1 and each column sum ofM is less than 1 then
lim t→∞M t

= 0 [7].
Assuming that the reliabilityri of each module is less than

one, the sub-matrixM ∗ satisfies the previous condition: all
elements are non-negative and less than one, and the column
sum is less than one sinceM is a Markov transition matrix.
So, the reliability of a programr can be rewritten as:

r = M n∗ · (I −M ∗)−1 · x(0).

2

Success
0.01 rB

0.07 rB

0.02 rB

1−rC

1−rA

1−rB

0.05 rC

0.95 rA 0.9 rB

0.07 rA

0.95 rC

Fail

A B

C

1

1

Figure 1. a module reliability diagram

Note that since the transition probability fromsn to sn is
1, the reliabilityr computed above should be equal to thenth

element of the following vector.

M∞∗ · x(0)

2.2 Example

Figure 1 shows a reliability diagram of a program with three
modules. In addition to these three modules, asuccess state is
added to indicate that a program has successfully terminated.
Figure 1 also shows the transition probabilities between these
modules and thesuccess state. If we regardrA, rB and rC

as 1, then the number at the arrows connecting these states
represent the transition probabilities that have been obtained
from an operation profile. We extend this diagram to check
the reliability of a program.

Let rA, rB andrC be the reliabilities of the modules A, B and
C. We can model the reliability of the program by a DTMC
X = (S ,M) whereS = {A, B,C, success, f ail } and:

M =







































.95rA .07rB .05rC .00 .00

.05rA .90rB .00rC .00 .00
.00 .02rB .95rC .00 .00
.00 .01rB .00 1.0 .00

1− rA 1− rB 1− rC .00 1.0







































.

Thus, givenrA = rB = rC = 0.9 andx(0) = [1, 0, 0, 0, 0]T,
the reliability of X is 0.1655. This agrees with the prob-
ability with large t P{X(t = 105) = success} = (M105

·

[1, 0, 0, 0, 0]T)4 ≃ 0.1655.
Figure 2 shows how the reliability of a programX changes

as a function of module reliabilitiesrA andrB. In the figure, we
assume thatrC = 1− 10−5 andx(0) = [1, 0, 0, 0, 0]T. Observe
that the overall program reliability depends not only on the
reliability of the modules but is significantly affected by the
transition probabilities between the modules.

2.3 Markov Reward Model

A Markov reward process is a triple (ρ, S ,M) where (S ,M)
is a DTMC andρ : S → � is a reward function for each state.
We consider only constant rewards. So we represent the re-
ward function as a constant row vectorr = [ρ(s1), . . . , ρ(sn)].

0.9

0.99

0.999

0.9999

0.99999

0.9

0.99

0.999

0.9999

0.99999
0

0.2

0.4

0.6

0.8

1

rBrA

re
lia

bi
lit

y

Figure 2. a reliability of a program as a function
of module reliabilities rA and rB with rC = 1− 10−5.

The expected reward at timet is:

∑n
i=1 ρ(si) · P{X(t) = si} = r · x(t) = r ·M t · x(0).

Later, we will transform our DTMC representation of a pro-
gram to a Markov reward model so that we can useiLTL to
reason about the reliability of a program.

3 Specification Logic

Since we are interested in the temporal behavior of a prob-
ability mass function (pmf), our specification logic shouldbe
able to express properties of the transitions of the pmf. The
sort of properties we are interested in compare a probability
that a DTMC will be a particular state with a constant, or with
another such probability at a different time. We use linear
inequalities over pmf vectors as atomic propositions of our
specification logic.

3.1 Syntax and informal semantics

The syntax of the specification logic is:

ψ ::= T | F | ineq | atomic propositions
¬ψ | ψ ∨ φ | ψ ∧ φ | logical operators
X ψ | ψ U φ | ψ R φ temporal operators

ineq ::=
∑n

i=1 ai · P{X = si} < b,

whereX = ({s1, . . . , sn},M), ai ∈ � andb ∈ �. Note that
^ representseventually, � representsalways, X is the next
operator,ψ U φ meansφ eventually becomes true and beforeφ
becomes trueψ is true, andψ R φ means untilψ first becomes
trueφ is true.

Observe that the comparison between two probabilities at
different times can be expressed by the linear inequalities
of the form ineq. For example, given the DTMCX =

({s1, . . . , sn},M), the probability thatX is in statesi at time
t + k is given by:

P{X(t + k) = si} = xi(t + k) = M k
i · x(t),

3

Markov model & iLTL specification

compute search depth build a Buchi automaton

check feasibility through LP

YES
NO

with a counterexample

Markov model, inequalities iLTL

Figure 3. a block diagram of an iLTL model check-
ing algorithm

whereM k
i is theith row of M k andx(t) is the pmf at timet.

Predicates about a Markov reward process[3] can also be
expressed by linear inequalities. We consider only a constant
reward functionρ : S → � for each state. A performance
metric is an accumulated reward over time. The expected ac-
cumulated reward is:

∑T
k=0
∑

si∈S ρ(si) · P{X(t + k) = si}

= r ·
(

∑T
k=0 M k

)

· x(t)

= r · S ·
(

∑T
k=0Λ

k
)

· S−1 · x(t)

whereρ(si) is a reward function associated with a statesi, r
is a row vector [ρ(s1), . . . , ρ(sn)], M = S · Λ · S−1 with Λ a
diagonal matrix of eigenvalues ofM and theT on the summa-
tion is an upper bound of the accumulation interval. Note that
the accumulation interval can be∞ if the reward vectorr is
orthogonal to the steady state pmf vector.

3.2 Verification Algorithm

Let sX(x(0)) be a string whose alphabet isΣ = 2AP and its
ith alphabet is{ineq ∈ AP : ineq(M i · x(0))} whereX is a
DTMC, x(0) is an initial pmf andAP is a set of inequalities.
Let LX ⊆ Σ

∗ be a set of stringssX (x(0)) for all x(0). Then
our model checker checks whetherLX ⊆ Lψ whereLψ is a
language accepted by the Büchi automata built from an LTL
formulaψ. More specifically, for a given specificationψ, it
checks whether anysX ∈ LX is in L¬ψ.

Figure 3 shows a block diagram of theiLTL model checker.
Given aniLTL specification, it computes a search depth using
the Markov model and the inequalities used in the specifica-
tion logic. With the specifiediLTL, which essentially is an
LTL, we build a Büchi automata by the expand algorithm
[10]. Using the search depth and the Büchi automata we
check the feasibility of a set of inequalities collected using
the Büchi automata.

Our model checking algorithm has two steps. First, we build
a Büchi automaton for the negated normal form of a given
LTL specificationψ using theexpand algorithm [10]. Second,

we check the feasibility of the initial pmfx(0) against the set
of inequalities collected along finite paths obtained from the
automaton. From the set of inequalities, if there is a feasi-
ble solution, then a counterexample that does not satisfy the
specificationψ is found. Otherwise, the DTMCX satisfies the
given specification.

We now provide the details of our algorithm and the techni-
cal justification for it. The rest of this section is purely techni-
cal and may be skipped without loss of continuity.

Observe that given the linear inequalities of an LTL formula
ψ and a Markov matrixM , we can compute an upper bound
N on the number of time steps after which the atomic propo-
sitions ofψ become constant. Given a DTMCX = (S ,M), an
initial pmf x(0) and an LTL formula, because we can compute
the bound after which the truth value of the inequalities in the
LTL formula become constants, after a finite expansion of the
LTL formula, we can evaluate it. Recall that the ‘until’ and
‘release’ operators may be rewritten as:

φ U ψ ≡ ψ ∧ (φ ∨ X (φ U ψ))
φ R ψ ≡ (φ ∧ ψ) ∨ (φ ∧ X (φ R ψ)).

More detailed discussion and proofs about model checking al-
gorithm can be found in [12].

4 Model Checking of Software Reliability

We are interested in a number of different kinds of program
properties related to reliability:

• Recall that the reliability of a program depends on an ini-
tial pmf x(0). Thus we may be interested in finding the
initial pmf x(0) that would result in the lowest reliability.

• If we can estimate the current pmfx(t), we may want to
compute the reliability of a program given the estimated
pmf.

• We may want to check the effects on the reliability of
a program if different execution constraints are enforced
on the program.

These properties can be handled byiLTL using the reliabil-
ity model we considered in Section 2.1. However, we can-
not use ouriLTL model checking algorithm directly on the
model we mentioned, because the model violates the eigen-
value constraints of theorem 1. So, we have transform the
model slightly.

In theorem 1, ouriLTL model checking algorithm has two
constraints on the Markov transition matrixM . One is the di-
agonalizability ofM and the other is thatM should have only
one eigenvalue whose absolute value is one. The latter con-
dition ensures a unique steady state pmf of a Markov chain.
However, the model in Section 2.1 violates the second condi-
tion: two of its eigenvalues are 1. One can easily check this
from Figure 1. The transition probabilities fromsuccess to
success and fromfail to fail are one. That means once a pmf
becomesP{X(t) = success} = α andP{X(t) = f ail} = 1−α, it

4

Success
0.01 rB

0.07 rB

0.02 rB

1−rC

1−rA

1−rB

0.05 rC

0.95 rA 0.9 rB

0.07 rA

0.95 rC

Done

A B

C

1

1

Figure 4. modified reliability state transition dia-
gram

will remain there for any 0≤ α ≤ 1. Hence, there is no unique
steady state pmf in the DTMC of Figure 1. Specifically, for the
matrix M of Section 2.2, the two vectorsx1 = [0, 0, 0, 1, 0]T

andx2 = [0, 0, 0, 0, 1]T are eigenvectors of it withx1 = M · x1

andx2 = M ·x2. Hence the two eigenvaluesλ1 andλ2 are one.
In order to use ouriLTL model checking algorithm we mod-

ify the diagram of Figure 1 to Figure 4. First we replaced the
fail state by thedone state. And, we remove the self loop tran-
sition of success state. Instead we add a transition from state
success to done with a probability one and make thesuccess
state transient. With this change every successful execution ar-
rives atdone state throughsuccess state whereas every unsuc-
cessful execution arrives atdone state without going through
success state.

The reliability of a program is the accumulated sum
of the probabilities that thesuccess state is visited. So
our modified DTMC model isX = (S ,M) where S =

{A, B,C, S uccess,Done} and

M =







































.95rA .07rB .05rC .00 .00

.05rA .90rB .00rC .00 .00
.00 .02rB .95rC .00 .00
.00 .01rB .00 .00 .00

1− rA 1− rB 1− rC 1.0 1.0







































.

The reliability of the programX is:

r =
∑∞

t=0 P{X(t) = success}
=
∑∞

t=0[0, 0, 0, 1, 0] · x(t)
=
∑∞

t=0[0, 0, 0, 1, 0] ·M t · x(0)

For the example of Section 2.2 with module reliabilitiesrA =

.97,rB = .999 andrC = .999, the reliability of the program can
be expressed asr ·x(0) wherer = [.2149, .3478, .5036, 0, 0].
Figure 5 shows how the probabilities of each states change
over time and how the reliability of the program (P{X(t) =
success}) is accumulated with module reliabilitiesrA, rB and
rC and initial pmfx(0) = [1, 1, 1, 0, 0]/3.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P{X(t)=A}

P{X(t)=B}

P{X(t)=C}

P{X(t)=fail}

P{X(t)=success}

step

pr
ob

ab
ili

ty

Figure 5. probability transitions of figure 1

4.1 iLTL Checker

In this section, we describe some properties of the example
in Section 2.2. We assume that the reliabilities of the modules
are rA = .97, rB = .999 andrC = .999 as in the previous
section.

Figure 6 describes theiLTL Checker description of the re-
liability model in Figure 4. TheiLTL Checker has two main
blocks. Themodel block describes the DTMC model to be
checked. This block begins with the name of the DTMC (pgm

in this case) followed by a set of states the DTMC has and
finally the Markov transition matrix. Thespecification
block begins with an optional list of inequalities that willbe
used iniLTL specification. Finally, aniLTL formula is speci-
fied using the inequalities defined previously.

In Figure 6, the inequalities a, b and c describes whether
the reliability of the programpgm is less than 0.7, 0.5 and 0.3
each. The inequality d describes that the probability thatpgm

is in states S or D is larger than zero. So, the negation of it
means thatpgm is not in states S or D. The inequality e says
that the probability thatpgm is in state A is at least 0.3 larger
than the probability thatpgm is in state C.

The specificationa checks whether the reliability of the pro-
grampgm is less than 0.7 regardless of the initial pmfx(0). The
iLTL Checker shows the result as:

Depth: 22

Result: T

The first line Depth: 22 says that the required search
depth for this formula is 22. Note that the formulaa is a state
formula (not a path formula). So, in theory the required search
depth is zero. However, current implementation of ouriLTL
checker computes a search depth based on the set of inequali-
ties used in the formula and the Markov transition matrix not
the formula itself. We plan to improve the tool to avoid exces-
sive search depth in such cases. However, note that the search
depth is displayed before actual search begins. So, one can
modify specification if the search depth is too large insteadof

5

var: ra=.2149, rb=.3478, rc=.5036

model:

Markov chain pgm

has states :

{ A, B, C, S, D},

transits by :

[.9215, .0699, .05, .0, .0;

.0485, .8991, .0, .0, .0;

.0, .02, .9191, .0, .0;

.0, .01, .03, .0, .0;

.03, .001, .001, 1.0, 1.0]

specification:

a : ra*P[pgm=A]+rb*P[pgm=B]+rc*P[pgm=C] < .7,

b : ra*P[pgm=A]+rb*P[pgm=B]+rc*P[pgm=C] < .5,

c : ra*P[pgm=A]+rb*P[pgm=B]+rc*P[pgm=C] < .3,

d : P{pgm=S} + P{pgm=D} > .0,

e : P{pgm=A} > P{pgm=C} + .3

a # 1)

#b 2)

#e -> b 3)

#e -> c 4)

#(b /\ ˜ d) -> ˜ e 5)

#(b /\ ˜ d) -> <> ˜ e 6)

Figure 6. an iLTL checker description of the reli-
ability model of figure 4

waiting indefinitely. The second line says thatpgm is a model
of the specificationa.

The second commented specificationb checks whether the
reliability of the programpgm is less than 0.5. TheiLTL
checker result is:

Depth: 30

Result: F

counterexample:

pmf(pgm(0)): [.01247 .0 .98753 .0 .0]

The result shows thatpgm is not a model ofb with a counter
example ofx(0) = [.01247, .0, .98753, .0, .0]. One can see
thatr · x(0) = 0.5. From the first and the second example we
know that the maximum reliability of the programpgm is in
between 0.5 and 0.7.

The third commented specificatione -> b checks whether
the reliability of the program is less than 0.5 if the probability
thatpgm is in A state is at least 0.3 larger than the probability
thatpgm is in C state. TheiLTL checker verifies that it is true.
However for the fourth commented specificatione -> c, the
model checker proves that it is not true:

Depth: 78

Result: F

counterexample:

pmf(pgm(0)): [.70523 .0 .294770 .0 .0]

By comparing the previous example (b) and this example (e
-> b), we know that we should focus more on module A than
module C because more probability in A results in decreased
reliability of pgm.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P{pgm(t)=A}

P{pgm(t)=A}−P{pgm(t)=C}

P{pgm(t)=C}

step

pr
ob

ab
ili

ty

Figure 7. a counterexample of b -> ¬ e

The fifth example (b -> ¬ e) checks whether the fact that
the reliability ofpgm is less than 0.5 implies note. TheiLTL
checker returns a negative answer with a counter example:

Depth: 78

Result: F

counterexample:

pmf(pgm(0)): [.3 .7 .0 .0 .0]

However for the sixth example (b -> <> ¬ e), if the reli-
ability of a pgm is less than 0.5 then eventually the difference
between the probability thatpgm is in sate A and the probabil-
ity thatpgm is in sate C will be less than 0.3.

Figure 7 explains the fifth and sixth examples. From step 1
to 15, the probability difference is larger than 0.3. However,
eventually after step 15 the difference becomes less than 03.

5 Conclusions

We have developed a method for estimating software re-
liability of a program using a Markov reward model. The
method uses an operational profile of a program, and the es-
timated reliability of each module, to estimate the reliability
of a program. UsingiLTL, we show how a variety of reliabil-
ity properties may be specified and we provide an algorithm
for checking these properties. While our technique provides a
promising method for rigorous compositional software relia-
bility estimation, empirical studies with real software systems
remain to be carried out. Moreover, further research is needed
to quantify the effect of deviations from the assumptions used
in our model.

References
[1] Adnan Aziz, Vigyan Singhal and Felice Balarin. It usually

works: The temporal logic of stochastic systems. InLNCS,
volume 939, pages 155–165, 1995.

[2] Andrea Bianco, Luca de Alfaro. Model checking of probabilis-
tic and nondeterministic systems. InProceedings of Confer-
enco on Foundations of Software Technology and Theoretical
Computer Science, volume 1026, pages 499–513, 1995.

6

[3] Gianfranco Ciardo, Raymond A. Marie, Bruno Sericola and
Kishor S. Trivedi. Performability analysis using semi-markov
reward process. InIEEE Transactions on Computers, vol-
ume 39, pages 1251–1264, October 1990.

[4] Hoang Pham.Software Reliability. Springer, 2000.
[5] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-

Kayser and Markus Siegle. A markov chain model checker.
In S. Graf and M. Schwartzbach, editors, TACAS’2000, pages
347–362, 2000.

[6] Jayant Rajgopal and Mainak Mazumdar. Modular operational
test plans for inference on software reliability based on a
markov model. InIEEE Transactions on Software Engineer-
ing, volume 28, pages 358–363, April 2002.

[7] J.G. Kemeny and J.L. Snell.Finite Markov Chains. Springer-
Verlag, 1976.

[8] Marta Kwiatkowska, Gethin Norman and David Parker. Prism:
Probabilistic symbolic model checker. volume 2324, pages
200–204. LNCS, Springer-Verlag, April 2002.

[9] Moshe Y. Vardi. Probabilistic linear-time model checking: an
overview of the automata-theoretic approach. InProc. 5th Int.
AMAST Workshop Formal Methods for Real-Time and Proba-
bilistic Systems, volume 1601, May 1999.

[10] R. Gerth, D. Peled, M.Y. Vardi and P. Wolper. Simple on-the-
fly automatic verification of linear temporal logic. InIFIP/WG,
volume 6.1, pages 3–18, 1995.

[11] Suzana Andova, Holger Hermanns and Joost-Pieter Katoen.
Discrete-time rewards model-checked. InFormal Modeling
and Analysis of Timed Systems 2003, pages 88–104, 2003.

[12] YoungMin Kwon and Gul Agha. Linear inequality ltl (iltl): A
model checker for discrete time markov chains. To appear in
Int. Conf. on Formal Engineering Methods 2004.

7

