
Efficient Decentralized Monitoring of Safety in
Distributed Systems1

Koushik Sen, Abhay Vardhan, Gul Agha, Grigore Roşu
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We describe an efficient decentralized algorithm to monitor the execution of a distributed program

in order to check for violations of safety properties. The monitoring is based on formulas written
in PT-DTL, a variant of past time linear temporal logic that we define. PT-DTL is suitable for
expressing temporal properties of distributed systems. Specifically, the formulas of PT-DTL are

relative to a particular process and are interpreted over a projection of the trace of global states
that represents what that process is aware of. A formula relative to one process may refer to

the local states of other processes through remote expressions and remote formulas. In order to
correctly evaluate remote expressions, we introduce the notion of knowledge vector and provide
an algorithm which keeps a process aware of other processes’ local states, if those states may

affect the validity of a monitored PT-DTL formula. Both the logic and the monitoring algorithm
are illustrated through a number of examples. Finally, we describe our implementation of the
algorithm in a tool called DIANA.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; D.2.5 [Soft-
ware Engineering]: Testing and Debugging

General Terms: Verification
Additional Key Words and Phrases: Actors, Distributed systems, Decentralized analysis, Runtime

monitoring, Happens-before relation, Knowledge vector, Vector clock.

1. INTRODUCTION

Software errors arise from a number of different problems, such as incorrect or incomplete
specifications, coding errors, and faults and failures in the hardware, operating system or
network. Model checking [E. M. Clarke et al. 1999] is an important technology which is
finding increasing use as a means of reducing software errors. Unfortunately, despite im-
pressive recent advances, the size of systems for which model checking is feasible remains
rather limited. This weakness is particularly critical in the context of distributed systems:
concurrency and asynchrony result in inherent non-determinism that significantly increases
the number of states to be analyzed. As a result, most system builders continue to use test-
ing as the major means to identify bugs in their implementations.

There are, however, two problems with software testing. First, testing is generally done
in an ad hocmanner: the software developer must hand translate the requirements into
specific dynamic checks on the program state. Second, test coverage is often rather limited,
covering only some execution paths. To mitigate the first problem, software often includes
dynamic checks on a system’s state in order to identify problems at run-time. Recently,
there has been some interest in run-time verification and monitoring [Havelund and Roşu

1Part of the work reported in this paper was presented at the26th International Conference on Software
Engineering (ICSE’04) [Sen et al. 2004a].
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2004; Sokolsky and Viswanathan 2003] techniques, which provide a little more rigor in
testing by automatically synthesizing monitors from formal specifications. These monitors
may then be deployed off-line for debugging or on-line for dynamically checking that
safety properties are not being violated during system execution.

Unfortunately, testing or runtime monitoring of distributed systems involves consider-
able overhead: for every event (sending of a message, receiving of a message, or a local
state update), each process sends a message about the event to a central monitor. The cen-
tral monitor constructs and analyzes a computation lattice[Babaŏglu and Marzullo 1993]
of the global states out of the collected events. Passing messages to a central monitor at
every event and constructing a global computation lattice,which can be exponential in size
in the number of events, leads to severe communication and computation overhead. In the
present work, we argue that distributed systems may be effectively monitored at runtime
against formally specified safety requirements bydistributing the task of monitoringamong
the processes involved in the distributed computation. By effective monitoring, we mean
not only linear efficiency, but also decentralized monitoring where few or no additional
messages need to be passed for monitoring purposes.

We introduce an epistemic temporal logic for distributed knowledge and illustrate the
expressiveness of this logic by means of several examples. We then show how efficient
distributed monitors can automatically be synthesized from requirements specified in this
logic. Finally, we present a software system implementing the proposed techniques, as a
development and monitoring framework for distributed systems applications, called DI-
ANA. To use DIANA, a user must provide an application together with the formalsafety
properties that he or she wants monitored. DIANA automatically synthesizes code for
monitoring the specified requirements and weaves appropriate instrumentation code into
the given application. As soon as a safety violation is revealed by any of the local monitors
at runtime, user-provided recovery code can be executed; that code is intended to bring the
system back to a safe state by, for example, rebooting it or releasing its resources.

The work presented in this paper was stimulated by the observation that, in distributed
systems, it is generally impractical to monitor requirements expressed in classical temporal
logics. For example, consider a system of mobile nodes in which one mobile node may
request a certain value from another node. On receiving the request, the second node
computes the value and returns it. An important requirementin such a system is that
no node receives a reply from a node to which it has not previously issued a request. It
is easy to see that Linear Temporal Logic (LTL) would not be a practical specification
language for any reasonably sized collection of nodes. To use LTL, we would need to
collect consistent snapshots of the global system; a central monitor would then check the
snapshots for possible violations of the property by considering all possible interleavings of
events that are allowed by the distributed computation. In asystem of thousands of nodes,
collecting such a global snapshots would be prohibitive. Moreover, the number of possible
interleavings to be considered would be large even if powerful techniques such as partial
order reduction are used. To address the above difficulty, wedefinepast-time distributed
temporal logic(PT-DTL). Using PT-DTL, one can check/monitor a global property such
as the one above by checking/monitoring a local property at each node.

The work presented in this paper brings at least three major contributions. First, we
define a simple but expressive logic to specify safety properties in distributed systems.
Second, we provide an algorithm to synthesize decentralized monitors for safety properties
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that are expressed in the logic. Finally, we describe the implementation of a tool (DIANA)
that is based on this technique.

The paper is organized as follows. Section 2 gives some motivating examples and in-
formally introducesPT-DTL. Section 3 and Section 4 give the preliminaries. Section 5
formally introducesPT-DTL. In Section 6, we describe the algorithm that underliesour
implementation. Section 7 briefly describes the implementation along with initial experi-
mentation.

2. MOTIVATING EXAMPLES

Let us assume an environment in which a nodea may send a message to a nodeb requesting
a certain value. The nodeb, on receiving the request, computes the value and sends it back
to a. There can be many such nodes, any pair can be involved in sucha transaction, but
suppose that a crucial property to enforce is that no node receives a reply from another
node to which it had not issued a request earlier. One can check this global property by
having one local monitor on each node, which monitors a single property. For example,
nodea monitors “if a has received a value then it must be the case that previously in the
past atb the following held:b has computed the value and ata a request was made for that
value in the past”. This is precisely and concisely expressed by thePT-DTL formula:

@a(receivedValue→ @b(♦· (computedValue ∧@a(♦· requestedValue))))

Note that we read@ as “at”,@bF is the value ofF in the most recent local state ofb that
the current process is aware of, and♦· denotes the formula was true sometime in the past.
Like in [Sen et al. 2004b],@ is allowed to take any set of processes as a subscript together
with a universal or an existential quantifier; therefore,@b becomes “syntactic sugar” for
@∀{b} (or for @∃{b}). Monitoring the above formula involves sending no additional mes-
sages – it involves inserting only a few bits of information which are piggybacked on the
messages that are already being passed in the computation. This efficiency provides a sub-
stantial improvement over what is required to monitor formulas written in classical LTL.

Moreover, we introduceremote expressionsin PT-DTL to refer to numerical values
depending on the state of a remote process. For example, a processa may monitor the
property: “if my alarm has been set then it must be the case that the difference between my
temperature and the temperature at processb exceeded the allowed value”:

@a(alarm→ ♦· ((myTemp−@botherTemp) > allowed))

@botherTemp is a remote expression that is subtracted from the local value ofmyTemp.
An example of a safety property that may be useful in the context of an airplane software

is: “if my airplane is landing then the runway allocated by the airport matches the one that
I am planning to use”. This property may be expressed inPT-DTL as follows:

@airplane(landing→ (runway = (@airportallocRunway)))

Another example considers monitoring a correctness requirement in a leader-election
algorithm. The key requirement for leader election is that there is at-most one leader.
If there are 3 processes, saya, b, c, andstate is a variable in each process that can have
valuesleader, loser, candidate, sleep, then we can write the property at every process
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as: “if a leader is elected then if the current process is a leader then, to its knowledge, none
of the other processes is a leader”. We can formalize this requirement as the following
PT-DTL formula at processa:

@a(leaderElected→
(state = leader→ (@b(state 6= leader) ∧@c(state 6= leader)))

We can write similar formulas with respect tob andc. Given an implementation of the
leader election problem, one can monitor each formula locally, at every process. If violated
then clearly the leader election implementation is incorrect.

Note that the above formula assumes that the name of every process involved in leader
election is known a priori. Moreover, the size of the formuladepends on the number of
processes. In a distributed system involving a large numberof processes, writing such
a large formula may be impractical. The problem becomes evenmore important in an
evolvingdistributed system (new processes are created and destroyed dynamically) where
one may not know the name of processes beforehand. To alleviate this difficulty, as already
mentioned, we use a set of indices instead of a single index inthe operator@. The set of
indices denoting a set of processes can be represented compactly by a predicate on indices.
For example, in the above formula, instead of referring to each process by its name, we can
refer to the set of all remote processes by the predicatej 6= i and use this set as a subscript
to the operator@:

@i(leaderElected→ (state = leader→ @∀{j|j 6=i}(state 6= leader)))

3. DISTRIBUTED SYSTEMS

A distributed system is a collection ofn processes(p1, . . . , pn), each with its own local
state. The local state of a process is given by the values bound to its variables. Note
that there are no global or shared variables. Processes communicate with each other using
asynchronous messages whose order of arrival is indeterminate. The computation of each
process is abstractly modelled by a set ofevents, and a distributed computation is specified
by a partial order≺ on the events. There are three types of events:

(1) internalevents change the local state of a process;

(2) sendevents occur when a process sends a message to another process; and

(3) receiveevents occur when a message is received by a process.

Let Ei denote the set of events of processpi and letE denote
⋃

i Ei. Now,⋖ ⊆ E × E is
defined as follows:

(1) e ⋖ e′ if e ande′ are events of the same process ande happens immediately beforee′,

(2) e ⋖ e′ if e is the send event of a message at some process ande′ is the corresponding
receive event of the message at the recipient process.

The partial order≺ is the transitive closure of the relation⋖. This partial order captures
thecausalityrelation between events. The structure described byC = (E,≺) is called a
distributed computationand we assume an arbitrary but given distributed computation C.
Further,4 is the reflexive and transitive closure of⋖.

As an illustration, in Fig. 1,e11 ≺ e23, e12 ≺ e23, ande11 ⋖ e23. However,e12 6⋖e23.
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Fig. 1. Sample Distributed Computation

For e ∈ E, we define↓e
def
= {e′ | e′ 4 e}, that is,↓e is the set of events that causally

precedee. Fore ∈ Ei, we can think of↓e as the local state ofpi when the evente has just
occurred. This state contains the history of events of all processes that causally precedee.

We extend the definition of⋖, ≺ and4 to local states such that↓e ⋖ ↓e′ iff e ⋖ e′,
↓e ≺ ↓e′ iff e ≺ e′, and↓e 4 ↓e′ iff e 4 e′. We denote the set of local states of a process

pi by LSi
def
= {↓e | e ∈ Ei} and letLS

def
=

⋃
i LSi. We use the symbolssi, s

′
i, s

′′
i , . . .

to represent the local states of processpi. We also assume that the local statesi of each
processpi associates values to some local variablesVi, and thatsi(v) denotes the value of
a variablev ∈ Vi in the local statesi at processpi.

We use the notation@j(si) to refer to the latest state of processpj that the processpi

knows while in statesi. Formally, if @j(si) = sj thensj ∈ LSj andsj 4 si and for all
s′j ∈ LSj if s′j 4 si thens′j 4 sj . For example, in Figure 1@1(↓e23) = ↓e12. Note that if
i = j then@j(si) = si.

4. PAST TIME LINEAR TEMPORAL LOGIC (PT-LTL)

Past-time Linear Temporal Logic (PT-LTL) [Manna and Pnueli 1992; 1995] has been used
in [Havelund and Roşu 2002; Kim et al. 2001; Sen et al. 2003] to express, monitor and
predict violations of safety properties of software systems. The syntax ofPT-LTL is:

F ::= true | false | a ∈ A | ¬F | F op F propositional
| ⊙F | ♦· F | ⊡F | F S F temporal

whereop are standard binary operators,∧, ∨,→, and↔. ⊙F should be read as “previ-
ously”, ♦· F as “eventually in the past”,⊡F as “always in the past”,F1SF2 as “F1 since
F2”. The logic is interpreted on a finite sequence of states or arun. If ρ = s1s2 . . . sn

is a run then we letρi denote the prefix runs1s2 . . . si for each1 ≤ i ≤ n. The
semantics of the different operators is given in Table I. Forexample, the formula
⊡((action ∧ ⊙¬action) → (¬stop S start)) states that wheneveraction starts
to be true, it is the case thatstart was true at some point in the past and since thenstop
was never true: in other words, the action is taken only whilethe system is active. Notice
that the semantics of “previously” is given as if the trace isunbounded in the past and sta-
tionary in the first event. In runtime monitoring, we start the process of monitoring from
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ρ |= true for all ρ,
ρ 6|= false for all ρ,
ρ |= a iff a holds in the statesn,
ρ |= ¬F iff ρ 6|= F ,
ρ |= F1 op F2 iff ρ |= F1 and/or/implies/iffρ |= F2, whenop is∧/ ∨ /→ /↔,
ρ |= ⊙F iff ρ′ |= F , whereρ′ = ρn−1 if n > 1 andρ′ = ρ if n = 1,
ρ |= ♦· F iff ρi |= F for some1 ≤ i ≤ n,
ρ |= ⊡F iff ρi |= F for all 1 ≤ i ≤ n,
ρ |= F1 S F2 iff ρj |= F2 for some1 ≤ j ≤ n andρi |= F1 for all j < i ≤ n,

Table I. Semantics ofPT-LTL

the point that the first event is generated and we continue monitoring for as long as events
are generated.

Although PT-LTL is interpreted over a linear execution trace, in distributed systems a
computation is a partial order which may have several possible linearizations. Therefore,
monitoring a distributed computation requires monitoringall possible linear traces that
may be obtained from a partial order. Unfortunately, the number of linearizations of a
partial order may be exponential in the length of the computation and thus monitoring
a PT-LTL formula may become easily intractable. A major contribution of this paper
is to extendPT-LTL so that we can reason about a distributed property usingonly local
monitoring. We describe this extension next.

5. PAST TIME DISTRIBUTED TEMPORAL LOGIC

AlthoughPT-LTL works well for a single process, once we have more processes interacting
with each other we need to reason about the state of remote processes. Since practical
distributed systems are usually asynchronous and the absolute global state of the system
is not available to processes, the best thing that each process cando it to reason about the
global state that it isis aware of.

We define Past-Time Distributed Temporal Logic (PT-DTL) by extendingPT-LTL to
express safety properties of distributed message passing systems. Specifically, we add a
pair of epistemic operatorsas in [Ramanujam 1996], written@, whose role is to evaluate
an expression or a formula in thelast known stateof a set of remote processes. We call such
an expression or a formularemote. A remote expression or formula may contain nested
epistemic operators and refer to variables that are local toa remote process. By using
remote expressions, in addition to remote formulas, a larger class of desirable properties of
distributed systems may be specified without sacrificing theefficiency of monitoring.

For example, consider the simple local property at a processpi that if α is true in the
current local state ofpi thenβ must be true at the latest state of processpj of which pi is
aware of. This property will be written formally inPT-DTL as@i(α → @jβ). However,
referring to remote formulas only isnotsufficient to express a broad range of useful global
properties such as “at processpi, the value ofx in the current state is greater than the value
of y at processpj in the latest causally preceding state.” The reason we introduce the novel
epistemic operators on expressions is that it is crucial to be able to also refer tovalues
of expressions in remote local states. For example, the property above can be formally
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specified as thePT-DTL formula @i(x > @jy) at processpi where@jy is the value ofy
at processpj thatpi is aware of.

The intuition underlyingPT-DTL is that each process is associated with local temporal
formulas which may refer to the global state of the distributed system. These formulas
are required to be valid at the respective processes during adistributed computation. A
distributed computation satisfies the specification when all the local formulas are shown to
satisfy the computation.

5.1 Syntax

From now on, we will only considerPT-DTL formulas associated to, orlocal to, individual
processes. We call such formulas associated to processpi i-formulasand letFi, F

′
i , . . .

denote them. Further, we introducei-expressionsas expressions that are local to a process
pi and letξi, ξ

′
i, . . . denote them. Informally, ani-expression is an expression over the

global state of the system that processpi is currently aware of. Local predicates oni-
expressions form the atomic propositions on which the temporal i-formulas are built.

We add theepistemic operators@∀JFj and @∃JFj which is true if at all (or some,
respectively) processesj in the setJ , Fj holds. Similarly, we add the epistemic operator
@Jξj which returns the set ofj-expressionsξj for all processesj in the setJ . The sets
J can be expressed compactly using predicates overj. For example,J can be the sets
{j | j 6= a} or {j | client(j)}. The following gives the formal syntax ofPT-DTL, where
i andj are names of any process (not necessarily distinct):

F ::= @iFi

Fi ::= true | false | P (~ξi) | ¬Fi | Fi op Fi propositional
| ⊙Fi | ♦· Fi | ⊡Fi | Fi S Fi temporal
| @∀JFj | @∃JFj epistemic

ξi ::= c | vi | f(~ξi) functional
| @Jξj epistemic

~ξi ::= (ξi, . . . , ξi)

A top-level PT-DTL formula F is always of the form@iFi implying that it is always
specified local to a process. The infix operatorop may be a binary propositional operator
such as∧,∨,→ or≡. The term~ξi stands for a tuple of expressions on processpi. The term
P (~ξi) is a (computable) predicate over the tuple~ξi andf(~ξi) is a (computable) function
over the tuple. For example,P may be<,≤, >,≥,= andf may be+,−, /, ∗. Variables
vi belongs to the setVi which contains all the local state variables of processpi. Constants
such as0, 1, 3.14 are represented byc, c′, c1, . . ..

The expression@jξj is syntactic sugar forelem(@{j}ξj), where the functionelem takes
a set containing a single expression and returns that expression. Similarly,@jFj is syntac-
tic sugar for either@∀{j}Fj or @∃{j}Fj (they are equivalent).

5.2 Semantics

The semantics ofPT-DTL is a natural extension ofPT-LTL with the intuitive behavior for
the epistemic operators. The atomic propositions ofPT-LTL are replaced by predicates
over tuples of expressions. Table II formally gives the semantics of each operator ofPT-
DTL. (C, si)[[@Jξj ]] is the set of values of the expressionξj in the statesj = @j(si) which
is the latest state of processpj for eachj ∈ J of which processpi is aware of. We assume

ACM Journal Name, Vol. V, No. N, October 2004.



8 · Koushik Sen, Abhay Vardhan, Gul Agha, Grigore Roşu

that expressions are properly typed. Typically, these types could be:integer, real,
strings. We assume thatsi, s

′
i, s

′′
i , . . . ∈ LSi andsj , s

′
j , s

′′
j , . . . ∈ LSj . Notice that,

as inPT-LTL, the meaning of the “previously” operator on the initial state of each process
reflects the intuition that the execution trace is unboundedin the past andstationary.

C, si |= true for all si

C, si 6|= false for all si

C, si |= P (ξi, . . . , ξ
′
i) iff P ((C, si)[[ξi]], . . . , (C, si)[[ξ

′
i]]) = true

C, si |= ¬Fi iff C, si 6|= Fi

C, si |= Fi op F ′
i iff C, si |= Fi opC, si |= F ′

i

C, si |= ⊙Fi iff if ∃s′i . s′i ⋖ si thenC, s′i |= Fi elseC, si |= Fi

C, si |= ♦· Fi iff ∃s′i . s′i 4 si andC, s′i |= Fi

C, si |= ⊡Fi iff C, si |= Fi for all s′i 4 si

C, si |= Fi S F ′
i if ∃s′i . s′i 4 si andC, s′i |= F ′

i

and∀s′′i . s′i ≺ s′′i 4 si impliesC, s′′i |= Fi

C, si |= @∀JFj iff ∀j . (j ∈ J)→ C, sj |= Fj wheresj = @j(si)
C, si |= @∃JFj iff ∃j . (j ∈ J) ∧ C, sj |= Fj wheresj = @j(si)

(C, si)[[vi]] = si(vi), that is, the value ofvi in si

(C, si)[[ci]] = ci

(C, si)[[f(ξi, . . . , ξ
′
i)]] = f((C, si)[[ξi]], . . . , (C, si)[[ξ

′
i]])

(C, si)[[@Jξj ]] = {(C, sj)[[ξj ]] | sj = @j(si) ∧ j ∈ J}

Table II. Semantics ofPT-DTL

5.3 Examples

To illustratePT-DTL, we consider a few relatively simple examples. The firstexample
is concerned withmajority vote. The desired property, “if the resolution is accepted then
more than half of the processes say yes”, can be stated as:

@i(accepted→ sum(@{j| j is any process}(vote))) > n/2)

where a process stores1 in a local variablevote if it is in favor of the resolution, and0
otherwise;sum is a function that takes as argument a set of values and returns their sum.

A second example is a safety property that a server must satisfy in case it reboots itself:
“the server accepts the command to reboot only after knowingthat each client is inactive
and aware of the warning about pending reboot.” The propertyis expressed as theserver-
local formula below which contains nested epistemic operators:

rebootAccepted→
∧

client
(@client(inactive ∧@serverrebootWarning))
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6. MONITORING ALGORITHM FOR PT-DTL

We next describe a technique to automatically synthesize efficient distributed monitors
for safety properties of distributed systems expressed inPT-DTL. We assume that one or
more processes are associated withPT-DTL formulas that must be satisfied by the dis-
tributed computation. The synthesized monitor isdistributed, in the sense that it consists
of separate,local monitorsrunning on each process. A local monitor may attach additional
information to an outgoing message from the corresponding process. This information can
subsequently be extracted by the monitor on the receiving side without changing the un-
derlying semantics of the distributed program. The key guiding principles in the design of
this technique are as follows:

—A local monitor should be fast, so that monitoring can be doneonline;

—A local monitor should have little memory overhead, in particular, it shouldnot need to
store the entire history of events on a process; and

—The number of messages that need to be sent between processesfor the purpose of
monitoring should be minimal.

In this section, when we refer to a remote expression or formula we mean one which
occurs in any of the monitoredPT-DTL formulas.

6.1 Knowledge Vectors

Consider the problem of evaluating a remotej-expression@jξj at processpi. A naive
solution is that processpj simply piggybacks the value ofξj with every message that it
sends out. The recipient processpi can extract this value and use it as the value of@jξj .
However, this approach is problematic: recall that messages frompj could reachpi in an
arbitrary order: because the arrival order of two messages,even from the same sender,
is indeterminate, more recent values may be overwritten by older ones. To keep track of
the causal history, or in other words the most recent knowledge, we add an event number
corresponding to the local history sequence atpj at the time expressions were sent out in
messages. Stale information in a reordered message sequence is then simply discarded.

Causal ordering can be effectively accomplished by using anarray called KNOWL-
EDGEVECTOR with an entry for any processpi participating in the distributed computa-
tion. Knowledge vectors are motivated and inspired by vector clocks [Fidge 1988; Mattern
1989]. LetKV[j] denote the entry for processpj on a vectorKV. KV[j] contains the
following fields:

—The sequence number of the last event seen atpj , denoted byKV[j].seq ;

—A set of valuesKV[j].values storing the valuesj-expressions andj-formulas.

Each processpi keeps a local KNOWLEDGEVECTORdenoted byKVi. The monitor of
processpi attaches a copy ofKVi with every outgoing messagem. We denote the copy
by KVm. The algorithm for the update of KNOWLEDGEVECTORKVi at processpi is as
follows:

(1) [internal]: updateKVi[i]. Evaluateeval(ξi, si) and eval(Fi, si) (see Subsec-
tion 6.2) for each@Iξi and@∀IFi (or @∃IFi), respectively, and store them in the
setKVi[i].values;

(2) [send m]: KVi[i].seq ← KVi[i].seq + 1. SendKVi with m asKVm;
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C, si |= ♦· Fi = C, si |= Fi or (∃s′i . s′i ⋖ si andC, s′i |= ♦· Fi)
C, si |= ⊡Fi = C, si |= Fi and (∃s′i . s′i ⋖ si impliesC, s′i |= ⊡Fi)
C, si |= FiSF ′

i = C, si |= F ′
i or

(C, si |= Fi and∃s′i . s′i ⋖ si andC, s′i |= FiSF ′
i )

Table III. Recursive Semantics ofPT-DTL

(3) [receive m]: for all j, if KVm[j].seq > KVi[j].seq thenKVi[j]← KVm[j], that is,
KVi[j].seq ← KVm[j].seq ,
KVi[j].values ← KVm[j].values.

Evaluateeval(ξi, si) andeval(Fi, si) for each@Iξi and@∀IFi (or @∃IFi), respec-
tively, and store them in the setKVi[i].values .

We call this the KNOWLEDGEVECTORalgorithm. Informally,KVi[j].values contains
the latest values thatpi has forj-expressions orj-formulas. Therefore, for the value of a
remote expression or formula of the form@Jξj or @∀JFj (or @∃JFj), processpi can just
use the entry corresponding toξj or Fj in the setKVi[j].values . Note that the sequence
number needs to be incremented only when sending messages. The correctness of the
algorithm can be stated as the following proposition.

PROPOSITION 6.1. For any processpi and any j, the entry for ξj or Fj in
KVi[j].values contains the value of@jξj or @jFj , respectively.

The initial values for all the variables in a distributed program may be found either
by a static analysis of the program or by a distributed broadcast at the beginning of the
computation. Thus, it is assumed that each processpi has the complete knowledge of the
initial values of remote expressions for all processes. These values are used to initialize
the entriesKVi[j].values in the KNOWLEDGEVECTORof pi for all j.

6.2 Monitoring a Local PT-DTL Formula

The monitoring algorithm for aPT-DTL formula is similar in spirit to that for an ordinary
PT-LTL formula described in [Sen et al. 2003]. The key difference is that we allow remote
expressions and remote formulas whose values and validity,respectively, need to be trans-
ferred from the remote process to the current process. Once the KNOWLEDGEVECTOR is
properly updated, the local monitor can compute the booleanvalue of the formula to be
monitored, by recursively evaluating the boolean value of each of its subformulas in the
current state. To do so, it may also use the boolean values of subformulas evaluated in the
previous state and the values of remote expressions and remote formulas.

The functioneval is defined next.eval takes advantage of the recursive nature of the
temporal operators (see Table III) to calculate the booleanvalue of a formula in the current
state in terms of (a) its boolean value in the previous state and (b) the boolean value of its
subformulas in the current state. The functionop(Fi) returns the operator of the formula
Fi, binary(op(Fi)) returnstrue if op(Fi) is binary,unary(op(Fi)) returnstrue if op(Fi) is
unary,left(Fi) returns the left subformula ofFi, right(Fi) returns the right subformula of
Fi whenop(Fi) is binary, andsubformula(Fi) returns the subformula ofFi otherwise. The
variable index represents the index of a subformula.
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array now; array pre; int index;

boolean eval(Formula Fi,State si){

if binary(op(Fi)) then{

lval← eval(left(Fi), si);

rval← eval(right(Fi), si); }

else if unary(op(Fi)) then

val← eval(subformula(Fi), si);

index← 0;

case(op(Fi)) of{

true : return true; false : return false;

P (~ξi) : return P (eval(ξi, si), . . . , eval(ξ′i, si)));

op : return rval op lval; ¬ : return not val;

S : now[index]← (pre[index] and lval) or rval;

return now[index++];

⊡ : now[index]← pre[index] and val;

return now[index++];

♦· : now[index]← pre[index] or val;

return now[index++];

⊙ : now[index]← val; return pre[index++];

@∀JFj : return
∧

j∈J
Fj where value ofFj is looked up fromKVi[j].values ;

@∃JFj : return
∨

j∈J
Fj where value ofFj is looked up fromKVi[j].values ;

}

}

where the global arraypre contains the boolean values of all subformulas in the previous
state that will be required in the current state, while the global arraynow, after the evalua-
tion of eval, will contain the boolean values of all subformulas in the current state that may
be required in the next state. Note that thenowarray’s value is set in the functioneval. The
functionevalon expressions is defined next.

value eval(Expression ξi,State si){

case(ξi) of{

vi: return si(vi); ci: return ci;
f(ξ1

i , . . . , ξk
i ): return f(eval(ξ1

i , si), . . . , eval(ξk
i , si));

@Jξ′j : return {ξ′j | j ∈ J} where value ofξ′j is looked up fromKVi[j].values;
}

}

Note that the functioneval cannot be used to evaluate the boolean value of a formula at
the first event, as the recursion handles the casen = 1 in a different way. We define the
function init to handle this special case as implied by the semantics ofPT-DTL in Tables
II and III on one event traces.

boolean init(Formula Fi,State si){

if binary(op(Fi)) then{

lval← init(left(Fi, si));

rval← init(right(Fi, si)); }

else if unary(op(Fi)) then

val← init(subformula(Fi, si));
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index← 0;

case(op(Fi)) of{

true : return true; false : return false;

P (~ξi) : return P (eval(ξi, si), . . . , eval(ξ′i, si)));

op : return rval op lval; ¬ : return not val;

S : now[index]← rval; return now[index++];

⊡, ♦· ,⊙ : now[index]← val; return now[index++];

}

}

For aPT-DTL formula@iFi, we callpi the ownerof that formula. At the owner process,
we evaluateFi using theeval function after every internal or receive event, and then assign
now to pre. This is done after the KNOWLEDGEVECTOR is correspondingly updated after
the event. If the evaluation ofFi at processpi is false then we report a warning that the
formula@iFi has been violated. The time and space complexity of this algorithm at every
event isΘ(mn), wherem is the size of the original local formula andn is the number of
processes involved in the distributed computation.

The evaluation of a formula@∀JFj (or @∃JFj) or an expression@Jξj requires the
computation of the setJ at runtime. If the elements of the set depend on the dynamic
behavior of the program, then every knowledge vector needs to maintain the value of the
formulaFj or of the expression@Jξj for every processj involved in the computation. This
implies that the size of the knowledge vector is linear in thenumber of the processes in the
system. However, if the setJ can be determined syntactically before the program starts,a
knowledge vector needs only to maintain the values of theFj of @Jξj for the processes in
the setJ . In particular, if a formula is of the form@aFa, wherea is some unique process
in the system, a knowledge vector only needs to maintain the entry Fa. This implies that
the size of a knowledge vector can be independent o the numberof the processes in the
system if all the subformulas having@ operator at the top are of the form@jFj or @Jξj .
This particular case was the one presented in [Sen et al. 2004a].

6.3 Example

To illustrate the monitoring algorithm, we consider a simple example where all the subfor-
mulas with the epistemic operator@ at the top are of the form@jFj or @Jξj . Consider
three processes,p1, p2 andp3. p1 has a local variablex whose initial value is 5,p2 has a
local variabley with initial value 7, and the formula to be monitored is@2⊡(y ≥ @1x).
An example computation is shown in Figure 2.

There is only one formula to monitor with a single occurrenceof an@ operator, namely
@1x. Hence, the KNOWLEDGEVECTORhas a single entry which corresponds top1. More-
over, since the only remote expression to be tracked isx, KV[1].values simply stores the
value ofx. In the figure, next to each event, we showKV[1] at that instant for that pro-
cess.KV[1] is graphically displayed by a stack of two numbers, the top number showing
KV[1].seq and the bottom number showing the value forx.

The computation starts off with the initial values ofx = 5 andy = 7. All processes
know the initial value ofx, hence theKV[1].values for each process has value 5. It is easy
to see that the monitored formula⊡(y ≥ @1x) holds initially atp2. Subsequently, atp1

there is an internal evente11 which setsx = 9 and updatesKV1[1].values correspondingly.
Processp1 then sends a message top2 with a copy of its currentKV. Another internal
evente13 causesx to be set to 6. Processp1 again sends a message, this time top3, with
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Fig. 2. Monitoring of@2⊡(y ≥ @1x) atp2

the updatedKV. Processp3 updates itsKV and sends this on the message it sends top2.
At processp2, the message sent byp3 happens to arrive earlier than the message from

p1. Therefore, at evente21, on receiving the message fromp3, processp2 is able to update
itsKV to the one sent at evente14. The monitor atp2 again evaluates the property and finds
that it still holds. The message sent byp1 finally arrives ate22 but theKV piggybacked on
is ignored as it has a smallerKV[1].seq thanKV2[1].seq . The monitor correctly continues
to declare the property valid. However, another internal event atp2 causes the value ofy
to drop to3, at which point the monitor detects a property violation.

7. THE DIANA TOOL

We have implemented the above technique as a tool, called DIANA (DIstributed
ANA lysis). The architecture of DIANA is illustrated in Figure 3. DIANA is publicly avail-
able and can be downloaded from:http://fsl.cs.uiuc.edu/diana/. Both DIANA

and the framework under which it operates are written in Java.

7.1 Actors

A number of formalisms can be used to reason about distributed systems, the most nat-
ural one being Actors [Agha 1986; Agha et al. 1997]. Actors are a model of distributed
reactive objects and have a built-in notion of encapsulation and interaction, making them
well suited to represent evolution and coordination between interacting components in dis-
tributed applications. Conceptually, an actor encapsulates a state, a thread of control, and a
set of procedures which manipulate the state. Actors coordinate by asynchronously send-
ing messages to each another. In the actor framework, a distributed system consists of
different actors communicating through messages. Thus, there is an actor for each process
in the system.

In the implementation, each type of actor (or process) is denoted by a Java class that
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Fig. 3. The Architecture of DIANA

extends a base classActor. This base class implements a message queue and provides the
methodsend for asynchronous message sending. Each actor object executes as a separate
process. The state of an actor is represented by the fields of the Java class. Each Java
class also contains a set ofpublic methods that can be invoked in response to messages
received from other actors. A system level actor calledActorManagertakes a message
and transfers it to the message queue of the target actor. Thetarget actor takes an available
message from the message queue and invokes the method mentioned in the message. While
processing a message, an actor may send messages to other actors. Message sending, being
asynchronous, never blocks an actor. However, an actor blocks if there is no message in its
message queue. An actor can create other actors by calling a special methodcreate and
pass the name of the actor to other actors through messages. We assume that each actor
has a unique name, which is the name of the corresponding process. The name is passed
as a string at the time creation of an actor. The system is initialized by theActorManager
object that creates all the actors in the system and starts the execution of the system.

7.2 Distributed Monitors in DIANA

The user of DIANA specifies a set ofPT-DTL formulas to be monitored in a special file.
With every formula, the user can also associate anaction, which is a piece of Java code to
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be invoked when the formula is violated.
As Figure 3 shows, the core of DIANA consists of two modules: aninstrumenta-

tion module and amonitoring library. The instrumentation module takes the specifica-
tion file and the distributed program written in the above framework and creates a Java
classMonitorImpl that implements a local monitor for each actor (or process).The
MonitorImpl class contains a field representing an array of knowledge vectors ( one
knowledge vector for each monitored formula) and a set of methods to update the knowl-
edge vectors according to the KNOWLEDGEVECTORalgorithm. An instance of knowledge
vector is constructed from the classes provided by the monitoring library. The instrumenta-
tion module automatically instruments the distributed programat the bytecode level(after
compilation) to associate an instance of the classMonitorImpl with every actor at run-
time. It also inserts code to every actor so that it invokes its local monitor (i.e. calls the
appropriate methods of the instance ofMonitorImpl class associated with it) whenever
it modifies a field variable (internal event), sends a message, or invokes a method (receive
event).

We handle an event corresponding to the creation of an actor in a special way. For every
creation of new actor, the instrumentation tool inserts code to initialize the knowledge
vectors of the newly created actor (child actor) with the knowledge vectors of the actor
(parent actor) creating the new actor. This is because the events in the parent actor, before
creating the new actor, causally precede any event in the child actor.

7.3 Test Cases

We implemented the following voting algorithm: aChair process asks for vote on a res-
olution fromN voters namedVoter1, Voter2, ..., VoterN , whereN is initial-
ized to an arbitrary but fixed positive number. We assume thatthe processes are connected
in a tree shaped network with theChair at the root of the tree and the voters at different
nodes. Each voter randomly decides if it wants to vote for or against the resolution, and
correspondingly stores 1 or 0 in a local state variable calledvote. The voter then sends its
decision to its immediate parent in the tree. The parent collects the votes and sends the sum
of its vote and its progenies’ votes to its immediate parent.TheChair process collects all
the votes and rejects the resolution only if half or more voters have rejected. We monitor
the following safety property atChair:

@Chair(reject→ (sum(@{Voteri|i∈[1..N ]}(vote)) < N/2))

The property was found to be violated in several runs: at somevoter nodes, the voter sent
the sum of its progenies’ votes without adding its own vote. This resulted in the rejection
of the resolution when it should have been accepted.

We have also tested a vector clock [Fidge 1988; Mattern 1989]algorithm implemented in
the framework presented in this section. The algorithm was implemented as part of global
snapshot and garbage collection algorithm. In this algorithm, each process is assumed to
have a local vector clockV that it updates according to the standard vector clock algorithm
[Fidge 1988] whenever there is an internal event, a send event or a receive event. The
safety property that the algorithm must satisfy is that, at every processpi: “all entries of
the local vector clock must be greater than or equal to the local vector clock in a causally
latest preceding state of any other process,” expressed as the followingi-formula:
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@i(⊡(V ≥ max(@{j|j∈[1..n]}V )))

whereV ≥ V ′ when every entry inV is greater than or equal to the corresponding entry
in V ′, and the functionmax takes a set of vectors as argument and returns a vector whose
every entry is the maximum of the corresponding entries of the vectors in the set. Another
safety property states that “at every processpi thei-th entry in its local vector clock must
be strictly greater than thei-th entry of the local vector clock of any other process”. This
can be expressed as the followingi-formula:

@i(⊡(V [i] > max(@{j|j∈[1..n]}V [i])))

The second property was found to be violated in some computations due to a bug caused
by failure to increment thei-th entry of the local vector clock of processpi when receiving
events.

These simple examples illustrate the practical utility andpower of PT-DTL and the
monitoring tool DIANA based on it.

8. RELATED WORK

Many researchers have proposed temporal logics to reason about distributed systems. Most
of these logics are inspired by the classic work of Aumann [Aumann 1976] and Halpern
et al. [Fagin et al. 1995] on knowledge in distributed systems. Meenakshiet al. define a
knowledge temporal logic interpreted over a message sequence charts in a distributed sys-
tem [Meenakshi and Ramanujam 2000] and develop methods for model checking formulas
in this logic. Our communication primitive was in part inspired by this work, but we allow
arbitrary expressions and atomic propositions over expressions in their logic.

Another closely related work is that of Penczek [Penczek 2000; Penczek and Am-
broszkiewicz 1999] which defines a temporal logic of causal knowledge. Knowledge op-
erators are provided to reason about the local history of a process, as well as about the
knowledge it acquires from other processes. However, in order to keep the complexity of
model checking tractable, Penczek does not allow the nesting of causal knowledge opera-
tors. Interestingly, the nesting of causal knowledge operators does not add any complexity
to our algorithm for monitoring.

Leucker investigates linear temporal logic interpreted over restricted labeled partial or-
ders called Mazurkiewicz traces [Leucker 2002]. An overview of distributed linear time
temporal logics based on Mazurkiewicz traces is given by Thiagaranjanet al. in [Thia-
garajan and Walukiewicz 1997]. [Alur et al. 1995] introduces a temporal logic of causality
(TLC) which is interpreted over causal structures corresponding to partial order execu-
tions of a distributed system. They use both past and future time operators and give a
model checking algorithm for the logic.

In recent years, there has been considerable interest in runtime verification [Havelund
and Roşu 2004; Sokolsky and Viswanathan 2003]. Havelundet al. [Havelund and Roşu
2002] give algorithms for synthesizing efficient monitors for safety properties. Senet al.
[Sen et al. 2003] develop techniques for runtime safety analysis for multithreaded programs
and introduce the tool JMPAX. Some other runtime verification systems include JPaX from
NASA Ames [Havelund and Roşu 2001] and UPENN’s Mac [Kim et al. 2001].
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9. CONCLUSION AND FUTURE WORK

This work represents the first step in effective distributedmonitoring. The work presented
here suggests a number of problems that require further research. The logic itself could be
made more expressive so that it expresses not only safety, but also liveness properties. One
difficulty is that software developers are reluctant to use formal notations. A partial solu-
tion may be to merge the present work with a more expressive and programmer friendly
monitoring temporal logic such as EAGLE [Barringer et al. 2004]. A complementary ap-
proach is to develop visual notations and synthesizing temporal logic formulas from such
notations. There may also be the possibility of learning formulas based on representative
scenarios.

An interesting avenue of future investigation that our worksuggests is what we call
Knowledge-based Aspect-Oriented Programming. Knowledge-based Aspect-Oriented
Programming is a meta-programming discipline that is suitable for distributed applica-
tions. In this programming paradigm, appropriate actions are associated with each safety
formula; these actions are taken whenever the formula is violated to guide the program and
avoid catastrophic failures.
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