Parallel Implementations of Irregular Problems Using High-Level Actor Language

R. B. Panwar*
Application Dev. Technology Institute
IBM Santa Teresa Labs
San Jose, CA 95141, USA
Email: panwar@vnet.ibm.com

Abstract

In this paper we present our experience in implement-
ing several irregular problems using a high-level actor lan-
guage. The problems studied require dynamic computation
of object placement and may result in load imbalance as
the computation proceeds, thereby requiring dynamic load
balancing. The algorithms are expressed as fine-grained
computations providing maximal flexibility in adapting the
computation load to arbitrary parallel architectures. Such
an algorithm may be composed with different partition-
ing and distribution strategies (PDS’s) to result in different
performance characteristics. The PDS’s are implemented
for specific data structures or algorithms and are reusable
for different parallel algorithms. We demonstrate how our
methodologyprovides portability of algorithmspecification,
reusability and ease of expressibility.

1 Introduction

In paralle! computing a set of operations and the partial
order in which they may be carried out define an ideal al-
gorithm [7]. The ideal algorithm may be specified without
introducing any unnecessary sequentiality by using maxi-
mally concurrent objects, i.e., actors. In practice, limitations
on computation and communication resources in practical
architectures make implementations of a parallel algorithm
use only part of all available parallelism in the ideal ver-
sion of the algorithm. In particular, how the computation
and the data are placed determines which potentially paral-
lel operations in an algorithm may be executed sequentially.
As a result, different placement policies lead to different
performance.

In this paper we study the impact of computation and data
placement on the execution efficiency of irregular problems,

*The first author was at the Open Systems Laboratory, University of
llinois Urbana-Champaign when the work related to the paper was done.

1063-7133/96 $5.00 © 1996 IEEE
Proceedings of IPPS ’96

W. Kim and G. A. Agha
Open Systems Laboratory

University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Email: { wooyoung | agha}@cs.uiuc.edu

857

i.e., problems where the placement of subcomputations and
their communication topologies are dynamic, We adopt a
programming methodology which uses fine-grained com-
putation, asynchronous communication and dynamic object
creation [14]). Such a methodology enables programmers
to compose different partitioning and distribution strategies
(PDS’s) with ideal algorithms for better performance. A
PDS which is defined for a particular data structure or an
algorithm may be reused with different parallel algorithms.
We have implemented several irregular problems with dif-
ferent communication and computation characteristics and
composed them with different partitioning strategies. These
implementations have been evaluated through measurement
taken on a CM-5. We present the evaluation results as well
as what we have learned from the implementations.

2 Background

Most of the previous work in specifying and optimizing
placement of data in parallel programs has been based on
extensions of sequential languages. In particular, Fortran-D
[5] and High Performance Fortran (HPF) [11] allow explicit
specification of data decomposition and distributionpolicies
for regular problems to improve execution efficiency on dis-
tributed memory multicomputers. For irregular problems,
such g priori determination of the necessary data distribu-
tion is not feasible. To address this problem in some limited
cases, PARTI [4] and Kali [10] transform a user-defined
for loop to an inspector/executor pair. In these languages
the compiler assumes the entire responsibility to uncover
concurrency characteristics. In many regular problems us-
ing dense matrices, compiler tools may exploit most of the
useful parallelism. However, an unaided compiler may be
less successful in more general cases.

Because specifying a parallel algorithm in terms of actors
does not introduce unnecessary sequentiality we use Actors
as our computational model of concurrency [1]. Actors en-
capsulate data, procedures and a thread of control. Each
actor has a mail address and a behavior. Mail addresses

may be communicated, thereby providing a dynamic com-
munication topology. In response to a communication, an
actor may: (3) asynchronously send a message to a specified
actor, (iz) create an actor with the specified behavior, and
(¢47) change its local state.

These basic actor primitives are supported as primitives
in THAL. THAL is a descendent of HAL [6, 2, 3] and
tailored for high-performance execution on stock-hardware
distributed memory multicomputers, such as the CM-5. It
extends create primitive to take an additional location
argument to provide programmers with control over actor
placement. In addition, migration for dynamic actor reloca-
tion is supported at the language level. A program written
using the high-level actor abstraction is translated into a
set of C programs. Since a C compiler may optimize the
sequential intra-method computation, the compile-time op-
timizations of the THAL compiler concentrate on improving
concurrent inter-method execution. In particular, the THAL
compiler restores profitable concurrency that may be lost
by some high-level language constructs [2]. Additional effi-
ciency is supported by the runtime kernel [9] which provides
a fast communication layer implemented using the CMAM
[151. Despite the flexibility and support for dynamic com-
putations, its performance on dense, regular problems is
competitive with more restrictive, static languages [9].

3 Methodology

Fine-grained specification of parallel algorithms provides
maximal flexibility in distributing the workload. THAL pro-
grams may exploit this flexibility to compose a parallel algo-
rithm with different PDS’s [14]. The PDS’s themselves are
designed for specific data structures or program structures.
For example, more than one PDS’s may be designed for a
binary tree data structure. There are a number of algorithms
which explicitly or implicitly construct the binary tree data
structure and these algorithms may be composed with such
PDS’s. Varying the PDS composed with an algorithm is
often critical in assuring optimal performance. First, the
differences in the communication and computation require-
ments of different architectures make one PDS better suited
than another. Second, the choice of a PDS may be affected
by the input. For example, a PDS for a parallel algorithm
that results in a very unbalanced binary tree may be differ-
ent from that for an algorithm generating a balanced binary
tree. Figure 1 shows how the separate specification of PDS
and ideal algorithm may be combined. The glue code spec-
ifies details such as which algorithm behavior matches with
which PDS behavior. This separate specification promotes
modularity, portability and reusability [14]. Figure 2 gives
the block diagram of the system used for our experiments.
An ideal algorithm composed with a PDS using some glue
code is translated to a single THAL program. The pro-

PDS Specification

Glue code for matching
PDS with ideal algorithm

Ideal Algorithm
Specification

Figure 1. Composing a PDS with an ideal al-
gorithm Specification

C___Pbs > deal Algorithm

| source-to-source translation |

(]
(THAL Compiler |

[]

[Actor Runtime Kernel]

5

CM-5

Figure 2. A Block diagram of the system.

gram is compiled to the code for the actor run-time kernel
and executed on a CM-5. Below, we present details of our
experiments and the measurements taken on a CM-5.

4 Irregular Problems Based on Tree Struc-
ture

There are a number of tree-based problems including
problems solved using divide and conquer strategy and prob-
lems based on a search tree. In our experiment we used a
problem generating a binary tree structure with the following
PDS’s:

Subtree-subcube (SS) PDS assumes the given architec-
ture can be recursively divided into subcubes; it recur-
sively divides the binary tree into subtrees and maps
the subtrees onto subcubes. Specifically, if the num-
ber of processors P available to be a power of two,
the subtree-subcube PDS divides the given tree into P
subtrees and maps a complete subtree to each proces-
sor. This PDS results in low communication overhead
but may cause load imbalance if the load depends on
the size of a subtree and if the sizes of the subtrees
mapped to different processors are significantly dif-
ferent.

Subtree-subcube-Ib (SS-1b) PDS divides the tree structure
into n small subtrees where n is significantly larger
than the number of processors. These subtrees are uni-
formly allocated to the processors. Since the chances
of one processor getting a large subtree are reduced,

Subtres-suboube

PE1L

P2 PE3

Less Communication Overhead
Less Load Balance

Subtree-Subcube PDS (PDS SS)

Subeubs-to-Subtree-ib

More Communication Overhead
More Load Balance

Modified Subtree-subcube PDS (PDS SS-1b)

Figure 3. PDS’s for the Binary Tree Structure

this strategy results in better load balance character-
istics but higher communication overhead than the
subtree-subcube PDS described above.

The algorithm we implemented computes the sum of
elements available at each node of the tree (similar to the
summation of leaves of a binary tree described in [12]). The
values being summed are arrays of floating point numbers.
The tree is generated as a search tree formed by inserting
nodes containing a key. By assigning random values with
different distributions to the keys, it is possible to change the
structure of the tree in a controlled fashion thereby allowing
changes to the load distribution. In our implementation, the
keys were selected from arange [0:10000] and the root node
was always given the key 5000. If the keys are uniformly
distributed in the range [0:10000] the tree is expected to
be approximately balanced. On the other hand, if the keys
are distributed so that 66% of the values fall in the range
[0:5000] and the remaining fall in the range [5000:10000]
an unbalanced tree is generated with approximately twice
the number of nodes in the left subtree as in the right subtree.

Results were obtained for a binary tree of 256 nodes and
1024 nodes, performing the summation where each node
stored an array of 400 elements. Figure 4 gives the speedup
obtained when the tree is approximately balanced. Note
that for the small number of nodes (256 nodes) the imbal-
ance caused by the randomness of the subtrees is significant
and therefore the subtree-subcube-1b PDS performs better in
most of the range. For larger trees (1024 nodes) the effect of

859

Time Time

PEs 256 Nodes 1024 Nodes

SS 5S-1b SS SS-1b
1 0.159 | 0.159 | 0.638 | 0.634
2 0.080 | 0.099 | 0.321 | 0444
4 0.073 | 0.060 { 0.257 | 0.277
8 0.054 | 0.037 | 0.217 | 0.289
16 0.030 | 0.032 | 0.196 | 0.234
32 0.023 | 0.023 | 0.143 | 0.103

Table 1. Timing results (in seconds) for Tree
Summation (balanced tree).

Time Time

PEs 256 nodes 1024 nodes

SS SS-1b SS SS-1b
1 0.159 | 0.157 | 0.639 | 0.634
2 0.111 | 0.091 | 0.446 | 0.429
4 0.085 | 0.070 | 0396 | 0.246
8 0.062 | 0.042 | 0330 | 0.225
16 0.056 | 0.034 | 0.184 | 0.159
32 0.046 | 0.025 | 0.161 | 0.106

Table 2. Timing resuits (in seconds) for Tree
Summation (unbalanced tree).

the randomness of the tree is minimized resulting in a better
balance in the size of the subtrees. As a result, the overhead
caused by the subtree-subcube-1b PDS does not offset the
load balance offered. On the other hand, the Figure 5 gives
the speedup obtained when the binary tree is unbalanced
such that the the size of the subtree to the left of the root
node is 70% of the total subtree. As a result, for both smail
(256 nodes) and large (1024 nodes) trees the performance
of the subtree-subcube-1b PDS is better than the subiree-
subcube PDS irrespective of the machine size. It can also
be seen that as the number of processors increases the rel-
ative performance of the subtree-subcube-1b PDS improves
as compared to subtree-subcube PDS.

5 Irregular Problems based on Master
Worker Structure

In the master worker configuration a master actor dis-
tributes the work among several worker actors. The workers
may interact with the master or simply return the results
when they are done. Performance results for two problems
based on such a structure are discussed below, i.e., adaptive
quadrature and the grid problem.

——TreTTYrT

subcube-subtree —e—
subcube-subtree-lb »— |

8 |
g sl .
3
o o4t -
2 F 4
0 2 " 1 P—
1 10
Processors
256 Nodes
10 ey r
subcube-subtree —e—
sl subcube-subtree-lb »— |
g 6f 1
g
o 4F 4
2 - -
0 1
1 10
Processors
1024 Nodes

Figure 4. Speedup of Tree Summation (bal-
anced tree)

5.1 Adaptive Quadrature

Integration algorithms can be implemented in parallel
using a master worker configuration such that the given in-
terval is divided into subintervals with each interval passed
to a worker. The workers perform the integration in their
subintervals in parallel and return the values to the master
where they are combined to obtained the final result. Adap-
tive integration techniques [8] vary the step size used for
the integration in a region based on the local error estimate.
Thus the work available for each worker may dynamically
increase as the computation proceeds. We allow the work-
ers to create new workers, thereby dynamically changing
the number of workers and keeping constant the amount of
work allocated to each worker. A worker that decides to de-
crease its step size by a constant factor (assumed an integer
K) divides its local interval by the factor K and creates new
workers to handle the extra subintervals.

In the experiment the following function is integrated in
the interval from O to 107.

f(z):{cl 0<z<57

| easin(esz) + ¢ | Sr<z<10w
Note that the function is such that it requires a coarse grid

860

10

Ty —
subcube-subtree ~e—
8l subcube-subtree-lb s¢— |
g 6F +
3
2
a4 F E
2 .
o MEPRTArS - S
1 10
Processors
256 Nodes
10 T
subcube-subtree -—
sl subcube-subtree-ib -»— _{
e 6} .
H
[o B
2F E
0 I}
1 10
Processors
1024 Nodes

Figure 5. Speedup of Tree Summation (unbal-
anced tree)

size for integration in some subintervals and a much finer
grid size in other subintervals. The value of all the constants
c; isequal to 1000. The initial grid size is 0.001 and the error
bound is 10~5. The number of worker actors created was
32. The interval was initially divided into 32 subintervals
each given to a worker actor. The total number of workers
created dynamically during the computation was 10.

There are two different partitioning strategies involved
in this implementation: a static partitioning strategy that
governs the placement of initial workers and a dynamic par-
titioning strategy that decides the placement of new workers
to be created as the load changes. The performance results
of an implementation that uses only the static placement
strategy is compared with an implementation that also al-
lows dynamic placement. The dynamic placement of all
such new workers is determined by a centralized actor. It
may seem that such a centralized placement strategy may
result in a bottleneck but actual implementation results show
an improvement in performance for the problem and archi-
tecture sizes considered (see Table 3 and Figure 6). For all
machine sizes considered, the performance obtained with
DLB is better than that obtained without DLB.

PEs Time Time
Without DLB | With DLB
1 0.963 0.963
2 0.867 0.867
4 0.435 0.386
8 0.211 0.169
16 0.146 0.122
32 0.073 0.051

Table 3. Timing results (in seconds) for Adap-
tive Quadrature Algorithm.

M T
Without DLB
With DLB

1 10
Processors

Figure 6. Speedup of Parailel
Quadrature Implementation

Adaptive

5.2 Unstructured Grid Problem

The unstructured grid problem [12, 13] solves a set of
differential equations for a given input domain with adap-
tive refinement of the grid used for solving the equations.
The problem can be modeled using the same master worker
configuration used in the adaptive quadrature problem. The
differences between the structures of the two problems are
that the workers in the unstructured grid problem commu-
nicate with each other and that the values computed for
each grid point are stored and reused in further iterations.
Since the workers communicate with each other, their rela-
tive placement may affect performance. As with the adaptive
quadrature algorithm, the grid size is refined in certain re-
gions of the domain where the error is high. Hence, two
placement strategies are combined to provide good perfor-
mance: a static placement strategy which decides the initial
placement of the workers and a dynamic placement strategy
which decides the placement of the workers created dynam-
ically as the computation proceeds.

We created 32 workers in the THAL implementation of
the irregular grid solution of the heat equation in one dimen-

861

sion, The initial grid was divided into 32 equal parts and
given to one actor each. Initially each actor processed 512
grid points. As the computation proceeds two of the workers
refine their grid, dividing their interval into four subintervals
and reducing their grid size by a factor of four. They cre-
ate four new workers each for processing the new workload
created. The placement of these new workers is decided
randomly. The timing results show that even with a ran-
dom dynamic placement strategy the performance is better
than that obtained from a strategy that does not dynamically
modulate the load imbalance created as the computation
proceeds (see Table 4 and Figure 7).

PEs Time Time
Without DLB | With DLB
1 1.117 1.118
2 0.584 0.593
4 0.343 0.341
8 0231 0.189
16 0.181 0.131
32 0.154 0.093

Table 4. Timing results (in seconds) for Irreg-
ular Grid Probiem

Without DLB -o—]
With DLB -, |

Speedup

1 10
Processors

Figure 7. Speedup of Parallel Implementation
of Irregular Grid Problem

6 Discussion

In this paper we have presented our implementation
methodology for irregular problems and the performance
results of three irregular applications with different PDS’s.
The separate specification of a PDS and an ideal algorithm
promotes modularity and allowed us to reuse the algorithm

specification throughout the experiments. By using fine-
grained computation i.e., actors in the algorithm specifi-
cation, we were able to naturally express the useful con-
currency characteristics existing in the problems. All the
problems implemented had load that changes with the pro-
gram execution. The results showed that the use of dynamic
load balancing improved performance.

Acknowledgments

The research has been made possible by support from the
Office of Naval Research (ONR contract number N00014-
93-1-0273), by an Incentives for Excellence Award from the
Digital Equipment Corporation Faculty Program, and by
joint support from the Defense Advanced Research Projects
Agency and the National Science Foundation (NSF CCR
90-07195 and NSF CCR-9312495).

We would like to acknowledge Dan Sturman for his care-
ful review of the draft of this paper. We also thank the UTUC
NCSA for use of their CM-5 machine.

References

[11 G. Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. MIT Press, 1986.

G. Agha, C. Houck, and R. Panwar. Distributed Execution
of Actor Systems. In D. Gelemter, T. Gross, A. Nicolau,
and D. Padua, editors, Languagesand Compilers for Parallel
Computing, pages 1-17. Springer-Verlag, 1992. LNCS 589.

[2]

[3] G. Agha, W. Kim, and R. Panwar. Actor languages for speci-
fication of parallel computations. In G. E. Blelloch, K. Mani
Chandy, and S. Jagannathan, editors, DIMACS. Series in Dis-
crete Mathematics and Theoretical Computer Science. vol 18.
Specification of Parallel Algorithms, pages 239-258. Amer-

ican Mathematical Society, 1994.

[4] R. Das, R. Ponnusamy, J. Saltz, and D. Mavriplis. Dis-
tributed Memory Compiler Methods for Irregular Problems -
Data Copy Reuse and Runtime Partitioning. In J. Saltz and
P. Mehrotra, editors, Languages, Compilers and Run-Time
Environments for Distributed Memory Machines. Elsevier

Science Publishers, 1992.

[5] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling
Fortran-D for MIMD Distributed Memory Machines. Com-

munications of the ACM, 35(8):66—80, August 1992.

C. Houck and G. Agha. HAL: A high-level actor language
and its distributed implementation. In Proceedings of the 21 st
International Conference on Parallel Processing (ICPP °92),
volume II, pages 158-165, St. Charles, IL, August 1992,

{61

[7]1 L. H. Jamieson. Characterizing parallel algorithms. In
R. 1. Douglass L.H. Jamieson, D.B. Gannon, editor, The
Characteristics of Parallel Algorithms, pages 65-100. MIT

Press, 1987.

862

[8] D.Kahaner, C. Moler, and S. Nash. Numerical Methods and
Software. Prentice Hall, 1989.

W. Kim and G. Agha. Efficient Support of Location Trans-
parency in Concurrent Object-Oriented Programming Lan-
guages. In Supercomputing '95, 1995.

C. Koelbel and P. Mehrotra. Compiling Global Name-space
Parallel loops for Distributed Execution. IEEE Transactions
on Parallel and Distributed Systems, 2(4):440-451, 1991.

David. B. Loveman. High Perférmance Fortran. Parallel &
Distributed Technology,Systems & Applications, 1(1):25-42,
February 1993.

K. Mani Chandy and Stephen Taylor. An Introduction to
Parallel Programming. Jones and Bartlett Publishers, Boston,
1992.

P. Mehrotra, J. Saltz, and R. Voigt, editors. Unstructured
Scientific Computation on Scalable Multiprocessors. MIT
Press, 1992.

R. Panwar and G. Agha. A Methodology for Programming
Scalable Architectures. Journal of Parallel and Distributed
Computing, 22(3):479-487, September 1994.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: a Mechanism for Integrated
Communication and Computation. In Proceedings of Inter-
national Symposium of Computer Architectures, pages 256—
266, 1992.

9]

(10]

[11]

[12]

[13]

[14]

[15]

