An Architecture for Dynamic Service-Oriented
Computing in Networked Embedded Systems

Kirill Mechitov and Gul Agha

Department of Computer Science
University of Illinois at Urbana-Champaign
201 North Goodwin Avenue Urbana, I, USA 61801
{mechitov,agha}@illinois.edu

Abstract. Software development in real-time and embedded systems
has traditionally focused on stand-alone applications with static models
for scheduling and resource allocation. Our goal is to facilitate the de-
velopment of embedded applications in an open system, where tasks and
resources arrive and leave dynamically, and their execution is concur-
rent. We model such applications as a dynamic composition of network
services. This paper presents an enabling framework for dynamic service
orchestration in cyber-physical systems, based on a modular, reusable,
and extensible service-oriented architecture. By taking advantage of a
network-wide programming model, adaptive global resource manage-
ment, and late binding of tasks to resources, the architecture enables
execution of dynamic embedded application workloads in a resource-
efficient manner.

Keywords: networked embedded systems, open systems, service-oriented
architecture.

1 Introduction

The typical cyber-physical system (CPS) environment is a large-scale distributed
system comprising a mix of low-power embedded computing devices, sensing and
actuation elements, networked mobile devices, and traditional computing and
network platforms. One of the principal challenges of computer science research
in networked embedded systems is to find ways of creating scalable, robust, and
efficient software capable of operating in this environment.

Current practice considers CPS in the context of a single application, e.g., a
system for target tracking, environment monitoring, or structural control. This
model of application development, together with the small scale of most ex-
perimental networked embedded system deployments, has led to the design of
middleware services that are highly efficient but often tightly coupled or cus-
tomized to a particular application. This practice hampers service portability
and reusability, such as when a data aggregation service is designed to work
only with a specific routing protocol.

M. Heisel (Ed.): Kramer Festschrift, LNCS 7365, pp. 147164 2012.
(© Springer-Verlag Berlin Heidelberg 2012

148 K. Mechitov and G. Agha

Application development is particularly challenging due to the lack of soft-
ware engineering tools and programming languages commonly used in modern
large-scale software development. Due to resource constraints and efliciency re-
quirements, low-level C programming remains the dominant application develop-
ment method in this domain [5]. Even small modifications to existing codebases
require significant programming skill and embedded systems experience.

Some recent work has proposed supporting several concurrent applications in
a sensor network [19]. As CPS deployments become more numerous and their
scale increases, we envision these networked embedded systems becoming an
open computing platform used concurrently by multiple users and multiple ap-
plications for different and uncoordinated activities. For instance, as illustrated
in Fig. [T middleware services should be shared among unrelated applications. In
this context, efficient customized middleware services specific to each application
are a poor solution, as common functionality is needlessly replicated.

In our view, these requirements imply the need for a software architecture
that provides a looser coupling between services and applications, and among
the services themselves, in a resource-efficient and context-aware manner. We
consider applications that make use of a number of general network-wide mid-
dleware services, such as routing, localization, and time synchronization. In order
to accommodate the vast collection of services and protocols already developed
by the embedded and cyber-physical systems communities, we adopt a very
broad definition of a middleware service, concerning ourselves only with their
interfaces to applications and other services, and not their internal semantics or
implementation method. Specifically, we propose a dynamic service composition-
based architecture for networked embedded systems, based on the principle of
self-mediated execution, with the dual goals of facilitating large-scale applica-
tion development and enabling global, network-wide optimization, rather than
application-focused local optimization of the constituent middleware services.
Our approach is based on postponing the binding of applications to specific
network resources and implementations of middleware services from design- or
compile-time to the runtime. Appropriate service implementations are chosen at
runtime and deployed on demand.

By dissociating middleware services from the application context and from
each other, we give up some possible performance advantages due to explicit
customization and tight coupling. In return, we provide a more scalable software
development process, support for multiple concurrent applications, and the pos-
sibility of global resource management across applications.

The remainder of the paper is organized as follows. First, we review related
work on service-oriented architecture in Section 21 Section Bl states our overall
design principles. Sections [and Bl then describe a dynamic service composition-
based architecture implementing these principles and Section [illustrates its
use in the context of a target tracking application, and Section [8 discusses the
properties of our architecture.

An Architecture for Dynamic Service-Oriented Computing 149

Applications
Environment
Fire Detection Monitoring
Target Tracking

.

-
— []

a v
Routing J

Y

Localization Data Logging

_ Middleware Services Y.

Fig. 1. Middleware services are shared among concurrently executing applications,
resulting in a many-to-many relationship between applications and services

2 Service-Oriented Architecture

With the exponential growth in available computing power over the last 50
years, the complexity of computer software has likewise increased dramatically.
Advances in the fields of programming language design and software engineering
allow application developers to deal with this complexity by dividing the software
system into smaller, manageable parts. Notably, object-oriented programming,
which encapsulates data together with the methods used to operate on it, and
component-based software engineering, which proposes building applications as a
composition of self-contained computing components, have been instrumental to
the design and development of large-scale software systems. Expanding on this
idea, service-oriented architecture (SOA) has recently been proposed as a way
to bring this design philosophy to building dynamic, heterogeneous distributed
applications spanning the Internet [13L[16,[18].

Services, in SOA terminology, are self-describing software components with
well-defined interfaces in an open distributed system. The description of a ser-
vice, called an interface or a contract, lists its inputs and outputs, explains the
provided functionality, and describes non-functional aspects of execution. Service
interfaces, unlike those of components, are generally location- and implementation-
agnostic. Kramer has proposed a merger of component- and service-oriented soft-
ware development as a service component architecture (SCA) [8]. We follow a
similar approach in our work, defining applications as a composition of service
components.

150 K. Mechitov and G. Agha

Different applications can be built from the same set of services depending on
how they are linked and on the execution context [7]. This approach makes for
dynamic, highly adaptive applications without the need to revisit and adapt the
implementation of each service for a particular application context.

2.1 SOA in Cyber-Physical Systems

SOA design principles apply in the cyber-physical systems context as well as on
the Internet. Such systems often consist of numerous independent nodes, each
an embedded computing platform with a processor, memory, and a radio trans-
mitter. As such, CPS applications are by definition distributed and thus require
communication and coordination for parts of the application running on different
nodes. SOA has been proposed to address the inherent problems in designing
complex and dynamic CPS applications [I1,[I2]. Building an application from a
set of well-defined services moves much of the complexity associated with em-
bedded distributed computing to the underlying middleware. This approach also
fosters reuse and adaptability, as services for a given application domain can be
employed by a multitude of applications.

Perhaps more importantly, SOA provides for a separation of concerns in ap-
plication development. That is, application designers can focus on the high-level
logic of their application, service programmers can concentrate on the imple-
mentation of the services in their application domain, and systems programmers
can provide middleware services (reliable communication, time synchronization,
data aggregation, etc.) that enable the services to interact. In cyber- physical
systems, which are often tailored to application- and context-specific require-
ments, it especially important for the high-level design of the application and
the domain-specific algorithms used by the services to be separated from the
low-level infrastructure necessary to make the system work.

2.2 Dynamic Execution in Cyber-Physical Systems

Implementing service-oriented architecture requires as a basis the ability to dy-
namically reconfigure and adjust the behavior of a running system. A dynamic
code execution framework is thus necessary to accomplish this. Traditionally,
real-time and embedded systems favored static, compiled models due to their
deterministic properties. In recent years, however, several platforms for dynamic
execution in networked embedded systems have been proposed.

The Melete system provides a method for concurrently executing uncoordi-
nated applications in a wireless sensor network (WSN) [I9]. Melete applications
are written in the TinyScript language and executed by a virtual machine on an
arbitrary subset of nodes in the network. In contrast to this approach, we pro-
pose a more comprehensive method of executing concurrent applications, which
allows global resource management and a higher level of optimization. In fact,
Melete may be used as part of our architecture, acting as the code deployment
method for service instances.

An Architecture for Dynamic Service-Oriented Computing 151

The Tenet architecture enables service composition for multi-tiered applica-
tions incorporating WSNs [6]. Most of the coordination and processing func-
tionality is relegated to more powerful tiers, while the WSN nodes are used
primarily to retrieve sensor data. Our approach differs in that we treat the
system as a collaborative distributed computing platform. By associating asyn-
chronously interacting, autonomous actors to service instances on sensor nodes
we make possible in situ collaborative problem solving.

The SONGS architecture and programming model considers sensor network
applications as a composition of semantic services [11]. Semantic services are a
type of semantic data transformation functions, and do not correspond to what
we call services in this paper. We are interested in facilitating composition of
less structured infrastructure and middleware services, a vast quantity of which
has already been developed for cyber-physical systems.

ActorNet [9] is a mobile agent platform for sensor networks, designed to
support multiagent applications on these resource-limited, real-time systems.
ActorNet agents, are called actors, and are based on the actor model of compu-
tation [I]: concurrent active objects communicating via asynchronous message
passing. They are specified in a relatively high-level interpreted language based
on Scheme, which allows highly dynamic, mobile code to be executed across mul-
tiple sensor nodes. The ActorNet runtime environment provides all the underly-
ing functionality necessary to support the interpreter for mobile code on sensor
network platforms: memory management, scheduling, communication and mi-
gration. These features enable the execution of complex, highly dynamic mobile
agent applications in the severely resource-constrained environment of wireless
sensor networks. We employ ActorNet as the code deployment framework for
dynamic macroprogramming, since Scheme-like code is very easy to generate
automatically based on a behavior template.

Agilla [] is another WSN mobile agent platform, and is in many respects
similar to ActorNet. The principal difference is in the trade-off between power
and expressiveness of the actor language versus efficiency. Agilla agents are based
on virtual machine code, which is considerably more compact than ActorNet’s
Scheme representation. For the same reason, however, Agilla agents are not as
flexible or capable as their ActorNet counterparts.

3 Design Principles

Service- and component-based architectures are widely used, providing greater
ease and scalability to the software design and implementation process. We aim
to apply the same approach to the cyber-physical systems domain, adapting to
its unique limitations and requirements. We identify the following key principles
for the design of scalable, resource-efficient WSN applications as a composition
of middleware services:

152 K. Mechitov and G. Agha

1. Network-wide Programming Model. The networked embedded system is
treated as a collaborative distributed computing platform. Applications are
specified as a collection of network-wide tasks and not as a unique program
image per embedded node.

2. Sharing and Reuse. Multiple uncoordinated applications and middleware ser-
vices need to coexist in the network without prior knowledge of each other.
Therefore, both network resources requiring exclusive access (sensors, actu-
ators, etc.) and middleware services are shared among several applications.
Resource management cannot be relegated to each application individually,
it must be performed globally.

3. Late Binding. Application specification is sufficiently flexible to allow run-
time adaptivity in selecting the services and resources to be used. We do not
know in advance which services or resources will be used by which applica-
tion, or when. Postponing the choice of which service or resource best fits
the application opens up more opportunities for optimization.

In the following section we present a service composition-based software
architecture that follows from these design principles.

4 Architecture Overview

Our architecture leverages the concept of dynamic service composition to sup-
port application development for open WSN systems. We adopt a two-level ar-
chitecture, separating the two major concerns: that of controlling the execution
process, including strategic decision making and adaptation, and that of the exe-
cution itself. First, we restate our assumptions about the problem more formally.

We consider applications specified in terms of a composition of calls to mid-
dleware service interfaces, and we refer to the service interface specification as
a contract and each call to a service a service request. A repository of available
services for a given CPS or application domain is provided.

To facilitate the use of a large number of pre-existing middleware services
within our architecture, we choose not to constrain the model of a service’s
behavior, e.g., whether it is distributed, centralized, single-threaded, etc. Since
services and applications need to interact and coordinate, however, we fix a model
for their interaction. We use the Actor model of computation [I] to represent
service interfaces connecting services to each other and to the application. Thus,
services are used by our system as if they were implemented as actors: concurrent
active objects interacting via asynchronous messaging. We distinguish between
the actors representing the service itself from meta-actors, which are control
threads supervising deployment and execution of the services.

Responsibilities of the meta-actor include controlling the lifecycle of a ser-
vice (deploying, starting, stopping and disposing of the service) and interac-
tion with other services. Note that once the appropriate services are deployed,
they may choose to interact directly, rather than through their corresponding

An Architecture for Dynamic Service-Oriented Computing 153

meta-actors. Interaction then occurs through the actor interface specified in the
service contract. Only interactions through actor interfaces are mediated by our
architecture; any side effects are not captured by this model.

We further assume the existence of a functional service composition language,
where service requests are self-sufficient and minimally constrained. The service
composition language is functional in that (1) the control flow between service
requests is partially ordered and driven by data dependencies, and (2) it allows
for a recursive graph traversal to autonomously process each service request in
the specification. Self-sufficiency refers to the fact that each individual service
request is provided with the required knowledge about the arguments, resources,
context and method required for its execution. Minimally constrained refers to
delaying as long as possible placing constraints necessary to execute a specific
instance of the service, in other words, the service instance does not refer to
information that can be computed or supplied to it at run-time.

The last requirement is a fine-grained dynamic code execution method, such
as a mobile agent system like ActorNet [9] or Agilla [4].

Consider how a typical localization service request is represented in our ar-
chitecture. To be self-sufficient, the contract includes a reference its execution
method, e.g., a compiled library implementation of a localization algorithm, the
type of sensors used, such as distance measuring or angle of arrival, and data
types for the output (locations and error intervals). To be minimally constrained,
it must not specify a deployment location (node addresses or coordinates) or
method (a specific range measurement service), referring instead to the con-
tracts in the repository. Execution-specific information is filled in at run-time
based on the specified constraints.

5 Architecture Components

Given an application comprising a composition of middleware service requests
represented in such manner, its execution consists of a self-decomposition and
self-deployment process. This results in a system of distributed interacting meta-
actors responsible for handling the interaction among the services. Execution
proceeds concurrently and asynchronously as the preconditions for the deploy-
ment of each service request are satisfied. We call this process self-mediated
execution.

Let us now focus on the role of the meta-actors in this process. Fig. 2 highlights
the governing behavior of a meta-actor in processing service requests. These
meta-objects are dynamic, they have the capability to observe the application
objects and the environment (introspection), and to customize their own behavior
by analyzing these observations (intercession), as seen in Figure [3

Due to service request self-sufficiency, each meta-actor can decide how, where
and when to execute its associated service. We now explain the function of each
component of this architecture and their interactions.

154

K. Mechitov and G. Agha

Implementation Meta-Actor

Matching
i]

Communication

Resource
Matching

r

A

A 4

Decision Making
Deployment and Optimization Actor
T v
Online
Marshaling Scheduling and
Task Allocation)

Fig. 2. Self-mediated execution architecture for middleware services

5.1 Choice of Implementation
Deciding how to execute the service request involves matching a particular service
implementation to an interface from the service contract repository, and then

finding the network resources required by that implementation.

Implementation Matching. This component finds all implementations that match
the constraints of a given service request. For example, we might search for im-
plementations of a ranging service with a MeasureDistance method that also
satisfy a maximum distance constraint. This is done by querying the contract
repository and filtering the results according to the constraints specified in the
service request. Pattern matching or a linear constraint solver may be used to

filter the available service implementations.

Resource Matching. Likewise, the resource matching component finds all suit-
able resources for a given service implementation. Matching algorithms used
by this service depend on the resource description language employed by the
system. Several methods are available for indexing a dynamic set of geograph-
ically distributed resources, including a yellow pages service, tuple spaces and
actor spaces. For instance, if tuple spaces are used, sensor nodes entering the
system can publish their resource descriptions in the tuple space, and the re-
source matching component performs a search in the form of pattern match-
ing [2]. Caching and prefetching techniques can make the process more efficient,
eliminating the need to scour the network for each query. Due to the location-
dependent nature of most WSN computations, we expect most queries to be
limited geographically, avoiding the need to flood the network even in cases

when cached information is unavailable.

An Architecture for Dynamic Service-Oriented Computing 155

Meta-actor
Meta-object

Knowledge level

: J Active object
Intercession ;

Introspection

OPlul‘Dnaiy/

Fig. 3. Two-level architecture for controlling active objects

: Passive object

Fynamically-composed
and deployed application

Location and Deployment. Second, the meta-actor needs to decide where to
execute the service request. For the sake of efficiency, deployment and invocation
are treated separately. As such, code deployment starts as soon as possible,
while the invocation is delayed by the scheduling component until the necessary
resources become available.

Decision Making and Optimization. Given a list of possible resources and im-
plementations, this component chooses which implementation/resource combina-
tion best fits the application requirements or system performance considerations.
The output of this service is a platform-specific executable code segment, along
with a list of its required resources, which dictate where in the WSN the service
must be located. This component comprises the core of the self-mediated execu-
tion approach. Choosing an appropriate option from a list of resources and ser-
vice implementations is critical to efficiently executing composite service-based
applications.

Deployment. This component is responsible for transporting the executable code
segment to the destination platform, thereby making the service available to
other services and applications. If an implementation of the service is already
available at the destination platform, the code deployment step is skipped en-
tirely, and the service request is sent to the deployed service.

Scheduling. Third, the meta-actor decides when to execute the service request.
This is accomplished by the scheduling and task allocation component.

Online Scheduling and Task Allocation. The goal of this component is to decide
when the service instance can be deployed and executed. If the resources required
by the service instance are not immediately available, its execution is postponed,
along with all services that depend on it. Shared resources requiring exclusive
access, e.g., certain types of sensors and actuators, must be scheduled globally,

156 K. Mechitov and G. Agha

since service implementations may not be aware of each other. An up-to-date
resource use schedule is provided to the decision making and optimization com-
ponent to facilitate the selection of less-utilized resources whenever possible, and
a repository of active services is maintained to keep track of all service instances
currently deployed in the system. This is also used by the implementation match-
ing component to check if an already-deployed component may satisfy a service
request.

Invocation and Execution. Finally, the service request is ready to be deployed
and executed on the target platform. This step includes marshaling and remote
invocation.

Marshaling. The marshaling component packages the service request for trans-
port and deployment on the destination platform, using the deployment compo-
nent. The method is platform-dependent. In our system, this involves wrapping
the service invocation code in a mobile agent, which can move to the destination
node without relying on an external routing service.

The service request is then handed off directly to the run-time environment
to launch or query the selected implementation of the service. From this point
onward, the service instance interfaces via its actor interface with its meta-actor
and with other services in the CPS by means of asynchronous message passing,
implemented by the communication component (Figure d). Asynchronous mes-
saging is used both to deliver computation results and error notifications from
the executing services and to deliver control messages from the meta-actor.

6 Mobile Code Deployment

Finally, we consider the operational level of the architecture, where the actual
interaction with the cyber-physical system takes place. We employ ActorNet [9],
a mobile agent platform for wireless sensor networks, as the mobile code de-
ployment platform. There are several reasons why ActorNet fits well into this
role.

Cyber-physical systems are well-suited to the multiagent approach: agent au-
tonomy reduces the need for communication, saving precious energy. Mobile
agents are also an intuitive technique for remotely reprogramming sensors de-
ployed in the field. However, implementing agent programs directly on a CPS is
complicated by the many limitations of sensor nodes, including limited memory,
slow processors, low bandwidth and finite energy. ActorNet eases development
by providing an abstract environment for lightweight concurrent object-oriented
mobile code on WSNs. As such, it enables a wide range of dynamic applications,
including fully customizable queries and aggregation functions, in-network in-
teractive debugging and high-level concurrent programming on the inherently
parallel sensor network platform. Moreover, ActorNet cleanly integrates all of
these features into a fine-tuned, multi-threaded embedded Scheme interpreter
that supports compact, maintainable programs—a significant advantage over
primitive stack-based virtual machines.

An Architecture for Dynamic Service-Oriented Computing 157

Operational
Meta-actor 1 level
ID

Knowledge
level 1

(1) Registration

(2) Acknowledgement
(3) Deployment

Actor
(in text form)

Output object
I o
| (5) Unregistration
Close | - .
@ 1 > ging Interface
1
|
1

Actor Deployment

Meta Actor Interface

multithreaded server providing
socket connections for
concurrently deploying and
executing actors

(4) Wakeup &
reception

Marshalling/Unmarshaling

Fig. 4. Communication protocol between actors and meta-actors

6.1 ActorNet Platform

ActorNet is a distributed actor platform targeted primarily at resource-
constrained wireless sensor networks. Each ActorNet node is a multi-threaded
interpreter for a high-level actor language (Figure [H).

An ActorNet network can span several Internet-connected sensor networks,
as well as PCs. It consists of three types of nodes: sensor nodes, which directly
execute actor code; repeaters, which distribute actor messages in local sensor net-
works; and forwarders, which bridge ActorNet systems across the Internet and
provide an external access point to the actor system. It currently executes on
TinyOS, a popular operating system for embedded sensors, as well as Windows-
and Linux-based PCs. Like other virtual machines, the ActorNet platform pro-
vides a uniform computing environment for all actors, regardless of hardware
or operating system differences; actors can seamlessly migrate between all these
hardware platforms.

Figure [depicts the layered architecture of an ambient node ActorNet
platform. Actors only use the interpreter module directly; thus implementa-
tion details are hidden from actor programs. Lower-level services are necessary
to reconcile the desired properties of simplicity and platform-independence in
the high-level language with the specifics of the wireless sensor network environ-
ment. The layered architecture alleviates some of the complexity of application
development for sensor networks, which currently involves a significant amount
of low-level programming due to the tight coupling between the application and

158 K. Mechitov and G. Agha

[Actor j[Actor j o o o o

(Interpreter)
((Garbage Collector | (* Comm. Driver |

(VM Driver)

(Application-Level Context Switcher)

(TinyOS)
(Mica2 Hardware)

Fig. 5. ActorNet mobile agent platform for networked embedded systems

the operating system. ActorNet aims to provide a stricter decoupling of appli-
cations from the operating system, enabling a sensor node to safely load and
execute multiple agents, while at the same time simplifying application develop-
ment.

The ActorNet virtual machine features several services necessary to meet the
challenges presented by the CPS environment. These platform services allow ef-
ficient memory management and blocking I/O operations for the actor language.

1. Virtual Memory. Since the small amounts of RAM available on most embed-
ded devices is insufficient for many applications, ActorNet provides a virtual
memory subsystem. It builds a page structure on the permanent storage (e.g.,
serial data flash) and uses an inverted page table to access pages stored in
an LRU cache in RAM.

2. Application-Level Context Switching. ActorNet provides an application-level
context switching mechanism that allows efficient blocking I/O on top of the
strict non-blocking model of TinyOS. This mechanism eases development
of maintainable applications. To preserve portability and modularity, the
context switching mechanism is implemented purely as an application-level
service; it does not modify the underlying OS scheduler.

3. Multi-phase Garbage Collector. The ActorNet platform provides a mark-
and-sweep garbage collection mechanism. System-level support for garbage
collection has many benefits: it eases application development, eliminates
the chance of memory leaks, protects other applications from misbehaving
actors, and reduces the actor code size. In order to prevent long-running
garbage collection tasks from blocking other applications, we divide the
sweep step into many short phases. Combined with the context switch-
ing functionality, this greatly reduces the impact of garbage collection on
application performance.

An Architecture for Dynamic Service-Oriented Computing 159

\ / \jRePeater Repeater / \\
Sensor Node Sensor Node /

Fig. 6. The network structure of ActorNet
7 Illustration

We now demonstrate how a sensor network application can be executed by our
self-mediated execution architecture. As an example, we consider a distributed
target tracking service similar to one proposed by Liu et al. [10].

Distributed target tracking is one of the canonical problems in sensor net-
works. Target tracking algorithms typically consist of detecting a signal emitted
by the target, identifying or classifying the target by its type or signature, and
once detected and classified, keeping track of its position as it changes over time.
We assume that the tracking application is provided to us as a composition of
Signal Detection, Target Classification and Track Maintenance application-level
services, along with Localization, Time Synchronization, Routing and Group
Formation middleware services, whose dependency graph is shown in Fig. [l In
this figure, Forever Do and For All Nodes Do are special control constructs,
which are executed entirely by meta-actors.

Let us look at how this composite service is deployed and executed. In response
to a request, the self-mediated execution architecture creates a meta-actor for
the composite service, and recursively for its individual subcomponents, made
possible due to the functional nature of the service composition (see Section Hl).

Consider a request to the Signal Detection service, which is the first service
instance ready to execute, due to having no dependencies. The target tracking
service meta-actor requests to deploy a Signal Detection service on all nodes
in the network. The Signal Detection service contract specifies that it needs a
certain type of sensor, say a magnetometer, to detect the target. The resource
and implementation matching components will locate a suitable implementation
by pattern matching the request with service and resource descriptions.

160 K. Mechitov and G. Agha

Tracking Service | r_'_"Foreuer Do .

Initialization
- T -
Time Synch Routing *
v Report Active
Localization Tra_CkS
) h
. For All
Track Maintenance « X Nodes D

v

Target Classification
¥

Group Formation —» Signal Detection

Fig. 7. Composite target tracking application represented as a service dependency
graph

At this point we have an executable code segment that is ready to be
transported to the destination node. After the scheduling process is completed,
the service request is also marshaled and transported. This in effect creates a
platform-specific relocatable executable.

The only resource used by the Signal Detector service is the magnetometer;
however, since multiple uncoordinated applications may be concurrently exe-
cuting on the WSN, the magnetometer at the target node may currently be in
use by another service. It is the responsibility of the scheduling component of
the architecture to control its invocation time, such that the required resource
is available prior to request deployment. This means that the Signal Detector
service request may be blocked from deployment until the magnetometer at its
destination node becomes available.

Now consider a scenario where after the target tracking service starts execut-
ing, an intrusion detection application enters the system, ready to be executed.
It is also represented as a composition of services, and happens to rely on the
same target tracking service in its computation. However, its specification con-
tains additional constraints on the Target Classification service, e.g., requiring
a higher confidence threshold before a target is positively identified.

Due to our design choices (dynamicity and late binding), we have an
opportunity for run-time optimization. When this new application starts the
self-mediated execution process, the implementation matching service lists the
instances of the already-deployed services as matching the requested service con-
tracts. This is suitable for Signal Detection and Track Management services, but
the Target Classification service will fail a constraint check. With negligible in-
cremental deployment cost, the former two service instances will be reused by the
system and linked to a newly instantiated Target Classification service instance
meeting the more stringent requirements of the new application.

An Architecture for Dynamic Service-Oriented Computing 161

8 Discussion

To summarize our approach, applications represented as a functional composi-
tion of services with well-defined interfaces are executed in a concurrent and
distributed manner by the self-mediated execution architecture. Service imple-
mentations fitting application requirements are found and deployed on demand,
sharing or reusing already-deployed implementations whenever possible. Invoca-
tion requests to these services are also generated on demand. Let us first address
the benefits of taking this approach to building WSN applications.

8.1 Benefits

Late binding of service implementations and network resources is a key distin-
guishing feature of our architecture. By postponing the explicit identification of
methods and resources until the point when they are actually used, we avoid
the problem of overspecification. Overspecification occurs when the programmer
implicitly or explicitly supplies constraints on execution beyond what is strictly
necessary to specify the desired behavior. Sampling a sensor at a given node
within a region of interest, where sampling a sensor at any node within that
region would have been sufficient is an example of overspecification. This leads
to inefficient use of limited shared resources within the networked embedded sys-
tem, since the scheduler or optimizer is subjected to unnecessary constraints im-
posed by the programmer. With late binding, we postpone the decision-making
process as to which method or resource to employ from design-time to run-time,
thus allowing the scheduler or optimizer components more freedom.

We also argue that service abstraction, a reusable service composition ma-
chinery, and fine-grained code deployment and execution allow creating more
dynamic, maintainable and customizable applications for WSNs. Code mobility
also enables predictive behavior or system-directed load balancing: a service may
decide to move from one node to another to better achieve its goal, or to do so
more efficiently.

8.2 Requirements

Our self-mediated execution architecture requires the application specification
to be provided in the form of a composition of service descriptions. This specifi-
cation may or may not be immediately executable, as not all elements are fully
specified. For example, the composition may not contain a reference to a specific
Target Classification service implementation, but rather to a Target Classifica-
tion service contract. It is up to the mediated execution architecture to identify
an appropriate implementation or resources matching the contract.

We require all composable services to conform to such a contract specification.
This translates to a substantial amount of work on the service designer’s part to
supply a sufficiently rich service contract to turn an existing middleware service
into a composable service usable by our architecture. Fortunately, the transition
process can be facilitated by starting with a very rigid constraint on the interface

162 K. Mechitov and G. Agha

(e.g., it is only usable by the service it was originally designed for) and gradually
relaxing it as a more comprehensive service contract is constructed.

The dynamic service deployment and execution process relies on the avail-
ability of a fine-grained code deployment method for the WSN, meaning that it
should be possible to deploy a service to a single node or to a subset of nodes in
the network at runtime.

8.3 Implementation Issues

We have a prototype implementation of an architecture supporting a subset of
the described functionality in the context of dynamic application deployment
for Ambient Intelligence applications, called Ambiance [14]. This system reuses
Dart [I5] at its knowledge level, which is an example of a service composition
framework in alignment with our design principles, for both representing appli-
cations and supporting the self-mediated execution process. Additionally, Dart
supports creating intuitive Web interfaces for interactive specification of appli-
cations by multiple uncoordinated end-users at run-time. At the operational
level, Ambiance deploys the ActorNet mobile agent platform. The interactions
between these two levels conform to the logical architecture described in prior
sections.

Our architecture makes use of a service composition framework, online re-
source scheduling and task allocation algorithms, fine-grained runtime code de-
ployment, and implementation- and resource-matching methods. Several ap-
proaches to these tasks have been proposed:

An extensive body of distributed resource scheduling and task allocation re-
search is available from the real-time and parallel processing communities, and
may be applied to the WSN domain given allowances for limited bandwidth,
memory and processing capabilities and high likelihood of failures of typical
sensor nodes.

Mobile agent platforms such as ActorNet and Agilla [4[9] or virtual machine-
based code migration systems such as Melete [19] satisfy our requirement for a
fine-grained run-time code deployment method.

We consider the Decision Making and Optimization component to be one of
the most challenging aspects in the implementation of our architecture. While
a simple heuristic-based approach is sufficient for a prototype implementation,
achieving efficient resource utilization is vital to making WSNs a suitable plat-
form for deploying large, concurrent applications. Developing novel algorithms
for this task is an important direction for future research. We believe that the
clean separation of request processing and execution aspects in our architecture
facilitates the integration of these components.

8.4 Potential Applications

We see a number of application opportunities for this architecture. In [I4], we
have described a possible application to a query processing engine for end-user
defined concurrent queries integrating with sensor networks.

An Architecture for Dynamic Service-Oriented Computing 163

Another promising possibility is sensor-rich business processes, where sen-
sors are attached to “smart items,” and the interactions between these items
is modeled within the business process. The goal then consists of enabling the
execution on the sensor nodes of that part of the business logic. For example,
in a safety process, smart chemical containers collaboratively ensure continuous
compliance with certain storage regulations. Any violation of these rules results
in local alerts, as well as reporting to the back-end systems [3].

Such processes are considered to increase visibility, enable real-time decision
making and business process adjustment, and thus allow responding to situations
more efficiently, with a higher degree of quality and end-user satisfaction. They
also allow for management by exception, where the relocated processes only
notify the back-end system of extraordinary situations, increasing scalability
and speed of detecting situations that require action (avoiding latency of control
loop), and does not require a constant connection to the back-end [17].

9 Conclusion

Our research aims to improve programmability of complex cyber-physical sys-
tems by separating context-independent application logic, known at design-time,
from the low-level execution context considerations that are often unavailable un-
til run-time, by means of a dynamic service-oriented architecture. An expanded
version of the current architecture prototype, taking advantage of real-time op-
erating system features for scheduling, control and synchronization, is under de-
velopment. The primary focus is on incorporating the high-level decision making
and optimization components into the existing scheduling model of an embedded
RTOS. This includes a study of which aspects of low-level service optimization
and control decision can be externalized.

We believe that the design principles and architecture defined in this paper
have wider implications beyond the adaptive execution of composite middleware
services in cyber-physical systems. We are specifically interested in coordina-
tion behaviors within the CPS as well as their relation to outside platforms
and applications. We are thus investigating the scalability of our architecture
in the context of complex hierarchical processes running in a pervasive comput-
ing environment, which also includes cyber-physical components. We consider
system-wide optimization of independent concurrent applications in a shared
CPS environment to be a major open research topic.

Acknowledgments. The authors gratefully acknowledge the support of this
research by the National Science Foundation, under grants CMS 06-00433 and
CNS 10-35773.

References

1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press (1986)

2. Carriero, N., Gelernter, D.: Linda in context. Communications of the ACM 32(4),
444-458 (1989)

164

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

K. Mechitov and G. Agha

Decker, C., Spiess, P., sa de Souza, .M., Beigl, M., Nochta., Z.: Coupling enter-
prise systems with wireless sensor nodes: Analysis, implementation, experiences
and guidelines. In: Pervasive Technology Applied @ PERVASIVE (May 2006)
Fok, C.L., Roman, G.-C., Lu, C.: Mobile agent middleware for sensor networks: An
application case study. In: 4th International Conference on Information Processing
in Sensor Networks, pp. 382-387 (April 2005)

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
language: A holistic approach to networked embedded systems. ACM SIGPLAN
Notices 38(5), 1-11 (2003)

Gnawali, O., Greenstein, B., Jang, K.Y., Joki, A., Paek, J., Vieira, M., Estrin, D.,
Govindan, R., Kohler, E.: The TENET architecture for tiered sensor networks. In:
ACM Conference on Embedded Networked Sensor Systems (November 2006)

Gu, T., Pung, H., Zhang, D.: A service-oriented middleware for building context-
aware services. J. Network and Computer Applications 28(1), 1-18 (2005)
Kréamer, B.J.: Component meets service: what does the mongrel look like? ISSE
4(4), 385-394 (2008)

Kwon, Y., Sundresh, S., Mechitov, K., Agha, G.: ActorNet: An actor platform for
wireless sensor networks. In: International Conference on Agents and Multiagent
Systems (2006)

Liu, J., Liu, J., Reich, J., Cheung, P., Zhao, F.: Distributed Group Management for
Track Initiation and Maintenance in Target Localization Applications. In: Zhao, F.,
Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 113-128. Springer, Heidelberg
(2003)

Liu, J., Zhao, F.: Towards semantic services for sensor-rich information sys-
tems. In: International Workshop on Broadband Advanced Sensor Networks
(October 2005)

Mechitov, K., Razavi, R., Agha, G.: Architecture design principles to support adap-
tive service orchestration in WSN applications. ACM SIGBED Review 4(3) (2007)
Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F., Krdmer, B.J.: Service-
oriented computing: A research roadmap. In: Cubera, F., Kramer, B.J., Papa-
zoglou, M.P. (eds.) Service Oriented Computing (2006)

Razavi, R., Mechitov, K., Agha, G., Perrot, J.-F.: Dynamic macroprogramming
of wireless sensor networks with mobile agents. In: 2nd Workshop on Artificial
Intelligence Techniques for Ambient Intelligence (January 2007)

Razavi, R., Perrot, J.F., Johnson, R.: Dart: A meta-level object-oriented framework
for task-specific, artifact-driven behavior modeling. In: Proceedings of DSM 2006,
pp. 43-55 (2006)

Singh, M.P., Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley and Sons (2005)

Spiess, P., Vogt, H., Jutting, H.: Integrating sensor networks with business pro-
cesses. In: Real-World Sensor Networks Workshop at ACM MobiSys (June 2006)
Tsai, W.T.: Service-oriented system engineering: A new paradigm. In: Proc. IEEE
International Workshop on Service-Oriented Systems Engineering, pp. 3-8 (2005)
Yu, Y., Rittle, L.J., Bhandari, V., LeBrun, J.B.: Supporting concurrent applica-
tions in wireless sensor networks. In: 4th International Conference on Embedded
Networked Sensor Systems, pp. 139-152 (2006)

	An Architecture for Dynamic Service-Oriented Computing in Networked Embedded Systems
	Introduction
	Service-Oriented Architecture
	SOA in Cyber-Physical Systems
	Dynamic Execution in Cyber-Physical Systems

	Design Principles
	Architecture Overview
	Architecture Components
	Choice of Implementation

	Mobile Code Deployment
	ActorNet Platform

	Illustration
	Discussion
	Benefits
	Requirements
	Implementation Issues
	Potential Applications

	Conclusion

