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Abstract

Narrowing was introduced, and has traditionally been used, to solve equations in
initial and free algebras modulo a set of equations E. This paper proposes a gen-
eralization of narrowing which can be used to solve reachability goals in initial and
free models of a rewrite theory R. We show that narrowing is sound and weakly
complete (i.e., complete for normalized solutions) under reasonable executability
assumptions about R. We also show that in general narrowing is not strongly com-
plete, that is, not complete when some solutions can be further rewritten by R.
We then identify several large classes of rewrite theories, covering many practical
applications, for which narrowing is strongly complete. Finally, we illustrate an
application of narrowing to analysis of cryptographic protocols.
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1 Introduction

This paper addresses the following technical question. Given a rewrite theory
R satisfying reasonable assumptions, is there a general deductive procedure
to solve reachability problems for R? By a “reachability problem” we mean
the obvious, that is, an existential formula

(∃−→x ) t→∗ t′

or, more generally, an existentially quantified conjunction of such reachability
goals. Since R typically specifies either a concurrent system or an inference
system, the meaning and interest of solving such goals is quite obvious. The
terms t and t′ denote sets of states in the initial model of R, and we want to
know for what subset of the states denoted by t we can reach the set denoted
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by t′. Under finite state assumptions, questions of this kind can be answered
by model checking techniques [9]. Our interest, however, is in general methods
that do not require finiteness assumptions and can complement such model
checking techniques. In this paper, we generalize narrowing from a technique
for solving equality goals [16,21,23] to one for solving reachability goals; indeed
equational narrowing goals can be viewed as a special case of reachability goals.

That narrowing in this more general sense should be developed as a method
for analyzing concurrent systems and should fit within a wider spectrum of
analysis capabilities, was first proposed in [12]. One can view narrowing as
a new form of “symbolic model checking”, available also for infinite state
systems, where the word “symbolic”, instead of having the more restricted
sense of representing finite sets of states by Boolean propositions, is widened
to mean the representation of possibly infinite sets of states by terms with
logical variables. These methods could even have useful applications in the
case of finite-state systems that are too large to analyze by standard model
checking techniques.

There are indeed a number of techniques actively investigated to analyze
infinite state systems, including model checking for suitable subclasses, e.g.
[4,5,15,17], abstraction techniques, e.g. [10,26,19,25,40], tree-automata based
reachability analyses, e.g. [18,35], and theorem proving, e.g. [37,36]. We think
that narrowing is a promising additional technique to be further explored. In-
deed, narrowing like techniques have already been shown useful in the analysis
of cryptographic protocols [2,22,29].

We formally define narrowing for order-sorted unconditional rewrite the-
ories of the form R = (Σ, E,R) where E = ∆ ∪ B, with ∆ confluent and
terminating modulo B. We prove soundness of solutions found for reachabil-
ity problems using narrowing, and also show that the narrowing procedure is
weakly complete in the following sense: if ρ is a solution of a given reacha-
bility problem and ρ is normalized with respect to rewriting with the rules R
modulo E, then the narrowing procedure finds a solution η that subsumes ρ
modulo E. This weak completeness result holds under reasonable executabil-
ity assumptions about the given rewrite theory.

We also show that in general, narrowing is not complete in the following
stronger sense: if ρ is a (not necessarily normalized) solution of a reachability
goal, then the narrowing procedure finds a solution η that subsumes ρ modulo
E. Hence the “weakness” in completeness of narrowing. This does not hold
in general, as we show by several examples. The point is that in equational
narrowing [23], confluence and termination are reasonable assumptions; by
contrast, the rewrite rules R specifying a concurrent system are typically non-
confluent and nonterminating; indeed, termination may often have the mean-
ing of an undesirable deadlock. All this implies that in general rewriting may
also happen in the substitutions themselves, making narrowing incomplete in
the strong sense.
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A key question to investigate is identifying interesting classes of rewrite
theories for which narrowing is complete in the strong sense. We prove that
several important classes covering many practical applications have strongly
complete solutions to reachability goals by narrowing. The first important
such class is that of topmost rewrite theories, that is, theories in which terms
can only be rewritten at the top. We then show how other large classes
of rewrite theories, including, for example, most object-oriented distributed
systems, a wide range of Petri net models, grammars, and many reflective
distributed systems structured with a “Russian dolls” architecture [32] can
be transformed into equivalent topmost rewrite theories with the same set of
solutions for a given reachability problem. We furthermore establish a strong
completeness result for the class of rewrite theories R = (Σ, ∆ ∪ B,R) such
that equations in B are regular (LHS and RHS have the same set of variables)
and linear (LHS and RHS are linear terms), ∆ is confluent and terminating
modulo B, and R is right linear (RHS is linear).

As an example application, we show how narrowing can be used for analy-
sis of security protocols. Many security protocol properties, such as the secrecy
and authenticity, can be characterized as reachability problems. We show how
the strong completeness results for topmost theories can be exploited to verify
the secrecy property of a protocol when the number of protocol sessions is
bounded. This technique can also be adapted to verify other security proper-
ties, including authenticity. A noteworthy feature of our analysis technique is
that narrowing modulo equations provides a general procedure that can uni-
formly handle analysis of security protocols that employ cryptographic prim-
itives with visible algebraic properties that can be exploited by an intruder
(such as in the case of xor encryption and Diffie-Hellman exponentiation)
[7,8,11,34,39].

2 Background

An order-sorted signature Σ is defined by a set of sorts S, a partial or-
der relation of subsort inclusion ≤ on S, and an S∗ × S-indexed family of
{Σw,s}(w,s)∈S∗×S of operations. We denote f ∈ Σw,s by f : w → s. We
define a relation ≡ on S as the smallest equivalence relation that such that
s ≤ s′ implies s ≡ s′. We assume that each equivalence class of sorts contains
a top 1 sort that is a supersort of every other sort in the class. Formally,
for every sort s we assume that there is a sort [s] such that s ≡ s′ implies
s′ ≤ [s]. Furthermore, for each f : s1 × . . . × sn → s we assume there is also
an f : [s1] × . . . × [sn] → [s]. We require the signature Σ to be sensible, i.e.,
whenever we have f : w → s and f : w′ → s′ with w,w′ of equal length then
w ≡ w′ implies s ≡ s′.

1 Note that this top sort plays the role of an “error supersort”, or a kind in membership
equational logic [31], although in some cases there may not be any real “error expressions”
in this top sort because all terms in it happen to be well-defined.
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A Σ-algebra is defined by an S-indexed family of sets A = {As}s∈S such
that s ≤ s′ implies As ⊆ As′ , and for each function f : w → s with w = s1 ×
. . .×sn a function fw,s

A : As1
×. . .×Asn

→ As. Further, we require that subsort
overloaded operations agree, i.e., for each f : w → s and (a1, . . . , an) ∈ Aw we

require fw,s
A (a1, . . . , an) = f

[w],[s]
A (a1, . . . , an), where if w = s1 × . . . × sn, then

[w] = [s1] × . . . × [sn]. We assume a family X = {Xs}s∈S of infinite sets of
variables such that s 6= s′ implies Xs ∩ Xs′ = ∅, and the variables in X are
different from constant symbols in Σ. We denote the set of ground Σ-terms
and Σ-terms of sort s by TΣ,s and TΣ(X)s respectively. We write TΣ for the
Σ-algebra of ground terms over Σ, and TΣ(X) for the Σ-algebra of terms with
variables from the set X.

We use a finite sequence of positive integers, called a position, to denote
an access path in a term. We let ω range over positions. For t ∈ TΣ(X) let
Var(t),Pos(t),FuPos(t) denote the set of variables, positions, and non-variable
positions in t, respectively. The root of a term is at position ε. We denote the
subterm of t at position ω by t|ω.

A substitution is a mapping σ : X → TΣ(X) which maps variables to terms
of the same sort, and which is different from the identity for a finite subset
Dom(σ) of X. We denote the homomorphic extension of σ to TΣ(X) also by
σ. The set of variables introduced by σ is Ran(σ) = ∪

x∈Dom(σ)
Var(σ(x)).

The restriction of a substitution σ to a set of variables V is defined as

σ|V (x) =







σ(x) if x ∈ V

x otherwise

We say that a substitution σ is away from a set of variables V if Ran(σ)∩V =
∅. For substitutions σ, ρ such that Dom(σ)∩Dom(ρ) = ∅ we define their union
as

(σ ∪ ρ)(x) =



















σ(x) if x ∈ Dom(σ)

ρ(x) if x ∈ Dom(ρ)

x otherwise

A Σ-equation is an expression of the form t = t′ where t, t′ ∈ TΣ(X)[s] for
an appropriate [s]. Order-sorted equational logic has a sound and complete in-
ference system E `Σ (see [31]) inducing for any set of variables Y a congruence
relation =Y

E on terms t, t′ ∈ TΣ(Y ): t =Y
E t′ if and only if E `Σ (∀Y )t = t′.

For the sake of simplicity, we will assume that all sorts in Σ are non-empty,
i.e., that for each sort there is a ground term of that sort. In that case, if
t, t′ ∈ TΣ(X)∩TΣ(Y ) then t =X

E t′ if and only if t =Y
E t′. Therefore, the super-

script notation =Y
E becomes unnecessary and we can just write =E. Because of

our assumptions about the signature Σ it is the case that t =E t′, t ∈ TΣ(X)s,
and t′ ∈ TΣ(X)s′ implies s ≡ s′.

An equation t = t′ is said to be (i) regular if Var(t) = Var(t′), (ii) sort
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preserving if for each substitution σ we have σ(t) ∈ TΣ(X)s if and only if
σ(t′) ∈ TΣ(X)s, (iii) sort-decreasing if for each substitution σ we have σ(t) ∈
TΣ(X)s implies σ(t′) ∈ TΣ(X)s, (iv) left (or right) linear if t (resp. t′) is linear
(i.e., each variable occurs at a single position), and (v) linear if it is both left
and right linear. A set of equations E is said to be regular, or sort decreasing,
or sort preserving, or (left or right) linear, if each equation in it is so.

The E-subsumption preorder �E on TΣ(X) is defined by t �E t′ if there
is a substitution σ such that σ(t) =E t′; such a substitution σ is said to be
an E-match from t to t′. For substitutions σ, ρ and a set of variables V we
define σ|V =E ρ|V if σ(x) =E ρ(x) for all x ∈ V , and σ|V �E ρ|V if there is a
substitution η such that ρ|V =E (η ◦ σ)|V . The following is a useful lemma.

Lemma 2.1 ([3]) For substitutions σ, ρ and sets of variables V ⊆ W let
Dom(σ) ∩W ⊆ V and Ran(σ) ∩W = ∅. Then σ|V �E ρ|V implies σ|W �E

ρ|W .
�

A system of equations F is an expression of the form t1 = t′1∧ . . .∧ tn = t′n,
where each ti = t′i is a Σ-equation. We define Var(F ) =

⋃

i Var(ti) ∪ Var(t′i).
An E-unifier for F is a substitution σ such that σ(ti) =E σ(t′i) for 1 ≤ i ≤ n.
For V = Var(F ) ⊆ W , a set of substitutions CSUE(F,W ) is said to be a
complete set of unifiers of F away from W if

• Each σ ∈ CSUE(F,W ) is an E-unifier of F .

• For any E-unifier ρ of F there is a σ ∈ CSUE(F,W ) such that σ|V �E ρ|V .

• For all σ ∈ CSUE(F,W ), Dom(σ) ⊆ V and Ran(σ) ∩W = ∅.

An E-unification algorithm is complete if for any given system of equations it
generates a complete set of E-unifiers. Note that this set need not be finite.
A unification algorithm is said to be finite and complete if it terminates after
generating a finite and complete set of solutions.

A rewrite rule is an expression of the form l → r where l, r ∈ TΣ(X)[s] for
an appropriate [s]. An (unconditional) order-sorted rewrite theory is a triple
R = (Σ, E,R) with Σ an order-sorted signature, E a set of Σ-equations, and
R a set of rewrite rules. We only consider rewrite theories R where for each
rule l → r in R we have Var(r) ⊆ Var(l). We define the one-step rewrite
relation on TΣ(X) as follows: t→R t′ if there is an ω ∈ Pos(t), a rule l → r in
R, and a substitution σ such that t|ω = σ(l) and t′ = t[ω ← σ(r)]. The reader
may check that because of our assumption about the signature Σ, it is the case
that t′ is always well-sorted, and t ∈ TΣ(X)[s] implies t′ ∈ TΣ(X)[s]. Let→R/E

be the relation =E ◦ →R ◦ =E. A term t ∈ TΣ(X) is called R/E-irreducible if
there is no t′ ∈ TΣ(X) such that t→R/E t′. Note that the reflexive transitive
closure relation →∗

R/E defines the inferences of the rewrite theory R in the

order-sorted version of the usual sequent-style presentation [30]. That is, for
any t, t′ ∈ TΣ(X)[s] we have t →∗

R/E t′ if and only if R ` [t]E → [t′]E, where

[t]E denotes the equivalence class of t modulo E.

For substitutions σ, ρ and a set of variables V we define σ|V →R ρ|V
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if there is x ∈ V such that σ(x) →R ρ(x) and for all other y ∈ V we have
σ(y) = ρ(y). The relation→R/E on substitutions is defined as =E ◦ →R ◦ =E.
A substitution σ is called R/E-normalized if σ(x) is R/E-irreducible for all
x; note that this is a stronger condition than saying there is no substitution ρ
such that σ|X →R/E ρ|X (because rules in R need not be sort-decreasing).

3 Reachability Goals

Given an order-sorted rewrite theory R = (Σ, E,R), a reachability goal G is
a conjunction of the form t1 →

∗ t′1 ∧ . . . ∧ tn →
∗ t′n, where for 1 ≤ i ≤ n,

ti, t
′
i ∈ TΣ(X)[si] for appropriate [si]. We say that ti are the sources of the

goal G, while t′i are the targets. We define Var(G) =
⋃

i Var(ti) ∪ Var(t′i). A
substitution σ is an R-solution of G (or just a solution for short, when R is
clear from the context) if σ(ti) →

∗
R/E σ(t′i) for 1 ≤ i ≤ n. We define E(G)

to be the system of equations t1 = t′1 ∧ . . . ∧ tn = t′n. We say σ is a trivial
solution of G if it is an E-unifier for E(G). We say G is trivial if the identity
substitution id is a trivial solution of G. Thus, σ is a trivial solution of G if
and only if σ(G) is trivial.

For goals G : t1 →
∗ t2∧ . . .∧ t2n−1 →

∗ t2n and G′ : t′1 →
∗ t′2∧ . . .∧ t′2n−1 →

∗

t′2n we say G =E G′ if ti =E t′i for all 1 ≤ i ≤ 2n. We say G →R G′ if there
is an odd i such that ti →R t′i and for all j 6= i we have tj = t′j . The relation
→R/E over goals is defined as =E ◦ →R ◦ =E.

Lemma 3.1 σ is a solution of a reachability goal G if and only if σ(G)→∗
R/E

G′ for some trivial goal G′.
�

A set of substitutions Γ is said to be a complete set of R-solutions of G
if (i) every σ ∈ Γ is an R-solution of G, and (ii) for any R-solution ρ of
G there is a σ ∈ Γ such that σ|Var(G)

�E ρ|Var(G)
. We are interested in

finding a complete set of R-solutions for a given goal G and an order-sorted
(unconditional) rewrite theory R.

Since E-congruence classes can be infinite, →R/E-reducibility is undecid-
able in general. One way to get around this problem is to “implement” R/E-
rewriting by a combination of rewriting using oriented equations and rules.
Such an approach was proposed, for instance, by Patrick Viry [42] (for the
unsorted case). We adopt this approach in this paper.

We assume that E = ∆∪B such that (i) B is regular and sort preserving,
(ii) B has a finite and complete unification algorithm (note that this implies
that B-matching is decidable) and ∆∪B has a complete (and not necessarily
finite) unification algorithm 2 , (iii) for each t = t′ in ∆ we have Var(t′) ⊆
Var(t), and (iv) ∆ is sort-decreasing, and is confluent and terminating modulo
B.

2 With certain additional assumptions such as B-coherence of ∆, B rewriting [23], it is the
case that ∆∪B has a complete unification algorithm by equational narrowing. But we also
allow the possibility of special-purpose unification algorithms for ∆ ∪B.
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We define the relation →∆,B on TΣ(X) as follows: t→∆,B t′ if there is an
ω ∈ Pos(t), l = r in ∆, and a substitution σ such that t|ω =B σ(l) and t′ =
t[ω ← σ(r)]. Note that, since B is sort-preserving and ∆ is sort-decreasing,
it is the case that t′ is well-sorted, and t ∈ TΣ(X)s implies t′ ∈ TΣ(X)s.
The relation →R,B is similarly defined, and because of our assumption about
the signature Σ, it is the case that t→R,B t′ implies t′ is well-sorted, and t ∈
TΣ(X)[s] implies t′ ∈ TΣ(X)[s]. We define→R∪∆,B as→R,B ∪ →∆,B. Note that,
since B-matching is decidable,→∆,B ,→R,B, and→R∪∆,B are decidable. These
three relations are lifted to goals and substitutions as expected. R ∪ ∆, B-
normalized (and similarly R,B or ∆, B-normalized) substitutions are defined
as expected.

The idea is to implement →R/E on (terms and goals) using →R∪∆,B . For
this to work, we need the following additional assumptions.

• We assume that →∆,B is coherent with B, i.e., ∀t1, t2, t3 we have t1 →
+
∆,B t2

and t1 =B t3 implies ∃t4, t5 such that t2 →
∗
∆,B t4, t3 →

+
∆,B t5 and t4 =E t5

[23].

t1 →
+
∆,B t2 →∗

∆,B t4

||B ||E

t3 −→+
∆,B t5

• We assume →R,B is E-consistent with B, i.e. ∀t1, t2, t3 we have t1 →R,B t2
and t1 =B t3 implies ∃t4 such that t3 →R,B t4 and t2 =E t4. We also assume
→R,B is E-consistent with →∆,B, i.e. ∀t1, t2, t3 we have t1 →R,B t2 and
t1 →

∗
∆,B t3 implies ∃t4, t5 such that t3 →

∗
∆,B t4 and t4 →R,B t5 and t5 =E t2.

t1 →R,B t2

||B ||E

t3 →R,B t4

t1 −→R,B t2




y*
∆,B

||E

t3 →∗
∆,B→R,B t4

(a) E-consistency of →R,B with B (b) E-consistency of →R,B with →∆,B

The following lemma links →R/E with →∆,B and →R,B . It was originally
established by Patrick Viry for unsorted unconditional rewrite theories [42],
but lifts to our order-sorted setting in a straightforward way.

Lemma 3.2 Let R = (Σ, ∆∪B,R) be an order-sorted rewrite theory with all
the properties assumed above. Then t1 →R/E t2 if and only if t1 →

∗
∆,B→R,B t3

for some t3 =E t2.
�

Thus t1 →
∗
R/E t2 if and only if t1 →

∗
R∪∆,B t3 for some t3 =E t2. The

reader can check that this can be lifted to goals as G1 →
∗
R/E G2 if and only

if G1 →
∗
R∪∆,B G3 for some G3 =E G2. All the assumptions about R listed

in this section, will apply to the rest of the paper, unless explicitly mentioned
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otherwise.

4 Narrowing: Soundness and Weak Completeness

The R,B-narrowing relation on TΣ(X) is defined as follows: t
σ
 R,B t′ if there

is ω ∈ FuPos(t), a rule l → r in R, where we assume Var(t)∩Var(l) = ∅, and
σ ∈ CSUE(t|ω = l, V ) for a set of variables V containing Var(t) and Var(l),
such that t′ = σ(t[ω ← r]). This is lifted to reachability goals as follows. Let
G : t1 →

∗ t2 ∧ . . . ∧ t2n−1 →
∗ t2n and G′ : t′1 →

∗ t′2 ∧ . . . ∧ t′2n−1 →
∗ t′2n, and

suppose that Var(G) ⊆ V . We define G
σ
 R,B G′, if there is an odd i such

that ti
σ
 R,B t′i for some σ that is away from Var(G), and for all j 6= i we have

t′j = σ(tj). We write G
σ
 

∗

R,B G′ if either G = G′ and σ = id, or there is a

sequence of derivations G
σ1

 R,B . . .
σn

 R,B G′ such that σ = σn ◦σn−1 ◦ . . . ◦σ1.
Similarly, ∆, B-narrowing and R ∪ ∆, B-narrowing relations are defined on
terms and goals, as expected.

∆, B-narrowing is known to give a sound and complete procedure for ∆∪B-
unification [23]. We show that R ∪ ∆, B-narrowing gives a sound but only
weakly complete (in the sense made precise below) procedure for computing
the solutions of reachability goals.

4.1 Soundness

We first consider the soundness problem. Following the idea in [23], we asso-
ciate with each R∪∆, B-narrowing derivation a R∪∆, B-rewriting derivation,
and then appeal to Lemma 3.2 to complete the argument. First we consider
one-step narrowing derivation on terms. The proof of the following lemma is
the same as that for the correspondence between ∆, B-narrowing and ∆, B-
rewriting, which can be found in [23].

Lemma 4.1 t
σ
 R∪∆,B t′ implies σ(t)→R∪∆,B t′.

�

This can be lifted to narrowing derivations on goals as follows.

Lemma 4.2 G
σ
 

∗

R∪∆,B G′ implies σ(G)→∗
R∪∆,B G′.

This gives us the following soundness theorem.

Theorem 4.3 (soundness) Let G
σ
 

∗

R∪∆,B G′, and let η be a trivial solution
of G′, then η ◦ σ is a solution of G.

4.2 Weak Completeness

The idea behind proving weak completeness is to associate with each R∪∆, B-
rewriting derivation a R∪∆, B-narrowing derivation. It is possible to establish
such a correspondence only under certain assumptions, and hence the weakness
in completeness. First we consider one-step rewriting on terms.
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Lemma 4.4 Let ρ be an R ∪ ∆, B-normalized substitution, and let V be a
finite set of variables containing Var(t). Let ρ(t) →R∪∆,B t′ using the rule
l → r in R or the equation l = r in ∆. Then there are σ, t′′, η such that:

(i) t
σ
 R∪∆,B t′′ using the same rule or equation.

(ii) η is R ∪∆, B-normalized

(iii) η(t′′) =B t′, and

(iv) ρ|V =B (η ◦ σ)|V

Next, we associate to a one-step R/E-rewrite an R ∪∆, B-narrowing deriva-
tion.

Lemma 4.5 Let ρ be an R ∪ ∆, B-normalized substitution, and let V be a
finite set of variables containing Var(t). Then ρ(t)→R/E t′ implies that there
are σ1, σ2, t

′′, η such that:

(i) t
σ1

 

∗

∆,B
σ2

 R,B t′′

(ii) η is R ∪∆, B-normalized

(iii) η(t′′) =E t′, and

(iv) ρ|V =E (η ◦ σ2 ◦ σ1)|V

The above lemma can be lifted to narrowing derivations on goals as follows.

Lemma 4.6 Let ρ be an R∪∆, B-normalized substitution, V be a finite set of
variables containing Var(G), and let ρ(G) →∗

R/E G′. Then, there are σ,G′′, η
such that:

(i) G
σ
 

∗

R∪∆,B G′′

(ii) η is R ∪∆, B-normalized

(iii) η(G′′) =E G′.

(iv) ρ|V =E (η ◦ σ)|V

We are now ready to prove the weak completeness result.

Theorem 4.7 (weak completeness) Let ρ be an R/E-normalized solution
of a reachability goal G, and let V be a finite set of variables containing
Var(G). Then there are σ,G′ such that:

(i) G
σ
 

∗

R∪∆,B G′ and G′ has a trivial solution.

(ii) There is η ∈ CSUE(E(G′), V ∪ Ran(σ)) such that (η ◦ σ)|V �E ρ|V

We shall see later that Theorem 4.7 need not hold for substitutions ρ that
are not R/E-normalized, and hence narrowing is only weakly complete.

4.3 A Weakly Complete Algorithm for Reachability Goals

Theorem 4.8 For a reachability goal G, let V be a finite set of variables
containing Var(G), and let Γ be the set of all substitutions of the form η ◦ σ,
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where G
σ
 

∗

R∪∆,B G′ and η ∈ CSUE(E(G′), V ∪Ran(σ)). Then Γ is a complete
set of solutions of G with respect to R/E-normalized solutions.

Proof. From Theorems 4.3 and 4.7.
�

This theorem provides a general algorithm which builds a narrowing tree
starting from G, to find all R/E-normalized solutions. Nodes in this tree
correspond to goals, while edges correspond to one-step R ∪ ∆, B-narrowing
derivations. Since there can be infinitely long narrowing derivations, the algo-
rithm has to expand the tree in a fair manner to cover each possible derivation.
Further, note that for each node in the tree, the algorithm invokes a ∆ ∪ B-
unification algorithm, which is not required to be finitary, i.e., the unification
algorithm can return an infinite set of unifiers. Therefore, the execution of this
unification algorithm is to be interleaved in a fair manner with the expansion
of the narrowing tree. Finally, we note that it is important to study appro-
priate strategies [3] that, while preserving completeness, make this narrowing
procedure as efficient as possible.

4.4 Incompleteness of Narrowing

Narrowing is complete only with respect to R/E-normalized solutions. It is
incomplete in general, as shown by the following examples.

Example 4.9 Let R = (Σ, ∅, R), where the signature Σ has a single sort, and
unary function symbols s, f, g, and R has the following two rules:

s(x)→ s2(x) f(s2(x))→ g(s(x))

The reachability goal G : f(x) →∗ g(x) has solutions σk = {sk(y)/x} for
k ≥ 1 (none of which is R/E-normalized). But narrowing returns only σ2 as
a solution, and it is not the case that σ2|{x} �∅ σ1|{x}.

Example 4.10 Consider R = (Σ, ∅, R), where Σ has a single sort, and con-
stants a, b, c, d, and a binary function symbol f , and R has the following three
rules:

a→ b a→ c f(b, c)→ d

The reachability goal G : f(x, x) →∗ d has σ = {a/x} as a solution. But G
has neither a trivial solution nor a narrowing derivation starting from it.

5 Some Strong Completeness Results

It is possible to obtain strong completeness results for useful classes of rewrite
theories. We consider several such classes, including topmost rewrite theories,
classes semantically equivalent to topmost rewrite theories, and linear rewrite
theories.

10
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5.1 Topmost Rewrite Theories

We say R = (Σ, E,R) is a topmost rewrite theory if in one of the equivalences
classes of S/ ≡, there is a top sort State such that:

• Each rule in R rewrites terms of sort State, i.e., for each l → r in R it is
the case that l ∈ TΣ(X)State and r ∈ TΣ(X)State.

• For each f : [s1] × . . . × [sn] → s in Σ, it is the case that [si] 6= State for
1 ≤ i ≤ n.

These two conditions force every rewrite to happen at the top of a term. More
precisely, the relations →R/E and →R,E coincide, and if t →R,E t′ then this
rewrite happens at the position ε in t. Thus, R/E-reducibility is decidable if
we have an E-matching algorithm, and therefore the assumptions about the
rewrite theory R in Section 3 can be simplified as follows. We assume (in
this subsection only) that R = (Σ, E,R) has the following properties: (i) R is
topmost, (ii) the equations in E do not have variables of sort State, and (iii)
E has a complete unification algorithm. (In particular, the other assumptions
in Section 3 are not necessary.)

We show that R,E-narrowing provides a sound and strongly complete
procedure for solving reachability goals in rewrite theories with the properties
(i)–(iii) listed above. The argument for soundness is the same as in Section 4.
For completeness, we first establish a stronger version of Lemma 4.5, in which
the substitution ρ is no longer required to be normalized.

Lemma 5.1 Let t be a term that is not a variable, and let V be a set of
variables containing Var(t). For some substitution ρ, let ρ(t) →R/E t′ using

the rule l → r in R. Then there are σ, η, t′′ such that t
σ
 R,E t′′ using the same

rule, t′′ is not a variable, η(t′′) =E t′, and ρ|V =E (η ◦ σ)|V .

Using the above Lemma, by an argument similar to that in Section 4, we
get the following theorem.

Theorem 5.2 (topmost strong completeness) Let G : t1 →
∗ t′1 ∧ . . . ∧

tn →
∗ t′n be a reachability goal such that for 1 ≤ i ≤ n, ti is not a variable,

and let ρ be a solution of G. Then there are σ,G′ such that G
σ
 

∗

R,E G′ and
there is η ∈ CSUE(E(G′), V ∪ Ran(σ)) such that (η ◦ σ)|V �E ρ|V .

�

Thus for a goal G, none of whose sources is a variable, the set of all
substitutions η ◦ σ such that G

σ
 R,E G′ and η ∈ CSUE(E(G′), V ∪ Ran(σ)),

where V is a finite set of variables containing Var(G), is a complete set of
solutions of G. As in Section 4, this gives us a general algorithm for computing
a complete set of solutions, by building a narrowing tree starting from G. Note
that since the E-unification algorithm can return an infinite set of unifiers,
the narrowing tree can be infinitely branching. Thus, to ensure completeness,
it is essential to expand the narrowing tree in a fair manner.

In practice, we can often transform a given rewrite theory into a topmost
rewrite theory which is in some sense equivalent to it, and then exploit the

11
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completeness result above. In the following, we consider several classes of
theories for which this can be done.

Topmost modulo associativity, commutativity, and identity (ACU):

An order-sorted rewrite theoryR = (Σ, E,R) is said to be topmost modulo
ACU if in one of the equivalence classes of S/ ≡, there is a top sort Config
such that:

• Each l → r in R is such that l, r ∈ TΣ(X)Config.

• There is only one operator whose arity includes a sort s such that [s] =
Config, namely, ⊗ : Config × Config → Config. The operator ⊗ is
associative and commutative, and has identity null.

Many order-sorted rewrite theories specifying object-oriented systems are top-
most modulo ACU, in particular, object-oriented systems involving flat con-
figurations in which the distributed state is a multiset of objects and messages,
are typically topmost modulo ACU. Another large class of examples is pro-
vided by different styles of Petri nets [41].

A theory R that is topmost modulo ACU can be transformed into a corre-
sponding topmost theory R̂ = (Σ̂, E, R̂) as follows. The signature Σ̂ extends
Σ by adding a new top sort State, and a single new operator { } : Config →
State. The set R̂ contains for each rewrite rule l → r in R the rewrite rule
{l⊗C} → {r⊗C}, where C is a fresh variable of sort Config. This transfor-
mation satisfies the following equivalence.

Lemma 5.3 Let R be a rewrite theory that is topmost modulo ACU. Then, for
any terms t, t′ of sort Config we have t→R/E t′ if and only if {t} →R̂/E {t

′}.
�

The above lemma implies that the set of R-solutions of G : t1 →
∗ t′1∧ . . .∧

tn →
∗ t′n is the same as the set of R̂-solutions of Ĝ : {t1} →

∗ {t′1}∧. . .∧{tn} →
∗

{t′n}. Thus, to find a complete set of R-solutions of G, we can just find a
complete set of R̂-solutions for the goal Ĝ.

Note that the above transformation R 7→ R̂ can easily be generalized to
operators ⊗ satisfying the same assumptions, except that ⊗ satisfies
only axioms of associativity and commutativity (AC ), or associativity and
identity (AU ), or associativity alone (A). This makes these results available
also for many string-processing rewrite theories, such as grammars. In each of
these cases, the transformation R 7→ R̂ has to add the appropriate “extension
rules”. For example, for AC we have to also add the rule {l} → {r}; for
AU we just add {C ⊗ l ⊗ C ′} → {C ⊗ r ⊗ C ′}; and for A we must also
add {C ⊗ l} → {C ⊗ r}, {l ⊗ C} → {r ⊗ C ′}, and {l} → {r}. With these
modifications, the results above also hold for the AC, AU, and A cases as well.

Russian Dolls of Non-increasing Depth:

Many distributed object-based systems are not flat configurations; they
are instead structured configurations in which multisets of objects and mes-

12
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sages can themselves contain nested submultisets encapsulated by appropriate
boundary operators. Meseguer and Talcott [32] call such structured configura-
tions Russian dolls, to emphasize their nested and recursive character. Since
in a system of this kind rewrites can happen at any level of nesting, the results
just developed for theories that are topmost modulo ACU do not directly ap-
ply. However, under the reasonable assumptions that the equations do not
change the depth of nesting, and the rewrite rules do not increase the depth,
it is possible to extend the same idea to Russian dolls, so that narrowing
remains a strongly complete analysis method for appropriate goals.

A theory R = (Σ, E,R) of Russian dolls has the following form.

• The signature Σ includes sorts FlatConfig and Config, with FlatConfig <
Config, Config a top sort in S/ ≡, and s < Config implies s ≤ FlatConfig.

• The only function symbols 3 in Σ whose arity includes a sort s such that
[s] = Config are:

⊗ : FlatConfig× FlatConfig→ FlatConfig

⊗ : Config× Config→ Config

[ ] : Config→ Config

where ⊗ is associative and commutative, and has identity null. Further, if
f : w → Config, then f is either ⊗ or [ ]. We say a term t is of bounded
nesting if for all x ∈ Var(t), x ∈ TΣ(X)Config implies x ∈ TΣ(X)FlatConfig.

For terms of bounded nesting, we define the (nesting) depth of t as follows:
(i) depth(t) = 0 if t /∈ TΣ(X)Config or t ∈ TΣ(X)FlatConfig,

(ii) depth(t1 ⊗ t2) = max{depth(t1), depth(t2)},
(iii) depth([t]) = depth(t) + 1.

• For each equation t = t′ in E and substitution σ, it is the case that σ(t) is
of bounded nesting if and only if σ(t′) is, and further if σ(t) and σ(t′) are
of bounded nesting, then depth(σ(t)) = depth(σ(t′)). In short, equations do
not change the depth of terms.

• For each rule l → r in R we have l, r ∈ TΣ(X)Config, and for each substi-

tution σ such that σ(l) and σ(r) are of bounded nesting, it is the case that
depth(σ(l)) ≥ depth(σ(r)), i.e. rewrites do not increase the depth of terms.

Note that for a term t of bounded nesting, σ(t) is of bounded nesting for any
substitution σ, t =E t′ implies t′ is of bounded nesting and depth(t) = depth(t′),
and t →R/E t′ implies t′ is of bounded nesting and depth(t) ≥ depth(t′). The
reader is refered to [32] for examples of Russian doll theories.

3 To simplify the exposition, we assume a very simple operator [ ] : Config → Config to
structure configurations in a nested way as Russian dolls. In general, however, such a
structuring operator may have additional sorts as arguments. Our method can be easily
extended to those more general structuring operators.

13
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Given a rewrite theory R = (Σ, E,R) such as above, and a natural number
n, we can transform R into a topmost rewrite theory R̂n = (Σ̂n, E, R̂n) as
follows. The signature Σ̂n extends Σ with a new top sort State and a new
operator { } : Config → State. The set R̂n contains for each rule l → r in R
and 0 ≤ k ≤ n, the rule

{C0 ⊗ [C1 ⊗ [C2 ⊗ [. . . [Ck ⊗ l] . . .]]]} → {C0 ⊗ [C1 ⊗ [C2 ⊗ [. . . [Ck ⊗ r] . . .]]]}

where C1, . . . , Ck are fresh variables of sort Config.

Lemma 5.4 Let R = (Σ, E,R) be a Russian doll rewrite theory. Let t be
a term of bounded nesting and of sort Config, and let depth(t) = n, then
t→R/E t′ if and only if {t} →R̂n/E {t

′}.
�

We say a goal G : t1 →
∗ t2∧. . .∧t2n−1 →

∗ t2n is of bounded nesting if the ti
are of bounded nesting for all 1 ≤ i ≤ 2n. For a goal G of bounded nesting, we
define depth(G) = max{depth(t1), . . . , depth(t2n)}. The above lemma implies
that the set of R-solutions of a goal G : t1 →

∗ t2 ∧ . . . ∧ t2n−1 →
∗ t2n of

depth k, is the same as the set of R̂k-solutions of the goal Ĝ : {t1} →
∗

{t2} ∧ . . . ∧ {t2n−1} →
∗ {t2n}. Thus, to find a complete set of R-solutions of

G, we can just find a complete set of R̂k-solutions of Ĝ.

5.2 Linear Rewrite Theories

In this section we consider linear rewrite theories R = (Σ, ∆ ∪ B,R) which,
in addition to the assumptions in Section 3, also satisfy the property that B
is linear, and each rule in R is sort-decreasing and right linear. We say that a
goal G : t1 →

∗ t′1 ∧ . . . ∧ tn →
∗ t′n is linear if for all 1 ≤ i, j ≤ n (i) ti is linear,

(ii) Var(ti) ∩ Var(tj) = ∅ for i 6= j, and (iii) Var(ti) ∩ Var(t′j) = ∅. Note that
t′i need not be linear, and it may happen that Var(t′i) ∩ Var(t′j) 6= ∅ for some
i 6= j. We say that a substitution σ is linear on a set of variables V if (i) σ(x) is
linear for all x ∈ V , and (ii) for all x, y ∈ V , we have Var(σ(x))∩Var(σ(y)) = ∅
for x 6= y.

The main reason for incompleteness of narrowing in Section 4 was that,
if the rewrite in ρ(t) →R/E t′ happens “within” the substitution ρ, then it
is not possible to associate with it a narrowing derivation; this is the reason
why we required ρ to be R/E-normalized. But for the case of a linear rewrite
theory R = (Σ, E,R) and a linear reachability goal G, we can overcome this
limitation to some extent, so that if ρ is an R-solution of G, then narrowing
is guaranteed to find another R-solution η such that for some θ we have
ρ|Var(G)

→∗
R/E θ|Var(G)

and η|Var(G)
�E θ|Var(G)

.

Lemma 5.5 Let t, t′ be terms such that t′ is linear and Var(t) ∩ Var(t′) = ∅.
Let V be a finite set of variables containing Var(t) and Var(t′). Let B be a
linear and regular set of equations. Then, there is a complete set of B-unifiers
of t = t′ away from V , namely Γ, such that every σ ∈ Γ is linear on Var(t).

14



Meseguer, and Thati

Following are the analogues of Lemmas 4.4, 4.5 and 4.6.

Lemma 5.6 Given R = (Σ, ∆ ∪B,R), let t be a linear term, and let V be a
finite set of variables containing Var(t). Further, for some substitution ρ, let
ρ(t) →R∪∆,B t′ using the rule l → r in R or the equation l = r in ∆. Then
one of the following is true:

(i) t′ = η(t) for some η such that ρ|V →R∪∆,B η|V using the same rule or
equation.

(ii) There are σ, η, t′′ such that t
σ
 R∪∆,B t′′ using the same rule or equation,

t′′ is linear, η(t′′) =B t′, and ρ|V =B (η ◦ σ)|V .

Lemma 5.7 Let t be a linear term, V be a finite set of variables containing
Var(t), and for some substitution ρ, let ρ(t)→R/E t′, then there is a linear t′′,
and a substitution η such that η(t′′) =E t′, and one of the following is true

(i) There is σ such that t
σ
 

∗

∆,B t′′ and ρ|V →
∗
R/E (η ◦ σ)|V

(ii) There are σ1, σ2 such that t
σ1

 

∗

∆,B
σ2

 R,B t′′ and ρ|V =E (η ◦ σ2 ◦ σ1)|V .

Lemma 5.8 Let G be a linear goal, V be a finite set of variables containing
Var(G), and for some substitution ρ let ρ(G)→∗

R/E G′, then there are σ,G′′, η
such that

(i) G
σ
 

∗

R∪∆,B G′′ for some G′′ that is linear

(ii) η(G′′) =E G′, and

(iii) Either ρ|V →
∗
R/E (η ◦ σ)|V or ρ|V =E (η ◦ σ)|V

We are now ready to state the strong completeness result for linear rewrite
theories and goals.

Theorem 5.9 (linear strong completeness) Let G be a linear goal, V be
a finite set of variables containing Var(G), and ρ be a solution of G, then there
are σ,G′ such that:

• G
σ
 

∗

R∪∆,B G′ and G′ has a trivial solution.

• There is η ∈ CSUE(E(G′), V ∪ Ran(σ)) such that, for some substitution θ,
we have ρ|V →

∗
R/E θ|V and (η ◦ σ)|V �E θ|V .

6 Example: Bounded-Process Security Protocol Anal-
ysis

Verification of many security protocol properties can be formulated as reach-
ability problems. For instance, verifying the secrecy property of a protocol
amounts to checking if the protocol can reach a state where an intruder has
discovered a data item that was meant to be a secret. In this section, we will
exploit the strong completeness result in Section 5.1 to show how narrowing
provides a generic and complete procedure for the analysis of such security
properties.
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In the general case, the reachability problem for security protocols is known
to be undecidable [14]. An important decidable subcase is where the num-
ber of protocol sessions, i.e., where the number of principals instantiating the
protocol roles, is bounded. Even this restricted scenario has an infinite state
space, since the intruder can interfere with the protocol execution by forging
arbitrary messages. Several authors have proposed decision procedures for
the reachability problem in this subcase [20,1,33,38]. An important limita-
tion of all these works is that their analyses do not account for the algebraic
properties of the underlying cryptographic primitives. This simplification is
not valid for a variety of cryptographic primitives used in practice, such as
xor, products, and Diffie-Hellman exponentiation. The attacker can exploit
algebraic properties of these primitives, such as commutativity, associativity,
and cancellation, to find attacks that are otherwise not possible [39].

Recently, extensions to the original decision procedures for the reachability
problem, that also account for the algebraic properties of cryptographic prim-
itives, have been proposed [11,34,8,7]. However, these extensions are adhoc
and not generic. Specifically, each cryptographic primitive with a different set
of algebraic properties has been dealt with by an essentially different exten-
sion. We show that narrowing modulo equations provides a generic procedure
that can account for a wide class of primitives with algebraic properties. Al-
though narrowing is complete in that it will discover an attack if one exists,
it is only a semidecision procedure in that it need not terminate. However, it
may be possible to identify several cases where the narrowing procedure for
reachability goals is guaranteed to terminate. This is beyond the scope of this
paper, and is an important problem for future research.

We now briefly describe how narrowing can be used for security analysis,
and illustrate it with a few examples. A protocol can be described as a list
of actions, called a role, for each honest principal [14]. An action is a pair of
terms u, v with variables, which is interpreted as: upon receiving a message
matching u, send the corresponding message v. For the sake of concreteness
let us consider the case where terms have the following grammar

M ::= Var | Atoms | (M1,M2) | {M}k

where Atoms contains the set Names of principal names, the set Keys of public
and private keys of principals, and the set Nonce of nonces, (M1,M2) is a pair
containing M1 and M2, and {M}k is the public key encryption of M with
key k. We assume functions pb(·), pv(·) : Names→ Keys which map principal
names to the corresponding public and private keys respectively. For a public
key k, we denote its private key by k−1. We can consider richer signatures
such as those including symmetric key encryption with possibly non-atomic
keys and hashing functions, and the discussion below applies to them as well.
But we restrict ourselves to this limited signature in the interest of simplicity.
Later in this section, to illustrate the fact that narrowing is a general analysis
technique that can handle cryptographic primitives with algebraic properties,
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(Axiom) K,M `M (Pair)
K `M1 K `M2

K ` (M1,M2)

(Project)
K ` (M1,M2)

K `Mi

i = 1, 2 (Encrypt)
K `M K ` k

K ` {M}k

(Decrypt)
K ` {M}k K ` k−1

K `M

Table 1
The Dolev-Yao inference rules for intruder capabilities

we will also consider xor-encryption.

A protocol instance is a collection of principals, each instantiating a role;
we are interested only in finite collections. An intruder can try to compromise
the execution of a protocol by replacing an instance of u that was sent by an
honest principal with another message that it can build. Typically one assumes
that every message exchanged between the honest principals is mediated by
the intruder, and the intruder can use the messages that it has observed so
far to build fake messages. The most widely used model for the intruder’s
capability to build messages from the ones it knows, is the Dolev-Yao model
[13], which is shown in Table 1. The judgment K `M is read as: an attacker
that knows all the messages in the set K can construct the message M .

Verifying if the secrecy property is violated amounts to checking if there
is a total ordering of actions (u1, v1), . . . , (un, vn) of all the principals, that is
consistent with the ordering at each principal, and there is a substitution σ
such that

K0, σ(v1), . . . , σ(vi) ` σ(ui+1) and K0, σ(v1), . . . , σ(vn) ` s

where K0 is the initial knowledge of the intruder, and s is the data item that is
to be kept secret. K0, for instance, may contain the name of all the principals,
and their public keys. Thus, the protocol is insecure if and only if there is
an ordering such that the corresponding set of constraints that it generates,
have a solution; a solution, if it exists, essentially describes an attack. Note
that, since the number of principals is finite, there are only a finite number of
total orderings of actions. Such a formalization of the secrecy problem can be
found, for instance, in [1,33], to which the reader is referred for further details.

We can represent the constraint system above as a rewrite theory R =
(Σ, E,R) that is topmost modulo ACU, and use narrowing to find a complete
set of solutions for a given finite set of constraints. The signature Σ has
sorts Keys < Atoms < Msg < MsgSet, and Constraint. The following are
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constructors for the sort Msg.

( , ) : Msg×Msg→ Msg { } : Msg×Keys→ Msg

The sort MsgSet has a single operator , : MsgSet×MsgSet→ MsgSet, which
is associative and commutative, and has identity null. The sort Constraint
has operators

true : Constraint

` : MsgSet×Msg→ Constraint

∧ : Constraint× Constraint→ Constraint

The operator ∧ is associative, commutative, and has true as identity. The
rules in R model the inference system of Table 1. An inference rule

K `M1 K `M2

K `M3

is modeled as the rewrite rule K ` M3 → K ` M1 ∧ K ` M2 that rewrites
multisets of judgments. The idea is that rewriting with these rules, starting
from the conclusion, corresponds to searching for a proof of the conclusion
in the inference system. To satisfy the condition that Var(r) ⊆ Var(l) for
each rule l → r in R, we consider the following alternate version of the rules
(Project) and (Decrypt).

(Project’)
K,M1,M2 `M

K, (M1,M2) `M

(Decrypt’)
K, {M1}k ` k−1 K, {M1}k,M1 `M2

K, {M1}k `M2

Replacing the rules (Project) and (Decrypt) in Table 1 with the rules above
gives us an equivalent inference system, which can be modeled by the following
rules.

(Axiom) K,M `M → true

(Pair) K ` (M1,M2) → K `M1 ∧ K `M2

(Project’) K, (M1,M2) `M → K,M1,M2 `M

(Encrypt) K ` {M}k → K `M ∧ K ` k

(Decrypt’) K, {M1}k `M2 → K, {M1}k ` k−1 ∧ K, {M1}k,M1 `M2
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Lemma 6.1 K ` M according to the Dolev-Yao inference rules if and only
if K `M →∗

R/E true.
�

From this lemma, it follows that σ is a solution of K1 ` M1 ∧ . . . ∧Kn `
Mn if and only if σ(Ki) ` σ(Mi) →

∗
R/E true for 1 ≤ i ≤ n. Now, note

that R is topmost modulo ACU, and hence it can be transformed into a
topmost theory, as described in Section 5.1. The resulting topmost theory also
satisfies the additional assumptions in Section 5.1, namely, E has a complete
unification algorithm, and none of the equations in E have a variable of (the
newly introduced) sort State. Thus, we can use narrowing to find a complete
set of solutions of the goal K1 `M1 →

∗
R/E true ∧ . . . ∧Kn `Mn →

∗
R/E true.

Example 6.2 Consider the following simplified variant of the Needham-Schroeder
public key protocol.

1. A→ B : {(NA, A)}pb(B)
3. A→ B : {NB}pb(B)

2. B → A : {(NA, NB)}pb(A)

A,B denote names of the principals and NA, NB denote nonces. In our pro-
tocol model, this is represented by two roles Initiator(A,B,NA) and Respon-
der(A,B,NB) as follows.

Initiator(A,B,NA):

(I1) ⇒ {(NA, A)}pb(B)

(I2) {(NA, X2)}pb(A)
⇒ {X2}pb(B)

Responder(A,B,NB):

(R1) {(X1, A)}pb(B)
⇒ {(X1, NB)}pb(A)

(R2) {NB}pb(B)
⇒

Now, consider an instance with three principals a, b, c, where a plays the role
Initiator(a, c, na) (i.e. intends to initiate the protocol with c), b plays the role
Responder(a, b, nb) (i.e., b expects an initiation from a), and c is a dishonest
principal (i.e. the intruder). The data item nb is to be kept secret from the
intruder c.

The initial knowledge K0 of the intruder c includes a, pb(a), b, pb(b), c, pb(c),
and pv(c). Consider the following ordering of actions of the honest principals
a and b: I1, R1, I2, R2. This generates the following constraints.

K0, {(na, a)}pb(c)
` {(X1, a)}pb(b)

K0, {(na, a)}pb(c)
, {(X1, nb)}pb(a)

` {(na, X2)}pb(a)

K0, {(na, a)}pb(c)
, {(X1, nb)}pb(a)

, {X2}pb(c)
` {nb}pb(b)

K0, {(na, a)}pb(c)
, {(X1, nb)}pb(a)

, {X2}pb(c)
` nb
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The narrowing procedure finds the solution σ = {na/X1, nb/X2}, which cor-
responds to the following well-known attack discovered by Lowe [27]:

1. a→ c : {(na, a)}pb(c)
4. c→ a : {(na, nb)}pb(a)

2. c(a)→ b : {(na, a)}pb(b)
5. a→ c : {nb}pb(c)

3. b→ c(a) : {(na, nb)}pb(a)

As mentioned earlier, narrowing modulo equations provides a generic anal-
ysis technique that can also handle cases where the underlying cryptographic
primitives have algebraic properties that can be exploited by the intruder. We
illustrate this with the xor encryption primitive. The signature Σ is extended
with the following operators

0 : Msg ⊕ : Msg×Msg→ Msg

The constant 0 is the identity for the ⊕ operator. Note that in xor-encryption,
it is possible to use non-atomic keys, i.e., a term of sort Msg rather than just
a term of sort Keys. The set of equations E now also includes the following
set of equations XOR for the ⊕ operator:

(Assoc) (M1 ⊕M2)⊕M3 = M1 ⊕ (M2 ⊕M3)

(Comm) M1 ⊕M2 = M2 ⊕M1

(Ident) 0⊕M = M

(Inv) M ⊕M = 0

This equational theory is known to have a complete unification algorithm.
The inference system of Table 1 is extended with the following inference rules.

(Equality)
K `M1

K `M2

if M1 =XOR M2 (Xor)
K `M1 K `M2

K `M1 ⊕M2

Note that the (Equality) rule captures the intruder’s ability to exploit the
algebraic properties of xor. The set of rules R is extended with the following
rule.

(Xor) K `M1 ⊕M2 → K `M1 ∧ K `M2

Since rewrites happen modulo the equations E, the rule (Equality) is implicit.
The resulting rewrite theory is again topmost modulo ACU. As before, we can
transform it into a topmost theory, and use narrowing to find a complete set
of solutions.

Now, consider the following variant of the Needham-Schroeder public key
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protocol with Lowe’s fix [27]. This variant was presented in [8].

1. A→ B : {(NA, A)}pb(B)
3. A→ B : {NB}pb(B)

2. B → A : {(NA ⊕B,NB)}pb(A)

In this variant, ⊕ is used in step 2, instead of pairing as in Lowe’s fix. This is
represented in our protocol model as follows.

FixedInitiator(A,B,NA):

(I1) ⇒ {(NA, A)}pb(B)

(I2) {(NA ⊕B,X2)}pb(A)
⇒ {X2}pb(B)

FixedResponder(A,B,NB):

(R1) {(X1, A)}pb(B)
⇒ {(X1 ⊕B,NB)}pb(A)

(R2) {NB}pb(B)
⇒

Consider the instance with three participants a, b, c as before, with a play-
ing the role FixedInitiator(a, c, na), b playing the role FixedResponder(a, b, nb),
and c a dishonest principal. As usual, nb is to be kept secret from c. The se-
quence of actions I1, R1, I2, R2 generates the constraints

K0, {(na, a)}pb(c)
` {(X1, a)}pb(b)

K0, {(na, a)}pb(c)
, {(X1 ⊕ b, nb)}pb(a)

` {(na ⊕ c,X2)}pb(a)

K0, {(na, a)}pb(c)
, {(X1 ⊕ b, nb)}pb(a)

, {X2}pb(c)
` {nb}pb(b)

K0, {(na, a)}pb(c)
, {(X1 ⊕ b, nb)}pb(a)

, {X2}pb(c)
` nb

The narrowing procedure finds the solution σ = {na⊕b⊕c/X1, nb/X2}, which
corresponds to the following attack that critically makes use of the equality
na ⊕ b⊕ c⊕ b = na ⊕ c.

1. a→ c : {(na, a)}pb(c)
4. c→ a : {(na ⊕ b⊕ c⊕ b, nb)}pb(a)

2. c(a)→ b : {(na ⊕ b⊕ c, a)}pb(b)
5. a→ c : {nb}pb(c)

3. b→ c(a) : {(na ⊕ b⊕ c⊕ b, nb)}pb(a)

Finally, we note that other security properties such as authenticity can be
analyzed using similar techniques.

7 Concluding Remarks

We have proposed narrowing as a general deductive method to solve reacha-
bility problems for a system axiomatized as a rewrite theory. We have proved
its soundness and a weak completeness result, have shown that in full gener-
ality is incomplete in the strong sense, and have identified important classes
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of rewrite theories, covering many applications, for which narrowing is indeed
strongly complete.

Much more work remains ahead in several directions, including the follow-
ing:

• Extending the present results to broader classes of rewrite theories.

• Developing narrowing strategies, to be as efficient as possible and to avoid
combinatorial explosions; in particular, the use of constraints and of how
to best combine narrowing with equations (to solve equalities) and with
rules should be investigated; also “smart” strategies that can detect looping
situations would be very useful [24].

• Building a prototype implementation based on such strategies, that would
allow experimentation and supporting unification modulo different equa-
tional axioms.

• Investigating termination conditions for the narrowing procedure.

• Studying relationship with other methods that can be used to approxi-
mate reachability problems, such as procedures based on tree-automata
techniques [18,35].

• Developing applications and case studies, particularly to analyze distributed
systems and security protocols.

• Integrating narrowing with other theorem proving methods, for example
deductive methods for temporal logic properties [28,6] of rewrite theories.
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A Appendix

Proof of Lemma 4.2: Lemma 4.1 can be lifted to goals as G
η
 R∪∆,B G′

implies η(G)→R∪∆,B G′. Then the result follows by a simple induction on the

number of narrowing steps in G
σ
 

∗

R∪∆,B G′, using the fact that rewrites are
stable under substitution.

�

Proof of Theorem 4.3: By Lemma 4.2, we have σ(G)→∗
R∪∆,B G′, and using

Lemma 3.2, we have σ(G) →∗
R/E G′. Then, since rewrites are stable under

substitutions, we have η ◦ σ(G)→∗
R/E η(G′). Now, since η(G′) is trivial, from

Lemma 3.1 we conclude that η ◦ σ is a solution of G.
�

Proof of Lemma 4.4: Without loss of generality we may assume that
Dom(ρ) ⊆ V , otherwise we can consider V ∪ Dom(ρ) instead of V . We may
also assume V ∩Var(l) = ∅. Now, since ρ is R∪∆, B-normalized, the rewrite
ρ(t) →R∪∆,B t′ occurs at some position ω ∈ FuPos(t). Then there is ρ′ such
that Dom(ρ′) ⊆ Var(l), ρ(t)|ω = ρ(t|ω) =B ρ′(l), and t′ = ρ(t)[ω ← ρ′(r)]. Let
W = Var(t|ω) ∪ Var(l). Then there is some σ ∈ CSUB(t|ω = l, V ∪ Var(l))
such that σ|W �B (ρ ∪ ρ′)|W . Since σ(t|ω) =B σ(l), and B is regular, we
have Var(σ(t|ω)) = Var(σ(l)). But since V ∩ Var(l) = ∅, σ is away from
V ∪ Var(l), and Dom(σ) ⊆ W , we deduce Dom(σ) = W . Let η′ be such that
(ρ∪ρ′)|W =B (η′◦σ)|W , and η = η′|Ran(σ)

∪ρ|V . Then we have ρ|V =B (η◦σ)|V ,

and ρ′|Var(l)
=B (η ◦ σ)|Var(l)

(note that Dom(σ) = W ⊇ Var(l)). Then for

t′′ = σ(t[ω ← r]), we have t
σ
 R∪∆,B t′′, and further, since Var(r) ⊆ Var(l),

we have η(t′′) =B t′. Now, we prove by contradiction that η is R ∪ ∆, B-
normalized. Suppose it is not. Then since Dom(η) ⊆ Ran(σ) ∪ V , η|V = ρ|V ,
and ρ is R∪∆, B-normalized it follows that there is x ∈ Ran(σ) such that η(x)
is not R∪∆, B-normalized. Since Var(σ(t|ω)) = Var(σ(l)), and Dom(σ) = W ,
we have Ran(σ) = Ran(σ|Var(t|ω)

). Then it follows that there is x ∈ V such

that η ◦ σ(x) is not R ∪∆, B-normalized. But since ρ(x) =B η ◦ σ(x), →∆,B

is coherent with B, and →R,B is E-consistent with B, it follows that ρ(x) is
not R ∪∆, B-normalized, a contradiction.

�

Proof of Lemma 4.5: By Lemma 3.2, since ρ(t)→R/E t′ we have ρ(t)→∗
∆,B→R,B

s for some s =E t′. Now, we exploit the fact that ∆ is terminating modulo B
and prove the lemma by noetheranian induction on the relation →∆,B ◦ =B.
For the base case, we have ρ(t) →R,B s, and the result follows by a direct
application of Lemma 4.4. For the induction step we have the following dia-
gram.

ρ(t) →∆,B s′ →∗
∆,B→R,B s

||
x





ρ

||B
x





η′

||E
x





η

t
σ
 ∆,B s′′

σ′

 

∗

∆,B
σ2

 R,B t′′

We have ρ(t) →∆,B s′ →∗
∆,B→R,B s for some s′. By Lemma 4.4, there are
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σ, s′′, η′ such that t
σ
 ∆,B s′′, η′ is R ∪ ∆, B-normalized, η′(s′′) =B s′, and

ρ|V =B (η′ ◦ σ)|V . Now, let W be a finite set of variables containing V and
Ran(σ). Note that since B is regular and the rules in R do not introduce
new variables, W contains Var(s′′). Now, we have η′(s′′) →R/E s. Then by

the induction hypothesis, there are σ′, σ2, t
′′, η such that s′′

σ′

 

∗

∆,B
σ2

 R,B t′′, η is
R∪∆, B-normalized, η(t′′) =E s, and η′|W =E (η ◦σ2 ◦σ

′)|W . Let σ1 = σ′ ◦σ.
Then we have ρ|V =E (η ◦ σ2 ◦ σ1)|V . We have thus proved the result.

�

Proof of Lemma 4.6: By induction on the number of derivation steps in
ρ(G)→∗

R/E G′, using the fact that Lemma 4.5 can be lifted to goals.
�

Proof of Theorem 4.7: Since ρ is a solution of G, by Lemma 3.1 we have
ρ(G) →∗

R/E G′′ for some trivial G′′. Recall that, since B is sort-preserving

and ∆ is sort-decreasing, it is the case that t→∆,B t′ and t ∈ TΣ(X)s implies
t′ ∈ TΣ(X)s. Therefore, ρ =E ρ′ for some ∆, B-normalized substitution ρ′.
Then ρ′(G)→∗

R/E G′′. Further, since ρ is R/E-normalized it follows that ρ′ is

R ∪∆, B-normalized. By Lemma 4.6, there are σ,G′, η′ such that G
σ
 

∗

R∪∆,B

G′, η′(G′) = G′′, and ρ′|V =E (η′ ◦ σ)|V . Since G′′ is trivial, η′ is an E-
unifier of E(G′), and hence there is η ∈ CSUE(E(G′), V ∪ Ran(σ)) such that
η|Var(G′)

�E η′|Var(G′)
. Note that since B is regular and the rules in R

do not introduce new variables, we have Var(G′) ⊆ V ∪ Ran(σ). Then, by
Lemma 2.1, we have η|

V ∪Ran(σ)
�E η′|

V ∪Ran(σ)
. From this and the fact that

ρ′|V =E (η′ ◦ σ)|V we conclude that (η ◦ σ)|V �E ρ′|V =E ρ|V .
�

Proof of Lemma 5.1: Without loss of generality we may assume that
Dom(ρ) ⊆ V , otherwise we can consider V ∪ Dom(ρ) instead of V . We may
also assume V ∩ Var(l) = ∅. Now, since R is topmost and t is not a vari-
able, the rewrite occurs at position ε ∈ FuPos(t). Then there is ρ′ such that
Dom(ρ′) ⊆ Var(l), ρ(t) =E ρ′(l), and t′ = ρ′(r). Let W = Var(t) ∪ Var(l).
Then there is some σ ∈ CSUE(t = l, V ∪Var(l)) such that σ|W �E (ρ∪ρ′)|W .
Let η′ be such that (ρ ∪ ρ′)|W =E (η′ ◦ σ)|W , and η = η′|Ran(σ)∪Var(l)

∪ ρ|V .

Then we have ρ|V =E (η ◦ σ)|V , and ρ′|Var(l)
=E (η ◦ σ)|Var(l)

. Then for

t′′ = σ(r), we have t
σ
 R,E t′′, and further, since Var(r) ⊆ Var(l), we have

η(t′′) =E t′. Now, we prove by contradiction that t′′ is not a variable. Suppose
t′′ = x for some variable x. Since t′′ = σ(r) and r is of sort State, we have that
x is of sort State, r is a variable, and σ maps r to x. Since Var(r) ⊆ Var(l)
and l does not contain a variable of sort State unless it is itself a variable, it
follows that l = r. Then, from σ(t) =E σ(l), we have that σ(t) =E x. But
this is impossible, because neither t (and hence σ(t)) nor any of the equations
in E contains a variable of sort State.

�

Proof of Lemma 5.5: Consider some Γ′ that is a complete set of B-unifiers
of t = t′ away from V , and let W = Var(t) ∪ Var(t′). We are done if we
show that for each σ′ ∈ Γ′ there is a σ such that σ is a B-unifier of t = t′,
σ|W �B σ′|W , and σ is away from V and is linear on Var(t). Now, let σ′ ∈ Γ′,
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and let ρ′ = σ′|Var(t)
and η′ = σ′|Var(t′)

. Then, ρ′(t) =B η′(t′). Now, we can

write ρ′ = (θ ◦ ρ)|Var(t)
for some θ, ρ such that ρ is linear on Var(t) and away

from V , Dom(ρ) ⊆ Var(t), and θ maps variables to variables. Now, since B is
linear and regular, t′ is linear, and Var(t) ∩ Var(t′) = ∅, from ρ′(t) =B η′(t′)
it follows that ρ(t) =B η(t′) for some η such that η′ = (θ ◦ η)|Var(t′)

, η is

away from V , and Dom(η) ⊆ Var(t′). Since Var(t) ∩ Var(t′) = ∅, we can
take σ = ρ ∪ η. Note that σ is a B-unifier of t = t′. We have σ′|W =
ρ′ ∪ η′ = (θ ◦ ρ)|Var(t)

∪ (θ ◦ η)|Var(t′)
= (θ ◦ (ρ∪ η))|W = (θ ◦ σ)|W , and hence

σ|W �B σ′|W . Further, since ρ is linear on Var(t) so is σ. Finally, since ρ and
η are away from V , so is σ.

�

Proof of Lemma 5.6: There are two cases, depending on the position ω ∈
Pos(ρ(t)) at which the rewrite ρ(t) →R∪∆,B t′ happens. The first case is
when ω 6∈ FuPos(t). Then the rewrite happens within the substitution ρ,
and since B is sort-preserving, and ∆ and R are sort-decreasing, there is a
substitution η such that ρ|V →R∪∆,B η|V . Further, since t is linear, we have
t′ = η(t). The second case is when ω ∈ FuPos(t). Then the proof is the same
as that of Lemma 4.4, with the following additional argument for linearity
of t′′ = σ(t[ω ← r]). Since t is linear, Dom(σ) ⊆ Var(t|ω) ∪ Var(l), and
Var(l)∩V = ∅, we have t′′ = t[ω ← σ(r)]. Now, by Lemma 5.5, we can choose
CSUB(t|ω = l, V ∪Var(l)) so that σ is linear on Var(l). Since Var(r) ⊆ Var(l),
we have that σ is also linear on Var(r). Furthermore, since σ is away from
V ∪ Var(l), and r is linear, we conclude that t′′ is linear.

�

Proof of Lemma 5.7: The proof uses Lemma 5.6 and is similar to the proof
of Lemma 4.5. The following observations are useful in the proof. For any
substitutions θ1, θ2, θ3, θ4 and sets of variables W,W ′, we have: (a) θ1|W →∆,B

θ2|W implies θ1|W =E θ2|W , and (b) θ1|W =E (θ3 ◦θ2)|W and θ3|W ′ →∗
R/E θ4|W ′

for some W ′ containing W ∪ Ran(θ2) implies θ1|W →
∗
R/E (θ4 ◦ θ2)|W .

�

Proof of Lemma 5.8: By induction on the number of derivation steps in
ρ(G)→∗

R/E G′, using the fact that Lemma 5.7 can be lifted to linear goals.
�

Proof of Theorem 5.9: The proof uses Lemma 5.8, and is similar to the
proof of Theorem 4.7.

�
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