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Abstract   A model checking technique to specify and verify temporal properties 

of drug disposition changes is proposed. In pharmacokinetics and pharmaceutics, 

drug kinetics is often modeled as single or multiple compartment models. In this 

paper, a probabilistic temporal logic, called iLTL, is introduced to specify many 

interesting properties of drug kinetics. Given a specification, a computerized tech-

nique, called model checking [1], is used to check whether all drug disposition 

changes of a compartment model comply with the specification.  
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1. Introduction 

Compartment models [5] have long been used as a mathematical model to de-

scribe the drug concentration level changes in our bodies. These models help our 

understanding of the relationship between drugs and their clinical effects. Thus, 

many compartment models exist for many types of drugs. However, compared to 

their importance, systematic evaluation methods on them are not well developed: 

most notably, they are manually examined by drawing graphs. 

To address this problem, we propose to use a computerized systematic evalua-

tion method based on iLTL model checking [2]. Specifically, the model checker 

searches for a trajectory of drug disposition changes that would violate the specifi-

cation. Since the search completely explores every possible combination of doses, 

one can determine the existence of a satisfiable dose. Also, by checking the negat-

ed specification, a desirable dose can be found as a counterexample. 

In the compartment model, the amount of drug leaving from one compartment 

to another is proportional to the amount of drug present in the first compartment. 

This relation makes the memoryless property: future drug dispositions will depend 

only on its current disposition. Because of this memoryless property, we can trans-

form the compartment models to Continuous Time Markov Chains (CTMCs), and 

convert them again to Discrete Time Markov Chains (DTMCs) [3,7], which are 
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the formal model of iLTL. After a slight modification, the DTMCs can describe 

the changes of physical quantities instead of probabilities.  

Throughout this paper, we explain our techniques with a three compartment 

model of insulin [6]. However, application to other compartment models should 

be straightforward. 

2. Model 

Compartment models are composed of one or more compartments that represent a 

group of tissues with similar blood flow and drug affinity, and drug transition rates 

between the compartments [5]. As the compartment models have the memoryless 

property, they can be naturally converted to Markov processes. The conversion 

steps to CTMCs are: 

 The states of the CTMC are the compartments and a fresh sink state for the 

cleared drug. 

 The transition probability rates between states are (1) the fractional turnover 

rates between the corresponding compartments and (2) the fractional drug elim-

ination rates from the corresponding compartment to the fresh sink state. 

With this representation, the probability that a CTMC is in a certain state is 

equal to the fraction of the drug in the corresponding compartment. Figure 1 

shows a CTMC model for a compartment model of insulin-131I. This compartment 

model is obtained by extending the three compartment model of Silvers et al [6]. 

This CTMC has a set of states {Pl, IF, Ut, Cl, FD, SD, Re}. Among the seven 

states, Pl, IF, and Ut states and the transition rates between them are from the 

original compartment model. Cl state is the fresh sink state. In order to compute 

the dose later in the example section, we extended the model with two more com-

partments: FD for unabsorbed fast acting drug and SD for unabsorbed slow acting 

Fig. 1 CTMC model of an insulin compartment model. The boxes are the states and the numbers 

are the transition probability rates. The states represent: FD: unabsorbed fast acting drug, SD: 

unabsorbed slow acting drug, Cl: cleared drug, Pl: plasma, IF: interstitial fluid, Ut: site of uti-

lization and degradation. Re is an additional state to make the specification in physical units 
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drug. We choose the rates from FD and SD to Pl such that the drug concentration 

at Ut reaches its maximum at about 2.5 hours and 4.5 hours respectively. Re state 

is introduced to make the specification in physical units instead of probability. 

Given a CTMC C, one can compute a DTMC D whose probability mass func-

tion (pmf) changes are equal to the sampled pmfs of C. Let R
n×n

 be an infini-

tesimal generator matrix with Ri,j being the rate from state sj to state si. Using a 

probability vector function x: →
n
  with x(t)i=P[C(t)=si], we can simply write 

x(t)=e
R∙t 

∙x(0). Periodically sampling C with a period T results in a DTMC whose 

probability transition matrix is M=e
R∙T

. Let a probability vector function y: →
n
  

be y(k)i=P[D(k)=si], and let t=k∙T, then x(t)=e
R∙t 

∙x(0)=M
k
∙y(0)=y(k). Observe that 

Mi,j=P[D(k+1)=si | D(k)=sj], and D satisfies the Chapman-Kolmogrov equation: 

y(k+1)=M∙y(k). 

Now, let us consider using physical units in the specification. The linearity of C 

and D plays a crucial role here. If we disregard the fact that x(t) and y(t) are pmfs, 

whose elements add up to one, and scale their initial pmfs, then their trailing pmfs 

would scale by the same amount because of the linearity. For example, if d (mg) 

of slow acting drug is administrated, then its initial state is x(0) = d∙[0, 0, 0, 0, 0, 

1]
T

  and x(t)i  is the fraction of the d (mg) of the drug in si at time t. 

However, if we consider the fact that x(0) and y(0) are pmfs, then we cannot 

scale them arbitrarily: their sum must add up to one. In order to address this prob-

lem, we introduced the Re state of Figure 1. Re state is instantly sinked to Cl state 

without interacting with other states. To introduce physical units in the specifica-

tion, one can simply choose large units so that the physical amounts can be fit in 

the probability range [0, 1], and put the remaining probability in Re state. As an 

example, let us consider a combined dosage of 10 mg of intravenous injection, 20 

mg of fast acting drug, and 30 mg of slow acting drug. This dosage is equivalent to 

0.01 g, 0.02 g, and 0.03 g of the drugs respectively and the corresponding pmf is 

x(0) = [0.01, 0, 0, 0, 0.02, 0.03, 0.94]
T
. Handling the infinite rate from Re state to 

Cl state could be problematic in the CTMC; however, it simply becomes one in 

the corresponding DTMC. The extended probability transition matrix of D that has 

Re state is M’i,j = Mi,j for 1≤i,j≤6, M’4,7=1, and M’i,j=0 in other cases. 

3. Logic 

In this section, we briefly describe the syntax and an informal semantics of iLTL. 

For detailed description about the logic, please refer to [2]. 

The syntax of iLTL formula Ψ is as follows: 

Ψ  ::=  T | F | ap | ( Ψ ) |  

  ~ Ψ | Ψ ˄ Ψ | Ψ ˅ Ψ | Ψ → Ψ | Ψ ↔ Ψ |  

  X Ψ | G Ψ | F Ψ | Ψ U Ψ | Ψ R Ψ 



4  

An atomic proposition (ap) is an equality or an inequality about an expected re-

ward [4] of a DTMC. Let {s1,…,sn} be the set of states of a DTMC D, then the 

atomic propositions are defined as follows: 

ap ::= r1∙P[D(t1)=s1]+ ∙∙∙ + rn∙P[D(tn)=sn] ◊ r, 

where ti is a time offset, ri is a reward associated with the state si, and ◊ is 

one of <, ≤, =, ≥, or >. 

The meaning of atomic propositions is r1∙P[D(t1)=s1]+ ∙∙∙ + rn∙P[D(tn)=sn] ◊ r 

at time t is true if and only if (iff)  r1∙P[D(t+t1)=s1]+ ∙∙∙ + rn∙P[D(t+tn)=sn] ◊ r. The 

meanings of logical operators are as usual and the meanings of temporal opera-

tors are: X Ψ is true at t iff Ψ is true at t+1, G Ψ is true at t iff Ψ is always true 

from t, and F Ψ is true at t iff eventually Ψ becomes true at some time t1≥t. Ψ U Φ 

is true at t iff there is a time t1≥t when Φ is true and Ψ is true at t2 for t≤t2<t1. Ψ R 

Φ is true at t iff Φ is true while Ψ is false from t and up to the moment when Ψ 

becomes true. 

4. Examples 

Finally, in this section, we demonstrate the usefulness of our specification and ver-

ification techniques through three drug administration examples. We use the three 

compartment model of Figure 1 sampled at a 10 min interval. Throughout this sec-

tion, we assumed that the body weight is 60 Kg, the volume of display of the Ut 

compartment is 15.8 % of the body weight. 

As a first example, we compute a dose for an oral drug administration that 

could satisfy: (1) the onset time is no later than 1.5 hours, (2) the active duration is 

at least 6 hours, (3) the Minimum Effective Concentration (MEC) is 1.4 g/ml, and 

(4) the Minimum Toxic Concentration (MTC) is 2.1 g/ml. Based on these param-

eters, the mass of the drug in the Ut compartment at the MEC and at the MTC are 

mem = 0.019908 g and mtm = 0.013272 g respectively. 

Let us specify the desired onset time of 1.5 hours. Because the sampling period 

is 10 min, the drug concentration level at Ut should be larger than the MEC at the 

ninth step. Using the time offset, this condition can be simply expressed as: 

Ψonset : P[D(9)=Ut] > mem. 

The condition about the active duration can be specified similarly using the 

time offset. However, the 6 hour duration and the 10 min sampling period require 

37 different inequalities. We reduced the number of atomic propositions to 10 us-

ing the next operator X (we can reduce the number to the square root of the con-

secutive steps). The 10 atomic propositions are ei : P[D(i)=Ut] > mem  for i=0, 4, 

8,…, 36. Let Ψquarter be e0 ˄ e4 ˄ e8 ˄ e12 ˄ e16 ˄ e20 ˄ e24 ˄ e28 ˄ e32 then the 6 hour 

duration can be written as: 

Ψdur : Ψquarter ˄ X Ψquarter ˄ XX Ψquarter ˄ XXX Ψquarter ˄ e36. 
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Since this active duration will not start immediately after the drug is administrat-

ed, we wrote the specification as F Ψdur, meaning that the active duration should 

eventually occur. 

The third condition is about the MTC: the concentration level at the Ut com-

partment should never exceed the MTC. This condition can be easily specified us-

ing the always operator G as follows: 

Ψmtc : G ( P[D=Ut] > mtm ). 

The drug administration options can be specified as a precondition about the in-

itial condition. The oral drug administration option makes the precondition as Ψia : 

P[D=SD] + P[D=FD] + P[D=Re] = 1. That is, all drugs are at these three states ini-

tially. 

To sum up, a desirable dose can be found by model checking the combined 

specification: 

Ψa : Ψia → ~ ( Ψonset ˄ F Ψdur ˄ Ψmtc ). 

Observe that we negated the required conditions in the specification. Thus, any 

counterexample would satisfy Ψia ˄ Ψonset ˄ F Ψdur ˄ Ψmtc. 

Model checking Ψa showed that a combined dose of 47.845 mg of fast acting 

drug and 74.432 mg of slow acting drug could achieve the goal. Figure 2 shows 

the drug concentration level change for this dosage. The dashed line and the dotted 

line in this graph are the drug concentration due to the fast acting drug and the 

slow acting drug respectively. The solid line is their combined effect. From the 

graph we can check that the three requirements are all satisfied. We further dis-

covered that the requirements cannot be satisfied by the fast acting drug alone or 

the slow acting drug alone. 

As a second example, we compute a dose for the multi-dosage regimen. Specif-

ically, we look for a repeatable state with 6 hour period that could satisfy the MTC 

and the MEC conditions during the transition. Once such a state is reached, the 

drug concentration level can be maintained in the band between the MTC and the 

MEC by simply taking the same amount of the drug at 6 hour intervals. 

Fig. 2 Drug disposition changes for fast acting drug (dashed line), slow acting drug (dotted line), 

and their combined effect (solid line). 
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Among the 7 states of the DTMC D, the FD and the SD states are our control 

variables, and the Cl and the Re states are for the non-interacting drugs. Thus, we 

want to have the Pl, the IF, and the Ut states repeated. One concern here is that 

limt→∞P[D(t)=s] = P[D(t+36)=s] for s  {Pl, IF, Ut}, which violates one of the 

completeness condition of iLTL model checking that the RHS of an atomic propo-

sition is not equal to its LHS (to prevent the transient modes keep changing the 

truth value of atomic propositions). To avoid this problem, we replaced the equali-

ty with a small interval. Let a parameterized formula Ψ
s
rep be (P[D=s] < 

P[D(36)=s] + 10
-9

) ˄ (P[D=s] > P[D(36)=s] - 10
-9

), then the specification can be 

written as: 

Ψb : ~ ( G Ψmtc ˄ Ψdur ˄ Ψ
Pl

rep ˄ Ψ
IF

rep ˄ Ψ
Ut

rep ). 

Model checking the negated specification, Ψb, reported a pmf vector [ 1.862, 

4.877, 12.272, 888.540, 40.600, 50.850, 0 ] ∙ 10 
-3

 as a counterexample. Interpret-

ing the pmf vector, if 1.862 mg, 4.877 mg, and 13.272 mg of the drug were in the 

Pl, the IF, and the Ut compartments respectively, then the same amount of drug 

will be found in these compartments 6 hours later if 40.6 mg of fast acting drug 

and 50.85 mg of slow acting drug were in their unabsorbed states.  

Figure 3 shows the concentration level change for this multi-dosage regimen. 

From 100 min, the 6 hour cycle begins. The first graph shows the concentration 

level change of the Ut compartment, and the second graph shows the amount of 

unabsorbed fast acting drug (solid line) and slow acting drug (dashed line). The 

last two jumps in this graph are the required amount of drug to maintain the cy-

cles. They are 35.918 mg of the fast acting drug and 26.099 mg of the slow acting 

drug. The first jump is different than the other two. We will explain the difference 

along with the first 100 min of the graph in the next example. 

As a final example, let us find how to get to this repeatable state. In this exam-

ple, we assume that the available drug administration options are the IV bolus, fast 

Fig. 3 The drug concentration level changes at the Ut compartment from a multi-dosage regimen 

(top), and the amount unabsorbed fast acting drug (solid line) and slow acting drug (dotted line) 

(bottom). The jumps are the required dose. 
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acting drug, and slow acting drug. These available options make the initial condi-

tion Ψic : P[D=Pl] + P[D=SD] + P[D=FD] + P[D=Re] = 1. The condition that the 

repeatable state is arrived at is: 

Ψarr : P[D=Pl] = 1.862e
-3

 ˄ P[D=IF] = 4.877e
-3

 ˄ P[D=Ut] = 13.272e
-3

. 

The numbers in Ψarr are from the counterexample of the previous example. Be-

cause we want to have this condition occur eventually, we write the requirement 

as F Ψarr. Combining the conditions, the whole specification to check is as follows: 

Ψc : Ψic → ~ ( G Ψmtc ˄ F Ψarr ). 

Model checking Ψc showed that if 23.78 mg of the drug is intravenously inject-

ed and 2.624 mg of fast acting drug and 42.343 mg of slow acting drug are orally 

administered, then the repeatable state of the previous example will be reached. 

The initial part of the graphs in Figure 3 confirms it. The formula Ψarr  does not in-

clude any conditions about the FD or the SD states. Thus, when the repeating state 

is reached, the amount of drug in these states might be different than the other cy-

cles. Hence, the first jump in the second graph is different than the others. The re-

quired dose at 100 min is 39.160 mg of fast acting drug and 16.182 mg of slow 

acting drug. 

5. Conclusions 

In this paper, we demonstrated the usefulness of iLTL in specifying and verifying 

many interesting properties about drug kinetics. This computerized model check-

ing technique not only proves certain drug disposition properties, but also com-

putes a dose that could satisfy complicated requirements. The DTMC model of the 

logic can also be directly obtained from the compartment models after a simple 

conversion. We demonstrated all the steps from end to end using a three compart-

ment model of insulin. 
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