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ABSTRACT

We present a fair asynchronous name-passing calculus for the Actor Model called

System A. System A is based on the primitive notion of naming and is equipped with

combinators which are standard in process algebra literature, such as parallel composi-

tion, restriction, input and output prefixes, and matching. We capture features specific to

the Actor Model through a type system which enforces a discipline on the usage of names.

We define the semantics of System A using a labeled transition system and by eliminating

infinite sequences of transitions that are unfair. We believe an algebraic formulation of

actors will lead to many conceptual and practical benefits. Mapping the Actor Model

to a framework shared by other highly successful formalisms for concurrency such as the

π-calculus and its asynchronous variants, will help us better understand the similarities

and differences between the various formalisms, find connections between their theories,

and apply concepts and techniques developed for one to the other. We illustrate our

calculus through some examples, and identify the current and future research directions.
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Chapter 1

Introduction

The Actor Model was originally proposed by Hewitt [19] and its meaning has evolved

over years [17, 20, 7, 12] to that described in [1]. Since its conception it has profoundly

influenced research in a number of areas. The concept of continuation passing now

common in functional programming was first demonstrated in [20] and carried over into

Scheme. A number of concurrent object oriented languages [2, 52, 28, 27, 14, 56] have

been designed based on the Actor Model. The model has been the basis for a variety

of projects on high performance computing [37, 24, 36, 25]. It has also served as the

foundation for dozens of projects on abstractions for simplifying the task of developing

and maintaining open distributed systems [5, 11, 15, 54, 43, 48, 53].

In this dissertation we describe our attempt to capture the Actor Model in a framework

that is shared by highly successful formalisms such as the π-calculus [34, 35] and its

asynchronous variants [22, 10], and is very similar to those used by CCS [31] and CSP

[21]. Specifically, we present a formal system called System A, which is based on the

primitive notion of naming, and is equipped with standard combinators such as parallel

composition, restriction, input and output prefixes, and matching. Features specific to

the Actor Model are captured using a type system which enforces certain discipline on

the usage of names. The semantics of System A is defined using labeled transitions and

by eliminating infinite sequences of transitions that are unfair.
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Research on actor semantics has seen important advances through [12, 3, 50, 49, 16]. So

why yet another formalism for actors? There are two main reasons. First, investigations

such as [3, 16] are not about the Actor Model per se. They do not faithfully capture all

features of the Actor Model and are also loaded with extraneous details which complicate

their theories. Second, while [12, 50, 49] are accurate formulations, little is known about

their relation to similar semantical investigations in other well-understood and widely

accepted process algebras. We will examine these shortcomings in greater detail after

we briefly discuss the Actor Model. Besides being accurate and simple, our algebraic

formulation of actors will lead to many conceptual and practical benefits. It would help

us identify the similarities and differences between the Actor Model and other process

algebras such as π-calculus, find connections between their theories, and apply concepts

and techniques developed for one to the other.

In Chapter 2, we first briefly describe the Actor Model. We then examine the most

prominent works on actor semantics and identify their inadequacies. In Chapter 3, we

present the syntax and type system of System A and compare it with π-calculus and its

variants. System A was originally inspired by π-calculus, and is close to being a typed

version of polyadic π-calculus [32]. In Chapter 4, we present an operational semantics

for System A. In Chapter 5, we illustrate our formalism through several examples. This

dissertation is best viewed as a starting point for further research rather than a final

product. We are currently investigating equivalence notions, their denotational charac-

terizations, and algebraic theories. In Chapter 6, we identify some directions for further

research.
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Chapter 2

The Actor Model

In this chapter we give a brief and informal discussion of the Actor Model. We then

briefly discuss event diagrams which serve as an abstract visualization tool for computa-

tion in actor systems. Finally, we discuss some contemporary formulations of the Actor

Model and their shortcomings. Discussions in this chapter necessarily omit some of the

significant work in actor research. However, they are sufficient for the scope of this thesis.

2.1 The Model

2.1.1 What are Actors?

A computational system in the Actor Model, also called a configuration, consists of a

collection of concurrently executing actors and a collection of messages in transit, and has

an interface to its external environment. Actors in the configuration and the environment

have a unique name and a behavior, and communicate via asynchronous messages. A

message contains values targeted to a single actor called the target actor. A message

is consumed once it is received by the target, and therefore cannot be delivered again.

Actors are reactive in nature; they execute only in response to messages received. The
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interface of a configuration imposes restrictions on communication between actors in the

configuration and the environment (see Section 2.1.3).

On receiving a message, an actor can perform three basic actions:

1. Create a finite number of actors with universally fresh names.

2. Send a finite number of messages to other actors.

3. Assume a new behavior with the same name.

Several observations are in order here. First, all the actions performed on receiving a mes-

sage are concurrent1; there is no sequential ordering between any two of them. Second,

actors do not have shared state; information flow in the Actor Model happens strictly by

means of messages. An actor behavior can be viewed as a function from messages (re-

ceived) to a collection of messages (sent), actors (created), and a (replacement) behavior.

Specifically, delivery of a message effects the behavior of only the target actor. Third,

actors persist in that they do not disappear after processing a message; they assume a

new behavior with the same name. Since the new behavior may depend on the message

received, an actor’s behavior can be history sensitive. Finally, actors are created with

universally fresh names; an actor can not create new actors with names received in a

message or with names already known to other actors.

2.1.2 Locality Laws

The following restrictions, known as the locality laws, apply to all actor systems:

1. An actor knows the addresses of only a finite number of other actors known as its

acquaintances. These acquaintances are a part of its behavior.

1Although, semantically, the actions an actor performs on receiving a message are concurrent, an

implementation of the actions will have some sequentiality. For instance, since newly created actors

can refer to each other, all their names have to be known before any of the actors can be created.

Moreover, the behavior of an actor can be conditional on matching of names received, further introducing

sequentiality.
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2. Messages can carry only a finite number of names.

3. Actors cannot guess names. Specifically, when an actor a receives a message m: the

acquaintances of a after it assumes the new behavior, the acquaintances of newly

created actors, and the target and names in contents of messages sent by a, are

all either acquaintances of a before receiving m, or contents of m, or names of the

newly created actors.

Several observations can be made from the last postulate. First, an actor can send mes-

sages to only those actors it knows after receiving a message. Second, the acquaintances

of an actor may evolve as computation proceeds; the actor may remember new names

received in the message and forget names it knew earlier. This captures the dynamic

nature of communication topology in an actor system. Finally, although actor creations

on receiving a message are concurrent, the newly created actors may know each other.

2.1.3 Encapsulation

The description of a configuration defines not only the actors and messages present in the

configuration, but also an interface to the environment. Actors inside the configuration,

called internal actors for brevity, may send messages to and receive messages from actors

outside the configuration. The interface of a configuration imposes restrictions on these

communications with the environment.

The interface of a configuration consists of two components: a finite set ρ of receptionist

names, and finite set χ of external names. Receptionists are actors in the configuration

which are visible from outside the configuration. Therefore, if dom(C) is the set of names

of all actors in C then ρ ⊂ dom(C). Only receptionists may receive messages from the

environment. Names of other internal actors are unknown to the environment. This also

implies that messages from the environment cannot contain names of these hidden actors.

Thus, the set ρ imposes a constraint on the both the target and contents of messages

that the configuration may receive from its environment. Names in a configuration which
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designate actors outside the configuration constitute the set of external names. Therefore,

χ∩dom(C) = ∅. These names may be present in the configuration either as acquaintances

of internal actors or in messages inside the configuration.

Messages in a configuration that are targeted to an external actor are visible to and

consumed by the environment. However, messages that are targeted to internal actors

(including the receptionists), are not observable externally. Thus, strictly speaking, it

is not the visibility of internal actor names, but communication to internal actors that

is restricted by the interface. Readers familiar with π-calculus [34, 35] may note the

difference from the restriction operation in it which controls the visibility of names.

The interface of a configuration is dynamic. As the configuration evolves, new recep-

tionists may be added and new external actors may become known. In a communication

from the environment, an internal actor may receive new names of actors outside the

configuration, thus expanding the set χ. Similarly, an internal actor may send a message

containing the name of a non-receptionist to an external actor, thereby expanding ρ.

2.1.4 Fairness

Message delivery in the Actor Model is fair - the delivery of a message can not be in-

finitely delayed. However, it can be delayed for an arbitrary but finite time. Fairness

guarantees that an actor makes progress independent of other actors. Without this fea-

ture certain intuitively obvious equivalences between actor configurations do not hold

under many notions of equivalences. For example, consider a notion of equivalence in

which configurations which can engage in the same set of interactions with their envi-

ronment are equated. This description of the equivalence notion is admittedly vague,

and several details need to be filled in. Nevertheless, it should suffice for the following

example which shows that in the absence of fairness collection of active garbage does not

preserve semantics.

Let C1 be a configuration with a single internal actor a, an empty message to a, and

an interface with no receptionists and external names. On receiving the message, actor
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a simply resends the message to itself and retains the same behavior. Now, consider a

configuration C2 with a single internal actor b, an empty message to b, and no receptionists

or external names. On receiving the message, actor b sends a single empty message to

an external actor c and retains the same behavior. Now, consider the configuration C3

which is obtained by composing C1 and C2 (see the definition of composition below).

Intuitively, our notion of equivalence should equate C2 and C3. The expected interaction

with the environment in both cases consists of a single message to c. But, this is true

only in the presence of fairness. In the absence of fairness, in C3, the internal actor a

may starve the actor b by not allowing it to receive messages.

Note that the above equivalence will hold even if a weaker notion of fairness is guaranteed,

namely that no actor is ever starved, i.e. if there are messages that can be delivered to an

actor the actor will eventually receive one. But the stonger notion of fairness is required

to guarantee more general eventuality properties.

2.1.5 Composition

There are several ways to combine actor configurations to obtain new configurations.

The configuration interfaces and properties of actor systems, such as uniqueness of actor

names and persistence of actors, naturally impose constraints on these operations. In this

section, we discuss only the composition operation and the constraints associated with

it. In Chapter 3, we discuss all the basic combinators from which all other combinations

can be derived.

Consider the configurations C1 and C2 with interfaces [ρ1, χ1] and [ρ2, χ2] respectively.

Then C1 and C2 are composable only if:

1. No two actors in the configurations have the same name:

dom(C1) ∩ dom(C2) = ∅ (2.1)

This is required to guarantee uniqueness of actor names.
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2. The configurations respect each others interface:

χ1 ∩ dom(C2) ⊂ ρ2 (2.2)

χ2 ∩ dom(C1) ⊂ ρ1 (2.3)

These equations reflect the fact that for any configuration, names of internal actors

which are not receptionists are unknown to the environment.

The configuration C obtained by composing C1 and C2 contains all the actors and mes-

sages in the two configurations, and its interface [ρ, χ] is given by

ρ = ρ1 ∪ ρ2 (2.4)

χ = (χ1 ∪ χ2) − (ρ1 ∪ ρ2) (2.5)

Note that a configuration can be decomposed into sub-configurations in several ways.

2.2 Event Diagrams

Computations in actor systems can be visualized using abstract pictures called event

diagrams (Figure 2.2). An event diagram depicts message deliveries during a computation

and the orderings between them in time. Message deliveries are called events, and the

target actor of a delivery is called the target of the event.

Since an actor processes only one message at a time, all events with the same target are

totally ordered. This order, called the arrival order, is abstractly represented by life-lines

in an event diagram. A life-line lists all the events at an actor according to the arrival

order - further down the line, later the arrival.

In response to a received message an actor may send messages to its acquaintances. This

induces yet another order on events called the activation order. This order is represented

in event diagrams by arrows between events, with the direction of an arrow indicating
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a

b

c

external message

actor creation

pending message

message delivery

e2

e3

e1

lifeline

c<M>

a<M’>

Figure 2.1: An event diagram depicting a computation involving actors a, b and
c. Each vertical line represents the arrival order between events with the same
target. Arrows between events, such as e1 → e2 and e1 → e3, represent causal order.
Arrows without an event at their head represent pending message deliveries, and are
annotated with the corresponding message target and contents. An annotation x〈y〉
denotes a message with target x and contents y. Actor c is created by a during event
e1.

the causal direction. Arrows corresponding to messages received from the external world

do not have an event at their tail. An actor computation in progress may have messages

that have not yet been delivered. Such pending messages, also called pending events, are

represented by arrows without an event at their head. These arrows are also annotated

with the corresponding target and message contents.

Event diagrams lend themselves to a rigorous mathematical formulation. In fact, the

power domain of event diagrams is used in [12] as the semantic domain for a simple

actor-based language. However, in our discussions we will be using event diagrams only

for visualizing computations. We will not be dealing with any of their formal aspects.
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2.3 Current Research on Actor Semantics

We now motivate our effort towards an algebraic formulation of actors by examining the

current research on actor semantics and identifying some deficiencies.

In [3], the authors extend a functional language with actor coordination primitives. The

underlying functional language is the call-by-value lambda calculus with arithmetic and

branching primitives, and structure constructors, recognizers and destructors. The actor

primitives incorporated are, send for sending messages, letactor for creating actors, and

become for changing the local behavior. An actor’s behavior is described by a lambda

abstraction which is invoked with arguments received in a message. A program is a

collection of actors and messages, along with an explicit interface which identifies the

receptionists and external names. The extended language is given an operational seman-

tics by extending reductions in the embedded functional language to labeled transitions

between actor configurations. The authors then investigate an equational theory based

on the notion of observational equivalence which is closely related to testing equivalence

[18], and present methods for establishing equivalences.

We note right away that the work in [3] is not about Actor Model per se, but about

a concurrent extension of a functional language. The author’s view of an actor as a

sequential component is inaccurate. In particular, delivery of a message in their model

initiates a sequential computation which is modeled by lambda reductions. This is not

in agreement with the description in Section 2.1.1. Specifically, all actions an actor

performs on receiving a message are concurrent, and features such as function abstractions

and applications are extraneous to the basic Actor Model. The ad hoc approach of

extending a core functional language also introduces several complexities. Distinguishing

between lambda expressions and configurations entails a study of two equivalences, one

on expressions and the other on configurations. Besides, retrieving concurrency related

laws from the sequential setting is fairly complex. For instance, proving basic expression

equivalences such as two adjacent sends commute, or an adjacent send and become

commute is quite involved.
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In contrast, our calculus accurately captures the Actor Model. We do away with expres-

sions and work just with configurations. Expressions can be encoded as configurations,

and their evaluations as computations in configurations. Basic facts related to actor prim-

itives such as two adjacent sends commute are directly (and quite naturally) represented

as simple structural laws that equate configurations.

In [50, 49], a semantic framework for actors systems which abstracts away from a choice

of a specific programming language is defined by introducing the notion of an Abstract

Actor Structure (AAS). An ASS provides an abstract set of states of individual actors,

an abstract set of values that may be communicated via messages, functions that de-

termine the local transitions of individual actors, and axioms that should be met by

these entities. The axioms basically characterize the minimal semantic requirements

which should be met by any actor language. Using techniques of concurrent rewriting

semantics [30] the semantics of configurations is derived from transitions of individual

actors. Specifically, a rewrite theory which is parametric on the chosen AAS is defined.

The terms for the rewrite theory are configurations. Its equational theory extends the

AAS equational theory, and the rewrite rules capture internal transitions of individual

actors and exchange of messages with the environment. The rewrite theory gives rise

to a variety of path-semantics which associate configurations with a set of computations

with the configuration as the source. The initial model construction gives a set of finite

computations. This is extended to infinite computations (called paths), fair paths, and

interaction paths (which project away internal transitions from fair paths).

However, the relationship between path-semantics and closely related notions in process

algebra literature, such as trace semantics [6] has not been investigated. Further, neither

algebraic nor logical characterizations of equivalences have been developed. Numerous

other well-understood equivalence notions such as testing equivalence [18], asynchronous

bisimulation [4] and barbed congruence [29] are yet to be defined and studied in the

proposed framework. In contrast our formulation uses the very algebraic framework

in which these notions were proposed and investigated. We are currently investigating
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how the features specific to Actor Model such as encapsulation and fairness effect these

notions and their algebraic theories.

In [16], the authors present a simple calculus equipped with concurrency primitives com-

mon in process algebras. But the calculus in not an accurate formulation of the Actor

Model. The authors retain the view of actors as sequential components. They do not

model persistence of actors and fairness in message deliveries. Further, the calculus is

not strictly asynchronous. Messages received from the environment are synchronous; but

those sent by internal actors are asynchronous. Besides being inaccurate the calculus has

a few other unsatisfactory features. The authors allow the use of summation operator

in describing actor behaviors. But as described in [4], the meaning of summations other

than those that are input guarded is unclear in the presence of asynchronous commu-

nications. Apart from the combinators standard in process algebras, the calculus also

assumes the operators send, create and become as primitives. As we will show, these

are not essential as they can be represented quite naturally using the other combinators.

This gives us a calculus that is not only simpler, but also one that is close to being a

typed version of π-calculus. This hopefully will help us relate directly to the rich algebraic

theories available on π-calculus.
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Chapter 3

System A: Syntax and Type System

In this chapter we present the syntax and type system of our calculus for actors called

System A. Configurations are represented by well typed (pre)terms in System A, and

computations are modeled by labeled transitions between terms. In Section 3.1, we

present the syntax of preterms and informally discuss all the basic combinators. Only

well typed preterms represent configurations. We present the type system in Section 3.2.

In Section 3.3, we prove some properties related to soundness of the type system. In

Section 3.4, we compare System A with π-calculus and its variants.

3.1 Syntax

In Chapter 2, we did not specify the primitive values assumed in an actor system. There

are a number of alternatives. Formulations in [16, 3] assume, apart from names, values

such as booleans and integers, constructors such as lists, and various operations on them

as basic. In the spirit of π-calculus, we assume only names as primitive, and communica-

tion as the sole mechanism of computation in our calculus. Data can be represented as

configurations, and the receptionists of these configurations would serve as handles to the

data. Data can be communicated by passing receptionist names. We will demonstrate

this via several examples in Chapter 5.
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We now present the syntax of our calculus. We assume an infinite set of names N , and a

set B of behavior identifiers. Each behavior identifier has an associated positive integer,

called its arity. We let u, v, w, x, y, z range over N , and A,B range over B. The set of

preterms C, is defined by the following context-free grammar. We let C range over C.

C := 0

| x(ỹ).C

| x〈ỹ〉

| (νx)(C)

| [x = y](C1, C2)

| C1 | C2

| B〈x, ỹ〉

In the above x̃ represents a finite (possibly empty) tuple of names. The tuple x̃, ỹ is the

result of appending ỹ to x̃. Here 0 and x〈ỹ〉 are nullary combinators, x(ỹ). and (νx) are

unary combinators, and | and [x = y] are binary combinators. The order of precedence

among combinators is the order listed above. These basic combinators are sufficient to

formalize the Actor Model.

Not all preterms represent actor configurations. The syntax rules are not stringent enough

to ensure all actor properties. In Section 3.2, we show a few preterms which are not actor

configurations, and present a type system which guarantees that every well typed preterm

is an actor configuration. Well typed preterms are called terms. Following is an informal

description of each kind of (pre)term.

1. Nil Process, 0: This represents a configuration with no actors and messages.

2. Output, x〈ỹ〉: This represents a configuration containing a single message. The

message is targeted to an external actor x and contains the tuple of names ỹ.

3. Input, x(ỹ).C: This represents a configuration containing a single actor named x.

The actor is also a receptionist and may receive messages from the environment.
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All names in ỹ are distinct and are bound by the input x(ỹ). The actor receives

a message containing a tuple z̃ of the same arity as ỹ, and replaces itself with the

configuration C{z̃/ỹ} (see the definition of substitution below). The configuration

C{z̃/y} in turn should contain the actor x with a new behavior (this is guaranteed

by the type system we impose), and (possibly) some freshly created actors and

messages. The abstraction (ỹ)C is therefore the actor’s behavior.

4. Composition, C1 | C2: This represents a composition of two actor configurations.

We discussed composition in Section 2.1.5.

5. If-then-else, [x = y](C1, C2): This preterm is C1 if x and y are the same names.

Otherwise it is C2.

6. Restriction, (νx)C: This represents the configuration C, but with actor x no longer

a receptionist. The name x is private to the configuration. It is bound by restriction

(νx).

7. Behavior Instantiation, B〈x, ỹ〉. Each behavior identifier B has a single defining

equation of the form B
def
= (u, ṽ)u(w̃).C, where u /∈ ṽ, and ṽ and w̃ are finite tuples

of distinct names. The definition provides a template for an actor behavior. An in-

stantiation B〈x, ỹ〉 represents the configuration (u(w̃).C){(x, ỹ)/(u, ṽ)}. The tuple

u, ṽ contains exactly (all and only) the free names in u(w̃).C, and is called the ac-

quaintance list. The arity of B is equal to arity of the acquaintance list. We assume

that for any occurrence of B〈x̃〉, B and x̃ are of the same arity. Note that since

actors are persistent, every behavior definition always refers to a behavior definition

(possibly itself). Every configuration comes along with a finite number of behavior

definitions which define behavior identifiers occurring in it. We assume that while

composing two such configurations, their behavior definitions are consistent, i.e.

they both have identical definitions for any common behavior identifier.
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The interface of a term is implicit in its syntax. The type system in Section 3.2 derives

the interface of a term. The fact that a configuration’s interface may evolve dynamically

is captured by the labeled transition system presented in Chapter 4.

Readers familiar with π-calculus may note that the syntax of System A and π-calculus

are closely related. All combinators in System A are from π-calculus. So, at least

syntactically, every preterm is a π-calculus term. But the semantics of System A differs

from π-calculus. We present a detailed comparison in Section 3.4.

Finally, note that names are the only communicable values in System A. Thus, names

in terms are always substituted by names and not by configurations. A higher order

version of the Actor Model where configurations can be passed in messages is left for

future research.

Before we present the type system, a few definitions and notational conventions are in

order.

Notation 1 1. We use ≡ to denote syntactic identity. For example, C1 ≡ C2 means

that C1 and C2 are syntactically identical.

2. We write (νx1...xn)C instead of (νx1)...(νxn)C. Further, if x̃ = (x1...xn), we may

also write the same as (νx̃)C. If x̃ is the empty tuple then (νx̃)C just means C.

3. For every tuple x̃, we will denote the set of names occurring in x̃ by {x̃}, and the

length (arity) of x̃ by len(x̃).

Definition 1 The set of free names and bound names in a preterm C, fn(C) and bn(C)

respectively, have the usual definitions. Note that fn(B〈x̃〉) = {x̃} and bn(B〈x̃〉) = ∅.

The set of names that occur in a preterm is defined as n(C) = fn(C) ∪ bn(C).

Definition 2 The binary operation ‘-’ on finite tuples is defined as follows. The empty

tuple is denoted by nil.

nil − w̃ = nil
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(u, ṽ) − w̃ =











ṽ − w̃ if u ∈ {w̃}

u, (ṽ − w̃) otherwise

Definition 3 Two preterms are said to be alpha equivalent if one can be transformed

into the other by using the congruence laws and the following alpha conversion laws

(νy)C ≡α (νz)C[z/y], where z /∈ n(C)

x(ỹ).C ≡α x(z̃).C[z̃/ỹ] where {z̃} ∩ n(C) = ∅ and zi = zj ⇔ i = j

The notation C[z̃/ỹ] denotes the term obtained by replacing all free occurrences of yi by zi.

Alpha equivalent terms represent the same actor configuration; ỹ in x(ỹ).C is just a place

holder for a tuple that will be received in a message, and x in (νx)C is a private name

that can not be identified with any other name. In the following, we do not distinguish

between alpha equivalent terms and work modulo alpha equivalence. For preterms C1, C2

we may write C1 = C2 to mean that C1 ≡α C2.

The following lemmas are routine to prove.

Lemma 1 Let ũ and ṽ each be a tuples of distinct names, len(ũ) = len(ṽ), {ṽ}∩n(C) =

∅, and σ = {ṽ/ũ}. Then fn(C[ṽ/ũ]) = σ(fn(C)).

Lemma 2 The relation ≡α is an equivalence relation.

Definition 4 A name substitution is a function from names to names which is almost

everywhere the identity. We let σ range over name substitutions. Suppose x̃ and ỹ are

tuples of same length, and xi = xj iff i = j. We write {ỹ/x̃} for the substitution which

maps xi to yi, and is identity on all other names. We write σ(x) for the name to which

x is mapped by σ. Similarly, σ(x̃) and σ(fn(C)) denote the vector and set obtained by

applying σ to each element of x̃ and fn(C) respectively.
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The reader may verify the following identities which we will be using later. For any sets

of names R and S, and name substitution σ

σ(R) − σ(S) = σ(R − S) − σ(S) (3.1)

σ(R) − σ(S) = σ(R − S) if ∀x, y ∈ R ∪ S. σ(x) = σ(y) ⇔ x = y (3.2)

Definition 5 Substitution on preterms is defined modulo alpha equivalence. We denote

a preterm obtained by applying the substitution σ to the preterm C by Cσ. An inductive

definition of substitution is shown below. We assume for all x ∈ bn(C), σ(x) = x.

To ensure that a name free in C does not become bound in Cσ, we assume bn(C) ∩

σ(fn(C)) = ∅. If not, we can pick C ′ ≡α C such that bn(C ′) ∩ fn(σ) = ∅.

0σ = 0

(x〈ỹ〉)σ = σ(x)〈σ(ỹ)〉

(x(ỹ).C)σ = σ(x)(ỹ).(Cσ)

((νx)C)σ = (νx)(Cσ)

(C1 | C2)σ = C1σ | C2σ

[x = y](C1, C2)σ = [σ(x) = σ(y)](C1σ,C2σ)

B〈x̃〉σ = B〈σ(x̃)〉

The following lemma is routine to prove.

Lemma 3 If C1 ≡α C2 then C1σ ≡α C2σ.

3.2 Type System for Configurations

Not all preterms represent configurations. With the syntax rules presented in Section

3.1 one can construct preterms which violate properties which every actor system should

satisfy. In this section we present a type system on preterms to guarantee uniqueness

18



of actor names, persistence of actors, and anonymity of new actors. Every well typed

preterm, also called a term, will be a configuration.

The locality laws are automatically guaranteed by the syntax rules. We will show this

later in this section when we have defined the notion of actor acquaintances in our formal

system. Encapsulation and fairness are dynamic properties which constrain the ways a

configuration may evolve and interact with its environment. Naturally, these are to be

expressed in a framework which captures computation in actor systems. We will return

to these when we present an operational semantics for System A in Chapter 4.

The properties we try to guarantee by type checking a term should hold even as the term

evolves and interacts with its environments. When we present the operational semantics

in Chapter 4 we will prove that this is indeed the case.

Before we discuss the type system, let us examine a few preterms which are not actor

configurations.

1. The preterm x(y).C1 | x(y).C2 contains two actors with name x and hence violates

uniqueness of actor names.

2. The preterm x(y).0 violates the persistence of actors. The actor x disappears after

receiving a message, i.e. it does not assume a replacement behavior.

3. The preterm x(y).(x(z).C1 | y(z).C2) violates anonymity of newly created actors.

An actor can create new actors only with fresh names; these names should be

private to the creating actor and not be acquaintances of other actors. Therefore,

creation of actors with well-known names or names received in a message is ruled

out. In the preterm above, actor x creates an actor with a name it receives in a

message. Similarly, the preterm x(y).(x(z).C1 | u(z).C2) is not valid as the actor

x creates an actor with a well known name u; the actor u is a receptionist of the

resulting configuration and can receive messages from the environment.

4. The preterm x(y).(νz)(x(y).C | u〈z〉) where z /∈ fn(C) is not an actor configuration

because on receiving a message it generates a private name z without associating
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it with a behavior (an observant reader may note that the preterm is invalid even

without the side condition z /∈ fn(C)). An implicit feature of the Actor Model is

that every name generated during a computation is associated with a behavior. This

follows from postulate 3 of the locality laws described in Section 2.1.2. Names that

are initially present in the configuration and that do not denote internal actors are

assumed to denote actors in the environment. The preterm above, in fact eventually

exports the name z to the external actor u even though there is no internal actor

named z. For the same reason, the preterm (νx)C where x /∈ fn(C) is not an actor

configuration.

The moral of these examples is, we have to impose some constraints on the ways con-

figurations may be used to built new configurations. This is not a new idea. In Section

2.1.5, we already discussed the constraints which accompany composition of actor con-

figurations. Recall that the constraints were expressed on the internal actor names and

configuration interfaces. Since all properties of our concern here are related to actor

names, we would expect such constraints on interfaces and internal actor names to suf-

fice for the other combinators. It is indeed the case. In fact, all the constraints can

be expressed by only referring to the receptionists of the configurations being combined.

This is possible because of the restriction operator. A name bound by a restriction can-

not be identified with any other name. Since the names of non receptionists are bound

by restrictions, they are automatically guaranteed to be unique. In the case of composi-

tion, for example, conditions 2.2 and 2.3 are automatically satisfied, and equation 2.1 is

equivalent to ρ1 ∩ ρ2 = ∅.

A judgment in our type system is of form C : [ρ, χ], and is interpreted as, C is a

configuration with interface [ρ, χ]. Since ρ and χ are sets the order in which names are

listed in them is ignored. The type rules are shown in Table 3.2. The set of all typing

judgments is the smallest set that is closed under these rules. It is clear that for any

term C, if C : [ρ1, χ1] and C : [ρ2, χ2] are typing judgements then ρ1 = ρ2 and χ1 = χ2.
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NIL :
0 : [∅, ∅]

MSG :
x〈ỹ〉 : [∅, {x, ỹ}]

C : [{x}, χ]
ACT : x /∈ {ỹ}

x(ỹ).C : [{x}, fn(C) − {x, ỹ}]

C : [ρ ∪ {x}, χ]
RES : x /∈ ρ

(νx)C : [ρ, χ]

C1 : [ρ1, χ1] C2 : [ρ2, χ2]
COMP : ρ1 ∩ ρ2 = φ

C1|C2 : [ρ1 ∪ ρ2, (χ1 ∪ χ2) − (ρ1 ∪ ρ2)]

C1 : [ρ, χ1] C2 : [ρ, χ2]

COND : χ =

{

χ1 if x ≡ y
χ2 otherwise

[x = y](C1, C2) : [ρ, χ]

BINST :
B〈x, ỹ〉 : [{x}, {ỹ} − {x}]

Table 3.1: Type rules for System A
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An output term represents a configuration with no actors and a single message targeted

to an external actor. The configuration, therefore, has no receptionists, and the external

names are all those that occur in the message, either as the target or the contents. Hence

the rule MSG.

Rule ACT reflects the fact that an input term represents a configuration with a single

actor which is also a receptionist. The rule also guarantees persistence of actors by en-

suring that the configuration with which an actor x replaces itself on receiving a message,

always contains x with a replacement behavior. Further, it stipulates that x is the only

receptionist of the resulting configuration. This is because new actors, if any, are created

with private names. External names of the configuration are the acquaintances of actor

x, except itself (see below for a definition and discussion of acquaintances). Names in

the tuple ỹ are bound names which will be substituted by names received in a message.

Therefore, all the names in ỹ should be distinct and x /∈ {ỹ}.

Rule RES reflects the fact that the outermost restriction in (νx)C makes the name x

private to C. Actor x is no longer a receptionist in (νx)C. The side condition makes

sure that there in fact is an actor with name x in C. This guarantees the feature that

names in an actor system are always associated with a behavior. This in turn justifies

the fact that the restriction leaves the set of external names unchanged.

We discussed the details of rule COMP in Section 2.1.5 and earlier in this section.

Rule COND stipulates that both the sub-configurations in a conditional construct have

the same receptionist sets. This restriction is more stringent than necessary. It has been

formulated this way to keep the type system simple. Suppose one of the names being

matched is bound by an input prefix, i.e. the condition can be tested only after the

receipt of a message. Then to ensure uniqueness of actor names, we would have to take

the union of the receptionist sets of the sub-configurations to be the receptionist set of

the entire construct. On the other hand, to ensure that all names are associated with a

behavior, we would have to take the intersection. The easiest way to resolve this is to

presume both the sets to be equal. This assumption does not result in a loss of expressive
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power. The examples in Chapter 5 demonstrate this fact. The set of external names is

chosen according to the outcome of the test.

Rule BINST states that B〈x, ỹ〉 is a configuration with interface [{x}, {ỹ} − {x}]. As

discussed in Section 3.1, given a behavior definition B
def
= (u, ṽ)u(w̃).C, the instan-

tiation B〈x, ỹ〉 represents the term (u(w̃).C){(x, ỹ)/(u, ṽ)}. This is captured in the

formalisms we present in Chapter 4. As a consequence of the rule, the judgement

(u(w̃).C){(x, ỹ)/(u, ṽ)} : [{x}, {ỹ} − {x}] should be derivable. There is some ambiguity

in the statement above. Recall that substitution is defined only modulo alpha equiva-

lence. So, more precisely, for every possible result C ′ of the substitution, the judgment

C ′ : [{x}, {ỹ} − {x}] should be derivable. In section 3.3 we will also show that all these

constraints are satisfied just if u(w̃).C : [{u}, {v}]. Thus, type checking a configuration

involves checking all the accompanying behavior definitions (which we require to be finite

in number); for every definition B
def
= (u, ṽ)u(w̃).C, we require u(w̃).C : [{u}, {v}].

At this point, the reader is urged to verify that the preterms discussed earlier in this

section which violated actor properties are not well typed. We show this only for

x(ỹ).C1 | x(z̃).C2. The key to the argument is, given a term, there is only one type

rule that can be used in the last step of a derivation (if any) for a judgement involv-

ing the term. Suppose x(ỹ).C1 | x(z̃).C2 : [ρ, χ]. Then the last step in the derivation

of this judgement has to be an application of the COMP rule. So, x(ỹ).C1 : [ρ1, χ1]

and x(z̃).C2 : [ρ2, χ2] for some ρ1, ρ2 such that ρ1 ∩ ρ2 = ∅. The last derivation step of

x(ỹ).C1 : [ρ1, χ1] has to be an application of the ACT rule. This implies x ∈ ρ1. By a

similar argument, x ∈ ρ2. This implies ρ1 ∩ ρ2 6= ∅, which is a contradiction.

We now show that the locality laws (Section 2.1.2) hold in our system. Before we proceed,

the definition of acquaintances of an actor is in order. We define the acquaintances of an

actor x(y).C to be all the free names in (y)C. The only actions an actor may perform

with the names of its acquaintances is to send messages with these names as target or

contents, or create actors which have these acquaintances. Specifically, an actor can not

create actors with any of these names except its own. In fact, the type system ensures
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that new actors are always created with private names (bound by a restriction). So our

definition of acquaintances is sound.

Locality laws 1 and 2 hold because fn(C) is finite for every term C. An actor x(ỹ).C

on receiving a message x〈z̃〉 replaces itself with the configuration C{z̃/ỹ}. This is cap-

tured in the formalisms we present in Chapter 4. Input and output subterms in C{z̃/ỹ}

that do not occur inside an actor behavior are the freshly created actors and messages.

Names that occur free in these substerms are either also free in C{z̃/ỹ}, or are bound

by restrictions. By the RES rule, the ones bound by restriction denote newly created

actors. Now, locality law 3 follows from the fact that fn(C{z̃/ỹ}) ⊂ fn((ỹ)C) ∪ {z̃}.

There could be a minor complaint against our definition of acquaintances. According

to the definition, an actor always has itself as an acquaintance even though it may not

’know’ its own name. For example, an actor may neither send messages using its name,

or create actors which have it as an acquaintance. An easy remedy would be to include x

as an acquaintance of x(ỹ).C only if there is an output term or a behavior instantiation

in C which contains a free occurrence of x. In any case, this minor inaccuracy in the

definition, does not have any undesirable consequences. Hence we retain the definition

as it is. Finally, it is easy to see that the acquaintances of an actor may dynamically

evolve as the actor assumes new behaviors.

3.3 Some Soundness Properties of the Type System

If C : [ρ, χ] is a typing judgement then we expect ρ∩χ = ∅. By induction on the structure

of C we can show that this is true. The key to this property is equation 2.5 (Section

2.1.3). We omit the proof as it is simple.

Theorem 1 Let C : [ρ, χ]. Then ρ ∩ χ = ∅.
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Proof: By structural induction on C.
�

Alpha equivalent terms represent the same configuration. Therefore, the type system

should respect alpha equivalence. Theorem 2 states this formally. Before the theorem a

few lemmas are in order.

Lemma 4 If C : [ρ, χ] then ρ ∪ χ ⊂ fn(C).

Proof: By structural induction on C.
�

Lemma 4 is not a surprise. It simply states that the names in a term’s interface occur

free in the term.

The proof of the following lemma is a bit tedious, although conceptually very simple.

Uninterested readers may skip the proof.

Lemma 5 Let ũ and ṽ each be a tuples of distinct names, len(ũ) = len(ṽ), {ṽ}∩n(C) =

∅, and σ = {ṽ/ũ}. Then C : [ρ, χ] implies C[ṽ/ũ] : [σ(ρ), σ(χ)].

Proof: We prove this by structural induction on C.

Base Case: C is either the nil term, an output term, or a behavior instantiation. It is

easy to verify that the hypothesis is true for these cases.

Induction Step: We have to consider four cases.

1. C ≡ x(ỹ).C1: The last step in a derivation of C : [ρ, χ] has to be

C1 : [{x}, χ′]

x /∈ {ỹ}

x(ỹ).C1 : [{x}, fn(C1) − {x, ỹ}]

C[ṽ/ũ] ≡ σ(x)(ỹ).(C1[ṽ′/ũ′]), where ũ′ = ũ − ỹ and ṽ′ = σ(ũ′). Let σ′ = {ṽ′/ũ′}.

By induction hypothesis, C1[ṽ′/ũ′] : [{σ′(x)}, σ′(χ′)]. Since x /∈ {ỹ}, we have
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σ′(x) = σ(x). Since {ṽ} ∩ n(C) = ∅, we have σ(x) /∈ {ỹ}. Then by rule ACT ,

C[ṽ/ũ] : [{σ(x)}, fn(C1[ũ′/ṽ′])−{σ(x), ỹ}]. We are done if we show fn(C1[ũ′/ṽ′])−

{σ(x), ỹ} = σ(fn(C1) − {x, ỹ}). By Lemma 1, fn(C1[ṽ′/ũ′]) = σ′(fn(C1)). Also,

since σ′ is identity on ỹ, σ′(fn(C1)) = σ(fn(C1)−{ỹ})∪{fn(C1)∩{ỹ}}. Now, using

this and the identity (R ∪ S)− T = (R− T ) ∪ (S − T ), we deduce fn(C1[ũ′/ṽ′])−

{σ(x), ỹ} = σ(fn(C1) − {ỹ}) − {σ(x), ỹ}. Now, σ(fn(C1) − {ỹ}) − {σ(x), ỹ} =

σ(fn(C1)−{ỹ})−{σ(x)}−{ỹ} = σ(fn(C1)−{x, ỹ})−{ỹ} (using 3.2) = σ(fn(C1)−

{x, ỹ}) (since {ṽ} ∩ {ỹ} = ∅).

2. C ≡ (νx)C1: The last step in a derivation of C : [ρ, χ] has to be

C1 : [ρ ∪ {x}, χ]

x /∈ ρ

(νx)C1 : [ρ, χ]

C[ṽ/ũ] ≡ (νx)C1[ṽ′/ũ′], where ũ′ = ũ − x and ṽ′ = σ(ũ′). Let σ′ = {ṽ′/ũ′}. Since

σ′(x) = x, by induction hypothesis, C1[ṽ′/ũ′] : [σ′(ρ) ∪ {x}, σ′(χ)]. By Theorem

1, x /∈ χ; so σ′(χ) = σ(χ). Since x /∈ ρ, σ′(ρ) = σ(ρ). Therefore, C1[ṽ′/ũ′] :

[σ(ρ) ∪ {x}, σ(χ)]. Since {ṽ} ∩ n(C) = ∅, x /∈ σ(ρ). Then by rule RES, C[ṽ/ũ] :

[σ(ρ), σ(χ)].

3. C ≡ C1 | C2: The last step in a derivation of C : [ρ, χ] has to be

C1 : [ρ1, χ1] C2 : [ρ2, χ2]

ρ1 ∩ ρ2 = ∅

C1 | C2 : [ρ1 ∪ ρ2, (χ1 ∪ χ2) − (ρ1 ∪ ρ2)]

C[ṽ/ũ] ≡ C1[ṽ/ũ] | C2[ṽ/ũ]. By induction hypothesis, C1[ṽ/ũ] : [σ(ρ1), σ(χ1)] and

C2[ṽ/ũ] : [σ(ρ2), σ(χ2)]. Since σ is one-to-one on fn(C), by Lemma 4, it is also

one-to-one on ρ1 ∪ ρ2 ∪χ1 ∪χ2. Then, since ρ1 ∩ ρ2 = ∅, we have σ(ρ1)∩σ(ρ2) = ∅.

Then by rule COMP , C : [σ(ρ1 ∪ ρ2), σ(χ1 ∪χ2)− σ(ρ1 ∪ ρ2)]. Now, using identity

3.2, we get C : [σ(ρ1 ∪ ρ2), σ((χ1 cupχ2) − (ρ1 ∪ ρ2))].
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4. C ≡ [x = y](C1, C2): The argument for this case is simple and left to the reader.

�

We are now ready to show that the type system respects alpha equivalence.

Theorem 2 If C1 ≡α C2 then C1 : [ρ, χ] if and only if C2 : [ρ, χ].

Proof: We only prove C1 : [ρ, χ] implies C2 : [ρ, χ]. The other direction follows from

Lemma 2. The proof is by induction on the length of derivation of C1 ≡α C2.

Base Case: The derivation is by a direct application of the alpha conversion laws (see

Section 3.1). We have two cases to consider:

1. C1 ≡ (νy)C and C2 ≡ (νz)C[z/y], where z /∈ n(C). Then by rule RES, C :

[ρ ∪ {y}, χ] and y /∈ ρ. Further, by Theorem 1, y /∈ χ. Then by Lemma 5,

C[z/y] : [ρ ∪ {z}, χ]. By Lemma 4, ρ ⊂ fn(C). So z /∈ ρ. Then by rule RES,

C2 : [ρ, χ].

2. C1 ≡ x(ỹ).C and C2 ≡ x(z̃).C[z̃/ỹ], where z̃ is a tuple of distinct names and

{z̃} ∩ n(C) = ∅. Let σ = {z̃/ỹ}. By rule ACT , C : [{x}, χ′] for some χ′, and

x /∈ {ỹ}. Then by Lemma 5, C[z̃/ỹ] : [{x}, σ(χ′)]. By Lemma 4, x ∈ fn(C). Hence

x /∈ {z̃}. Then by rule ACT , C2 : [{x}, fn(C[z̃/ỹ])−{x, z̃}]. We are done if we show

fn(C[z̃/ỹ])−{x, z̃} = fn(C)−{x, ỹ}. Now, fn(C[z̃/ỹ])−{x, z̃} = σ(fn(C))−{x, z̃}

(by Lemma 1) = σ(fn(C)) − σ({x, ỹ}) (since x /∈ {ỹ}) = σ(fn(C) − {x, ỹ}) (by

identity 3.2) = fn(C) − {x, ỹ} (since σ is identity on fn(C) − {x, ỹ}).

Induction Step: The last step of an arbitrary derivation can use either the alpha conver-

sion laws or the congruence laws. We have already considered the former. The arguments

for congruence laws are straight forward and left to the reader.
�

Not all substitutions on a term C yield terms. A substitution σ may identify names

of two distinct actors in C and violate uniqueness of actor names. But, if σ renames
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different actors in C to different names then Cσ should be a term. Further, if C : [ρ, χ]

and Cσ : [ρ′, χ′] then we expect ρ′ = σ(ρ). On the other hand, a similar relationship

between χ′ and χ need not hold. This is because of two reasons. First, external names in

C can be renamed to internal actor names. Second, renaming can change the outcome

of conditions which are ‘ready to be tested’, i.e. which do not occur as part of an actor

behavior. For example, the external names in [x = y](C1, C2) are external names in

C1. But the external names after the substitution {y/x} are those in C2. If σ does not

identify any two names used in testing conditions which are not part of actor behaviors

then we would expect χ′ = σ(χ) − σ(ρ). Theorem 3 formally states these properties

related to substitutions. Before the theorem, a few definitions are in order.

Definition 6 A substitution σ is said to be a proper renaming of a set of names L if for

all x, y ∈ L, σ(x) = σ(y) ⇔ x = y.

Definition 7 For a preterm C, we define tn(C) inductively as follows:

tn(0) = ∅

tn(x〈ỹ〉) = ∅

tn(x(ỹ).C) = ∅

tn((νx)C) = tn(C) − {x}

tn(C1|C2) = tn(C1) ∪ tn(C2)

tn([x = y](C1, C2)) = {x, y} ∪ tn(C1) ∪ tn(C2)

tn(B〈x̃〉) = ∅

Clearly, tn(C) ⊂ fn(C). Roughly speaking, tn(C) is the set of all names, free occurrences

of which are used in a condition that is ready to be tested in C

Uninterested readers may skip the rather tedious proof of the following theorem.

Theorem 3 If C : [ρ, χ] and σ is a proper renaming of ρ then Cσ : [σ(ρ), χ′], for some

χ′. Further, if σ is a proper renaming of tn(C) then χ′ = σ(χ) − σ(ρ).
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Proof: The proof is by structural induction on C.

Base Case: It is easy to verify that the statement is true if C is the nil term, an output

term, or a behavior instantiation.

Induction Step: Using Lemma 3 and Theorem 2, we may assume (with appropriate alpha

conversions) σ(x) = x for all x ∈ bn(C), and bn(C) ∩ σ(fn(C)) = ∅.

We have to consider four kinds of terms.

1. C ≡ (νx)C1: The last step in a derivation of C : [ρ, χ] has to be

C1 : [ρ ∪ {x}, χ]

x /∈ ρ

(νx)C1 : [ρ, χ]

By our assumption, Cσ = (νx)C1σ, σ(x) = x, and x /∈ σ(ρ) (using Lemma 4). Then

σ is a proper renaming of ρ∪{x}, and by induction hypothesis, C1σ : [σ(ρ)∪{x}, χ′]

for some χ′. Then by rule RES, Cσ : [σ(ρ), χ′]. Further, suppose σ is a proper

renaming of tn(C). We know tn(C1) ⊂ tn(C)∪{x}. Since tn(C) ⊂ fn(C), σ is also

a proper renaming of tn(C1), and by induction hypothesis, χ′ = σ(χ)−(σ(ρ)∪{x}).

By Lemma 4, χ ⊂ fn(C). Then, by our assumption x /∈ σ(χ). Therefore χ′ =

σ(χ) − σ(ρ).

2. C ≡ x(ỹ).C1: The last step in a derivation of C : [ρ, χ] has to be

C1 : [{x}, χ′]

x /∈ {ỹ}

x(ỹ).C1 : [{x}, fn(C1) − {x, ỹ}]

By our assumption, Cσ = σ(x)(ỹ).C1σ, σ(ỹ) = ỹ, and σ(x) /∈ {ỹ}. By induc-

tion hypothesis, C1σ : [{σ(x)}, χ′′] for some χ′′. Then by rule ACT , we have

Cσ : [{σ(x)}, fn(C1σ) − {σ(x), ỹ}]. Now, fn(C1σ) − {σ(x), ỹ} = σ(fn(C1)) −

{σ(x), σ(ỹ)} (since σ(ỹ) = ỹ) = σ(fn(C1)− {x, ỹ})− {σ(x)} − {ỹ} (using identity

3.1) = σ(fn(C1) − {x, ỹ}) − {σ(x)} (since σ(fn(C)) ∩ {ỹ} = ∅).
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3. C ≡ C1 | C2: The last step in a derivation of C : [ρ, χ] has to be

C1 : [ρ1, χ1] C2 : [ρ2, χ2]

ρ1 ∩ ρ2 = ∅

C1 | C2 : [ρ1 ∪ ρ2, (χ1 ∪ χ2) − (ρ1 ∪ ρ2)]

We have Cσ = C1σ|C2σ. Now, σ is also a proper renaming of ρ1 and ρ2. Therefore,

by induction hypothesis, C1σ : [σ(ρ1), χ
′
1] and C2σ : [σ(ρ2), χ

′
2], for some χ′

1, χ
′
2.

Since ρ1∩ρ2 = ∅ and σ is a proper renaming of ρ1∪ρ2, we deduce σ(ρ1)∩σ(ρ2) = ∅.

Then by rule COMP , Cσ : [σ(ρ1∪ρ2), χ
′], where χ′ = (χ′

1∪χ′
2)−σ(ρ1∪ρ2). Suppose

σ is a proper renaming of tn(C1|C2). Then σ is also a proper renaming of tn(C1) and

tn(C2). Then by induction hypothesis, χ′
1 = σ(χ1)−σ(ρ1) and χ′

2 = σ(χ2)−σ(ρ2).

Using the identities ((R − S) ∪ (T − U)) − (S ∪ U) = (R ∪ T ) − (S ∪ U) and 3.1,

we deduce χ′ = σ((χ1 ∪ χ2) − (ρ1 ∪ ρ2)) − σ(ρ1 ∪ ρ2).

4. C ≡ [x = y](C1, C2): The last step in a derivation of C : [ρ, χ] has to be

C1 : [ρ, χ1] C2 : [ρ, χ2]

χ =











χ1 if x ≡ y

χ2 otherwise

[x = y](C1, C2) : [ρ, χ]

We have Cσ = [σ(x) = σ(y)](C1σ,C2σ). By induction hypothesis, C1σ : [σ(ρ), χ′
1]

and C2σ : [σ(ρ), χ′
2] for some χ′

1, χ
′
2. Then by rule COND, Cσ : [σ(ρ), χ′] for some

χ′. Further, suppose σ is a proper renaming of tn(C). Then σ is also a proper

renaming of tn(C1) and tn(C2). Then by induction hypothesis, χ′
1 = σ(χ1) − σ(ρ)

and χ′
2 = σ(χ2) − σ(ρ). Since σ(x) ≡ σ(y) if and only if x ≡ y, it follows that

χ′ = σ(χ) − σ(ρ).

�

Recall our discussion on rule BINST in Section 3.2. We promised that the constraints

which accompany the rule are satisfied provided, for any definition B
def
= (u, ṽ)u(w̃).C
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we have u(w̃).C : [{u}, {v}]. This can be verified using Theorem 3. For any tuple x, ỹ,

{(x, ỹ)/(u, ṽ)} is a proper renaming of {u} and tn(u(w̃).C) (= ∅). Then, by Theorem 3,

it follows that (u(w̃).C){(x, ỹ)/(u, ṽ)} : [{x}, {ỹ} − {x}].

Before concluding the section, we note that the properties we have shown do not by

themselves imply that the type system is sound. These are just a few properties which

should be observed if the type system is sound. In fact, in Chapter 4 will prove a few

more soundness properties (Sections 4.1 and 4.2.3).

3.4 A Comparison with π-Calculus and its Variants

The syntax of System A is a refinement of the syntax of (polyadic) π-calculus [34, 35, 32].

As in π-calculus, only names are assumed primitive in System A, and all combinators

in System A are from π-calculus. We note that the status of conditional construct in

π-calculus is unclear. Different versions of the calculus make different choices. Some

versions such as [39, 45] retain it, while some such as [32] drop it. Others such as [34, 35]

retain it but without the else part. The effect of these choices on expressiveness, and

equivalences and their axiomatizations has been studied to some extent [40, 38, 9, 39].

In System A we retain the conditional construct mainly because of its convenience. We

defer the study of its effect until we have investigated some notions of equivalences in

our calculus. We will be using the construct extensively in our examples in Chapter 5.

The central difference between π-calculus and System A is that names in System A

identify persistent agents rather than stateless channels. Of course, agents with identities

can be interpreted in π-calculus as processes that listen to a single port. Accordingly, our

type system can viewed as one that enforces this object paradigm on π-calculus. But we

note right away that this does not mean that System A is a typed polyadic π-calculus.

Encapsulation and fairness in actor systems change the usual operational semantics of

π-calculus in a non-trivial way. While encapsulation precludes certain transitions in π-
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calculus, fairness deems certain infinite sequences of transitions illegal. The semantics of

System A is defined in Chapter 4 using a labeled transition system.

A number of variations of π-calculus have been investigated for specific purposes. The

asynchronous π-calculus [22, 10] has served as the basis of experimental programming

languages such as Pict [42] and Join [13]. Several type systems have been imposed on

π-calculus to capture and study certain disciplines in usage of names that arise very

often in practice. The typed versions have been used to prove correctness of program

transformations [47, 45], use π-calculus as a metalanguage for semantics of typed object-

oriented languages [46], and prove stronger versions of some standard theorems in π-

calculus which in turn are useful in establishing certain equivalences [41]. We now briefly

discuss some of the relevant variants in the context of System A.

Asynchronous variants of π-calculus such as [22, 10] model asynchronous communication

by allowing only the nil process as the continuation of an output prefix. Specifically,

messages are processes which output at a port and become inactive. We have adopted

this idea in System A. Further, like these asynchronous formulations we have dropped

the choice combinator. Parallel composition is sufficient to model non-determinism in

actor systems. In any case, the meaning of a choice that is not input guarded is unclear

in asynchronous calculi [4].

Milner’s sorting [32] is historically the first of all type systems on π-calculus. A sorting

enforces constrains on the name tuples that can be communicated over a channel. Names

are partitioned into a collection of sorts and a sorting function is defined which maps

sorts onto sequences of sorts. If a sort s is mapped to the sequence (t1, t2) then the

channel s can carry only pairs of names, where the first name is in t1 and the second is

in t2. If x is in sort s, u in t1, and v in t2 then prefixes x(u, v) and x〈u, v〉 respect the

sorting. A process is said to be well sorted if all prefixes in it respect the given sorting.

The essential consequence of this exercise is that for a sorted process arity mismatches

such as in x(u, v).P |x〈y〉.Q are guaranteed not to occur during runtime. The sorting

discipline plays an important role in proving certain properties of π-calculus [55, 44].
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The main limitation of sorting is that sort information is completely static: it cannot

describe sequencing of values communicated over a channel. For example, it cannot

describe a channel which is used to carry an alternating sequence of two and three tuples,

or tuples of different sort sequences which have the same length. But this is precisely

what is very convenient, if not essential, in actor systems. Names in an actor system

identify persistent agents which may change their behavior as they evolve and accept

messages with tuples of different types. In fact, we will be using this feature extensively

in our examples in Chapter 5. There seems to be no simple of way of extending the sorting

discipline to take into account such dynamic constrains on communications. In any case,

our aim is to capture only the essential features of the Actor Model. We therefore do not

adopt the sorting discipline and leave such embellishments for future research. Readers

familiar with Milner’s sorting can verify that our encoding of boolean negation in Section

5.2 is not well-sorted.

In [41], Milner’s sorting is refined by imposing further discipline on the usage of names.

The ability to read from a channel, the ability to write to a channel, and the ability to

both read and write are all distinguished from one another. Besides the sorting function,

a function I is defined from sorts to a set of tags which indicate the operations allowed

on names in a given sort. The tags are: r for read, w for write, and b for both. The fact

that a channel in a sort s such that I(s) = b can be used in a context which expects it

with an r or w naturally gives rise to a subtype relation ≤ on (tagged) sorts. Now, let us

reconsider the example we presented while discussing sorting. Suppose u is in sort t′1 and

v is in sort t′2. Then the input prefix x(u, v) is well sorted if t′i ≤ ti for i = 1, 2, and I(s)

is either r or b. Similarly the output prefix x〈u, v〉 is well typed if if t′i ≤ ti for i = 1, 2,

and I(s) is either w or b. The greater precision of this type system is used to prove

correctness of certain encodings which are otherwise unsound in the untyped π-calculus.

In [46] this type system is enhanced with variant types, and the resulting calculus is used

as a metalanguage for interpreting Abadi and Cardelli’s first order functional Object

Calculus.
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An analogy between our type system and the one discussed above is illuminating. First,

since we have not adopted the notion of sorting let us consider a scenario where names

are directly associated with tags which indicate whether they may be validly used for

input and/or output. Now, we can interpret of our type system as follows. The fact

that an actor cannot create new actors with names received in a message means that the

bound names in an input prefix are implicitly tagged with a w. This is also reminiscent of

languages such as Pict and Join where only output capabilities can be passed in messages.

Similarly, since names bound by restriction denote internal actors they are assume to be

tagged with b. A judgement C : [ρ, χ] can be interpreted as: C is well-typed in a context

which tags names in ρ with b, and the names in χ with w.

The reader may note that in contrast to [41] the annotations of all free and bound occur-

rences of names are inferred by our type system; they need not be explicitly mentioned.

Further, associating input/output capabilities with names only enforces one of the prop-

erties of actor systems. Our type system enforces several additional constraints which

guarantee properties such as uniqueness of actor names, and persistence of actors.
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Chapter 4

System A: Operational Semantics

In this chapter we define the semantics of System A using a labeled transition system. Al-

though only terms represent configurations we define the transition system over preterms.

We do this to show that our type system is sound; we will prove that the set of terms

is closed under transitions. The transition system by itself does not enforce fairness on

message deliveries. We capture fairness by imposing additional constraints on sequences

of transitions.

In Section 4.1 we define an equivalence relation on preterms which helps simplify the

definition of our labeled transition system. We also present the notion of canonical

form of terms which is useful in defining fairness. In Section 4.2 we present the labeled

transition system, and show how it captures the evolution of a configuration’s interface

and the encapsulation enforced by the interface. We define fair computations in Section

4.3.

4.1 Equivalence Relation on Preterms

To simplify the definition of our labeled transition system we identify several preterms.

This approach has been adopted in the formulation of a number of calculi [32, 22], and

was originally inspired by the Chemical Abstract Machine of Berry and Boudol [8].
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Definition 8 The relation 'C is the smallest equivalence relation on preterms such that

the following laws hold:

(alpha) C1 'C C2 if C1 ≡α C2

(comm) C1|C2 'C C2|C1

(assoc) (C1|C2) | C3 'C C1 | (C2|C3)

(scope-nest) (νx, y)C 'C (νy, x)C

(scope-expn) (νx)C1|C2 'C (νx)(C1|C2) if x /∈ fn(C2)

(grbg) C|0 'C C

(const) B〈x, ỹ〉 'C C{(x, ỹ)/(u, ṽ)} if B
def
= (u, ṽ)u(w̃).C

(cond) [x = y](C1, C2) 'C











C1 if x ≡ y

C2 otherwise

(cntxt) C1 'C C2 implies

(a) (νx)C1 'C (νx)C2

(b) C|C1 'C C|C2

Note that 'C relates two terms only if they represent the same configuration. Further,

'C is not a congruence relation. We do not want the (cond) law to be applied to a

conditional construct occuring in an actor behavior. The names being matched may be

bound by an input prefix, in which case the condition is to be tested only after the bound

names are replaced by names received in a message. Specifically, the following context

law is not appropriate for our purposes.

C1 'C C2 ⇒ x(ỹ).C1 'C x(ỹ).C2.

It is easy to see that the following context law is redundant. It follows from (cond) and

equivalence laws.

C1 'C C ′
1, C2 'C C ′

2 ⇒ [x = y](C1, C2) 'C [x = y](C ′
1, C

′
2)

Since 'C relates only identical terms we would expect our type system to respect 'C.

Theorem 4 formally states this property.
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Theorem 4 Let C1 'C C2. Then C1 : [ρ, χ] iff C2 : [ρ, χ].

Proof: We prove this by induction on the number of steps in a derivation of C1 'C C2.

Base case: The relation is derived by a direct application of a law other than (cntxt).

We consider only the interesting cases, and leave the rest for the reader.

1. (alpha): The hypothesis holds by Theorem 2.

2. (scopeexp): We only prove C1 : [ρ, χ] implies C2 : [ρ, χ]. The other direction

can be proved in a similar way. For some terms C ′
1, C

′
2, we have C1 = (νx)C ′

1|C
′
2,

C2 = (νx)(C ′
1|C

′
2) and x /∈ fn(C ′

2). For some ρ1, ρ2, χ1, χ2, we have C ′
1 : [ρ1, χ1] and

C ′
2 : [ρ2, χ2]. Then by rules RES and COMP of table 3.2, (ρ1 −{x})∩ ρ2 = ∅, and

ρ = (ρ1−{x})∪ρ2, χ = (χ1∪χ2)− ((ρ1−{x})∪ρ2). By Lemma 4, x /∈ ρ2, x /∈ χ2,

and by Theorem 1, x /∈ χ1. It follows that ρ1 ∩ ρ2 = ∅, ρ = (ρ1 ∪ ρ2) − {x}, and

χ = (χ1 ∪ χ2) − (ρ1 ∪ ρ2). Then by rules COMP and RES, we have C2 : [ρ, χ].

3. (const): We considered this in the discussion following Theorem 3 (Section 3.3).

Induction Step: The last step of an arbitrary derivation can use any of the laws. The only

laws not considered in the base case are the (cntxt) laws, and symmetry and transitivity

laws of equivalence relation. The arguments for all these cases are straightforward, and

are left to the reader.
�

Related to 'C is the notion of canonical form. Although this notion can be defined on

preterms, we bother to define it only on terms.

Definition 9 A term (νx̃)(C1| · · · |Cn) is said to be in canonical form if each Ci is either

an input term, or an output term. If x̃ is the empty tuple then (C1| · · · |Cn) is said to be

open.

In a canonical term (νx̃)(i=n
i=1Ci), the Ci’s which are input terms are all the internal actors,

and the Ci’s which are output terms are all the messages in the configuration. The tuple
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x̃ contains names of all the internal actors which are not receptionists, and no two names

in it are the same. This can be deduced from rule RES of Table 3.2. If (νx̃)(i=n
i=1Ci) : [ρ, χ]

then by repeated application of the rule, it follows that x̃ is a tuple of distinct names and

i=n
i=1Ci : [ρ ∪ {x̃}, χ].

Terms in canonical form are handy because it is possible to unambiguously refer to an

actor or a message in the term by using the actor name or the message target and

contents, even if the names we use are bound. This is not always possible for arbitrary

terms. For example, in a term of the form (νx)x(ỹ).C1 | (νx)x(z̃).C2, the bound name

x is used to denote two internal actors. The actors have distinct identities because the

restrictions have disjoint scopes.

Readers familiar with [3] may note that the representation of actor configurations used in

it closely corresponds to our notion of canonical form. However, there is some difference

between the two. In [3], the interface of a configuration is explicit and remembers all

the external names that were ever present in the configuration. This information is used

to ensure that no internal actors are created with external names. But in our case, the

interface is implicit and is derived from the syntax of a term. This implies that external

names may be forgotten as a given term evolves. For example, this may happen when

an internal actor forgets some of its acquaintances after receiving a message, or when a

message targeted to an external actor is sent to the environment. We make up for this

loss in the definition of admissible computations (Section 4.3.2).

We now show that every term is equivalent to a term in canonical form.

Lemma 6 For every term C, there is a canonical term C ′ such that C 'C C ′.

Proof: Let C be a given term. We prove the hypothesis by structural induction on

C. If C is an output or input term, it is already in canonical form. If C is a behavior

instantiation, then the (const) law gives a canonical form. If C ≡ (νx)C1 then a

canonical form of C1 together with the (cntxt)(a) law gives a canonical form of C. If

C ≡ [x = y](C1, C2) then canonical forms of C1 and C2 together with rule (cond) give
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a canonical form of C. Finally, if C ≡ C1 | C2 then we can find canonical forms of C1

and C2, and pull out the outer restrictions in the canonical forms with repeated alpha-

conversions and application of (scope-exp) and (cntxt)(a) laws to get a canonical form

of C.
�

A term may have more than one canonical form. The following lemma shows how different

canonical forms of a given term are related.

Lemma 7 Let (νx̃)C1 'C (νỹ)C2 and C1, C2 be open. Then the following statements are

true

1. len(x̃) = len(ỹ)

2. There exists a permutation ỹ′ of names in ỹ such that C2 'C C1{ỹ′/x̃}

Proof: We prove the statements simultaneously by induction on the maximum of len(x̃)

and len(ỹ). For the case where both the tuples are empty, statement 1 is trivially true,

and statement 2 follows by setting ỹ′ = ỹ and using (alpha) and equivalence laws. In

the induction step we look at a derivation of (νx̃)C1 'C (νỹ)C2. We use the fact that

the last derivation step has to be an application of a law, in which both the terms being

related are in canonical form and at least one of them has a restriction as the outermost

combinator. This narrows down the possibilities to (alpha), (scope-nest), (cntxt)(a),

and the equivalence laws. Further details are left to the reader.

4.2 Labeled Transition System

We model computations in actor systems using labeled transitions between preterms. A

transition is of form C1
α

−→ C2, and means that C1 can perform the action α and evolve

into C2. We call C1 the source of the transition, and C2 the target. Although transitions

are defined on preterms for reasons mentioned earlier, in all our informal discussions we

assume that the source of a transitions is a term.
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Action (α) Kind fn(α) bn(α)
τ Silent ∅ ∅
in(x〈ỹ〉) Input {x, ỹ} ∅
out((νỹ′)x〈ỹ〉) Output {x, ỹ} − {ỹ′} {ỹ′}

Table 4.1: Free and bound names of actions

4.2.1 Actions

We denote the set of actions by A, and let α, β range over it. There are three kinds of

actions

1. Silent, τ : The transition C1
τ

−→ C2 represents the delivery of a single message to

its target in C1. After the delivery C1 evolves to C2. This action does not involve

an interaction between C1 and its environment. Specifically, the message is already

present in C1. We represent all internal deliveries uniformly by τ . This is because

we wish to abstract away the details of internal communication.

2. Input, in(x〈ỹ〉): The transition C1
in(x〈ỹ〉)
−→ C2 means that C1 may receive the mes-

sage x〈ỹ〉 from its environment and evolve into C2. The message is targeted to a

receptionist in C1 and is not yet delivered to its target at the end of the transition.

It is just added to the pool of messages in C1.

3. Output, out((νỹ′)x〈ỹ〉): The transition C1
out((νỹ′)x〈ỹ〉)

−→ C2 means that C1 may emit

the message x〈ỹ〉 to its environment and evolve into C2. The name x is an external

name in C1. Names in ỹ′ are all distinct, occur in ỹ and denote non-receptionists

in C1. It is therefore always the case that x /∈ {ỹ′} and {ỹ′} ⊂ {ỹ}.

All the actions along with definitions of free and bound names in them are given in Table

4.1. For an action, α we define n(α) = fn(α) ∪ bn(α). For actions α and β, we write

α ≡ β if α and β are syntactically identical.
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4.2.2 Transitions

The transition relation
α

−→ is the smallest relation on preterms that is closed under the

rules in Table 4.2.2. The RECV , PAR and HIDE rules are for inferring transitions

that involve a silent action. The IN and OUT rules are for inferring transitions that

involve input and output actions. The EQUIV rule is used for both kinds of transitions.

The RECV rule represents the delivery of a message to its target. It formally captures

what we have been assuming all along; the actor x(ỹ).C may receive a message x〈z̃〉,

where ỹ and z̃ are tuples of the same length, and replace itself with C{z̃/ỹ}. Our type

system guarantees that the actor x is present in C{z̃/ỹ}. By the RES rule of Table 3.2,

C : [{x}, χ′] for some χ′, and by Theorem 3, C{z̃/ỹ} : [{x}, χ′{z̃/ỹ}−{x}]. Actors other

than x and all messages in C{z̃, ỹ} are all created in response to the delivery. All the

fresh actors are anonymous, because only x is the receptionist of C{z̃/ỹ}. We already

showed in Section 3.2 that the locality laws are satisfied.

The PAR and HIDE rules state that internal actions can occur under composition and

restriction. The PAR rule captures the fact that actors in the two configurations being

composed execute concurrently. The HIDE rule captures the fact that the restriction

(νx) in (νx)C hides actor x in C only from the environment; actors in C with x as an

acquaintance can still send messages to x.

The IN rule states that a configuration may receive a message targeted to one of its

receptionists from its environment. At the end of the transition the message is not yet

delivered to its target; it is just added to the pool of messages in the configuration.

The OUT rule states that a configuration may emit a message in it that is targeted to

an external actor. The message may contain names of non-receptionists which will then

become receptionists in the resulting configuration. Bound names in the output action

are the names of non-receptionists that are being exported; the RES rule guarantees that

these names refer to internal actors. The names are no longer bound by restrictions in

the transition target. Further, by Lemma 4, these names are fresh; they do not already
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C1 'C C ′
1 C ′

1
α

−→ C ′
2 C ′

2 'C C2

EQUIV :

C1
α

−→ C2

RECV : len(ỹ) = len(z̃)

x(ỹ).C | x〈z̃〉
τ

−→ C{z̃/ỹ}

C1
τ

−→ C ′
1

PAR :

C1|C2
τ

−→ C ′
1|C2

C
τ

−→ C ′

HIDE :

(νx)C
τ

−→ (νx)C ′

IN : C : [ρ, χ], x ∈ ρ

C
in(x〈ỹ〉)
−→ C | x〈ỹ〉

OUT : C : [ρ, χ], x /∈ ρ, {ỹ′} ⊂ {ỹ}

(νỹ′)(C | x〈ỹ〉)
out((νỹ′)x〈ỹ〉)

−→ C

Table 4.2: Transition rules for System A

denote a receptionist or external name in the transition source. Theorem 6 formally

characterizes the way a configuration’s interface may change during a transition.

The EQUIV rules states that equivalent terms have the same transitions. This enables

us to use the laws for 'C to juxtapose a message and its target so that the RECV, PAR

and HIDE laws can be applied to derive a transition that corresponds to the delivery

of the message. Similarly a configuration with a message targeted to an external actor

can be transformed to a form suitable for the OUT rule.
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Recall that encapsulation laws constrain the interactions between a configuration and its

environment based on the configuration’s interface (Section 2.1.3). We now show that

the transition relation satisfies these laws.

Theorem 5 Let C : [ρ, χ]. Then

1. C
in(x〈ỹ〉)
−→ C ′ implies x ∈ ρ.

2. C
out((νỹ′)x〈ỹ〉)

−→ C ′ implies x ∈ χ.

Proof: We prove this by induction on the number of steps in a derivation of a transition.

Base Case: If the transition is derived by a direct application of IN rule then the

statements clearly hold. If the derivation is a direct application of OUT rule then

C ≡ (νỹ)(C ′|x〈y〉), and for some ρ′, χ′, C ′ : [ρ′, χ′] then x /∈ ρ′. Then by COMP

rule of Table 3.2, x ∈ χ.

Induction Step: The last derivation step has to be an application of the EQUIV rule.

Then, from induction hypothesis and Theorem 4, it follows that the statements hold.
�

The encapsulation laws also stipulate that messages received by a configuration from its

environment cannot contain names of actors in the configuration which are not reception-

ists. This is automatically guaranteed in our system because names of internal actors

are bound by restrictions and hence cannot be identified with names received in such

messages. Note that in the IN rule the message received is placed outside the scope of

all restrictions.

4.2.3 Soundness

If our type system is sound the set of terms should be closed under transitions. Specif-

ically, for a term C if C
α

−→ C ′ then C ′ should also be a term. The following theorem

says that this is indeed the case. The theorem also characterizes the way configuration
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interfaces change during transitions (see Section 2.1.3). During output actions names of

non-receptionists may be exported to the environment, thus creating new receptionists.

Messages received during input actions may contain external names that the configuration

does not yet know. During internal message deliveries or output actions the configuration

may loose some external names.

Theorem 6 Let C1 : [ρ1, χ1] and C1
α

−→ C2. Then C2 : [ρ2, χ2] where

ρ2 =











ρ1 ∪ {ỹ′} if α = out((νỹ′)x〈ỹ〉)

ρ1 otherwise

χ2 =











χ1 ∪ ({ỹ} − ρ1) if α = in(x〈ỹ〉)

χ′, where χ′ ⊂ χ1 otherwise

Proof: We prove this by induction on the number of steps in a derivation of C1
α

−→ C2.

Base case: The transition is derived by a direct application of RECV, IN or OUT rules

of Table 4.2.2. We show that the hypothesis holds in each case. Variables that occur in

the following arguments are from the rules in Table 4.2.2.

1. RECV : By the ACT rule of Table 3.2 we deduce C : [{x}, χ′] for some χ′. By rules

ACT and COMP of Table 3.2, ρ1 = {x} and χ1 = (fn(C)−{x, ỹ})∪ ({z̃}−{x}).

Trivially, {z̃/ỹ} is a proper renaming of {x}. By the ACT rule, we have x /∈ {ỹ}.

Then, by Theorem 3, C{z̃/ỹ} : [{x}, χ2] for some χ2. By Lemma 4 and Theorem

1, we have χ2 ⊂ fn(C{z̃/ỹ}) − {x} ⊂ χ1.

2. IN : We have C : [ρ1, χ1] and x ∈ ρ1. By Theorem 1, ρ1 ∩ χ1 = ∅ and x /∈ χ1. By

rules MSG and COMP of Table 3.2, we deduce C | x〈ỹ〉 : [ρ1, χ1 ∪ ({ỹ} − ρ1)].

3. OUT : We have C : [ρ2, χ2]. By rule COMP of Table 3.2, C | x〈ỹ〉 : [ρ2, (χ2 ∪

{x, ỹ}) − ρ2]. Then by rule RES of Table 3.2, ρ1 = ρ2 − {ỹ′} and {ỹ′} ⊂ ρ2.

Therefore, ρ2 = ρ1 ∪{ỹ′}. Also, by rule RES, χ1 = (χ2 ∪{x, ỹ})−ρ2. By Theorem

1, χ1 = χ2 ∪ ({x, ỹ} − ρ2). Therefore, χ2 ⊂ χ1.
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Induction step: If the last step of derivation uses the EQUIV rule then a straight forward

application of Theorem 4, shows that the hypothesis holds. Similarly, for the cases of

COMP and HIDE rules, a simple application of COMP and RES rules of Table 3.2

shows that the hypothesis holds. The details are simple and left to the reader.

4.3 Admissible Computations

4.3.1 Computations

A computation in the Actor Model corresponds to a sequence of transitions starting from

a term. To facilitate the following discussions, for C : [ρ, χ], we define recep(C) = ρ and

extern(C) = χ.

Definition 10 A computation path, or just path for brevity, is a finite or infinite se-

quence of transitions such that the target of a transition is the source of the next. Thus,

a path has the form

C0
α0−→ C1

α1−→ · · ·Ci
αi−→ · · ·, where 0 < i <./, ./∈ Nat ∪ {ω}

for some term C0. For the path p above, for 0 ≤ i <./, we define

1. len(p) =./

2. p(i) = Ci
αi−→ Ci+1

3. src(p, i) = Ci

4. tgt(p, i) = Ci+1

5. lbl(p, i) = αi

6. src(p) = src(p, 0) = C0

7. recep(p, i) = recep(src(p, i))
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8. recep(p) = recep(src(p)) ∪ ∪0≤j<./ recep(tgt(p, j))

9. extern(p, i) = extern(src(p, i))

10. extern(p) = extern(src(p)) ∪ ∪0≤j<./ extern(tgt(p, j))

11. prefix(p, i) = p′ where len(p′) = i + 1 ∧ tgt(p′, i) ≡ tgt(p, i) ∧

∀j ≤ i.(src(p′, j) ≡ src(p, j) ∧ lbl(p′, j) ≡ lbl(p, j))

12. isprefix(p′, p) ⇔ ∃i.prefix(p, i) = p′

To avoid some pathological technical difficulties, we assume that for any path there are

infinitely many names not used in the path, i.e. for every path p

o(N − (recep(p) ∪ extern(p))) = ℵ0

We define P to be the set of all computation paths, and Pfin to be the set of all paths of

finite length.

Note that a transition is a path of unit length. Further, Theorem 6 implies that for any

p ∈ P, tgt(p, i) is a term for all i < len(p).

Not all paths represent computations in the Actor Model. The paths that do are called

admissible paths. A path may not be admissible because of two reasons. First, it need not

satisfy the fairness requirement on message deliveries (Section 2.1.4). Second, the source

of the path may evolve into a term which contains an internal actor with a forgotten

external name, thus violating uniqueness of actor names. In Sections 4.3.2 and 4.3.3 we

define predicates on P which check for these violations. The set of paths defined by

these predicates is precisely the set of admissible paths. The approach we adopt closely

resembles the one in [49].
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4.3.2 Global Address Constraint

Since a term may lose external names as it evolves, it may eventually have an internal

actor with one of these forgotten names. For instance, consider the following path.

(νx)(x().C|u〈〉|v〈x〉)
out(u〈〉)
−→ (νx)(x().C|v〈x〉)

out((νu)v〈u〉)
−→ u().C{u/x}

In the first transition the external name u is forgotten. In the second transition u is

chosen as the name of the internal actor and is exported to the environment. This is

possible because the OUT rule does not have access to the computational history of a

term; it only ensures that the names chosen for non-receptionists whose names are being

exported do not already occur free in the source of the transition. We impose a Global

Address Constraint (GAC) on P which deems paths such as the above illegal.

GAC(p) ⇔ recep(p) ∩ extern(p) = ∅

4.3.3 Fairness

Before we formally define the set of fair paths let us investigate our notion of fairness

through a few examples. The following two paths are evidently unfair.

Diverge〈x〉|x〈y〉|u〈v〉
τ

−→ Diverge〈x〉|x〈y〉|u〈v〉
τ

−→ · · ·

Diverge〈x〉
in(x〈y〉)
−→ Diverge〈x〉|x〈y〉

in(x〈y〉)
−→ Diverge〈x〉|x〈y〉|x〈y〉

in(x〈y〉)
−→ · · ·

where Diverge
def
= (x)x(y).(x〈y〉 | Diverge〈x〉)

In every transition of the first path the message x〈y〉 is delivered to its target. But the

message u〈v〉, which is targeted an external actor, is never delivered to the environment.

In the second path, every transition involves the receipt of a message from the environ-

ment. Messages already in the configuration are never delivered to x. Note that both
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these paths are infinitely long. In fact, every finite path is fair. This is because fairness

only requires that the delivery of a given message is not delayed for infinite steps; but it

can be delayed for any finite number of steps.

Our notion of fairness does not require that every message is eventually delivered to

its target. Our fairness criteria is an instance of the general notion of strong fairness

discussed in [26]. A message need not always be enabled for delivery at a given time.

Depending on its behavior an actor is ready to accept only those messages that carry

tuples of certain length (see rule IN of Table 4.2.2). On the other hand, messages that

are targeted to external actors can always be delivered to the environment. Our fairness

criteria only requires that there is no message that is infinitely often enabled and not

delivered. For example, the following path is fair

Diverge〈x〉|x〈y〉|x〈u, v〉
τ

−→ Diverge〈x〉|x〈y〉|x〈u, v〉
τ

−→ · · ·

In every transition above, only x〈y〉 is enabled for delivery. Thus, all the silent actions

correspond to its delivery. The path is still fair because x〈u, v〉 is never enabled.

We now proceed to the definition of fair paths. We immediately encounter two technical

difficulties. First, given a path, to check if a message is infinitely often enabled we need

to be able to track the message throughout the path. But this is not possible in arbitrary

paths because terms in the path need not be in canonical form, and the EQUIV rule

allows alpha conversions across transitions. Second, given a transition with silent action,

it is not possible to tell which message delivery caused the transition. For example,

the transition Divergex|x〈y〉|x〈z〉
τ

−→ Divergex|x〈y〉|x〈z〉 can be caused by delivery of

either of the two messages.

To get around this problem we define canonical paths and annotations of canonical paths.

A canonical path has all terms in it in canonical form, and does not allow alpha con-

versions across transitions. An annotation of a canonical path specifies for each silent

transition in the path, a message in the configuration whose delivery could have caused

that transition. It is straightforward to define the set of fair annotated canonical paths.
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To define fairness on arbitrary paths we first define an equivalence relation on P which

identifies paths which are evidently the same, and show that every path is equivalent to

a path in canonical form. We then say a path is observably fair if it is equivalent to a

canonical path which has a fair annotation. The fairness is only observational because a

canonical path may have both fair and unfair annotations.

We now formalize the ideas presented above.

Definition 11 The relation 'P on P is defined as

p1 'P p2 ⇔ len(p1) = len(p2) ∧ src(p1) 'C src(p2)

∀i < len(p1). tgt(p1, i) 'C tgt(p2, i) ∧ lbl(p1, i) ≡ lbl(p2, i)

Since 'C is an equivalence relation, so is 'P .

Lemma 8 The relation 'P is an equivalence relation.

Paths related by 'P are the same because they exhibit the same (observable) sequence

of actions on the same configuration. Moreover, the intermediate configurations are also

identical. This, of course, is a very strong criteria for equating paths. But it suffices for

our purposes; it is lax enough to allow every path to be equivalent to one in canonical

form.

We would expect two paths identified by 'P to either both satisfy, or both not satisfy

the GAC constraint.

Lemma 9 Let p1 'P p2. Then GAC(p1) ⇔ GAC(p2).

Proof: By Definition 11, we have len(p1) = len(p2) = l (say), src(p1) 'C src(p2), and

tgt(p1, i) 'C tgt(p2, i) for all i < l. Then using Theorem 4, we deduce recep(p1) =

recep(p2) and extern(p1) = extern(p2). Hence, GAC(p1) ⇔ GAC(p2).
�

Now, we define the notion of canonical form for computation paths.
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Definition 12 A path p is said to be in canonical form if for all i < len(p), src(p) and

tgt(p, i) are of form (νx̃)C for some open C, and for some u, ṽ, w̃, C1, C2

1. If lbl(p, i) = τ then C 'C C1 | u(ṽ).C2 | u〈w̃〉, and tgt(p, i) is of form (νx̃)C ′, where

C ′ 'C C1 | C2{w̃/ṽ}.

2. If lbl(p, i) = in(u〈ṽ〉) then tgt(p, i) is of form (νx̃)C ′, where C ′ 'C C | u〈ṽ〉.

3. If lbl(p, i) = out((νw̃)u〈ṽ〉) then C 'C C1 | u〈ṽ〉, and tgt(p, i) is of form (νỹ)C ′,

where ỹ = x̃ − w̃, and C ′ 'C C1.

Note how we relate the source and target of each transition in the path to prevent

renaming of non-receptionists across transitions.

We now sketch a proof of the fact that every path is equivalent to a canonical path.

Theorem 7 For every path p there is a canonical path p′ such that p 'P p′.

Proof: By induction on the length of a derivation of a transition, we can show that the

statement above is true for all paths of unit length. Given a path C1
α

−→ C2, in the

induction step we can find canonical terms C ′
1, C

′
2, such that C ′

1 'P C1 and C ′
2 'P C2,

and show that C ′
1

α
−→ C ′

2 is canonical.

Given an arbitrary path p, using the above result, we find for each i < len(p) a canonical

transition ti such that p(i) 'P ti. Let tgt(ti) = (νx̃)Ci and src(ti+1) = (νỹ)C ′
i. Since

tgt(ti) 'P src(ti+1), by Lemma 7, there is a permutation ỹ′ of names in ỹ such that

C ′
i 'C Ci{ỹ′/x̃}. Using these substitutions we can track an actor from its creation and

check if it ever becomes a receptionist. The idea is to fix a name for the actor once and

for all, avoiding renamings across transitions. This can be done as follows. If the actor

becomes a receptionist then we directly choose its exported name. Else, we can pick a

name for it, that has not already been chosen, from the set N − (recep(p) ∪ extern(p)).

Note that by our assumption in Definition 10 there are always enough names to pick

from.
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With this trick we can show that there is a sequence of canonical paths p0, · · · , pi, · · · ,

where i < len(p), such that len(pi) = i + 1, isprefix(pj, pk) for j ≤ k and pi 'P

prefix(p, i). (But note that the trick does not give an effective construction of the

sequence). Now, the path p′ such that len(p′) = len(p) and isprefix(pi, p
′) for i < len(p)

is in canonical form and p′ 'P p.
�

Now, we define annotation of canonical paths. We extend A to A′ by adding receive

actions which denote internal deliveries. A receive action is of form rcv((νỹ′)x〈ỹ〉) and

represents delivery of x〈ỹ〉. The actor x is an internal actor, and ỹ′ is a tuple of distinct

names. The tuple ỹ′ contains exactly the names in x, ỹ which denote non-receptionists.

So, it is always the case that {ỹ′} ⊂ {ỹ}, and unlike output actions it may be the case

that x ∈ {ỹ′}.

Definition 13 A function f : Nat → A′ is an annotation of a canonical path p if for

all i < len(p) and for some u, ṽ, w̃, ỹ

1. If lbl(p, i) 6= τ then f(i) = lbl(p, i).

2. If lbl(p, i) = τ then f(i) = rcv((νw̃)u〈ṽ〉), src(p, i) is of form (νx̃)C where C is

open, and C 'C C1 | u(ỹ).C2 | u〈ṽ〉, {w̃} = {x̃} ∩ {u, ṽ}, and tgt(p, i) is of form

(νx̃)C ′, where C ′ 'C C1 | C2{ṽ/ỹ}.

A direct consequence of Definition 12 is that every canonical path has an annotation.

We now define fairness on annotated canonical paths. For this, we define two predicates,

Enabled and Fires. The predicate Enabled tells if a message in a canonical term is

enabled for delivery, and Fires tells if a message is delivered in a given action. In the

following, C is open.

Enabled((νx̃)C, u〈ṽ〉) ⇔

(C 'C C1 | u〈ṽ〉 ∧ u ∈ extern((νx̃)C)) ∨ (C 'C C1 | u(w̃).C2 | u〈ṽ〉 ∧ len(ṽ) = len(w̃))
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Fires(f, i, x〈ỹ〉) ⇔ ∃z̃.(f(i) = rcv((νz̃)x〈ỹ〉) ∨ f(i) = out((νz̃)x〈ỹ〉))

Definition 14 Every annotation of a finite canonical path is fair. An annotation f of

an infinite canonical path p is fair if

∀x, ỹ, i < len(p). Enabled(src(p, i), x〈ỹ〉) ⇒

∃j ≥ i. F ires(f, j, x〈ỹ〉) ∨ ¬∃k ≥ j. Enabled(tgt(p, k), x〈ỹ〉)

We are now ready to define fair paths in general.

Definition 15 A path p is observably fair if there is a canonical path p′ such that p 'P p′

and p′ has a fair annotation.

An infinite canonical path may have both fair and unfair annotations. A path is just

the observable projection of an actual computation in a configuration. Therefore, several

computations may project to the same path. For example, consider the path

Diverge〈x〉 | x〈y〉 | x〈z〉
τ

−→ Diverge〈x〉 | x〈y〉 | x〈z〉
τ

−→ · · ·

For this path, the annotation f where

f(i) =











rcv(x〈y〉) i is even

rcv(x〈z〉) otherwise

is fair. But the annotation g where g(i) = rcv(x〈y〉) for all i, is unfair. Thus, our fairness

notion is observational.
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Chapter 5

Examples

In this chapter, we illustrate System A through some examples. In Section 5.1 we present

an encoding of call-return communication. We use this communication pattern exten-

sively in the other examples. In Chapter 3 we claimed that our calculus is powerful

enough to encode data types such as booleans and naturals. In Section 5.2 we present

an encoding of boolean values and operations. In Section 5.3 we present an encoding of

natural numbers and some basic arithmetic operations. In Section 5.4 we show how ab-

stract data types can be represented in our calculus. Specifically, we present an encoding

of stack with push and pop operations.

We hope that the reader has had enough experience with the type system by now. We

therefore leave it to the reader to verify that our encodings are well-typed.

Definition 16 The relations =⇒ and
s

=⇒ for any s ∈ A∗ are defined as follows

1. C =⇒ C ′ means that there is a sequence of zero or more silent transitions

C
τ

−→ · · ·
τ

−→ C ′.

2. Let s be a sequence of actions α1 · · ·αn. Then C
s

=⇒ C ′ means

C =⇒ C1
α1−→ C ′

1 · · · =⇒ Cn
αn−→ C ′

n =⇒ C ′.

The following lemma is easy to prove.
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Lemma 10 If C1 =⇒ C2 then

1. C | C1 =⇒ C | C2

2. (νx)C1 =⇒ (νx)C2

Proof: By induction on the length of an expansion of C1 =⇒ C2.
�

Notation 2 In order to define configurations parametric upon names, we use macro

definitions such as B(x̃)
4
= C, where x̃ is a tuple of distinct names and contains all the

free names in C. For every occurrence of B(ỹ) we assume that x̃ and ỹ are of the same

length. All occurrences of B(ỹ) in preterms are implicitly replaced with C{ỹ/x̃}. Macro

definitions cannot be recursive.

Remark: Of course, behavior definitions can be seen as macro definitions with additional

constraints. In fact, we can do away with behavior definitions by allowing recursive macro

definitions. But this would significantly complicate the type system; deriving the interface

of a term would involve solving recursive equations over P (N ).

5.1 Call/Return Communication

A call/return communication involves a caller which sends a message to a callee and waits

for the reply before initiating a dependent computation. This communication pattern

can be encoded in actor systems by using the technique of passing continuations which is

familiar in the context of functional programming. The caller creates a continuation (an

actor) which embodies the dependent computation and passes the continuation’s name

to the callee. The continuation waits for the reply and then initiates the appropriate

computation. Meanwhile, the caller is free to receive other messages (see Figure 5.1).

For example, following is an actor x which receives a message with name y, and calls y.

x(y).(νz)(z(ũ).C | B〈x, ṽ〉 | y〈w̃, z〉)
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Here the actor z is the continuation. Unlike what is shown in Figure 5.1, the reply

need not necessarily be from the callee. The callee may pass the continuation’s name to

other actors which may then reply. However, since the continuation is created with a

fresh name it will not receive arbitrary messages; only the callee and other actors which

receive the continuation’s name may reply to it.

Caller

Callee

Contiuation

call

reply

Figure 5.1: An event diagram illustrating call/return communication using contin-
uations.

This technique of using continuations does not work if the caller itself has to receive

the reply before it can process any other messages. One such scenario is where the

reply determines the behavior with which the caller has to process future messages.

However, because of persistence of actors the caller has to assume a replacement behavior

immediately after it makes the call. Therefore, it could receive a message which is not

necessarily the reply.
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This situation can be handled by the concept of insensitive actors, also discussed in [1].

An insensitive actor buffers all communications until it receives a message with contents

that satisfy a given condition. On receiving such a message it assumes an appropriate

replacement behavior and resumes processing messages, which may be the buffered ones

or freshly received.

Consider the following actor

x(ũ, y).(y〈ũ, x〉 | x(ṽ).C)

Suppose the intended behavior of x is to call y and wait for the reply before receiving

any other messages. The above encoding does not represent this behavior because after

sending the message to y, x is free to receive messages which need not be the reply. Using

the concept of insensitive actors, the caller can be encoded as follows

Caller(x, z̃)
4
= x(ũ, y).(νp)(Proxy〈p, x〉 | y〈ũ, p〉 | InsenseCaller〈x, p, w̃〉)

where {w̃} = fn(C) − {x, ṽ}, {z̃} = {w̃} − {ũ, y}

p /∈ {x, y, ũ, ṽ, w̃}

Proxy
def
= (x, y)x(ṽ).(y〈ṽ, x〉 | Proxy〈x, y〉)

InsenseCaller
def
= (x, p, w̃)x(ṽ, u).[u = p](C, x〈ṽ, u〉|InsenseCaller〈x, p, w̃〉)

where u /∈ {x, p, w̃, ṽ}

It is straight forward to verify that the definitions above are well typed. To check the

definition for InseneCaller, using C : [{x}, χ] for some χ, the reader may verify that

x(ṽ, u).[u = p](C, x〈u, ṽ〉|InsenseCaller〈x, p, w̃〉) : [{x}, {p, w̃}].

The caller creates a proxy and passes its name in the call. The proxy just waits for a

reply, tags the reply with its name and forwards it to the caller. The caller meanwhile

assumes an insensitive behavior, buffering all communications until it receives a message

from the proxy (see Figure5.2). In fact, it is straightforward to show that if
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InsenseCaller〈x, p, w̃〉 | x〈ṽ′, u′〉
τ

−→ C ′

then

C ′ 'C











C{ṽ′/ṽ} if u′ = p

InsenseCaller〈x, p, w̃〉 | x〈ṽ′, u′〉 otherwise

Note that, since the proxy is created with the fresh name the caller will not accidentally

receive a message which is not a reply but contains the proxy’s name.

Following is an example which illustrates these ideas. Let

Callee
def
= (x)x(ũ, p).(p〈ũ〉 | Callee〈x〉)

Assuming len(ũ) = len(ṽ) = len(ũ′) = len(ṽ′), and σ = {ũ′/ũ}, following is an annotated

canonical path for a possible computation in Caller(x, z̃) | Callee〈y〉 | x〈ũ′, y〉.

Caller(x, z̃) | Callee〈y〉 | x〈ũ′, y〉
rcv(x〈ũ′,y〉)

−→ (νp)(InsenseCaller〈x, p, σ(w̃)〉 | y〈ũ′, p〉 | Callee〈y〉 | Proxy〈p, x〉)
in(x〈ṽ′,p′〉)
−→ (νp)(InsenseCaller〈x, p, σ(w̃)〉 | y〈ũ′, p〉 | Callee〈y〉 | Proxy〈p, x〉 | x〈ṽ′, p′〉)

rcv(x〈ṽ′,p′〉)
−→ (νp)(InsenseCaller〈x, p, σ(w̃)〉 | y〈ũ′, p〉 | Callee〈y〉 | Proxy〈p, x〉 | x〈ṽ′, p′〉)

rcv(y〈ũ′,p〉)
−→ (νp)(InsenseCaller〈x, p, σ(w̃)〉 | p〈ũ′〉 | Callee〈y〉 | Proxy〈p, x〉 | x〈ṽ′, p′〉)

rcv(p〈ũ′〉)
−→ (νp)(InsenseCaller〈x, p, σ(w̃)〉 | x〈ũ′, p〉 | Callee〈y〉 | Proxy〈p, x〉 | x〈ṽ′, p′〉)

rcv(x〈ũ′〉)
−→ (νp)(C{σ(w̃)/w̃}{ũ′/ṽ} | Callee〈y〉 | Proxy〈p, x〉 | x〈ṽ′, p′〉)

The event diagram for this computation is shown in Figure 5.2.

We will use the above encoding of call/return communication in some of the examples

we present in this chapter. To simplify the presentation we introduce the following

shorthands.

1. We write x(ṽ) : p.C, where p /∈ {x, ṽ} ∪ fn(C), to mean B〈x, p, w̃〉, where B is a

fresh behavior identifier, {w̃} = fn(C) − {x, ṽ}, and
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call

reply

tagged reply

x

y

p

~
x<v’,p’>

Figure 5.2: An event diagram illustrating call/return communication using insen-
sitive behaviors. Note that the caller x buffers the message x〈ṽ′, p′〉 until it receives
the reply to its call.

B
def
= (x, p, w̃)x(ṽ, u).[u = p](C, x〈ṽ, u〉|B〈x, p, w̃〉) where u /∈ {x, p, ṽ, w̃}

2. For the proxies used in call return communication, we assume a family of behavior

definitions indexed by naturals.

Proxyi
def
= (x, y)x(ũ).(y〈ũ, x〉 | Proxyi〈x, y〉) where len(ũ) = i

5.2 Booleans

We encode booleans as configurations with a single actor which is also a receptionist. In

the following, T defines the behavior of the receptionist in the encoding of true, and F

for false.

T
def
= (x)x(c, y1, y2).(c〈y1〉 | T 〈x〉)

F
def
= (x)x(c, y1, y2).(c〈y2〉 | F 〈x〉)
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Both the behaviors accept messages containing three names. The first name is assumed

to be the customer name. The behavior T replies back to the customer with the second

name, while F replies back with the third name. The actor T 〈x〉 can be thought of as

the value true available at name x. Note that an actor with any of these behaviors never

changes its behavior. As a consequence, the values we have defined are persistent; they

do not disappear after being read once.

The negation function can be encoded as a configuration with multiple actors and a single

receptionist as follows.

Not(x)
4
= (νy, z, p)(B1〈y〉 | B2〈z〉 | B3〈x, y, z, p〉 | Proxy1〈p, x〉)

where

B1
def
= (x)x(c).(νu)(F 〈u〉 | c〈u〉 | B1〈x〉)

B2
def
= (x)x(c).(νu)(T 〈u〉 | c〈u〉 | B2〈x〉)

B3
def
= (x, y, z, p)x(v, c).(v〈p, y, z〉 | B ′

3〈x, y, z, p, c〉)

B′
3

def
= (x, y, z, p, c)x(v) : p.(v〈c〉 | B3〈x, y, z, p〉)

Not(x) can be thought of as the function not available at name x. Evaluation of the

function is initiated by sending a message containing a value and a customer to x. The

customer eventually receives the negation of the value sent.

It is illuminating to see the following correspondence between this encoding and the

psuedocode below

def Not(v, c)

if (v = T ) : B3〈x, y, z, p〉 | Proxy1〈p, x〉

send(c, F ) : B1〈y〉

else

send(c, T ) : B2〈z〉
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The testing of condition is encoded as a call return communication. The commands are

encoded as actors; execution of these commands corresponds to delivery of messages to

these actors. The environment in which these commands are executed is specified in the

message delivered.

As an illustration we show the following

Not(x) | F 〈u〉 | x〈u, c〉
out((νv)c〈v〉)

=⇒ Not(x) | F 〈u〉 | T 〈v〉

The following computation path is one possible expansion of the above

Not(x) | F 〈u〉 | x〈u, c〉

≡ (νy, z, p)(B1〈y〉 | B2〈z〉 | B3〈x, y, z, p〉 | x〈u, c〉 | Proxy1〈p, x〉 | F 〈u〉)
τ

−→ (νy, z, p)(B1〈y〉 | B2〈z〉 | B′
3〈x, y, z, p, c〉 | Proxy1〈p, x〉 | F 〈u〉 | u〈p, y, z〉)

τ
−→ (νy, z, p)(B1〈y〉 | B2〈z〉 | B′

3〈x, y, z, p, c〉 | Proxy1〈p, x〉 | p〈z〉 | F 〈u〉)
τ

−→ (νy, z, p)(B1〈y〉 | B2〈z〉 | B′
3〈x, y, z, p, c〉 | x〈z, p〉 | Proxy1〈p, x〉 | F 〈u〉)

τ
−→ (νy, z, p)(B1〈y〉 | B2〈z〉 | z〈c〉 | B3〈x, y, z, p〉 | Proxy1〈p, x〉 | F 〈u〉)

τ
−→ (νy, z, p, v)(B1〈y〉 | B2〈z〉 | T 〈v〉 | c〈v〉 | B3〈x, y, z, p〉 | Proxy1〈p, x〉 | F 〈u〉)
out((νv)c〈v〉)

−→ (νy, z, p)(B1〈y〉 | B2〈z〉 | T 〈v〉 | B3〈x, y, z, p〉 | Proxy1〈p, x〉 | F 〈u〉)

≡ Not(x) | F 〈u〉 | T 〈v〉

Following is the encoding of boolean and

And(x)
4
= (y, z, u, p1, p2)(B1〈y〉 | B2〈z〉 | B3〈u, z, y, p1〉 | B4〈x, y, u, p2〉 |

Proxy1〈p1, u〉 | Proxy1〈p2, x〉)

where

B4
def
= (x, y, z, p)x(v1, v2, p).(v1〈z, y〉 | B′

4〈x, y, z, p, v2, c〉)

B′
4

def
= (x, y, z, p, v, c)x(w) : p.([w = y](w〈c〉, w〈v, c〉) | B4〈x, y, z, p〉)

The ideas behind this encoding are similar to those used for negation. The reader may

verify the following
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And(x) | T 〈u〉 | F 〈v〉 | x〈u, v, c〉
out((νw)c〈w〉)

=⇒ And(x) | T 〈u〉 | F 〈v〉 | F 〈w〉

The computation above involves 9 transitions with silent actions followed by the output.

5.3 Natural Numbers

Natural numbers can be built from the constructors 0 and S. Accordingly, we define the

following two behaviors.

Zero
def
= (x)x(c, u1, u2).(c〈u1, x〉 | Zero〈x〉)

Succ
def
= (x, y)x(c, u1, u2).(c〈u2, y〉 | Succ〈x, y〉)

As in the case of booleans, we encode natural numbers as configurations with a single

receptionist.

0(x)
4
= Zero〈x〉

Sn+10(x)
4
= (νy)(Succ〈x, y〉 | Sn0(y))

The number Sn0 is encoded as a sequence of n + 1 actors each pointing to the next (the

last one points to itself). The first n actors have the behavior Succ and the last one has

behavior Zero. Only the first actor is the receptionist to the entire configuration. As

in our encoding for booleans, both the behaviors accept messages with three names, the

first of which is assumed to denote the customer. The behavior Succ replies back to the

customer with the third name and the name of next actor in the sequence, while Zero

replies back with the second name and its own name.

We now encode addition of natural numbers. Our aim is to define a configuration Add(x)

with a single receptionist x such that the following holds

Add(x) | Sn0(u) | Sm0(v) | x〈u, v, c〉
out((νw)c〈w〉)

=⇒ Add(x) | Sn0(u) | Sm0(v) | Sn+m0(w)

Add(x) may be thought of as the addition function available at name x.

61



We first define AddTo(x) such that

AddTo(x) | (νu)(Sn0(u) | x〈u, v, c〉) | Sm0(v)

=⇒ AddTo(x) | (νu)(Sn+m0(u) | c〈u〉) | Sm0(v)

We will then use AddTo(x) to define Add(x).

AddTo(x)
4
= (νy, z, p)(B1〈y〉 | B2〈z, x〉 | B3〈x, y, z, p〉 | Proxy2〈p, x〉)

where

B1
def
= (x)x(v1, v2, c).(c〈v1〉 | B1〈x〉)

B2
def
= (x, y)x(v1, v2, c).(νu)(Succ〈u, v1〉 | y〈u, v2, c〉 | B2〈x, y〉)

B3
def
= (x, y, z, p)x(v1, v2, c).(v2〈p, y, z〉 | B′

3〈x, y, z, p, v1, c〉)

B′
3

def
= (x, y, z, p, v, c)x(u,w) : p.(u〈v, w, c〉 | B3〈x, y, z, p〉)

The relation between this encoding and the pseudo code below is illuminating.

def AddTo(v1, v2, c)

if (v2 = 0) then : B3〈x, y, z, p〉 | Proxy2〈p, x〉

send(v1, c) : B1〈y〉

else

AddTo(v1 + 1, v2 − 1, c) : B2〈z, x〉

Lemma 11 AddTo(x) | (νu)(Sn0(u) | x〈u, v, c〉) | Sm0(v)

τ
=⇒ AddTo(x) | (νu)(Sn+m0(u) | c〈u〉) | Sm0(v)

Proof: We prove this by induction on m.

Base Case: The reader may verify that

AddTo(x) | (νu)(Sn0(u) | x〈u, v, c〉) | 0(v)
τ

−→
5

AddTo(x) | (νu)(Sn0(u) | c〈u〉) | 0(v)
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Induction Step: Assuming the given proposition we show

AddTo(x) | (νu)(Sn0(u) | x〈u, v, c〉) | Sm+10(v)

=⇒ AddTo(x) | (νu)(Sn+m+10(u) | c〈u〉) | Sm+10(v)

AddTo(x) | (νu)(Sn0(u) | x〈u, v, c〉) | Sm+10(v)

≡ (νy, z, p, u)(B1〈y〉 | B2〈z, x〉 | B3〈x, y, z, p〉 | Proxy2〈p, x〉 | Sn0(u) |

Sm+10(v) | x〈u, v, c〉)
τ

−→
5

(νy, z, p, u, w)(B1〈y〉 | B2〈z, x〉 | B3〈x, y, z, p〉 | Proxy2〈p, x〉 | Sn+10(u) |

Succ〈v, w〉 | Sm0(w) | x〈u,w, c〉)

≡ (νw)(Succ〈v, w〉 | AddTo(x) | (νu)(Sn+10(u) | x〈u,w, c〉) | Sm0(w))

τ
=⇒ (νw)(Succ〈v, w〉 | AddTo(x) | (νu)(Sn+m+10(u) | c〈u〉) | Sm0(w))

by induction hypothesis and Lemma 10

≡ AddTo(x) | (νu)(Sn+m+10(u) | c〈u〉) | Sm+10(v)
�

We are now ready to define Add(x).

Add(x)
4
= (νy, p)(B4〈x, y, p〉 | AddTo(y) | Proxy1〈p, x〉)

where

B4
def
= (x, y, p)x(v1, v2, c).(νu)(0(u) | y〈u, v1, p〉 | B′

4〈x, y, p, v2, c〉)

B′
4

def
= (x, y, p, v, c)x(w) : p.(y〈w, v, c〉 | B4〈x, y, p〉)

Lemma 12 Add(x) | Sn0(u) | Sm0(v) | x〈u, v, c〉
out((νw)c〈w〉)

=⇒ Add(x) | Sn0(u) | Sm0(v) | Sn+m0(w)

Proof:

Add(x) | Sn0(u) | Sm0(v) | x〈u, v, c〉

≡ (νy, p)(B4〈x, y, p〉 | AddTo(y) | Proxy1〈p, x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉)
τ

−→ (νy, p, w)(0(w) | y〈w, u, p〉 | B ′
4〈x, y, p, v, c〉 | AddTo(y) | Proxy1〈p, x〉 |
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Sn0(u) | Sm0(v))

≡ (νy, p)(B′
4〈x, y, p, v, c〉 | Proxy1〈p, x〉 | Sm0(v) | AddTo(y) |

(νw)(0(w) | y〈w, u, p〉) | Sn0(u))

τ
=⇒ (νy, p)(B′

4〈x, y, p, v, c〉 | Proxy1〈p, x〉 | Sm0(v) | AddTo(y) |

(νw)(Sn0(w) | p〈w〉) | Sn0(u))

by Lemma 11 and Lemma 10

τ
−→

2
(νy, p)(B4〈x, y, p〉 | Proxy1〈p, x〉 | Sn0(u) | AddTo(y) |

(νw)(Sn0(w) | y〈w, v, c〉) | Sm0(v))

τ
=⇒ (νy, p)(B4〈x, y, p〉 | Proxy1〈p, x〉 | Sn0(u) | AddTo(y) |

(νw)(Sn+m0(w) | c〈w〉) | Sm0(v))

by Lemma 11 and Lemma 10
out((νw)c〈w〉)

−→ (νy, p)(B4〈x, y, p〉 | Proxy1〈p, x〉 | Sn0(u) | AddTo(y) |

Sn+m0(w) | Sm0(v))

≡ Add(x) | Sn0(u) | Sm0(v) | Sn+m0(w)
�

We hope the reader is convinced that our calculus is powerful enough to encode other

arithmetic operations.

5.4 Stack

In this section we show how complex data types can be encoded in System A. Specifically,

we present an encoding of a stack with push and pop operations. This example has been

adapted from [1].

We implement a stack as a linked list of actors. Each actor in the list, called a node, has

two acquaintances: a content and the next node in the list. When a node receives a push

request it creates a new node with its content and link, and changes its own acquaintances

to the value pushed and the node created. When a node (other than the last one) receives

a pop request it replies back to the specified customer with its content and forwarders

all future requests to its link. Following definitions capture these behaviors of a node
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Cell
def
= (x, v, l, PUSH,BOT ) x(arg, op).

[op = PUSH]((νu)(Cell〈u, v, l, PUSH,BOT 〉 | Cell〈x, arg, u, PUSH,BOT 〉),

arg〈v〉 | [v = BOT ](Cell〈x, v, l, PUSH,BOT 〉, Forwarder〈x, l〉))

Forwarder
def
= (x, l)x(arg, op).(l〈arg, op〉 | Forwarder〈x, l〉)

A special name BOT is used as the bottom of stack marker. The last node in the list

has this name as its content and link.

A stack is defined as follows

Stack(PUSH,POP,BOT )
4
= (νx)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Cell〈x,BOT,BOT, PUSH,BOT 〉)

A stack instance is a configuration with two receptionists, one for each supported opera-

tion. Both the receptionists are proxies which forward tagged requests to the first node

of an internal list such as the one described above. Names of other internal actors (list

nodes) are never exported to the environment. We thus have total containment of data

and operations valid on it.

Note that the arrival orders (see Section 2.2) at the receptionists are in no way related

to the order in which requests are “processed” at the internal list. In fact, the arrival

order(s) at the first node in the list which is not a forwarder, is the order in which request

are processed1.

Following is an example interaction with a stack. Figure 5.3 illustrates this computation.

Stack(PUSH,POP,BOT )
in(PUSH〈v1〉)

−→ (νx)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Cell〈x,BOT,BOT, PUSH,BOT 〉 | PUSH〈v1〉)
τ

−→
2

(νx, y)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

1A formal specification of a stack and proof of correctness of our implementation are beyond the

scope of this dissertation. Work in this direction is in progress
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c<v2>

x

PUSH

POP

y

z

[v1]

[v2]

[v3]

[c]

[v1,PUSH]

[v2,PUSH]

z<v3,PUSH>

[v3,PUSH]

[cust,POP]

Figure 5.3: An event diagram depicting a computation in our stack implementation.
For the purpose of illustration, events are annotated with corresponding message
contents.

Cell〈x, v1, y, PUSH,BOT 〉 | Cell〈y,BOT,BOT, PUSH,BOT 〉)
in(PUSH〈v2〉)

−→ (νx, y)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Cell〈x, v1, y, PUSH,BOT 〉 | Cell〈y,BOT,BOT, PUSH,BOT 〉 |

PUSH〈v2〉)
τ

−→
2

(νx, y, z)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Cell〈x, v2, z, PUSH,BOT 〉 | Cell〈z, v1, y, PUSH,BOT 〉 |

Cell〈y,BOT,BOT, PUSH,BOT 〉)
in(POP 〈c〉)

−→ (νx, y, z)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Cell〈x, v2, z, PUSH,BOT 〉 | Cell〈z, v1, y, PUSH,BOT 〉 |

Cell〈y,BOT,BOT, PUSH,BOT 〉 | POP 〈c〉)
τ

−→
2

(νx, y, z)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |
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Forwarder〈x, z〉 | Cell〈z, v1, y, PUSH,BOT 〉 |

Cell〈y,BOT,BOT, PUSH,BOT 〉 | c〈v2〉)
out(c〈v2〉)
−→ (νx, y, z)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Forwarder〈x, z〉 | Cell〈z, v1, y, PUSH,BOT 〉 |

Cell〈y,BOT,BOT, PUSH,BOT 〉)
in(PUSH〈v3〉)

−→ (νx, y, z)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Forwarder〈x, z〉 | Cell〈z, v1, y, PUSH,BOT 〉 |

Cell〈y,BOT,BOT, PUSH,BOT 〉 | PUSH〈v3〉)
τ

−→
2

(νx, y, z)(Proxy1〈PUSH, x〉 | Proxy1〈POP, x〉 |

Forwarder〈x, z〉 | Cell〈z, v1, y, PUSH,BOT 〉 |

Cell〈y,BOT,BOT, PUSH,BOT 〉 | z〈v3, PUSH〉)
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Chapter 6

Conclusion

We have so far just laid the foundation for further semantical investigations on the Actor

Model. We indicate a few prominent research directions, some of which are already being

pursued.

We are currently investigating testing equivalences [18] in System A. The type system

we impose cuts down the number of legal experiments (observing contexts) that may

be performed on (composed with) a given configuration. The fairness constraint cuts

down the number of computations that an experiment may engage the configuration

in. These together give us coarser equivalences which are relevant in practice. For

example, the uniqueness and persistence properties together help hide details of internal

implementation by ensuring that a context cannot observe internal communications in

the configuration being tested. Similarly, fairness ensures that collecting active garbage

such as that described in Section 2.1.4 does not alter semantics.

In [3], testing equivalences are investigated in an actor-based concurrent extension of

a functional language. It is shown that in the presence of fairness the three forms of

equivalence, namely, convex, must, and may equivalences, collapse to two. It remains to

be seen if such a collapse also occurs in our system.

We are also studying denotational models for our calculus such as the interaction paths

and event diagrams [51]. Specific questions of interest are if these models are composi-
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tional in our setting, and how the equivalences based on these relate to testing equiva-

lences. Answers to these questions could give direct characterizations of testing equiv-

alences without quantification on all observing contexts, and facilitate the development

of proof systems (induced algebras) to establish equivalences.

Numerous equivalences have been investigated on asynchronous variants of π-calculus.

We are particularly interested in the notions of asynchronous bisimulation [4] and barbed

congruence [29]. We would like to investigate how these notions and their algebraic

theories map to System A.

System A could serve as a meta-language for interpretation of concurrent object oriented

languages. Such interpretations will be useful in validating program transformations

such as those suggested in [23]. Of immediate interest is a translational semantics of the

actor-based language presented in [3], and validation of its equational laws.
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