A Markov Reward Model for Software Reliability *

YoungMin Kwon and Gul Agha
Department of Computer Science
University of lllinois at Urbana Champaign
{ykwon4, aghf&@cs.uiuc.edu

Abstract

A compositional method for estimating software reliability
of many threaded programsis developed. The method uses es-
timates of the reliability of individual modules and the proba-
bility of transitions between the modulesto estimate the relia-
bility of a programin terms of its current state. Thereliability
of a program is expressed using iLTL, a probabilistic linear
temporal logic whose atomic propositions are linear inequal -
ities about transitions of the probability mass function of a
Discrete Time Markov Chain. We then use a Markov reward
model to estimate software reliability. The techniqueisillus-
trated in terms of some examples.

1 Introduction

Itis well known that fixing a fault in a program becomes in-
creasingly expensive in later phases of software develapme
[4]. It is much more cost féective to fix as many faults as
possible before releasing a program. Unfortunately, beseséu

representation of the program state as a product of thesstate
of each thread results in a state explosion. Suppose thata pr
gram with 100 thread is modeled as a 3 state state-machine;
this results in a program with an unwieldy®3 states. Ob-
serve that the threads are executed concurrently; thusithe c
rent state of each thread execution may be represented as a
random variable that has a stochastic behavior. We can use
this representation to express the reliability of a prognaone
precisely as a conditional probability given the currenf pim

the states of the program.

Our approach uses a tool basedibfL, a probabilistic lin-
ear temporal logic, that can check whether a discrete time
Markov chain (DTMC) is a model for aiLTL specification
or not. The atomic propositions of thieTL are linear inequal-
ities about the probability mass function (pmf) transitiarf a
given DTMC.

There are many probabilistic verification approaches sach a
probabilistic LTL, pCTL, pCTL*, CSL, Markov reward model
and its variations [1, 2, 5, 9, 8, 11]. These approachesmassig
probability measures to paths of computation and check-prob

becomes harder to detect a fault as the software becomes mogdilistic specifications on these paths. We ilS& since our

reliable, the cost of testing also increases [4]. Thus, ateso
point, testing is no longer cosffective and the software has

primary interest is not path behavior but reasoning abaait th
pmf transitions to establish (conditional) program religb

to be released. It has also been observed that modulargestiniLTL allows us to express specifications such as: “given the

is a good strategy [6]. Moreover, as the lines of code in&reas
the testing &ort required to fix a fault grows superlinearly [4].
Hence, modular testing with fewer lines of code would signif
icantly reduce the overalfkort required for testing.

We address the problem of accurately estimating religbilit

current pmf estimation, eventually a certain property \wél
satisfied.” Specifically, we add fault states and check fer th
probability of transition to these states.

The outline of the paper is as follows. Section 2 defines the
Markov Reward Model and discusses the modeling assump-

of large-scale software systems and, at the same time, impro tions we make. Section 3 defines a specification logic and
ing the dfectiveness of the testing process. We assume thaprovides a verification algorithm for it. Section 4 illusta

we can estimate the control transition probabilities betwe
modules using operational profiling. Together with estedat
module reliabilities, these transition probabilities naty en-
able us to estimate system reliability, they also help usigoc
testing on modules that may morfextively increase the re-
liability of the entire system.

A many threaded program, such as a server progréieysli
from a single threaded program in that its current statetis be
ter abstracted by probability mass function (pmf). A naive

“This research has been supported in part by the DARPA IXO N&8T
gram under contract F33615-01-C-1907, by NSF under grai8 G»N09321
and by ONR under DoD MURI award N0014-02-1-0715.

our approach by means of an example executed o Hn
checker. The final section summarizes some open problems.

A Markov Reward Model for Software Reli-
ability

We first show how we construct a Markov model for soft-
ware reliability based on the reliability of components dmel
probability of transitions between them. We make the model-
ing assumptions explicit and illustrate our approach bymsea
of an example.

2.1 Markov Model Note that these simplifying assumptions need not always

We assume that a program consists of a set of modules anHOId' However, since we are dealing with probabilitieshéy

that control flow of a program is represented as a sequence of'© hold with a sfliciently high probability, our reliability es-
timation technique may nevertheless be reasonable.

these modules. The particular control flow depends on the Under th . h d ber of d
input and the logics of the modules. We may assume that nder these assumption, the expected number of errors de-

. .. _ _ bt .
there are dierent probabilities for dierent possible inputs. teCt?d bytt)lmet]is]:. ml(t) _ha(l €),xvher(]::‘a IS th(; efxpepted
Moreover, for a given input, there is a transition probabili total number of faults that exist in the software beforeingst

ties between modules and we can assume that these transitio]fwolIIO g the faulure dEtectﬁn_lr ate or tgehfalljure |n_tens_|ty offa
probabilities are known. This assumption is not a unrealist ault. Given the number of failures and the detection tinuzs

one since we can build an operational profile that provides th a module, we can esﬂmateand b for that r.“OCF'F"e- Using
transition probabilities between modules [6] these parameters, we can estimate the reliability of a neodul
: 2 _arabt_oDit+x) . - .

With a set of modules and transition probabilities betweenas R(Xt) = e*¢7=¢", where the reliabilityR(x|t) is the
modules, we can model a program as a Markov chain. Reprobability that a module does not have a failure during the
call that aMarkov process is a stochastic process whose past time intervalt to t + x [4]. .
has no influence on the future, exceptasiitis representbeint ~ During the interval between between correction of errors,
present. AVarkov chainis a Markov process that has a count- W€ assume that the reliability of a module over a fixed sam-
able number of states. We represemiscrete Time Markov pling intervalx, R(X|t), remains constant. For example, sup-
Chain (DTMC) X as a tuple $, M) whereS = {s,, ..., s} is a pose the software is released to a market. Then, as long as
set of finite states and € R™" is a Markov transition matrix N0 errors are corrected, the reliabilities of the modulesato
that governs the transitions of probability mass functjmf). change. .

SinceM is a Markov matrix, its elements are non-negativeand Ve can extend our DTMC mod& = (S, M) in order to

its column sums are all one:OM;; < 1 for 1<, j < nand check the reliability of a program. Let be the reliability of
YhoMj=1forl<j<n Letx e R™ = [x(t).....%(®)]T a modules. We add one more state§’ = S U {f} where

be a pmf ofX at timet such that(t) = P{X(t) = s}. Thus, f represents &ail state. Then the extended transition matrix
such thatV; = rj - Mjj forn <i,j <0, Mgy, = 1 - for
X(t+1)=M-x(1) n<j<0,M,=0frn<i<0 andV ;.. . =0.

Because a terminating stagecannot result in a failurevi,
is0ifi # nand 1 ifi = nandr, is 1. The extended matrix
M’ is also a probability matrix: each element is non-negative
and the sum of each column is 1. One can easily check that
Zi"zlrj “Mij+1-r1;= lforl<j< nsincezinzl Mij = 1.

The reliability of a program is the probability that a progra
eventually arrives at the final success s&teP{X(0) = s,}.

If a program consists of a set of modulgés= {si,..., s}
and transition probabilities between modules are repteden
by a matrixM then we can model the program by a DTMC
X = (S, M), whereM;; is the probability that control transfers
from modules to modules; : P{X(t + 1) = sIX(t) = s}.
We assume that, is a terminating state that every successful
execution arrives at. Note thatis an absorbing stat®{X(t+

1)=sX(t) = s} = 1. This probability can be computed by:
We regard the reliability of a module as the probability @at F=Mn - liMise XL, ML x(0)
module does not produce a fault when a control is passed to it. =1 '
Note that this reliability is independent of the transitfmob- whereM., is a sub-matrix oM that comprises the firgt— 1
abilities. Moreover, unlike the transition probabilitieslia- rows and the firsh — 1 columns oM, M, is ant" row vector

bilities are usually unknown and we have to estimate them. Aof M with first n— 1 elements, ang(0) is an initial probability
simple reliability model is a NHPP (Non-homogeneous Pois- mass function oiX(0). Note that the reliability of a program
son Process) exponential model. This model is based on thés a function of initial pmfx(0).

following simplifying assumptions: Kemeny and Snell [7] showed that an arbitrary maivix

. : . - o
e The faults in a program are mutually independent, at IeastWlth the property li... M" = 0 satisfies the equation:

from the point of view of failure detection. lime e NioM' = (1 =M)™.

e The number of failures detected at any time is propor- They also proved that if all elements of a mathixsatisfy
tional to the current number of faults in a program. In 0< M: < 1and each column sum & is less than 1 then
—_ |]

other words, the probability of failures that occur due to limee Mt = 0[7]

faults is constant. Assuming that the reliability; of each module is less than

e Faults that are detected are isolated and removed prior t®ne, the sub-matriM.. satisfies the previous condition: all
further testing. elements are non-negative and less than one, and the column

)) sum is less than one sindé is a Markov transition matrix.
* Each time a software failure occurs, the software error g, the reliability of a programcan be rewritten as:

which caused it is immediately removed, and no new er-
rors are introduced as a result of this removal. r=Mnp. - (=M, x(0).

reliability

0.05rC 02
0 —
Fail 0.99999
C 1-1C 0.9999 0.99999
0.9999

0.999

Figure 1. a module reliability diagram

09 09
A B

Figure 2. a reliability of a program as a function

Note that since the transition probability frosm to s, is . .
I tion p Pty TTOs 10 & | of module reliabilities ra and rg with rc =1 - 1075,

1, the reliabilityr computed above should be equal to tife
element of the following vector.

M: - x(0) The expected reward at tintés:

2.2 Example Sip(s) - PIX(®) =s)=r-x(t) =r-M'-x(0).
Figure 1 shows a reliability diagram of a program with three

modules. In addition to these three modulesyaess state is

added to indicate that a program has successfully terminate

Figure 1 also shows the transition probabilities betweesgh

modules and theuccess state. If we regarda, rg andrc

as 1, then the number at the arrows connecting these stat

Later, we will transform our DTMC representation of a pro-
gram to a Markov reward model so that we can ilSE to
reason about the reliability of a program.

ex Specification Logic

represent the transition probabilities that have beenimida sjnce we are interested in the temporal behavior of a prob-
from an operation profile. We extend this diagram to check ability mass function (pmf), our specification logic shobiel
the reliability of a program. able to express properties of the transitions of the pmf. The

Letra, rg andrc be the reliabilities of the modules A, Band - sort of properties we are interested in compare a probgbilit
C. We can model the reliability of the program by a DTMC that a DTMC will be a particular state with a constant, or with
X = (S, M) whereS = {A, B, C, success, fail } and: another such probability at aftérent time. We use linear

95, O07s .05c .00 .00 inequalities over pmf vectors as atomic propositions of our

05, 90rs .00rc .00 .00 specification logic.

M=| .00 .0Zg .95c .00 .00 3.1 Syntax and informal semantics
.00 .0lrg .00 10 .00
1-rpn 1-rg 1-rc .00 10 The syntax of the specification logic is:

Thus, giverra = rg = rc = 0.9 andx(0) = [1,0,0,0,0]", Y = TIF][ineg| atomic propositions
the reliability of X is 0.1655. This agrees with the prob- Y|y Vélyngl logical operators
ability with larget P{X(t = 10°P) = success} = (M® . . Xy |yUg|yR¢ temporal operators
[1,0,0,0,0])s ~ 0.1655. ineq = Xl;a&-P{X=s}<h,

Figure 2 shows how the reliability of a prograXnchanges
as a function of module reliabilities andrg. Inthe figure, we
assume thatc = 1 - 107° andx(0) = [1,0,0,0,0]". Observe
that the overall program reliability depends not only on the
reliability of the modules but is significantlyffected by the
transition probabilities between the modules.

whereX = ({s1,...,s},M), & € R andb € R. Note that
¢ representgventually, o representalways, X is the next
operatory U ¢ meansp eventually becomes true and befgre
becomes trug is true, and) R ¢ means untily first becomes
trueg is true.

Observe that the comparison between two probabilities at
2.3 Markov Reward Model different times can be expressed by the linear inequalities

of the formineg. For example, given the DTMXX =

A Markov reward processis a triple p, S,M) where §, M) ({s1,- .., S}, M), the probability thatX is in states at time
isaDTMC andp : S — R is a reward function for each state. t + k is given by:
We consider only constant rewards. So we represent the re-
ward function as a constant row vectoe [p(s1), ..., ()] PIX(t+Kk) =s}=x((t+k) = M}‘ - X(1),

we check the feasibility of the initial pmé(0) against the set
of inequalities collected along finite paths obtained frdma t
Markov ”‘"de'W N automaton. From the set of inequalities, if there is a feasi-
[compute search depth] [build a Buchi automaton] ble S.O.IUtiQn, then a COUntereXi.'clmple that dOES nOt -Satiﬁy th
specificationy is found. Otherwise, the DTM(satisfies the
\/ given specification.
We now provide the details of our algorithm and the techni-
[check feasibify through LP] cal justification for it. The rest of this section is purelghei-
cal and may be skipped without loss of continuity.
Observe that given the linear inequalities of an LTL formula
¢ and a Markov matriXM, we can compute an upper bound
N on the number of time steps after which the atomic propo-

NO
with a counterexample
sitions ofyy become constant. Given a DTMC= (S, M), an

Figure 3. a block diagram of an iLTL model check- initial pmf x(0) and an LTL formula, because we can compute
ing algorithm the bound after which the truth value of the inequalitiesim t

LTL formula become constants, after a finite expansion of the
LTL formula, we can evaluate it. Recall that the ‘until’ and
‘release’ operators may be rewritten as:

[Markov model & iLTL specification]

whereMK is thei'" row of M* andx(t) is the pmf at time.
Predicates about a Markov reward process[3] can also be oUy APV X(pUy))
expressed by linear inequalities. We consider only a cahsta oRY

@AYV (¢ A X(PRY)).
reward functionp : S — R for each state. A performance))])
metric is an accumulated reward over time. The expected acMore detailed discussion and proofs about model checking al
cumulated reward is: gorithm can be found in [12].

Tkeo Z(seip(s)k-) PX(t+K) = s} 4 Model Checking of Software Reliability
=1 (Xreo M) - x(1)

T ik 1 We are interested in a number offéirent kinds of program
=1-S-(SeoA¥)- S x(t)

properties related to reliability:

wherep(s) is a reward function associated with a stater e Recall that the reliability of a program depends on an ini-

is a row vector p(s1),...,p(s), M = S- A - StwithAa tial pmf x(0). Thus we may be interested in finding the

diagonal matrix of eigenvalues bf and theT on the summa- initial pmf x(0) that would result in the lowest reliability.

tion is an upper bound of the accumulation interval. Noté tha

the accumulation interval can be if the reward vector is e If we can estimate the current pm(t), we may want to

orthogonal to the steady state pmf vector. compute the reliability of a program given the estimated
pmf.

3.2 Verification Algorithm o
¢ We may want to check theffects on the reliability of

_ Let s¢(x(0)) be a string whose alphabetiis= 24 and its a program if diferent execution constraints are enforced
i"" alphabet isfineq € AP : ineg(M' - x(0))} where X is a on the program.

DTMC, x(0) is an initial pmf andAP is a set of inequalities.

Let Lx C X* be a set of stringsx(x(0)) for all x(0). Then These properties can be handledibyL using the reliabil-

our model checker checks whethef ¢ L, whereL, is a ity model we considered in Section 2.1. However, we can-
language accepted by the Buichi automata built from an LTL not use ouiLTL model checking algorithm directly on the
formulay. More specifically, for a given specificatiaf it model we mentioned, because the model violates the eigen-
checks whether angk € Lx isin L. value constraints of theorem 1. So, we have transform the
Figure 3 shows a block diagram of tHelL model checker. model slightly.
Given aniLTL specification, it computes a search depth using In theorem 1, oufLTL model checking algorithm has two
the Markov model and the inequalities used in the specifica-constraints on the Markov transition mathk. One is the di-
tion logic. With the specifiedLTL, which essentially is an agonalizability oM and the other is tha¥ should have only
LTL, we build a Buchi automata by the expand algorithm one eigenvalue whose absolute value is one. The latter con-
[10]. Using the search depth and the Biichi automata wedition ensures a unique steady state pmf of a Markov chain.
check the feasibility of a set of inequalities collectedngsi However, the model in Section 2.1 violates the second condi-
the Buchi automata. tion: two of its eigenvalues are 1. One can easily check this
Our model checking algorithm has two steps. First, we build from Figure 1. The transition probabilities frosaccess to
a Bichi automaton for the negated normal form of a given success and fromfail to fail are one. That means once a pmf
LTL specificationy using theexpand algorithm [10]. Second, become®{X(t) = success} = a andP{X(t) = fail} = 1-q, it

095rA 0918 07

0.07 rA

P{X(0)=fa —
s

F PIX(t)=A} pd 4

<}
IS

probability

o

w

T

-

P

//
/3
/X
/T
[=

P{X(t)=success}

0.1r
Figure 4. modified reliability state transition dia- / I e

gram 0 10 20 30 40 50 60 70 80 90 100
step

Figure 5. probability transitions of figure 1

will remain there for any & « < 1. Hence, there is no unique
steady state pmfin the DTMC of Figure 1. Specifically, forthe 4.1 iLTL Checker
matrix M of Section 2.2, the two vectoss = [0,0,0,1,0]"
andx, = [0,0,0,0, 1]" are eigenvectors of it with; = M - x;
andx, = M - x,. Hence the two eigenvaludg and; are one.

In order to use ouiLTL model checking algorithm we mod-
ify the diagram of Figure 1 to Figure 4. First we replaced the
fail state by thelone state. And, we remove the self loop tran-
sition of success state. Instead we add a transition from state
success to done with a probability one and make trsaccess
state transient. With this change every successful exatati
rives atdone state througlsuccess state whereas every unsuc-
cessful execution arrives done state without going through
success state.

The reliability of a program is the accumulated sum
of the probabilities that thesuccess state is visited. So
our modified DTMC model isX = (S,M) whereS =
{A, B, C, Success, Done} and

In this section, we describe some properties of the example
in Section 2.2. We assume that the reliabilities of the meslul
arera = .97,rg = .999 andrc = .999 as in the previous
section.

Figure 6 describes thie TL Checker description of the re-
liability model in Figure 4. TheLTL Checker has two main
blocks. Themodel block describes the DTMC model to be
checked. This block begins with the name of the DTNGn(
in this case) followed by a set of states the DTMC has and
finally the Markov transition matrix. Thepecification
block begins with an optional list of inequalities that vk
used iniLTL specification. Finally, anLTL formula is speci-
fied using the inequalities defined previously.

In Figure 6, the inequalities a, b and c describes whether
the reliability of the progranpgm is less than 0.7, 0.5 and 0.3
each. The inequality d describes that the probability piyat
is in states S or D is larger than zero. So, the negation of it
means thapgm is not in states S or D. The inequality e says
that the probability thapgm is in state A is at least 0.3 larger

.95rp .07rg .05r¢ .00 .00
.05 .90rg .00rc .00 .00

M=| .00 .0Zg .95c .00 .00 than the probability thatgm is in state C.
00 .0Irg .00 .00 .00 The specificatiom checks whether the reliability of the pro-
1-rp 1-rg 1-rc 10 10 grampgmis less than 0.7 regardless of the initial pc®). The

iLTL Checker shows the result as:
The reliability of the progranX is:

Depth: 22
ro= Yo PX(t) = success) Result: T
= 22[0,0,0,1,0]- x(t) The first lineDepth: 22 says that the required search
= X[0,0,0,1,0]- M*'-x(0) depth for this formula is 22. Note that the formulés a state
formula (not a path formula). So, in theory the required clear
For the example of Section 2.2 with module reliabilitigs= depth is zero. However, current implementation of durL
.97,rg = .999 and ¢ = .999, the reliability of the program can checker computes a search depth based on the set of inequali-
be expressed asx(0) wherer =[.2149 .3478 .5036 0, 0]. ties used in the formula and the Markov transition matrix not
Figure 5 shows how the probabilities of each states changehe formula itself. We plan to improve the tool to avoid exces
over time and how the reliability of the progra®{K(t) = sive search depth in such cases. However, note that thehsearc
success}) is accumulated with module reliabilitieg, rg and depth is displayed before actual search begins. So, one can
rc and initial pmfx(0) = [1, 1, 1,0, 0]/3. modify specification if the search depth is too large instefad

var: ra=.2149, rb=.3478, rc=.5036
model:
Markov chain pgm
has states :
{ A, B, C, S, D},
transits by :

[.9215, .0699, .05, .0, .0;
.0485, .8991, .0, .0, .0;
.0, .02, .9191, .0, .0;
.0, .01, .03, .0, .0;
.03, .001, .001, 1.0, 1.0]
specification:

a : ra*P[pgm=A]+rb*P[pgm=B]+rc*P[pgm=C] < .
: ra*P[pgm=A]+rb*P[pgm=B]+rc*P[pgm=C] < .
: ra*P[pgm=A]+rb*P[pgm=B]+rc*P[pgm=C] < .3,
: P{pgm=S} + P{pgm=D} > .0,
: P{pgm=A} > P{pgm=C} + .3
1)
2)

o DN T

#b

#e -> b
#e -> ¢
#b /N " d > " e

3)
4
5

#b /N " ><> T e 6)

Figure 6. an iLTL checker description of the reli-
ability model of figure 4

waiting indefinitely. The second line says tipain is a model
of the specification.

The second commented specificattbohecks whether the
reliability of the programpgm is less than 0.5. Thé.TL
checker result is:

Depth: 30
Result: F
counterexample:

pmf(pgm(®)): [.01247 .0 .98753 .0 .0]

The result shows thaigm is not a model ob with a counter
example ofx(0) = [.01247 .0, .98753 .0, .0]. One can see
thatr - x(0) = 0.5. From the first and the second example we
know that the maximum reliability of the prograpgm is in
between 0.5 and 0.7.

The third commented specificatien-> b checks whether
the reliability of the program is less than 0.5 if the protliapi
thatpgm is in A state is at least 0.3 larger than the probability
thatpgm is in C state. ThéLTL checker verifies that it is true.
However for the fourth commented specificaton-> c, the
model checker proves that it is not true:

Depth: 78
Result: F
counterexample:

pmf (pgm(0)): [.70523 .0 .294770 .0 .0]

By comparing the previous exampls) @nd this example(
-> b), we know that we should focus more on module A than

module C because more probability in A results in decreased

reliability of pgm.

0.4

0.35 P{pgm(t)=A}
/

0.3
0.25

0.2 Plpgm(=A}-P{pgm(t)=

probability

0.1

0 10 20 30 40 50 60 70 80 90
step

Figure 7. a counterexample of b -> = e

The fifth examplel§ -> - e) checks whether the fact that
the reliability of pgm is less than 0.5 implies net TheilTL
checker returns a negative answer with a counter example:

Depth: 78

Result: F

counterexample:
pmf(pgm(®): [

However for the sixth exampléd (-> <> = e), if the reli-
ability of apgm is less than 0.5 then eventually théfdience
between the probability thagm is in sate A and the probabil-
ity thatpgm is in sate C will be less than 0.3.

Figure 7 explains the fifth and sixth examples. From step 1
to 15, the probability dference is larger than 0.3. However,
eventually after step 15 theftkrence becomes less than 03.

3.7 .0 .0 .0]

5 Conclusions

We have developed a method for estimating software re-
liability of a program using a Markov reward model. The
method uses an operational profile of a program, and the es-
timated reliability of each module, to estimate the religpi
of a program. UsingLTL, we show how a variety of reliabil-
ity properties may be specified and we provide an algorithm
for checking these properties. While our technique provale
promising method for rigorous compositional softwareareli
bility estimation, empirical studies with real softwaresggms
remain to be carried out. Moreover, further research is eged
to quantify the &ect of deviations from the assumptions used
in our model.

References

[1] Adnan Aziz, Vigyan Singhal and Felice Balarin. It usyall
works: The temporal logic of stochastic systems. LMCS
volume 939, pages 155-165, 1995.

[2] Andrea Bianco, Luca de Alfaro. Model checking of probesbsi
tic and nondeterministic systems. Rnoceedings of Confer-
enco on Foundations of Software Technology and Theoretical
Computer Science, volume 1026, pages 499-513, 1995.

(3]

(4]
(5]

Gianfranco Ciardo, Raymond A. Marie, Bruno Sericola and
Kishor S. Trivedi. Performability analysis using semi-fkaar
reward process. IhWEEE Transactions on Computers, vol-
ume 39, pages 1251-1264, October 1990.

Hoang Pham Software Reliability. Springer, 2000.

Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-
Kayser and Markus Siegle. A markov chain model checker.
In S Graf and M. Schwartzbach, editors, TACAS 2000, pages
347-362, 2000.

[6] Jayant Rajgopal and Mainak Mazumdar. Modular operafion

test plans for inference on software reliability based on a
markov model. INEEE Transactions on Software Engineer-
ing, volume 28, pages 358-363, April 2002.

[7] J.G. Kemeny and J.L. SnelFinite Markov Chains. Springer-

(8]

(9]

(10]

(11]

(12]

Verlag, 1976.

Marta Kwiatkowska, Gethin Norman and David Parker. fris
Probabilistic symbolic model checker. volume 2324, pages
200-204. LNCS, Springer-Verlag, April 2002.

Moshe Y. Vardi. Probabilistic linear-time model chengi an
overview of the automata-theoretic approachPioc. 5th Int.
AMAST Workshop Formal Methods for Real-Time and Proba-
bilistic Systems, volume 1601, May 1999.

R. Gerth, D. Peled, M.Y. Vardi and P. Wolper. Simple be-t

fly automatic verification of linear temporal logic. IRIPAWG,
volume 6.1, pages 3-18, 1995.

Suzana Andova, Holger Hermanns and Joost-Pieter Katoe
Discrete-time rewards model-checked. Hormal Modeling

and Analysis of Timed Systems 2003, pages 88-104, 2003.
YoungMin Kwon and Gul Agha. Linear inequality Itl (ijtl A
model checker for discrete time markov chains. To appear in
Int. Conf. on Formal Engineering Methods 2004.

