
c©Copyright by Prasannaa Thati 2003

A THEORY OF TESTING FOR ASYNCHRONOUS CONCURRENT SYSTEMS

BY

PRASANNAA THATI

B.Tech., Indian Institute of Technology at Kanpur, 1997
M.S., University of Illinois at Urbana-Champaign, 2000
M.S., University of Illinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2003

Urbana, Illinois

ABSTRACT

Testing equivalence is a notion of process equivalence that is widely used for estab-

lishing semantic correspondence between concurrent systems. Testing equivalence can be

used to formally establish the fact that a given system is a safe or live implementation of

an abstract specification. However, since the definition of testing equivalence involves a

universal quantification over all possible contexts, proving equivalences between processes

is a difficult task. In this dissertation, we present a collection of proof techniques and de-

cision procedures for establishing testing equivalences between asynchronous concurrent

systems.

The process model that will be our primary focus is the π-calculus, which has been

one of the most popular models of concurrency since its introduction a decade-and-a-half

ago. We study a collection of typed variants of π-calculus that enforce several ontological

commitments in addition to those in the basic π-calculus. These commitments capture

ubiquitous computational phenomena such as asynchrony, locality, object paradigm, and

restrictions on pointer comparisons. We investigate testing equivalence on several variants

of π-calculus with combinations of these features. The result is a collection of proof

techniques that can be applied to reason about a rich class of systems that exhibit these

computational features.

The central idea behind our proof techniques for testing equivalence is to obtain se-

mantic characterizations of the equivalence that do away with universal quantification

over contexts. Using these characterizations one can thus establish an equivalence by

simply comparing the semantic mappings of the given processes in an abstract domain

instead of accounting for their interactions with all possible contexts of use. We use these

semantic characterizations to obtain both complete axiomatizations of the equivalence

and decision procedures for it over restricted classes of processes. We have also imple-

mented some of the variants of π-calculus and the proof techniques we have developed

for establishing equivalences over them.

iii

To nanna, amma, and cheens

iv

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Gul Agha for his intellectual guidance and

constant encouragement, and for fostering a research environment with great intellectual

freedom. He has been an excellent role model and has had a profound impact on not

only my outlook towards research but also towards life in general.

I would also like to thank my committee members, Prof. Jose Meseguer, Prof. Mahesh

Viswanathan, and Dr. Carolyn Talcott for their invaluable guidance and feedback on my

thesis research. Major portions of this thesis were motivated by frequent discussions with

them, and some were completely worked out in collaboration with them. I thank Dr.

Carolyn Talcott for making it possible for me to visit her at Stanford University and

SRI International for a few months in 2000 and 2002 respectively. Many of the results

in Chapters 3 and 4 were originally worked out during these visits. I thank Prof. Jose

Meseguer for encouraging me to work on the problems described in Chapter 6. Chapter

5 was entirely worked out in collaboration with Prof. Mahesh Viswanathan; I thank him

for his interest and technical input in my research.

Special thanks to my long time friend Reza Ziaei. The origin of my thesis research can

be traced back to initial collaborations with him on algebraic formulation of the Actor

model (Chapter 3). The Open Systems Lab members have provided a very stimulating

intellectual environment throughout my graduate life. The countless discussions I have

had with them have been a source of great fun and inspiration. I would like to espe-

cially thank Mark Astley, Po-Hao Chang, Nadeem Jamali, Nirman Kumar, Youngmin

Kwon, Soham Mazumdar, Koushik Sen, Sudarshan Srinivasan, Predrag Tosic, Sandeep

Uttamchandani, Abhay Vardhan, Carlos Varela, Nalini Venkatasubramanian, and Reza

Ziaei.

Last but not the least, I am very grateful to my parents and brother who have always

given me unconditional love and emotional support. No words can express my gratitude

for their love and confidence in me.

v

TABLE OF CONTENTS

Chapter

1 Introduction . 1

2 Asynchronous π-Calculus with Locality and Restricted Name Matching 10
2.1 Asynchronous π-calculus . 11
2.2 The Calculus Lπ= . 16
2.3 The Calculus Lπ . 19
2.4 The Calculus Lπ−

= . 33
2.5 An Axiomatization of Finitary Lπ= and Lπ 35
2.6 Discussion and Related Work . 48

3 The Actor Model as a Typed Asynchronous π-Calculus 50
3.1 The Actor Model . 51
3.2 The Calculus Aπ . 52

3.2.1 Type System . 53
3.2.2 Operational Semantics . 57

3.3 Alternate Characterization of May Testing 62
3.4 Variants of Aπ . 66
3.5 Discussion and Related Work . 69

4 A Simple Actor Language . 72
4.1 Booleans . 73
4.2 Natural Numbers . 74
4.3 The Language SAL . 76

4.3.1 Expressions . 76
4.3.2 Commands . 77
4.3.3 Behavior Definitions . 78
4.3.4 An Example . 79

4.4 Formal Semantics of SAL . 81
4.4.1 Expressions . 81
4.4.2 Commands . 82
4.4.3 Behavior definitions . 84

4.5 Discussion and Related Work . 85

vi

5 Decidability Results for Testing Equivalences 87
5.1 Asynchronous Finite State Machines . 88
5.2 Related Asynchronous Process Models 92
5.3 Testing Equivalences Over AFSMs . 93
5.4 Decidability Results for May Testing . 97
5.5 Decidability Results for Must Testing . 108
5.6 Discussion and Related Work . 112

6 Executable Specification in Maude . 115
6.1 Specification of Asynchronous π-Calculus 116

6.1.1 Syntax . 116
6.1.2 Operational Semantics . 118
6.1.3 Trace Semantics . 121

6.2 Specification of the May Preorder . 124
6.3 Specification of Aπ 6= . 130
6.4 Discussion and Related Work . 137

7 Conclusion . 139

Bibliography . 141

APPENDIX . 151

A Proofs for Chapter 2 . 151

B Executable Specification in Maude . 167
B.1 Specification of Asynchronous π-Calculus 167
B.2 Specification of Aπ 6= . 170

Vita . 173

vii

LIST OF TABLES

2.1 An early style labeled transition system for Lπ=. 12
2.2 A preorder relation on traces. 14
2.3 Laws for Lπ. 36

3.1 Type rules for Aπ. 55
3.2 New transition rules for Aπ. 58

6.1 The CINNI operations. 118

viii

LIST OF FIGURES

1.1 A context in testing equivalence . 2
1.2 The notion of indistinguishability in testing equivalence 3
1.3 Non-determinism and may versus must testing equivalence 3

3.1 A diagram illustrating computation in an actor system 51

4.1 A diagram illustrating computation of factorial 3 80

5.1 An asynchronous transition sequence of an example AFSM. 90
5.2 A hierarchy of asynchronous computational models. 93
5.3 A naive attempt at deciding the asynchronous language containment problem 99
5.4 Karp and Miller algorithm for computing the coverability sets. 101
5.5 An algorithm for deciding asynchronous language containment of AFSMs. 103

ix

Chapter 1

Introduction

We present a theory of testing equivalence for asynchronous concurrent systems that are

open to interactions with their environment. The problem we address is an important

instance of a range of problems concerned with verification of concurrent systems.

There are two major approaches to system verification: model checking and equiva-

lence checking. In the model checking approach, one specifies a property as a formula in

a modal or temporal logic [74], and then uses a decision procedure to check whether a

given system is a model for the formula, i.e. whether the given system satisfies the prop-

erty specified by the formula. This approach was introduced two decades ago by Clarke,

Emerson, and Sistla [21], and has since received wide attention from both researchers

and practitioners [22] of system verification.

Equivalence checking on the other hand, aims at establishing some semantic corre-

spondence between two systems, one of which is typically considered to be an abstract

specification and the other a more concrete implementation of the specification. The

problem of equivalence checking is an old question in theoretical computer science with

a large body of literature. Ever since the seminal paper by Moore [66] on the lan-

guage equivalence of finite state machines, a number of other researchers have considered

the equivalence problem over a number of computational models of varying expressivity

[17, 20, 34, 50, 60, 61, 68].

1

Observing Context

Hole

O

Observer

Figure 1.1: A context in testing equivalence consists of an observing process that exe-
cutes concurrently and interacts with the process being tested.

The problem of testing equivalence belongs to the category of equivalence checking;

testing equivalence is one way of formalizing the semantic correspondence between two

systems. In fact, testing equivalence is an instance of the general notion of behavioral

equivalence where, roughly, two processes are said to be behaviorally equivalent if they

are indistinguishable in all contexts of use. Depending on the chosen notion of context

and the criteria for indistinguishability, one gets a variety of equivalences [27, 56, 68, 79].

Testing equivalence [36, 68] is one such instance where the context consists of an observing

process that runs in parallel and interacts with the process being tested (see Figure 1.1).

The observer can in addition signal a success while interacting with the process being

tested, in which case the process is said to pass the test proposed by the observer. Two

process are said to be indistinguishable if they pass exactly the same set of tests (see

Figure 1.2).

The testing scenario is inherently concurrent; the observer and the process being

tested execute concurrently. Such concurrent systems are inherently non-deterministic;

there is no single order in which different computation steps in the system can occur, and

different orders lead the system along different computation paths. This non-determinism

in execution gives rise to at least two notions of equivalences. In may testing, a process

is said to pass a test proposed by an observer, if there exists a run in which the observer

signals a success. On the other hand, in must testing a process is said to pass a test if

the observer signals a success in every possible run (see Figure 1.3).

2

O P

Success

O

Observer

Oiff

Success

Q

Figure 1.2: Processes P and Q are said to be testing equivalent if they lead exactly the
same set of observers to a success.

Success

O | P

May Testing

O | P

Must Testing

* * *
*

Figure 1.3: In may testing even the possibility of a success is taken to be a success,
while in must testing only the guarantee of a success is taken to be a success.

3

May and must testing are known to be useful for reasoning about safety and liveness

properties of concurrent systems. Specifically, define the may preroder P
�

∼ Q if for

every observer O whenever P may lead O to a success then so can Q, and define the

must preorder P
�

∼
M

Q if for every O whenever P always leads O to success then so does

Q. Then, by viewing the observer’s success as something bad happening, may testing

can be used for reasoning about safety properties; P
�

∼ Q can be interpreted as P is a

safe implementation of the specification Q, because if the specification Q is guaranteed

to not cause anything bad to happen in a given context, then the implementation P

would also not cause anything bad to happen in the same context. Similarly , by viewing

a success as something good happening, must testing can be used for reasoning about

liveness properties; P
�

∼
M

Q can be interpreted as Q is a live implementation of the

specification P , because if the specification P is guaranteed to always cause something

good to happen in a given context, then the implementation Q would also always cause

something good to happen in the same context.

Although testing equivalences have several elegant applications [1], they pose serious

difficulties in verification. The universal quantification over contexts in the definition

of the equivalences makes it very hard to prove equalities. Specifically, to prove an

equivalence, one has to consider all possible interactions between the given processes

and all possible observers. As a solution, we develop a theory of testing equivalence

that provides a collection of proof techniques and automatic verification algorithms for

establishing equivalences over a large class of concurrent systems.

In our discussion so far, we have not committed to any particular process model.

Clearly, testing equivalence is a generic notion that can be instantiated over a variety

of process models. The model that will be our primary focus from now on, is the π-

calculus which was proposed by Milner, Parrow and Walker [65]. Since its introduction

a decade-and-a-half ago the π-calculus has become one of the most studied models of

concurrency. Just as the λ-calculus assumes only the notions of function abstraction

and application as the essential aspects of deterministic sequential computing, the π-

calculus assumes only naming and communication at names as the primitive notions to

4

describe concurrency. Names in the π-calculus denote communication links, and can

by themselves be communicated across the links. One can thus express a collection of

interacting process with a continually changing interconnection topology.

The primitive notions of names and communication of names are sufficient to model a

variety of concurrent systems. In fact, the pervasiveness of these ontological commitments

makes the π-calculus a highly expressive formalism that can model a number of systems

with minimal representational distance [1, 72, 78, 81]. Further, the π-calculus facilitates

modelling of systems at various levels of abstraction; one can abstractly specify the

observable behavior of a system and then refine it down to a more concrete system

describing the internal implementation that realizes the specification. The theory of

process equivalence which is useful for relating such multiple descriptions in π-calculus,

has been an intense of area of research over the last decade [9, 10, 26, 65, 69, 71, 79].

In practice the π-calculus is often too general, and it is useful to restrict the basic cal-

culus to fragments that are tailored to specific problems at hand. For instance, it is useful

to impose type systems on the basic calculus, that enforce additional ontological com-

mitments such as the object-paradigm. These commitments can typically be expressed

by the type systems as certain disciplines in the use of names. The resulting variants of

π-calculus have a richer theory of process equivalence, and a powerful collection of proof

techniques that are more effective in practice. This trend is apparent in the large number

of variants of π-calculus proposed in the recent years [16, 41, 47, 58, 71, 82, 83].

We focus our research on variants of π-calculus that embody the following additional

features.

• Asynchrony: Communication in the π-calculus is synchronous, it involves a (di-

rected) handshake between the sender and the receiver. However, asynchronous

message passing is closer to what is offered by most distributed systems, where

the sender has no knowledge of the receipt of a message, other than by an explicit

acknowledgment.

5

• Locality: This is a discipline where the recipient of a name communicated in

a message, can use the name to only send messages. Specifically, the recipient

cannot start listening at the name and receive messages targeted to the name. This

phenomenon is common in real systems. For instance, in a client-server model, a

client that knows the access name to the server cannot steal messages targeted to

the server. However, this discipline is absent in the π-calculus.

• Restricted Name matching: Comparing names is rarely useful in programming.

The behavior observed while communicating at a name is all that matters; the

specific name used for communication is not important. Accordingly, it is useful

to restrict the use of names to only communication, and disallow the association

of additional meaning to names through matching. This discipline is enforced in

concurrent languages such as Join [30] and Pict [72]. The advantages include,

additional program transformations that would otherwise be unsound. We are

also interested in scenarios where this restriction can be relaxed a little to allow

comparison on specific names, so that the advantages of completely disallowing

name matching do not disappear all together.

• An object paradigm: In an object world, names uniquely denote persistent

computational objects rather than communication channels. This can be seen as

a natural extension to the locality discipline mentioned above. There are several

object paradigms that embody this general view. The specific paradigm of our

interest is the Actor Model [5], that has had a profound influence on the design of

concurrent languages [6, 52, 99] and open distributed systems [18, 31, 87, 95] over

the last three decades. Both asynchrony and locality are inherent features of the

Actor Model.

We will investigate testing equivalences on variants of π-calculus with combinations of

these features. The result will be a theory of equivalence and a collection of proof

techniques that can be applied to reason about a fairly rich class of systems that arise

6

in practice. We will primarily focus only on the may testing equivalence, although we

present a few results on must testing. Following is the outline of this dissertation.

In Chapter 2, we consider asynchronous variants of π-calculus with various combina-

tions of locality and restricted name matching. For each of these variants, we develop an

alternate characterization of may testing that does not involve a universal quantification

over all observers, thereby simplifying the process of establishing equivalences. Specif-

ically, we construct semantic models in which processes can be interpreted so that, to

decide an equivalence between two processes we only need to compare their semantic

mappings rather than consider their interactions with all possible observers. Our char-

acterizations build upon the one developed by Boreale, de Nicola, and Pugliese for an

asynchronous variant of π-calculus [11]. We not only extend their characterization to

variants with locality and restricted name matching, but also consider the more gen-

eral problem of parameterized may testing where the parameter determines the set of

observers used to decide the equivalence. The usual notion of (unparameterized) may

testing is just a special case where the (implicit) parameter denotes the set of all possible

observers. Finally, we exploit our characterizations of parameterized may testing in each

of the variants we consider, to develop an axiomatization of may testing that is complete

for the finitary fragment of the variants (without recursion).

In Chapter 3, we impose a type system on asynchronous π-calculus to obtain a variant

called Aπ that is a faithful representation of the Actor Model. The type system captures

the object paradigm proposed by the Actor model by enforcing certain discipline in the

use of names. We also consider variants of Aπ that differ in their name matching capa-

bilities. We extend the results in Chapter 2 to obtain an alternate characterization of

may testing for Aπ and its variants. The formulation of Aπ also settles the following old

problem quoted from Milner’s Turing award lecture [62]: “An important task is to com-

pare π-calculus with Hewitt’s Actors; there are definite points of agreement where we have

followed the intuition of Actors and also some subtle differences, such as the treatment

of names.” A noteworthy feature of our embedding of actors in π-calculus is that it has

almost no representational distance. This shows that the Actor Model and the π-calculus

7

only differ in their treatment of names, except for some fairness conditions on message

deliveries in the Actor model. The formal connection thus established between the two

models, can be exploited to apply concepts and techniques developed for one to the other.

Our alternate characterization of may testing for actors, is one such demonstration.

The results in Chapters 2 and 3 can be exploited to reason about concurrent pro-

gramming languages with computational features such as asynchrony, restricted name

matching, locality and the object paradigm. This can be done by either adapting our

results to these languages, or by encoding the languages into one of our calculi. As an

illustration, in Chapter 4, we give a formal semantics to a simple asynchronous concur-

rent object-based language inspired by the Actor model, by translating its programs into

Aπ. The translation also has the property that two programs are may equivalent if and

only if their translations are, thereby giving us a technique to reason about programs in

the language.

In Chapter 5, we investigate the decidability of may and must testing equivalences over

a fragment of asynchronous π-calculus that can express a rich set of infinite state systems.

We present an algorithm for unparameterized may equivalence over this fragment, and

show that the problem is EXPSPACE-hard. In comparison, algorithms for may testing

were previously known for only the simple class of finite state machines [45]. We also

show that the parameterized may and must testing equivalences are undecidable even

over the fragment we consider. The decidability of unparameterized must testing over

the fragment is still open.

In Chapter 6, we present our implementation of asynchronous π-calculus, the Actor

model, and a procedure for may testing over finitary process in these models. Specifically,

we represent asynchronous π-calculus and the Actor model as theories in rewriting logic

[59], and use the Maude tool [23] that supports specifications in rewriting logic, to execute

these specifications. We then exploit our alternate characterizations of may testing and

some metalevel facilities in Maude to implement a procedure to decide parameterized may

equivalence between finitary process in these models. Our implementation techniques

8

can be adapted to all the other variants of π-calculus and the Actor model that we have

considered.

We conclude in Chapter 7, with a discussion on the various directions along which

the work so far can be extended.

9

Chapter 2

Asynchronous π-Calculus with

Locality and Restricted Name

Matching

We present a series of asynchronous variants of π-calculus that progressively account

for locality and restricted name matching, and provide alternate characterizations of

may testing in them [94]. We consider a generalized version of may testing that is

parameterized with the set of observers used for testing. Our characterizations directly

build upon the known results for asynchronous π-calculus [11], which are summarized in

Section 2.1. The reader is referred to [11] for the proofs of propositions in this section.

In Section 2.2, we present the characterization for an asynchronous variant with locality,

called Lπ=. In Section 2.3, we consider Lπ which is an asynchronous variant with locality

and no name matching. In Section 2.4, we consider an asynchronous variant with locality

and a restricted version of name matching, where a process can compare a given name

only against the names that it owns. In Section 2.5 we present an axiomatization of

parameterized may testing over Lπ= and Lπ, that is complete for the finitary fragment of

these calculi (without recursion). We end the chapter with Section 2.6, where we discuss

related work. To simplify the presentation, we have moved the proofs of some of the

propositions in this chapter to Appendix A.

10

2.1 Asynchronous π-calculus

An infinite set of names N is assumed, and u, v, w, x, y, z, . . . are assumed to range over

N . The set of processes, ranged over by P,Q,R, is defined by the following grammar.

P := 0 | xy | x(y).P | P |P | (νx)P | [x = y]P | !x(y).P

The nil process 0 has the trivial behavior that does nothing. The output term xy

denotes an asynchronous message with target x and content y. The input term x(y).P

receives an arbitrary name z at port x and then behaves like P{z/y} (substitution).

The composition P |Q consists of P and Q acting in parallel. The components can act

independently, and also interact with each other. The restriction (νx)P behaves like P

except that it can not exchange messages targeted to x, with its environment. The match

[x = y]P behaves like P if x and y are identical, and like 0 otherwise. The replication

!x(y).P provides an infinite number of copies of x(y).P .

The name x is said to be the subject of the output xy and the input x(y).P . For

a tuple x̃, the set of names occurring in x̃ is denoted by {x̃}. The result of appending

ỹ to x̃ is denoted by x̃, ỹ. The variable ẑ is assumed to range over {∅, {z}}. The term

(νẑ)P is (νz)P if ẑ = {z}, and P otherwise. The functions for free names, bound names

and names, fn(.), bn(.) and n(.), of a process, are defined as expected. As in λ-calculus,

alpha-equivalent processes, i.e. processes that differ only in the use of bound names are

not distinguished. A name substitution is a function on names that is almost always the

identity. The form {ỹ/x̃} denotes a substitution that maps xi to yi and is identity on

all other names. The variable σ is assumed to range over substitutions. The result of

simultaneous substitution of yi for xi in P is denoted by P{ỹ/x̃}. As usual, substitution

on processes is defined only modulo alpha equivalence, with the usual renaming of bound

names to avoid captures.

A labeled transition system [64] is used to give an operational semantics for the calcu-

lus (Table 2.1). The transition system is defined modulo alpha-equivalence on processes

in that alpha-equivalent processes have the same transitions. The rules COM, CLOSE,

11

INP: x(y).P
xz
−→ P{z/y}

OUT: xy
xy
−→ 0

BINP:
P

xy
−→ P ′

P
x(y)
−→ P ′

y /∈ fn(P)

PAR:
P1

α
−→ P ′

1

P1|P2
α

−→ P ′
1|P2

bn(α) ∩ fn(P2) = ∅ COM:
P1

xy
−→ P ′

1 P2
xy
−→ P ′

2

P1|P2
τ

−→ P ′
1|P

′
2

RES:
P

α
−→ P ′

(νy)P
α

−→ (νy)P ′
y /∈ n(α) OPEN:

P
xy
−→ P ′

(νy)P
x(y)
−→ P ′

x 6= y

CLOSE: P1
x(y)
−→ P ′

1 P2
xy
−→ P ′

2

P1|P2
τ

−→ (νy)(P ′
1|P

′
2)

y /∈ fn(P2)

REP:
P |!P

α
−→ P ′

!P
α

−→ P ′
MATCH:

P
α

−→ P ′

[x = x]P
α

−→ P ′

Table 2.1: An early style labeled transition system for Lπ=.

and PAR have symmetric versions that are not shown. Transition labels, which are also

called actions, can be of five forms: τ (a silent action), xy (free output of a message with

target x and content y), x(y) (bound output), xy (free input of a message) and x(y)

(bound input). The relation
x(y)
−→ is defined by the additional rule P

x(y)
−→ Q if P

xy
−→ Q

and y /∈ fn(P). The set of all visible actions (non-τ) actions is denoted by L, and α is as-

sumed to range over L, and β over all the actions. The functions fn(.), bn(.) and n(.) are

defined on L as expected. As a uniform notation for free and bound actions the following

notational convention is adopted: (∅)xy = xy, ({y})xy = x(y), and similarly for input

actions. The complementation function on L is defined as (ŷ)xy = (ŷ)xy, (ŷ)xy = (ŷ)xy.

The structural congruence relation ≡ on processes is the smallest congruence that is

closed under the following rules.

1. P |0 ≡ P , P |Q ≡ Q|P , and P |(Q|R) ≡ (P |Q)|R

2. (νx)0 ≡ 0, (νx)(νy)P ≡ (νy)(νx)P , and P |(νx)Q ≡ (νx)(P |Q) if x /∈ fn(P).

3. !P ≡ P |!P .

4. [x = x]P ≡ P .

12

It is the case that structurally congruent processes have the same transitions, i.e. if

P
β

−→ Q, P ≡ P ′ and Q ≡ Q′ then P ′ β
−→ Q′.

The variables s, r, t are assumed to range over L∗. The functions fn(.), bn(.) and n(.)

are extended to L∗ the obvious way. Complementation on L is extended to L∗ the obvious

way. Alpha equivalence over traces is defined as expected, and alpha-equivalent traces

are not distinguished. From now on, only normal traces s ∈ L∗ that satisfy the following

hygiene condition are considered: if s = s1.α.s2, then (n(s1) ∪ fn(α)) ∩ bn(α.s2) = ∅.

The relation =⇒ denotes the reflexive transitive closure of
τ

−→, and
β

=⇒ denotes

=⇒
β

−→=⇒. For s = l.s′, C1
l

−→
s′

−→ C2 is compactly written as C1
s

−→ C2, and similarly

C1
l

=⇒
s′

=⇒ C2 as C1
s

=⇒ C2. The assertion, C
s

=⇒ C ′ for some C ′, is written as C
s

=⇒,

and similarly C
s

−→ and C
τ

−→.

The may testing framework [36] is adapted to asynchronous π-calculus in a straight-

forward manner.

Definition 2.1 (may testing) Observers are processes that can emit a special message

µµ; it is assumed that the name µ does not occur free in the processes being tested. We

let O range over the set of observers. For P,O, we say P may O if P |O
µµ

=⇒. We say

P
�

∼ Q if for every O, P may O implies Q may O. We say P ' Q if P
�

∼ Q and Q
�

∼ P .

Note that
�

∼ is reflexive and transitive, and ' is an equivalence relation.
�

In synchronous models such as CCS and π-calculus, trace equivalence is known to

coincide with may-testing [36]. But this coincidence fails to hold in an asynchronous

setting due to the non-blocking nature of output primitives. For instance, due to non-

determinism in the arrival order of messages, the equation x(u).y(v).P = y(v).x(u).P ,

which is not true for trace equivalence, is true for may-testing. As another example,

since the receipt of a message by a receiver is not observable to the sender, the equation

0 = x(u).xu holds for may-testing, but not for trace equivalence.

To account for asynchrony, the definition of trace semantics is modified as follows.

The preorder � is defined on the set of traces as the reflexive transitive closure of the

13

(L1) s1.(ŷ)s2 ≺ s1.(ŷ)xy.s2 if (ŷ)s2 6= ⊥
(L2) s1.(ŷ)(α.xy.s2) ≺ s1.(ŷ)xy.α.s2 if (ŷ)(α.xy.s2) 6= ⊥
(L3) s1.(ŷ)s2 ≺ s1.(ŷ)xy.xy.s2 if (ŷ)s2 6= ⊥
(L4) s1.xw.(s2{w/y}) ≺ s1.x(y).s2

Table 2.2: A preorder relation on traces.

laws shown in Table 2.2, where the notation (ŷ)· is extended to traces as follows.

(ŷ)s =































s if ŷ = ∅ or b 6∈ fn(s)

s1.x(y).s2 if ŷ = {y} and there are s1, s2, x s.t.

s = s1.xy.s2 and y 6∈ fn(s1) ∪ {x}

⊥ otherwise

The intuition behind the preorder is that an environment that accepts a trace s can

also accept any trace r � s. The characterization of may preorder
�

∼ then becomes

P
�

∼ Q if and only if for every trace s that P exhibits, Q can exhibit a trace r such

that r � s. While laws L1-L3 capture asynchrony, law L4 captures the inability to

mismatch names and disappears in the presence of mismatch operator. Laws L1 and L2

state that an observer cannot force inputs on the process being tested. Since outputs are

asynchronous, the actions following an output in a trace exhibited by an observer need

not be causally dependent on the output. Hence the observer’s outputs can be delayed

until a causally dependent action (L2), or dropped if there are no such actions (L1).

Law L3 states that an observer can consume its own outputs unless there are subsequent

actions that depend on the output. Law L4 states that without mismatch an observer

cannot discriminate bound names from free names, and hence can receive any name in

place of a bound name.

The intuition behind the trace preorder is formalized in the following lemma.

Lemma 2.1 If P
s

=⇒, then r � s implies P
r

=⇒.
�

The relation � defined below is shown to be an alternate characterization of
�

∼.

14

Definition 2.2 We say P � Q if for every trace s, P
s

=⇒ implies there is r � s such

that Q
r

=⇒.
�

To prove the characterization, a special class of observers O(s) is constructed such

that P may O(s) implies P
r

=⇒ for some r � s.

Definition 2.3 (canonical observer) For a trace s, we define O(s) as follows:

O(ε)
def
= µµ

O((ŷ)xy.t)
def
= (νŷ)(xy|O(t))

O(xy.s)
def
= x(u).[u = y]O(s) u fresh

O(x(y).t)
def
= x(y).O(t)

�

Lemma 2.2 For a trace s, O(s)
r.µµ
=⇒ implies r � s.

�

The following theorem establishes the relation between
�

∼ and �.

Theorem 2.1 P
�

∼ Q if and only if P � Q.

We end the section with a note on a variant of asynchronous π-calculus with both

match and mismatch capabilities on names. This variant is additionally equipped with

a conditional construct [x = y](P,Q) whose semantics is defined by the following rules.

IF
P

α
−→ P ′

[x = y](P,Q)
α

−→ P ′
x = y ELSE

Q
α

−→ Q′

[x = y](P,Q)
α

−→ Q′
x 6= y

The relation � defined as in Definition 2.2, but using only laws L1, L2 and L3, charac-

terizes the may preorder over this variant [11]. From now on, unless mentioned otherwise,

by asynchronous π-calculus we refer to the calculus with only the match capability on

names.

15

2.2 The Calculus Lπ=

We now impose the discipline of locality on asynchronous π-calculus, that disallows pro-

cesses from receiving a name and listening to it. We call the resulting calculus Lπ=.

Locality is enforced by requiring that the bound name y in an input x(y).P does not

occur as the subject of an input in P . The transition rules for Lπ= are the same as for

asynchronous π-calculus (Table 2.1).

The locality property weakens may testing equivalence as it reduces the number of

observers that can be used to test a process. For example, the following two processes

are distinguishable in asynchronous π-calculus but equivalent in Lπ=.

P1 = (νx)(!x(z).0|xx|yx)

P2 = (νx)(!x(z).0|yx)

The observer O = y(z).z(w).µµ can distinguish P1 and P2 in asynchronous π-calculus,

but is not a valid Lπ= term as it violates locality. In fact, no Lπ= term can distinguish

P1 and P2, because the message xx is not observable.

Extending the notion of locality, we consider a generalized version of may testing

that supports encapsulation. We define a parameterized may preorder
�

∼ρ, where only

observers that do not listen on names in ρ are used to decide the order. For instance,

xx
�

∼{x} 0, but xx /
�

∼∅ 0. The set of names ρ can be interpreted as being owned by (or

private to) the process being tested, in that any context in which the process is executed

in is assumed to have only the capability to send messages to these names.

Definition 2.4 (may testing) Let rcp(P) (receptionist names in P) be the set of all

free names in P that occur as the subject of an input in P . For any given ρ we say

P
�

∼ρ Q if for every O such that rcp(O) ∩ ρ = ∅, P may O implies Q may O.
�

The larger the parameter of a preorder, the smaller the observer set that is used

to decide the order. Hence if ρ1 ⊂ ρ2, we have P
�

∼ρ1 Q implies P
�

∼ρ2 Q. However,

P
�

∼ρ2 Q need not imply P
�

∼ρ1 Q. For instance, 0 '{x} xx, but only 0
�

∼∅ xx and

16

xx /
�

∼∅ 0. Similarly, xx '{x,y} yy, but xx /
�

∼∅ yy and yy /
�

∼∅ xx. However, P
�

∼ρ2 Q implies

P
�

∼ρ1 Q if fn(P) ∪ fn(Q) ⊂ ρ1.

Theorem 2.2 Let ρ1 ⊂ ρ2. Then P
�

∼ρ1 Q implies P
�

∼ρ2 Q. Further, if fn(P) ∪

fn(Q) ⊂ ρ1 then P
�

∼ρ2 Q implies P
�

∼ρ1 Q.

Proof: Let P
�

∼ρ1 Q. Suppose P may O and rcp(O) ∩ ρ2 = ∅. Since ρ1 ⊂ ρ2, we have

rcp(O) ∩ ρ1 = ∅. Then since P
�

∼ρ1 Q, we have Q may O. Hence P
�

∼ρ2 Q.

Let fn(P) ∪ fn(Q) ⊂ ρ1 and P
�

∼ρ2 Q. Suppose P may O and rcp(O) ∩ ρ1 = ∅.

We have to show Q may O. Let {x̃} = rcp(O). Then, we have rcp((νx̃)O) = ∅. Since

fn(P) ∩ {x̃} = ∅, we have P |(νx̃)O ≡ (νx̃)(P |O). From this, RES rule, and P |O
µµ

=⇒,

we deduce P |(νx̃)O
µµ

=⇒, i.e. P may (νx̃)O. Now, since P
�

∼ρ2 Q we have Q may (νx̃)O.

From fn(Q) ∩ {x̃} = ∅ we have (νx̃)(Q|O) ≡ Q|(νx̃)O. It follows that (νx̃)(Q|O)
µµ

=⇒,

and hence Q|O
µµ

=⇒.
�

We now give a trace based characterization of
�

∼ρ, by making appropriate modifica-

tions to the characterization for asynchronous π-calculus. As motivated by the example

at the beginning of this section, we need to weaken the characterization to consider only

traces that correspond to interaction between Lπ= processes. Note that the transition

system for Lπ= does not by itself account for locality. For instance, in case of the ex-

ample, we have P1
yx
−→

xx
−→ although the message xx is not observable. To counter this

deficiency, we define the notion of well-formed traces.

Definition 2.5 For a set of names ρ and trace s we define rcp(ρ, s) inductively as

rcp(ρ, ε) = ρ

rcp(ρ, s.(ŷ)xy) = rcp(ρ, s)

rcp(ρ, s.(ŷ)xy) = rcp(ρ, s) ∪ ŷ

We say s is ρ-well-formed if s = s1.(ŷ)xy.s2 implies x /∈ rcp(ρ, s1). We say s is well-

formed if it is ∅-well-formed.

17

Only ρ-well-formed traces correspond to an interaction between a process and an

Lπ= observer O such that rcp(O) ∩ ρ = ∅. We are now ready to give the alternate

characterization of
�

∼ρ.

Definition 2.6 We say P �ρ Q, if for every ρ-well-formed trace s, P
s

=⇒ implies there

is r � s such that Q
r

=⇒.
�

For a well-formed trace s the canonical observer O(s) is the same as in Definition

2.3. Note that well-formedness of s guarantees that O(s) is an Lπ= term. Furthermore,

it is easy to show that if s is ρ-well-formed, then rcp(O(s)) ∩ ρ = ∅. Since Lπ= is a

subcalculus of asynchronous π-calculus, Lemma 2.1 holds in Lπ=. Further, since the

canonical observer construction is unchanged, the following lemma (which is a weaker

form of Lemma 2.2) holds for Lπ=.

Lemma 2.3 For a well-formed trace s, O(s)
r.µµ
=⇒ implies r � s.

�

Theorem 2.3 proves the equivalence of
�

∼ρ and �ρ using Lemma 2.5.

Lemma 2.4 Let P
s

=⇒. Then s = s1.(ŷ)xy.s2 implies x ∈ rcp(rcp(P), s1).

Proof: Suppose P
s1=⇒ P1

(ŷ)xy
−→ P2

s2=⇒. We observe that P1
(ŷ)xy
−→ if and only if x ∈

rcp(P1). So we are done if we show that rcp(P1) ⊂ rcp(rcp(P), s1). This can shown by

a simple induction on s using the locality property.
�

Lemma 2.5 Let ρ be a set of names where rcp(O) ∩ ρ = ∅. Then P |O
µµ

=⇒ can be

unzipped into P
s

=⇒ and O
s.µµ
=⇒ for some s that is ρ-well-formed.

Proof: The sequence P |O
µµ

=⇒ can be unzipped into P
s

=⇒ and O
s.µµ
=⇒ for some trace

s. While unzipping, we can choose bound names such that bn(s) ∩ rcp(O) = ∅. To

show that s is ρ-well-formed, we show that if s = s1.(ŷ)xy.s2, then x /∈ rcp(ρ, s1). By

applying Lemma 2.4 to O
s.µµ
=⇒ we deduce that x ∈ rcp(rcp(O), s1). If x ∈ rcp(O), then

x /∈ rcp(ρ, s1) because ρ ∩ rcp(O) = bn(s1) ∩ rcp(O) = ∅. If x /∈ rcp(O), then x must be

the bound argument of an output in s1, which again implies x /∈ rcp(ρ, s1). Therefore, s

is ρ-well-formed.
�

18

Theorem 2.3 P
�

∼ρ Q if and only if P �ρ Q.

Proof: (if) Let P �ρ Q and P may O for an observer O such that rcp(O) ∩ ρ = ∅.

From P may O we have P |O
µµ

=⇒. By Lemma 2.5, this computation can be unzipped

into P
s

=⇒ and O
s.µµ
=⇒ for some ρ-well-formed trace s. From P �ρ Q, there is a trace

r � s such that Q
r

=⇒. Moreover, r � s implies r.µµ � s.µµ. Therefore, by Lemma 2.1,

O
r.µµ
=⇒. We can zip this with Q

r
=⇒ to obtain Q|O

µµ
=⇒, which means Q may O.

(only if): Let P
�

∼ρ Q and P
s

=⇒ where s is ρ-well-formed. We have to show that

there is a trace r � s such that Q
r

=⇒. Now, it is easy to show that O(s)
s.µµ
=⇒. This can

be zipped with P
s

=⇒ to get P |O(s)
µµ

=⇒, that is P may O(s). From P
�

∼ρ Q, we have

Q may O(s) and therefore Q|O(s)
µµ

=⇒. This can be unzipped into Q
r

=⇒ and O(s)
r.µµ
=⇒.

From Lemma 2.3, it follows that r � s.
�

For the variant of Lπ= with mismatch capability on names, the relation � defined as

in Definition 2.6, but using only laws L1, L2 and L3, characterizes the may preorder.

2.3 The Calculus Lπ

We now investigate the effect of lack of name matching capability. We remove the match

operator from Lπ=, to obtain the calculus Lπ. The rules in Table 2.1 except the MATCH

rule, constitute the operational semantics of Lπ.

The lack of name matching capability further weakens may testing equivalence. For

example, the processes (νu)(xu|xu) and (νu, v)(xu|xv) are equivalent in Lπ, but not in

Lπ=. For the alternate characterization of P
�

∼ρ Q, it is too stringent to require that for

any trace s that P exhibits, Q exhibits a single trace r such that any observer accepting

s also accepts r. In fact, there exist Lπ processes P and Q such that P
�

∼ρ Q, and if

P exhibits s, then Q exhibits different traces to satisfy different observers that accept s.

For instance, let P = xu1|yu1|u1(w).ww which can exhibit s = xu1.yu1.u1(w).ww. The

19

following Lπ observers accept s.

O1 = (νw)(x(u).y(v).uw|w(v).µµ)

O2 = (νw)(x(u).y(v).vw|w(v).µµ)

O3 = (νw)(x(u).y(v).u1w|w(v).µµ)

O4 = (νw)(x(u).y(v).(vv|uu) | u1(z).u1(z).u1w | w(v).µµ)

Now consider

Q = (νv)(v(z).v(z′).(xz|yz′)|vu1|vu2| !u2(z).u1z | u1(w).ww)

which can satisfy

O1 with r1 = xu1.yu2.u1(w).ww

O2 with r2 = xu2.yu1.u1(w).ww

O3 with r1 or r2, and

O4 with r4 = xu1.yu2.u2u2.u1u2.u1(w).ww

but cannot exhibit a single trace that can satisfy all four observers. In fact, it is the case

that P
�

∼∅ Q. Intuitively, although unlike P , Q always exports two different names to x

and y, for each possible dataflow pattern of the received names inside an observer that

P satisfies, Q exhibits a corresponding trace that can lead the observer to a success.

For the alternate characterization, we define templates which are a special kind of

traces that can be used to represent dataflows in an observer. A template is a trace

in which all outputs are bound. The binding relation between arguments of outputs

and their subsequent free occurrences, represents the relevant dependencies between the

output argument that is received by an observer and its subsequent use in the observer’s

computation. For a trace s and set of names ρ, we define a set T (s, ρ) that has a template

for each possible dataflow in a computation O
s.µµ
=⇒ with rcp(O) ∩ ρ = ∅. Further, if t

represents the dataflow in a computation O
s.µµ
=⇒, then it will be the case that O

t.µµ
=⇒.

Thus, if an observer accepts a trace s, then it also accepts a template in T (s, ρ). This

20

template construction essentially captures the effect of lack of match operator. We will

show that P
�

∼ρ Q if and only if for every ρ-well-formed trace s that P exhibits, for each

t ∈ T (s, ρ), Q exhibits some r � t.

Following is an informal description of how the set T (s, ρ) can be obtained. Due to

the lack of name matching capability, an observer cannot fully discriminate between free

inputs. Therefore, a process can satisfy an observer O that exhibits O
s.µµ
=⇒, by replacing

free input arguments in s with any name as long as it is able to account for changes to the

subsequent computation steps that depend on the replaced name. Specifically, suppose

O
s.µµ
=⇒ abbreviates the following computation:

O
s1=⇒ O0

xy
−→ O1

β1
−→ O2

β2
−→ · · ·On

βn
−→

µµ
−→

Because of the locality property, the name y received in the input may be used only in

output terms of O1. We call such occurrences of y as dependent on the input. During

subsequent computation, these output terms may appear either as an output action

or are consumed internally. In the latter case, y may be the target of the internal

communication, or the argument which in turn may generate further output terms with

dependent occurrences of y. Therefore, O can do the following computation when y in

the input is replaced with an arbitrary name w:

O
s1=⇒ O0

(ŵ)xw
−→ O1

γ1
−→ O2

γ2
−→ · · ·On

γn
−→

µµ
−→

where γi is obtained from βi as follows. If βi is an output action, then γi is obtained

from βi by substituting dependent occurrences of y with w. If βi is an internal delivery

of a message yz with target y being a dependent occurrence, there are two possibilities.

If z is a private name, then γi = w(z).yz and the subsequent bound output βj (j > i)

that exports z for the first time (if any), is changed to a free output. If z is not a private

name, then γi = wz′.yz′, where z′ is w when z is a dependent occurrence of y and z

otherwise. For all other cases, γi = βi. Note that, if w is fresh, the input of w could be

a bound input.

21

Clearly, any computation obtained by repeated application of the above construction

can be performed by O. In particular, if we always replace free inputs with bound

inputs, we will eventually obtain a computation in which all inputs are bound and the

construction can not be applied any further. Let O
t.µµ
=⇒ abbreviate a computation thus

obtained. The trace t is a template that explicitly represents all dependencies between

received names and subsequent computation steps. The set T (s, ρ) consists of all the

templates that can be obtained by this construction starting from arbitrary computations

of the form O
s.µµ
=⇒ with rcp(O) ∩ ρ = ∅. Note that T (s, ρ) can contain more than one

template since different computations of form O
s.µµ
=⇒ may have different dependency

relations between input arguments in s and their subsequent use.

We now formalize the ideas presented above, leading to a direct inductive definition

of T (s, ρ). Let

O
s1=⇒

xy
−→ O1

s2=⇒
µµ
−→

We first consider the simple case where y /∈ rcp(O1). Due to locality, in the computation

following input xy, there cannot be an internal message delivery with y as the target.

Therefore, the following computation is possible.

O
s1=⇒

(ŵ)xw
−→ O′

1

s′2=⇒
µµ
−→

where s′2 is obtained from s2 by renaming dependent occurrences of y in output actions

to w. Specifically, it does not involve exposing internal actions that use dependent

occurrences of y. When the computation steps above are not known, all we can say

about s′2 is that it is obtained from s2 by renaming some occurrences of y. Similarly, O′
1

is obtained from O1 by renaming some occurrences of y in output terms. These relations

are formalized in Definition 2.7 and Lemma 2.7.

Definition 2.7 (random output substitution) For σ = {ũ/ṽ} we define random

output substitution (from now on just random substitution) on process P , denoted by P [σ],

modulo alpha equivalence as follows. We assume bn(P) ∩ {ṽ} = fn(P)σ ∩ bn(P) = ∅.

22

For a name x we define x[σ] = {x, xσ}.

0[σ] = {0}

(x(y).P)[σ] = {x(y).P ′ | P ′ ∈ P [σ]}

(xy)[σ] = {x′y′ | x′ ∈ x[σ], y′ ∈ y[σ]}

(P |Q)[σ] = {P ′|Q′ | P ′ ∈ P [σ], Q′ ∈ Q[σ]}

((νx)P)[σ] = {(νx)P ′ | P ′ ∈ P [σ]}

(!x(y).P)[σ] = {!x(y).P ′ | P ′ ∈ P [σ]}

Random substitution on traces is defined modulo equivalence as follows. We assume

bn(s) ∩ {ṽ} = fn(s)σ ∩ bn(s) = ∅.

ε[σ] = {ε}

((ŷ)xy.s)[σ] = {(ŷ)xy.s′|s′ ∈ s[σ]}

(x(y).s)[σ] = {x′(y).s′|x′ ∈ x[σ], s′ ∈ s[σ]}

(xy.s)[σ] = {x′y′.s′|x′ ∈ x[σ], y′ ∈ y[σ], s′ ∈ s[σ]}

We will use [ũ/ṽ] as a short form for [{ũ/ṽ}].
�

Lemma 2.6 If P ′
0 ∈ P0[w/y], then

1. P0
(v̂)uv
−→ P1 and w /∈ v̂ implies there is P ′

1 ∈ P1[w/y] such that P ′
0

(v̂)uv
−→ P ′

1.

2. P0
(v̂)uv
−→ P1 and w 6∈ v̂ implies there is P ′

1 ∈ P1[w/y] such that P ′
0

α
−→ P ′

1 where for

some u′ ∈ u[w/y] and v′ ∈ v[w/y]

α =







u′v′ if v̂ = ∅

u′(v) otherwise

3. P0
τ

−→ P1 implies one of the following;

(a) There is P ′
1 ∈ P1[w/y] such that P ′

0
τ

−→ P ′
1.

23

(b) P1 ≡ (νẑ)Q, w, y /∈ ẑ, and there is P ′
1 ∈ Q[w/y] such that P ′

0

(ẑ)wz.yz
−→ P ′

1.

Proof: See Appendix A.
�

Lemma 2.7 If P
s

=⇒, P ′ ∈ P [w/y], and y /∈ rcp(P), then P ′ s′
=⇒ for some s′ ∈ s[w/y].

Proof: Since we work modulo alpha equivalence on traces we can assume the hygiene

condition bn(s) ∩ {w, y} = ∅. Proof is by induction on the number of steps in the

transition sequence abbreviated by P
s

=⇒. The base case is obvious by letting s′ = ε

and the fact that ε ∈ ε[w/y]. For the induction step, suppose P
s

=⇒ can be written as

P
β

−→ P1
r

=⇒. There are three cases depending on β:

1. P
(v̂)uv
−→ P1: Due to locality, rcp(P1) ⊂ rcp(P). By Lemma 2.6.1, P ′ (v̂)uv

−→ P ′
1 for some

P ′
1 ∈ P1[w/y]. Let β ′ = (v̂)uv.

2. P
(v̂)uv
−→ P1: We have rcp(P1) ⊂ rcp(P) ∪ v̂. Since by hygiene condition y /∈ v̂, we

have y /∈ rcp(P1). By Lemma 2.6.2, P ′ β′

−→ P ′
1 for some P ′

1 ∈ P1[w/y] and β ′ is α

as stated in Lemma 2.6.2.

3. P
τ

−→ P1: By locality y /∈ rcp(P1). Now, we apply Lemma 2.6.3. From y /∈ rcp(P)

and P ′ ∈ P [w/y] we deduce y /∈ rcp(P ′). It follows that only the first case of

Lemma 2.6.3 applies, because in the second case y is used as the subject of an input

action which implies y ∈ rcp(P ′). Therefore, P ′ τ
−→ P ′

1 for some P ′
1 ∈ P1[w/y].

In all cases, y /∈ rcp(P1). Then by induction hypothesis, P ′
1

r′
=⇒ where r′ ∈ r[w/y]. The

result follows from the observation that in cases 1 and 2, β ′.r′ ∈ (β.r)[w/y], and in case

3, r′ ∈ r[w/y] = s[w/y].
�

Now, suppose y ∈ rcp(O1). Then, in the computation

O
s1=⇒

xy
−→ O1

s2=⇒
µµ
−→

24

certain internal transitions may involve a message with a dependent occurrence of y as the

target. Then, the following computation which exposes such transitions is also possible

O
s1=⇒

(ŵ)xw
−→ O′

1

s′2=⇒
µµ
−→

where s′2 is obtained from s2 by not only renaming all dependent occurrences of y in

output transitions to w, but also exposing each internal message delivery with a depen-

dent occurrence of y as the message target. If the computation steps are not known,

we can only say s′2 is obtained from some r ∈ s2[w/y] by exposing arbitrary number of

internal transitions at any point in r. The relation between s2 and s′2 is formalized in

Definition 2.8 and Lemma 2.8. To account for the situation where an exposed pair of

actions (ẑ)wz.yz export a private name z, we need the following function on traces.

[ŷ]s =































s if ŷ = ∅ or y 6∈ n(s)

s1.xy.s2 if ŷ = {y} and there are s1, s2, x s.t.

s = s1.x(y).s2 and y 6∈ n(s1) ∪ {x}

⊥ otherwise

Definition 2.8 For a trace s and a pair of names w, y, the set F (s, w, y) is the smallest

set closed under the following rules:

1. ε ∈ F (ε, w, y)

2. (v̂)uv.s′ ∈ F ((v̂)uv.s, w, y) if s′ ∈ F (s, w, y)

3. (v̂)uv.s′ ∈ F ((v̂)uv.s, w, y) if s′ ∈ F (s, w, y)

4. (ẑ)wz.yz.[ẑ]s′ ∈ F (s, w, y) if s′ ∈ F (s, w, y) and [ẑ]s′ 6= ⊥

Note that s ∈ F (s, w, y). For a set of traces S, we define F (S,w, y) = ∪s∈SF (s, w, y).
�

Lemma 2.8 If P
s

=⇒ and P ′ ∈ P [w/y], then P ′ s′
=⇒ for some s′ ∈ F (s[w/y], w, y).

Proof: Since we work modulo alpha equivalence on traces we can assume bn(s)∩{w, y} =

∅. Proof is by induction on the number of steps in transition sequence P
s

=⇒. The base

25

case is obvious with s′ = ε because ε ∈ F (ε[w/y], w, y). For the induction step, suppose

P
s

=⇒ can be written as P
β

−→ P1
r

=⇒. We have three cases:

1. P
(v̂)uv
−→ P1: Since w /∈ v̂, by Lemma 2.6.1, there is P ′

1 ∈ P1[w/y] such that P ′ (v̂)uv
−→

P ′
1. By induction hypothesis P ′

1
r′

=⇒ for some r′ ∈ F (r[w/y], w, y). By letting

s′ = (v̂)uv.r′, we have s′ ∈ F ((v̂)uv.r[w/y], w, y) = F (s[w/y], w, y) and the lemma

follows.

2. P
(v̂)uv
−→ P1: Since w /∈ v̂, by Lemma 2.6.2, there is P ′

1 ∈ P1[w/y] such that P ′ α
−→ P ′

1

where for some u′ ∈ u[w/y] and v′ ∈ v[w/y]

α =







u′v′ if v̂ = ∅

u′(v) otherwise

By induction hypothesis P ′
1

r′
=⇒ for some r′ ∈ F (r[w/y], w, y). By letting s′ = α.r′,

we have s′ ∈ F (α.r[w/y], w, y) = F (s[w/y], w, y) and the lemma follows.

3. P
τ

−→ P1: Then r = s. By Lemma 2.6.3 we have two cases:

(a) There is P ′
1 ∈ P1[w/y] such that P ′ τ

−→ P ′
1. By induction hypothesis, P ′

1
s′

=⇒

for some s′ ∈ F (s[w/y], w, y). The lemma follows from P ′ s′
=⇒.

(b) P1 ≡ (νẑ)Q1, w, y /∈ ẑ, and there is P ′
1 ∈ Q1[w/y] such that P ′ (ẑ)wz

−→
yz
−→ P ′

1.

From w, y /∈ ẑ we have (νẑ)P ′
1 ∈ ((νẑ)Q1)[w/y]. By induction hypothesis,

(νẑ)P ′
1

s′′
=⇒ for some s′′ ∈ F (s[w/y], w, y). It is easy to show that P ′

1

[ẑ]s′′
=⇒. The

lemma follows from (ẑ)wz.yz.[ẑ]s′′ ∈ F (s[w/y], w, y) and P ′ (ẑ)wz
−→

yz
−→

[ẑ]s′′

=⇒.
�

For a trace s and a set of names ρ, we say s is ρ-normal, if s is normal and ρ∩bn(s) = ∅.

Now, let O be an arbitrary observer such that rcp(O) ∩ ρ = ∅. Suppose

O
s1=⇒

xy
−→ O1

s2=⇒
µµ
−→

26

where s1.xy.s2 is ρ-normal. If y ∈ ρ or y is the argument of a bound input in s1, then

by locality y /∈ rcp(O1). Otherwise, since O is arbitrary, it is possible that y ∈ rcp(O1).

From this observation, we have that for an arbitrary observer O such that rcp(O)∩ρ = ∅,

if O accepts the ρ-normal trace s1.xy.s2, then O also accepts s1.(ŵ)xw.s′2 where w is an

arbitrary name and s′2 ∈ s2[w/y] if y ∈ ρ or y is the argument of a bound output in

s1, and s′2 ∈ F (s2[w/y], w, y) otherwise. T (s, ρ) is precisely the set of all traces with no

free outputs, that can be obtained by repeated application of this reasoning. T (s, ρ) is

formally defined in Definition 2.9.

Definition 2.9 For a trace s and a set of names ρ, the set of templates T (s, ρ) is defined

modulo alpha equivalence as follows.

1. ε ∈ T (ε, ρ).

2. (ŷ)xy.s′ ∈ T ((ŷ)xy.s, ρ) if s′ ∈ T (s, ρ)

3. x(y).s′ ∈ T (x(y).s, ρ) if s′ ∈ T (s, ρ ∪ {y})

4. x(w).s′ ∈ T (xy.s, ρ) if w fresh, s′ ∈ T (s′′, ρ ∪ {w}), and

s′′ ∈







s[w/y] if y ∈ ρ

F (s[w/y], w, y) if y /∈ ρ

�

Lemma 2.9 If P
xy
−→ P1 and w /∈ fn(P), then there is P ′

1 ∈ P1[w/y] such that P
x(w)
−→ P ′

1.

Proof: See Appendix A.
�

Lemma 2.10 If P
s

=⇒ and ρ ∩ rcp(P) = ∅, then there is t ∈ T (s, ρ) such that P
t

=⇒.

Proof: Since we work modulo alpha equivalence on traces, we assume s is ρ-normal.

The proof is by induction on the number of τ transitions and the number of steps in the

transition sequence P
s

=⇒ ordered lexicographically. Base case is easy with t = ε. For

the induction step, we can write P
β

−→ P1
r

=⇒. Now, there are four cases based on β.

1. β = τ : By locality, rcp(P1) ⊂ rcp(P), and hence ρ ∩ rcp(P1) = ∅. Further, r = s

and the lemma follows from induction hypothesis.

27

2. β = (ŷ)xy : From ρ-normality of s, we have ŷ ∩ ρ = ∅. Since rcp(P1) ⊂ rcp(P)∪ ŷ,

we have ρ ∩ rcp(P1) = ∅. Now, r is ρ-normal and by induction hypothesis, there

exists r′ ∈ T (r, ρ) such that P1
r′

=⇒. The lemma follows from (ŷ)xy.r′ ∈ T (s, ρ).

3. β = x(y) : By locality, (ρ∪{y})∩ rcp(P1) = ∅. Furthermore, r is (ρ∪{y})-normal.

By induction hypothesis, there exists r′ ∈ T (r, ρ ∪ {y}) such that P1
r′

=⇒. The

lemma follows from x(y).r′ ∈ T (s, ρ).

4. β = xy : Let w be fresh, that is w /∈ fn(P) ∪ n(s) ∪ ρ. By Lemma 2.9, there

is P ′
1 ∈ P1[w/y] such that P

x(w)
−→ P ′

1. Because of locality, rcp(P ′
1) ⊂ rcp(P) and

therefore (ρ ∪ {w}) ∩ rcp(P ′
1) = ∅. We have two subcases:

• y ∈ ρ: Then y /∈ rcp(P) and by locality y /∈ rcp(P1). Then by Lemma 2.7,

P ′
1

r′′
=⇒ for some r′′ ∈ r[w/y]. From the proof of Lemma 2.7, it is clear that the

computation P ′
1

r′′
=⇒ has the same number of τ transitions and computation

steps as P1
r

=⇒.

• y /∈ ρ: Then by Lemma 2.8, P ′
1

r′′
=⇒ for some r′′ ∈ F (r[w/y], w, y). From the

proof of Lemma 2.8, it is clear that if the number of τ transitions in P ′
1

r′′
=⇒ is

not less than that in P1
r

=⇒, then both computations have exactly the same

number of steps.

In either case, without loss of generality we may assume r′′ is (ρ ∪ {w})-normal.

Then by induction hypothesis, P ′
1

r′
=⇒ for some r′ ∈ T (r′′, ρ ∪ {w}). The lemma

follows from x(w).r′ ∈ T (s, ρ).
�

Lemma 2.12 states that template construction in Definition 2.9 preserves ρ-well-

formedness.

Lemma 2.11 Let s be ρ-well-formed. Then for y /∈ ρ all traces in F (s, x, y) are ρ-well-

formed.

Proof: See Appendix A.
�

28

Lemma 2.12 If s is ρ-well-formed then every t ∈ T (s, ρ) is ρ-well-formed.

Proof: We prove by induction on derivation of r ∈ T (s, ρ) that r is ρ-well-formed. The

base case ε ∈ T (ε, ρ) is obvious. For the induction step there are four cases.

1. s = (ŷ)xy.s′, r = (ŷ)xy.r′ and r′ ∈ T (s′, ρ). Suppose r = (ŷ)xy.r1.(v̂)uv.r2. Now

s′ is ρ-well-formed, and by induction hypothesis r′ is ρ-well-formed. Then we have

u /∈ rcp(r1, ρ) = rcp((ŷ)xy.r1, ρ). Hence r is ρ-well-formed.

2. s = x(y).s′, r = x(y).r′ and r′ ∈ T (s′, ρ∪{y}). Suppose r = x(y).r1.(v̂)uv.r2. Now,

s′ is ρ∪{y}-well-formed, and by induction hypothesis r′ is ρ-well-formed. Then we

have u /∈ rcp(r1, ρ ∪ {y}) = rcp(x(y).r1). Further, since s is ρ-well-formed x /∈ ρ.

Hence r is ρ-well-formed.

3. s = xy.s′, y ∈ ρ, r = x(w).r′ for some w fresh and r′ ∈ T (r′′, ρ ∪ {w}) for some

r′′ ∈ s′[w/y]. Now s′ is ρ-well-formed. Since s is normal y /∈ bn(s′). From this, and

the facts that w is fresh and random substitution on traces does not change output

actions, we have r′′ is ρ-well-formed. Moreover, since w is fresh we also have r′′ is

ρ ∪ {w}-well-formed. By induction hypothesis r′ is ρ ∪ {w}-well-formed. Further,

since s is ρ-well-formed we have x /∈ ρ. We conclude r is ρ-well-formed.

4. s = xy.s′, y /∈ ρ, r = x(w).r′ for some w fresh and r′ ∈ T (r′′, ρ) for some r′′ ∈

F (s′[w/y], w, y). Now, s′ is ρ-well-formed, and by the argument in case 3 we have

r′′ is ρ∪{w}-well-formed. By Lemma 2.11, r′ is ρ∪{w}-well-formed. Further, since

s is ρ-well-formed we have x /∈ ρ. We conclude r is ρ-well-formed.
�

The relation �ρ on Lπ processes is defined as follows.

Definition 2.10 We say P �ρ Q, if for every ρ-well-formed trace s, P
s

=⇒ implies for

each t ∈ T (s, ρ) there is r � t such that Q
r

=⇒.
�

For t ∈ T (s, ρ), where s is a ρ-well-formed trace, let O(t) be the canonical observer as

defined in Definition 2.3. By Lemma 2.12, since s is ρ-well-formed t is also ρ-well-formed.

29

Hence O(t) satisfies the locality constraint, and rcp(O(t)) ∩ ρ = ∅. Further, since t is a

template, the case t = xy.t′ does not arise in the construction of the observer. Hence O(t)

is an Lπ term. Since Lπ is a subcalculus of asynchronous π-calculus, Lemma 2.1 holds

for Lπ. Further, since the canonical observer construction is unchanged, the following

lemma (which is a weaker form of Lemma 2.2) holds for Lπ.

Lemma 2.13 For t ∈ T (s, ρ), where s is a ρ-well-formed trace, O(t)
r.µµ
=⇒ implies r � t.

�

Lemma 2.5 holds for Lπ with formally the same proof. Now, we are ready to prove

that �ρ is an alternate characterization of
�

∼ρ.

Theorem 2.4 P
�

∼ρ Q if and only if P �ρ Q.

Proof: (if) Let P �ρ Q and P may O for an observer O such that rcp(O) ∩ ρ = ∅.

From P may O we have P |O
µµ

=⇒. By Lemma 2.5, this computation can be unzipped

into P
s

=⇒ and O
s.µµ
=⇒ for some ρ-well-formed trace s. From Lemmas 2.1 and 2.10 we

deduce there is a t′ ∈ T (s.µµ, ρ) such that r′ � t′ implies O
r′

=⇒. It is easy to show that

t′ ∈ T (s.µµ, ρ) implies t′ = t.µµ for some t ∈ T (s, ρ). From P �ρ Q, there is a trace

r � t such that Q
r

=⇒. Moreover, r � t implies r.µµ � t.µµ = t′. Therefore, O
r.µµ
=⇒. We

can zip this with Q
r

=⇒ to obtain Q|O
µµ

=⇒, which means Q may O.

(only if): Let P
�

∼ρ Q and P
s

=⇒ where s is ρ-well-formed. We have to show for

every t ∈ T (s, ρ) there is a trace r � t such that Q
r

=⇒. It is easy to show that if

t ∈ T (s, ρ), then O(t)
s.µµ
=⇒. This can be zipped with P

s
=⇒ to get P |O(t)

µµ
=⇒, that is

P may O(t). From P
�

∼ρ Q, we have Q may O(t) and therefore Q|O(t)
µµ

=⇒. This can be

unzipped into Q
r

=⇒ and O(t)
r.µµ
=⇒. From Lemma 2.3, it follows that r � t.

�

For finitary processes we can obtain a simpler characterization based on a modified

version of Definition 2.9 as given below.

Definition 2.11 For a trace s and a set of names ρ, the set Tf (s, ρ) is defined inductively

using the first three rules of Definition 2.9 and the following two.

4 x(w).s′ ∈ Tf (xy.s, ρ) if y ∈ ρ, w fresh, s′ ∈ Tf (s
′′, ρ ∪ {w}), and s′′ ∈ s[w/y]

30

5 xy.s′ ∈ Tf (xy.s, ρ) if y /∈ ρ, and, s′ ∈ Tf (s, ρ)
�

The main difference from Definition 2.9 is that output arguments y that are not in

ρ are not converted to bound arguments. According to rule 4 of Definition 2.9, such

conversions introduce arbitrary number of pairs of input/output actions. But, since the

length of traces that a finite process can exhibit is bounded, the only way the process can

exhibit a trace r � t for each of the resulting templates, is by emitting the same name y,

so that L4 and L3 can be applied to annihilate some of these input/output pairs. Lemma

2.15 helps formalize this observation.

Lemma 2.14

1. (ŷ)xy.r � x(w).s implies r � s{y/w}.

2. r � s1.s2 implies r = r1.r2 for some r1 � s1.

Proof: (1) By induction on the derivation of (ŷ)xy.r � x(w).s. (2) By induction on the

derivation of r � s1.s2.
�

Lemma 2.15 For a trace s, a set of names ρ, and a prefixed closed set R of traces with

bounded length, if for every t ∈ T (s, ρ) there exists r ∈ R such that r � t, then for every

tf ∈ Tf (s, ρ) there exists r ∈ R such that r � tf .
�

Proof of Lemma 2.15: For sets of traces R and S, define R � S, if for every s ∈ S

there is r ∈ R such that r � s. Then the statement of the lemma can be stated as: for

a prefix closed set R of traces with bounded length, R � T (s, ρ) implies R � Tf (s, ρ).

The proof is by induction on the length of s. The base case is easy because T (ε, ρ) =

Tf (ε, ρ) = {ε}. For the induction step we have four cases, of which we only consider

the one which is central to the proof, namely where s = xy.s′ and y 6∈ ρ. The others

are routine. We are done if we construct a prefixed closed set R′ of traces with bounded

length such that R′ � T (s′, ρ) and xy.R′ ⊂ R. For, by induction hypothesis, R′ � T (s′, ρ)

implies R′ � Tf (s
′, ρ). Then, xy.R′ � xy.Tf (s

′, ρ) = Tf (s, ρ), which together with

xy.R′ ⊂ R implies R � Tf (s, ρ).

31

Suppose t′ ∈ T (s′, ρ) and l is the bound on the length of traces in R. Now, let

t′′ = w(z1).y(z′
1) . . . w(zn).y(z′

n) for some n > len(t′) + l. Now, for w fresh, x(w).t′.t′′ ∈

T (xy.s′, ρ), because s′ ∈ s′[w/y], s′.t′′ ∈ F (s′, w, y) and t′.t′′ ∈ T (s′.t′′, ρ ∪ {w}). Then,

since R � T (s, ρ), there exists r ∈ R such that r � x(w).t′.t′′. It is easy to see by

inspecting L1-L4 that r can only start with an output action, that is r = (ẑ)xz.r1 for

some r1. By Lemma 2.14.1, r1 � (t′.t′′){z/w}. Furthermore, (t′.t′′){z/w} = t′.(t′′{z/w})

because w does not occur in t′.

Since the number of outputs in t′′ is greater than len(r1), some of them have to be

dropped, which is only possible by an application of L3. Further, since the number

of these outputs is also greater than len(t′) + len(r1), we conclude that some of these

applications of L3 must involve the inputs in t′′. But, such annihilation are possible only

if z = y, which implies r = xy.r1. Furthermore, since r1 � t′.t′′{y/w}, by Lemma 2.14.2

we have r1 = r′.r′′ for some r′ � t′. Let R′ be the prefix closure of the set of all traces r′

thus obtained for each t′ ∈ T (s′, ρ). By construction, R′ � T (s′, ρ). Furthermore, from

r = xy.r′.r′′ and prefix closure of R, we have xy.R′ ⊆ R. Finally, since the length of

traces in R is bounded, so is the length of traces in R′.
�

Using this lemma, we can show that for finitary processes we can use Tf (s, ρ) in

Definition 2.10 instead of T (s, ρ). The resulting characterization is equivalent to the

earlier one for the following reason. Suppose P
s

=⇒ implies, for every t ∈ T (s, ρ), there

exists r � t such that Q
r

=⇒. Then, let R be the set of all traces that Q exhibits. Note

that R is prefix closed. Further, since Q is finite, there is a bound on the length of traces

in R. By Lemma 2.15, for every tf ∈ Tf (s, ρ), there exists r � tf such that Q
r

=⇒.

Conversely, suppose P
s

=⇒ implies that for every t ∈ Tf (s, ρ) there exists r � t such that

Q
r

=⇒. It is easy to verify that for every t ∈ T (s, ρ) there exists a tf ∈ Tf (s, ρ) such that

tf � t, where the relation can be derived using only L3 and L4. From transitivity of �,

it follows that P
s

=⇒ implies for every t ∈ T (s, ρ) there exists r � t such that Q
r

=⇒.

32

2.4 The Calculus Lπ−
=

We now consider a variant of Lπ=, called Lπ−
=, with a restricted name matching ability.

An Lπ−
= process can compare a given name only against a name that it owns (names

are owned by a process in the sense explained in Section 2.2). Thus, a process can

use the matching capability to associate additional meaning to only its own names. An

environment the process executes in, can neither listen to, nor compare against the

names owned by the process. As a result, an environment can not distinguish between

names owned by the process. This reduction in observing power, gives rise to a coarser

equivalence that is useful in practice. For instance, program transformations such as

forward splicing, that transform a program into a version that has the same behavior

except in the use of its internal names, can now be shown to be sound.

For convenience, we replace the match construct of Lπ= with the following case

construct

case x of (y1 : P1, . . . , yn : Pn)

which is a macro for the following Lπ= term.

[|case x of (y1 : P1, . . . , yn : Pn)|] =

(νu, v1, . . . , vn)([x = y1]uv1| . . . |[x = yn]uvn|

u(w).([w = v1][|P1|]| . . . |[w = vn][|Pn|]) u, vi, w fresh

Thus, the process case x of (y1 : P1, . . . , yn : Pn) behaves like Pi for some 1 ≤ i ≤ n,

if x = yi, and like 0 otherwise. If more than one branch is true, then one of them is

non-deterministically chosen.

To restrict the matching ability, it is required that in a case construct such as the

above, the names yi are owned by the process under consideration. To enforce this, we

impose the typing constraint that the yi’s are not bound by an input prefix. Thus, only

x can be a received name, and the yi’s are either free or bound by a restriction. We

call the yi’s above as tested names, and denote the set of all free names used as tested

names in a process P by tn(P). Since names in tn(P) are private to P , it is assumed

33

that P is executed only in an environment that neither listens to, nor matches against

these names. Accordingly, the definition of
�

∼ρ is modified as follows.

Definition 2.12 For ρ such that tn(P), tn(Q) ⊂ ρ, we say P
�

∼ρ Q if for every O such

that rcp(O) ∩ ρ = tn(O) ∩ ρ = ∅, P may O implies Q may O.
�

For the alternate characterization of
�

∼ρ, following the approach used for Lπ, we

identify the set of traces that an observer accepting a trace s will also accept due to its

restricted matching ability. Let

O
s1=⇒

xy
−→ O1

s2=⇒
µµ
−→

Suppose y /∈ rcp(O1)∪tn(O1). Then, adapting the discussion in Section 2.3, it follows

that for w fresh and some s′2 ∈ s2[w/y]

O
s1=⇒

x(w)
−→

s′2=⇒
µµ
−→

This motivates the following definition which is analogous to the definition of templates

in Section 2.3.

Definition 2.13 For a trace s and a set of names ρ, define the set T (s, ρ) as

1. ε ∈ T (ε, ρ).

2. (ŷ)xy.s′ ∈ T ((ŷ)xy.s, ρ) if s′ ∈ T (s, ρ)

3. x(y).s′ ∈ T (x(y).s, ρ) if s′ ∈ T (s, ρ ∪ {y})

4. x(w).s′ ∈ T (xy.s, ρ) if y ∈ ρ, w fresh, s′ ∈ T (s′′, ρ ∪ {w}), and s′′ ∈ s[w/y]

5. xy.s′ ∈ T (xy.s, ρ) if y /∈ ρ, and, s′ ∈ T (s, ρ)
�

The idea behind this definition is that if an observer O such that ρ∩(rcp(O)∪tn(O)) =

∅ accepts s, then it also accepts some trace in T (s, ρ). To prove this, we adapt Definition

2.7 for random substitution on processes by adding the following rule.

34

case x of (y1 : P1, . . . , yn :Pn)[σ] =

{case x′ of (y1 : P ′
1, . . . , yn : P ′

n) | x′ ∈ x[σ], P ′
i ∈ Pi[σ]}

Now, with minor modifications to the proofs, Lemma 2.6 holds with the additional con-

dition that y /∈ tn(P0), Lemma 2.7 holds with the condition that y /∈ tn(P), Lemma 2.10

holds with the condition that ρ ∩ tn(P) = ∅, and Lemma 2.12 holds as it is.

The relation �ρ on Lπ−
= processes is the same as in Definition 2.10, except that

P �ρ Q is defined only for ρ such that tn(P), tn(Q) ⊂ ρ. The canonical observer O(t)

for t ∈ T (s, ρ) and s a well-formed trace, is defined as in Definition 2.3, except that the

case construct is used instead of match in the obvious way. Note that if t = t1.xy.t2

then y /∈ rcp(ρ, t1). This implies that O(t) does not use received names as tested names

(O(t) is well-typed), and tn(O) ∩ ρ = ∅. Since Lπ−
= is subcalculus of asynchronous π-

calculus, Lemma 2.1 holds for Lπ−
=. Further, since the canonical observer construction is

unchanged, Lemma 2.13 (which is a weaker form of Lemma 2.2) holds for Lπ−
=. Now, a

simple adaptation of the proof of Theorem 2.4 establishes the alternate characterization

of may testing for Lπ−
=, namely, that the relations �ρ and

�

∼ρ are identical.

2.5 An Axiomatization of Finitary Lπ= and Lπ

We first give a sound and complete proof system for
�

∼ρ for the finitary fragment of Lπ,

i.e. for Lπ processes that do not use replication. A simple adaptation of the proof system

gives us one for finitary Lπ=. The proof system consists of the laws given in Table 2.3 and

the rules for reflexivity and transitivity. For a finite index set I, we use the macro
∑

i∈I Pi

to denote, (νu)((|i∈Iu(u).Pi)|uu) for u fresh if I 6= ∅, and 0 otherwise. For an index set

that is a singleton, we omit I and simply write
∑

P instead of
∑

i∈I P . We let the

variable G range over processes of form
∑

i∈I Pi. We write
∑

i∈I Pi +
∑

j∈J Pj to denote
∑

k∈I]J Pk. We write v as a shorthand for v∅, and = for =∅. Random input substitution

on processes P [w/y]i is defined similar to random output substitution (Definition 2.7),

except that only the occurrences of y at the subject of input prefixes in P are randomly

substituted with w.

35

Inference Rules
I1 if P vρ Q and rcp(R) ∩ ρ = ∅, then (νx)P vρ−{x} (νx)Q, P |R vρ Q|R.
I2 if for each z ∈ fn(P,Q) P{z/y} vρ Q{z/y} then x(y).P vρ x(y).Q
I3 if for each i ∈ I Pi vρ

∑

j∈J Qij then
∑

i∈I Pi vρ

∑

i∈I,j∈J Qij

I4 if ρ1 ⊂ ρ2 and P vρ1 Q then P vρ2 Q.

Axioms
A1 G + G = G
A2 G v G + G′

A3 P |0 = P
A4 P |Q = Q|P
A5 (P |Q)|R = P |(Q|R)
A6 Let G =

∑

i∈I αi.Pi and G′ =
∑

j∈J α′
j .P

′
j where each

αi (resp. α′
j) does not bind free names of G′ (resp. G). Then

G|G′ =
∑

i∈I αi.(Pi|G
′) +

∑

j∈J α′
j.(G|P ′

j)

A7 (νx)(
∑

i∈I Pi) =
∑

i∈I(νx)Pi

A8 (νx)(P |Q) = P |(νx)Q x /∈ n(P)
A9 (νx)(xy|α.P) = α.(νx)(xy|P) x /∈ n(α)
A10 (νx)(xy|x(z).P) = (νx)(P{y/z})

A11 (νx)(y(z).P) =

{

y(z).(νx)P if x 6= y, x 6= z
0 if x = y

A12 xy|
∑

i∈I Pi =
∑

i∈I(xy|Pi) I 6= ∅
A13 α.

∑

i∈I Pi =
∑

i∈I α.Pi I 6= ∅
A14 P =

∑

P
A15 x(y).(uv|P) v uv|x(y).P y 6= u, y 6= v
A16 P{y/z} v xy|x(z).P
A17 x(u).y(v).P v y(v).x(u).P u 6= y, u 6= v
A18 x(y).(xy|P) v P y /∈ n(P)
A19 (νx)P v P{y/x}
A20 If x ∈ ρ, w 6= x and w 6= y, then

xy|z(w).P vρ

∑

z(w).(xy|P) +
∑

z(w).P +
∑

Q,

where Q =

{

P{y/w} if x = z
0 otherwise

A21 xy|P vρ (νw)(xw|
∑

P ′∈P [w/y]i
P ′) w fresh, y ∈ ρ.

Table 2.3: Laws for Lπ.

36

While axioms A1 to A19 all hold in asynchronous π-calculus [11], axioms A20 and

A21 are unique to Lπ. A20 captures the fact that a message targeted to a name that

an environment is prohibited from listen to, cannot escape to the environment. The

axiom states that there are only two ways such a message can be handled in the next

transition step: it can be consumed internally or delayed for later. The axiom also

accounts for delaying the message forever by including dropping of the message as one

of the possibilities. As an application of this axiom, if x ∈ ρ, we can prove xy vρ 0 as

follows. For w fresh,

xy vρ xy|(νw)(w(w).0) (A3 ,A11 , I1)

vρ (νw)(xy|w(w).0) (A8)

vρ (νw)(
∑

w(w).0 +
∑

w(w).xy +
∑

0) (A20 , I1)

vρ

∑

(νw)(w(w).0) +
∑

(νw)w(w).xy +
∑

(νw)0 (A7)

vρ 0 (A1 ,A11 ,A14 , I3)

Axiom A21 captures the effect of lack of match operator. It is directly motivated

from rule 4 of Definition 2.11 for template construction.

The inference rules extend the rules for asynchronous π-calculus to handle parameter-

ization of the may preorder. In fact, the rules for asynchronous π-calculus presented in

[11] can be obtained by setting ρ = ∅ in I1, I2 and I3. I4 is a new rule that is motivated

by Theorem 2.2. We make a few remarks about I1 which is significantly different from its

analogue for asynchronous π-calculus. First, using xy v{x} 0 (proved above) and I1, we

get (νx)xy v (νx)0, and by axiom A19 we have (νx)0 v 0. Therefore, (νx)xy v 0. Note

the use of the ability to contract the parameter ρ of the may preorder after applying a

restriction. Second, the following example illustrates the necessity of the side condition

rcp(R) ∩ ρ = ∅ for composition: xy
�

∼{x} 0 but not xy|x(y).yy
�

∼{x} x(y).yy, for the LHS

can satisfy the observer y(u).µµ and the RHS can not.

The soundness of rules I1-I4 can be easily proved directly from Definition 2.1. We

only show the argument for I1, which is given in Lemma 2.16. Soundness of axioms

A1-A21 is easy to check. For A1-A19, whenever P v Q, we have P
s

=⇒, implies Q
r

=⇒

such that r � s. For A20, both LHS and RHS exhibit the same ρ-well-formed traces.

37

Proof of soundness of axiom A21 is more involved, and is established in Lemma 2.16.

The reader can verify that A20 and A21 would also be sound as equalities. For instance,

the converse of A21 can be shown using A19, A1, and I1.

Lemma 2.16

1. If P
�

∼ρ Q and rcp(R) ∩ ρ = ∅, then (νx)P
�

∼ρ−{x} (νx)Q, P |R
�

∼ρ Q|R.

2. For y ∈ ρ and w fresh, xy|P
�

∼ρ (νw)(xw|
∑

P ′∈P [w/y]i
P ′).

Proof: See Appendix A.
�

We prove that the laws presented constitute a complete proof system for finite pro-

cesses, i.e. for finite processes P,Q, P vρ Q if P
�

∼ρ Q. Inspired by the alternate

characterization, the proof relies on existence of canonical forms for processes.

Definition 2.14 If s is a template, then we call s a cotemplate. Thus, a cotemplate is

a trace with no free inputs. If s is well-formed, we say s is cowell-formed.

1. For a cowell-formed cotemplate s, the process e(s) is defined inductively as follows.

e(ε)
def
= 0 e(xy.s′)

def
= xy|e(s′)

e(x(y).s′)
def
= (νy)(xy|e(s′)) e(x(y).s′)

def
= x(y).e(s′)

Note that cowell-formedness of s implies that e(s) is an Lπ term. From now on we

follow the convention that whenever we write e(s) it is implicit that s is a cowell-

formed cotemplate.

2. The process
∑

s∈S e(s), for a set of traces S, is said to be in canonical form.
�

We now establish Lemmas 2.17, 2.18, 2.20 and 2.21, which will be useful in the proof

of completeness. Lemma 2.17 states that every process has an equivalent canonical form.

Lemma 2.17 For every process P there is a canonical form C such that P = C.
�

Lemma 2.18 (1) If e(s)
r

=⇒, then e(r) v e(s). (2) If s � r then e(r) v e(s).
�

38

The proofs of the two lemmas above are formally the same as the proofs of the

corresponding lemmas for asynchronous π-calculus [11]. This is because, the proofs of

P = C and e(r) v e(s) constructed using the proof system of [11], can be transformed

into proofs in our proof system. This claim is justified by the following observations.

First, every Lπ term is also an asynchronous π-calculus term. Second, starting from Lπ

terms, every term that appears in the proofs of [11] is also an Lπ term. Note that any

summation that appears is finite and can be interpreted as our macro. Finally, every

axiom and inference rule used in their proof is derivable in our proof system.

The following lemma is a collection of technical facts that will be useful in establishing

Lemmas 2.20 and 2.21.

Lemma 2.19

1. Let y /∈ ρ and y does not occur free as the subject of an input in s. Then, for every

ρ-well-formed r such that e(s{z/y})
r

=⇒ there is a ρ-well-formed cotemplate r′ such

that e(s)
r′

=⇒ and e(r′{z/y})
r

=⇒.

2. If P
s

=⇒ and e(s)
r

=⇒ then P
r

=⇒.

3. Let r be ŷ-well-formed and ŷ-normal. Then (νŷ)e(r) = e(r′), where

r′ =



















r1 if ŷ = {y}, r = r1.y(z).r2, and y /∈ n(r1)

r1.x(y).r2 if ŷ = {y}, r = r1.xy.r2, and y /∈ n(r1)

r otherwise

Note that the conditions on r imply that the three cases above are exhaustive. Fur-

ther, (νŷ)e(r)
r′

=⇒.

4. Let y /∈ ρ, and s be a trace such that y does not occur free in input actions of s.

Then for every t′ ∈ T (s{z/y}, ρ) there is a t ∈ T (s, ρ) such that t{z/y} � t′ using

only L4.

Proof: See Appendix A.
�

39

Lemma 2.20 Let R contain all the cowell-formed cotemplates r such that e(s)
r

=⇒ and

r is ρ-well-formed. Then e(s) vρ

∑

r∈R e(r).

Proof: For convenience, we write R(s, ρ) to denote the set of all ρ-well-formed cowell-

formed cotemplate traces r such that e(s)
r

=⇒. The lemma can be stated as: for every

set of names ρ, e(s) vρ

∑

r∈R(s,ρ) e(r). We will be using the following property in the

proof, which the reader can verify easily. If e(s)
r

=⇒ then len(r) ≤ len(s).

Without loss of generality, we can assume s is ρ-normal. The proof is by induction

on the length of s. For the base case, s = ε, we have e(ε) = 0, R(ε, ρ) = {ε}, and the

lemma follows using A14 and I4. For the induction step we have three cases:

1. s = x(y).s1: By induction hypothesis we have e(s1) vρ

∑

r′∈R(s1,ρ) e(r′). Clearly,

for every r1 ∈ R(s1, ρ), fn(e(r1)) = fn(r1) ⊂ fn(s1) = fn(e(s1)). Therefore, we

are done if we show that for all z ∈ fn(s1), e(s1){z/y} vρ

∑

r′∈R(s1,ρ) e(r′){z/y},

for then using the fact that x(y).R(s1, ρ) ⊂ R(s, ρ), and laws I2, A2, we conclude

e(s) vρ

∑

r∈R(s,ρ) e(r).

Now, e(s1){z/y} = e(s1{z/y}). By induction hypothesis,

e(s1{z/y}) vρ

∑

r′∈R(s1{z/y},ρ)

e(r′)

Since s is cowell-formed, y does not occur free as the subject of an input in s1, and

since s is ρ-normal, y /∈ ρ. Then, using Lemmas 2.19.1 and 2.18, and laws I3, A1,

and A2, we conclude
∑

r′∈R(s1{z/y},ρ) e(r
′) vρ

∑

r′∈R(s1,ρ) e(r′){z/y}. By transitivity

of vρ, we have e(s1{z/y}) vρ

∑

r′∈R(s1,ρ) e(r′){z/y}.

2. s = (ŷ)xy.s1: By induction hypothesis we have e(s1) vρ∪ŷ

∑

r′∈R(s1,ρ∪ŷ) e(r′). From

e(s) = (νŷ)(xy|e(s1)) and using I1, A12, and A7, we have

e(s) vρ

∑

r′∈R(s1,ρ∪ŷ)

(νŷ)(xy|e(r′)) =
∑

r′∈R(s1,ρ∪ŷ)

e((ŷ)xy.r′)

40

If x 6∈ ρ, then (ŷ)xy.R(s1, ρ∪ ŷ) ⊂ R(s, ρ), and therefore using A2 we have e(s) vρ

∑

r∈R(s,ρ) e(r) as required. For the case x ∈ ρ, we are done if we show for every

(ŷ)xy.r1 ∈ (ŷ)xy.R(s1, ρ ∪ ŷ) that e((ŷ)xy.r1) vρ

∑

r′∈R((ŷ)xy.r1,ρ) e(r′). Following

is the reason. If e(s1)
r1=⇒, we have e(s)

(ŷ)xy.r1
=⇒ . Then by Lemma 2.19.2, we

have R((ŷ)xy.r1, ρ) ⊂ R(s, ρ). Then using I3, A1, and A2, we conclude e(s) vρ

∑

r∈R(s,ρ) e(r). To show e((ŷ)xy.r1) vρ

∑

r′∈R((ŷ)xy.r1,ρ) e(r′), we have two cases

based on r1. Without loss of generality, we can assume r1 is ρ ∪ ŷ-normal.

• r1 = ε. Then (ŷ)xy.r1 = (ŷ)xy, e((ŷ)xy) = (νŷ)xy. Since x ∈ ρ, R((ŷ)xy, ρ) =

{ε}, and e(ε) = 0. The result follows because (νŷ)(xy) vρ

∑

0, which can be

derived using the example in Section 2.5 and laws A14, A19, I1, I4.

• r1 = u(w).r2: We only consider the case u = x, the other is simpler. Using

A20, I1, A7, A11, we deduce

e((ŷ)xy.r1) = (νŷ)(xy|x(w).e(r2)) vρ

∑

x(w).e((ŷ)xy.r2)

+
∑

x(w).(νŷ)e(r2) (2.1)

+
∑

(νŷ)e(r2{y/w})

We are done if we show that for each summand Q in the RHS, Q vρ

∑

r′∈T e(r′),

for some set T of ρ-well-formed traces that Q exhibits. This is because,

it is clear from (2.1) that if Q
r′

=⇒ then e((ŷ)xy.r1)
r′

=⇒. Therefore T ⊂

R((ŷ)xy.r1, ρ), and by using I3, A1, and A2, we can conclude

e((ŷ)xy.r1) vρ

∑

r′∈R((ŷ)xy.r1,ρ)

e(r′)

Now, we consider each summand separately.

(a) x(w).e((ŷ)xy.r2): Since e(s1)
r1=⇒, we have len(r1) ≤ len(s1). And since

len(r2) < len(r1) ≤ len(s1) < len(s), we have len((ŷ)xy.r2) < len(s).

41

Therefore, we can apply the induction hypothesis to conclude

e((ŷ)xy.r2) vρ

∑

r′∈R((ŷ)xy.r2,ρ)

e(r′)

Now, for every r′ ∈ R((ŷ)xy.r2, ρ), fn(e(r′)) = fn(r′) ⊆ fn(e((ŷ)xy.r2)).

Now, since r1 is cowell-formed, w does not occur free as the subject of

an input in (ŷ)xy.r2. Further, since r1 is ρ ∪ ŷ-normal, and hence w /∈ ρ.

Then using arguments similar to that in case 1, we deduce that for each

z ∈ fn(e((ŷ)xy.r2)),

e((ŷ)xy.r2){z/w} vρ

∑

r′∈R((ŷ)xy.r2,ρ)

e(r′){z/w}

Then using I1 and A13 we get

x(w).e((ŷ)xy.r2) vρ

∑

r′∈R((ŷ)xy.r2,ρ)

x(w).e(r′)

Now, because x(w).R((ŷ)xy.r2, ρ) ⊂ R(x(w).(ŷ)xy.r2, ρ), using A2, we

have

x(w).e((ŷ)xy.r2) vρ

∑

r′∈R(x(w).(ŷ)xy.r2,ρ)

e(r′)

(b) x(w).(νŷ)e(r2): Since r1 is ρ ∪ ŷ-well-formed, it also ŷ-well-formed. Then

by Lemma 2.19.3, (νŷ)e(r2) = e(r′), where r′ is as defined in the lemma

and (νŷ)e(r2)
r′

=⇒. The reader can check that r′ is ρ-well-formed. Now,

fn(e(r′)) ⊂ fn((νŷ)e(r2)). The reader can also check that, for z ∈ fn((νŷ)e(r2)),

by Lemma 2.19.3,

((νŷ)e(r2)){z/w} = e(r′){z/w}. Then by I2, I4 and A14,

x(w).(νŷ)e(r2) =ρ e(x(w).r′) =ρ

∑

e(x(w).r′)

42

Now, x(w).r′ is a ρ-well-formed trace, and since (νŷ)e(r2)
r′

=⇒, we have

x(w).(νŷ)e(r2)
x(w).r′

=⇒

(c) (νŷ)e(r2{y/w}): Since len(r2) < len(s), by induction hypothesis and ax-

iom I1 we have

(νŷ)e(r2{y/w}) vρ

∑

r′′∈R(r2{y/w},ρ∪ŷ)

(νŷ)e(r′′)

Let r′′ ∈ R(r2{y/w}, ρ ∪ ŷ). We have, r′′ is also ŷ-well-formed. Then by

Lemma 2.19.3, (νŷ)e(r′′) = e(r′), where r′ is as defined in the lemma and

(νŷ)e(r′′)
r′

=⇒. The reader can check r′ is ρ-well-formed. Further, since

e(r2{y/w})
r′′

=⇒, using Lemma 2.19.2 we can show (νŷ)e(r2{y/w})
r′

=⇒.

Let R be the set of all r′ that are obtained for each r′′ ∈ R(r2{y/w}, ρ∪ ŷ).

Then, using I3, I4, A1, A14 and transitivity of vρ, we conclude

(νŷ)e(r2{y/w}) vρ

∑

r′∈R

e(r′)

• r1 = (v̂)uv.r2: Using axioms A4, A5, and A8, we deduce

e((ŷ)xy.r1) = e((ŷ)xy.(v̂)uv.r2) = e((v̂′)uv.(ŷ′)xy.r2) (2.2)

where (since r1 is ρ ∪ ŷ-normal)

v̂′ =







ŷ if ŷ = {v}

v̂ otherwise
and ŷ′ = ŷ − v̂′

By induction hypothesis, we have

e((ŷ′)xy.r2) vρ∪v̂′

∑

r′∈R((ŷ′)xy.r2,ρ∪v̂′)

e(r′)

43

Then, using I1, A7 and A12 we deduce

e((v̂′)uv.(ŷ′)xy.r2) vρ

∑

r′∈R((ŷ′)xy.r2,ρ∪v̂′)

e((v̂′)uv.r′) (2.3)

Now, u /∈ ρ∪ ŷ, because r1 ∈ R(s1, ρ∪ ŷ). Then for every r′ ∈ R((ŷ′)xy.r2, ρ∪

v̂′), (v̂′)uv.r′ is ρ-well-formed. Further, e((ŷ′)xy.r2)
r′

=⇒ implies

e((v̂′)uv.(ŷ′)xy.r2)
(v̂′)uv.r′

=⇒ . Therefore,

(v̂′)uv.R(ŷ′xy.r2, ρ ∪ v̂′) ⊂ R((v̂′)uv.(ŷ′)xy.r2, ρ) = R((ŷ)xy.(v̂)uv.r2, ρ) (2.4)

Finally, from (2.2), (2.3) and (2.4), and using I4, A2 we obtain

e((ŷ)xy.r1) vρ

∑

r′∈R((ŷ)xy.r1,ρ)

e(r′)

�

Lemma 2.21 e(s) vρ

∑

t∈Tf (s,ρ) e(t).

Proof: The proof is by induction on the length of s. Without loss of generality we may

assume s is ρ-normal. The base case follows from 0 v
∑

t∈{ε} 0 which holds by A14. For

the induction step we have three cases:

1. s = xy.s′: Then e(s) = xy|e(s′). There are two subcases:

(a) y /∈ ρ: From induction hypothesis we have

e(s′) vρ

∑

t′∈T (s′,ρ)

e(t′)

Using laws I1 and A12 in that order we get

xy|e(s′) vρ xy|
∑

t′∈T (s′,ρ)

e(t′) =ρ

∑

t′∈T (s′,ρ)

xy|e(t′) =
∑

t′∈T (s′,ρ)

e(xy.t′) =
∑

t∈T (s,ρ)

e(t)

44

(b) y ∈ ρ: It is easy to check that for w fresh, every s′′ ∈ s′[w/y] is a cowell-formed

cotemplate. Further, len(s′′) = len(s′). Hence by induction hypothesis, we

have

e(s′′) vρ

∑

t′∈T (s′′,ρ)

e(t′)

Then, by I3

∑

s′′∈s′[w/y]

e(s′′) vρ

∑

t′∈T (s′[w/y],ρ)

e(t′) (2.5)

Now, since y ∈ ρ, by law A21 we have

e(s) = xy|e(s′) vρ (νw)(xw|
∑

P∈e(s′)[w/y]i

P)

The reader may check that for any P ∈ e(s′)[w/y]i, P = e(s′′) for some

s′′ ∈ s′[w/y] and vice versa. Using this we get

e(s) vρ (νw)(xw|
∑

s′′∈s′[w/y]

e(s′′))

Now using 2.5, laws I1 and I3, we have

e(s) vρ (νw)(xw|
∑

t′∈T (s′[w/y],ρ)

e(t′))

Now, using laws A7 and A12, we get

e(s) vρ

∑

t′∈T (s′[w/y],ρ)

e(x(w).t′) =
∑

t∈T (s,ρ)

e(t)

2. s = x(y).s′: Then e(s) = (νy)(xy|e(s′)). By induction hypothesis, we have

e(s′) vρ∪{y}

∑

t′∈T (s′,ρ∪{y})

e(t′)

45

Since s is ρ-normal, we have y /∈ ρ. Using this and law I1, we get

e(s) vρ (νy)(xy|
∑

t′∈T (s′,ρ∪{y})

e(t′))

Now, using laws A7 and A12, we get

e(s) vρ

∑

t′∈T (s′,ρ∪{y})

e(x(y).t′) =
∑

t∈T (s,ρ)

e(t)

3. s = x(y).s′: Then e(s) = x(y).e(s′). We are done if we show

e(s′){z/y} vρ





∑

t′∈T (s′,ρ)

e(t′)



 {z/y} (2.6)

for every z ∈ fn(e(s′)), because then by laws I2, A13 and I4 we have

e(s) vρ x(y).
∑

t′∈T (s′,ρ)

e(t′) =ρ

∑

t′∈T (s′,ρ)

x(y).e(t′) =
∑

t′∈T (s′,ρ)

e(x(y).t′) =
∑

t∈T (s,ρ)

e(t)

Now we prove 2.6. By applying the induction hypothesis to s′{z/y}, we have

e(s′){z/y} = e(s′{z/y}) vρ

∑

t′′∈T (s′{z/y},ρ)

e(t′′)

Since





∑

t′∈T (s′,ρ)

e(t′)



 {z/y} =
∑

t′∈T (s′,ρ)

e(t′){z/y} =
∑

t′∈T (s′,ρ)

e(t′{z/y})

So, we are done if we show

∑

t′′∈T (s′{z/y},ρ)

e(t′′) vρ

∑

t′∈T (s′,ρ)

e(t′{z/y})

46

Since s is ρ-normal, y /∈ ρ. Further, since s is a cowell-formed cotemplate, y

cannot occur free in the input actions of s′. Then by Lemma 2.19.4, for every t′′ ∈

T (s′{z/y}, ρ) there is a t′ ∈ T (s′, ρ) such that t′{z/y} � t′′. Then by Lemma 2.18.2

we have e(t′′)
�

∼ e(t′{z/y}), and 2.6 follows from laws I3, I4, A1 and A2.
�

Note that the summations in Lemmas 2.20 and 2.21 are finite because R and Tf (s, ρ)

are finite modulo alpha equivalence. For instance, finiteness of R is a direct consequence

of the following two observations. For every r ∈ R, we have fn(r) ⊂ fn(e(s)), and since

e(s) is a finite process, the length of traces in R is bounded.

We are now ready to establish the completeness of the proof system.

Theorem 2.5 For finite Lπ processes P,Q and a set of names ρ, P vρ Q if and only if

P
�

∼ρ Q.

Proof: The only-if part follows from the soundness of laws in Table 2.3. We prove the

if part. By lemma 2.17 and soundness of the proof system, without loss of generality, we

can assume that both P and Q are in canonical form, i.e. P is of the form
∑

s∈S1
e(s) and

Q is of the form
∑

s∈S2
e(s). Using Lemma 2.20, and laws I3, A1, we get P vρ

∑

r∈R e(r),

where R is the set of ρ-well-formed cowell-formed cotemplates that P exhibits. Using

Lemma 2.21 and laws I3, A1, we have
∑

r∈R e(r) vρ

∑

t∈T e(t), where T = ∪r∈RTf (r, ρ).

Note that since every r ∈ R is a cotemplate, so is every t ∈ T . Let t ∈ T . Then

t ∈ Tf (r, ρ) for some ρ-well-formed r that P exhibits. Using the characterization of may

preorder based on Tf (r, ρ), we have P
�

∼ρ Q implies there is s′ � t such that Q
s′

=⇒.

It follows that for some s ∈ S2, e(s)
s′

=⇒. Since Q
s′

=⇒, by locality, s′ is cowell-formed.

From the facts that s′ � t and t is a cotemplate, it follows that s′ is a cotemplate.

Then by Lemma 2.18.2 and law I4, e(t) vρ e(s′). Further, by Lemma 2.18.1 and law I4,

e(s′) vρ e(s). Hence by transitivity of vρ, we have e(t) vρ e(s). Since t ∈ T is arbitrary,

using laws I3, A1, and A2, we deduce
∑

t∈T e(t) vρ

∑

s∈S2
e(s). The result follows from

transitivity of vρ.
�

We obtain a complete proof system for Lπ= by dropping axiom A21 and adding the

following two for the match operator: [x = x]P = P , and [x = y]P = 0 if x 6= y.

47

Completeness of the resulting proof system can be established by simple modifications

to the proofs above which we do not elaborate further.

2.6 Discussion and Related Work

An asynchronous variant of π-calculus first appeared in [41]. The main idea was to replace

the output prefix xy.P of π-calculus with the simpler output particle xy, that has no

continuation. It was shown that the resulting calculus was expressive enough to encode

the π-calculus. However, the formulation was not quite satisfactory as it suffered from

the problem of assigning infinitary descriptions for even simple non-recursive processes.

The main reason for this was that in an asynchronous setting, the environment outputs

are to be immediately executed, and hence processes should be receptive, i.e. ready to

receive any message sent by the environment at any time. To model this, all possible

process inputs were explicitly introduced resulting in a system where the same operational

description applies to the process 0 and !x(y).xy. Later formulations of asynchronous π-

calculus [9, 12] avoided this problem by retaining the traditional finitary transition system

of the π-calculus, and making up for the shortcoming by modifying the meta theory if

necessary. We have adopted this strategy in the study of our variants, and have modified

the trace semantics accordingly.

The importance of the locality property and disallowing name matching was first

observed in [58], where the calculus Lπ is presented. There have been extensive in-

vestigations of bisimulation-based behavioral equivalences on Lπ and related variants

of π-calculus. Merro and Sangiorgi [58] study a behavioral equivalence called barbed-

congruence, and show that a variant of asynchronous early bisimulation [9] provides an

alternate characterization for the equivalence.

Pierce and Sangiorgi [71] generalize Lπ into a typed π-calculus where names can be

tagged with input/output capabilities. Three types of capabilities are defined: r for

read, w for write, and b for both. The recipient of a name tagged with r can use the

name to only receive messages targeted to the name. A name tagged with w can be

48

used only for sending messages, and a name tagged with b can be used for both sending

and receiving messages. Thus, in this typed calculus one can express processes that

selectively distribute different capabilities on names. The locality property is a special

case where only the output capability on names can be passed. Boreale and Sangiorgi [13]

investigate barbed congruence in a typed π-calculus with input/output capabilities and

no name matching, and show that the equivalence is characterized by a typed variant of

bisimulation. Merro [57] characterizes barbed congruence in the more restricted setting

of asynchronous π-calculus with no name matching (no capability types, and no locality

in particular). He defines the so called synonymous bisimulation and shows that it

characterizes barbed congruence in this setting.

Hennessy and Rathke [37] study may and must testing equivalences in a typed π-

calculus with input/output capabilities as described above. They define a novel labeled

transition system over configurations which are process terms with two typed environ-

ments, one that constrains the process and the other the environment. They show that

the standard definitions of trace and acceptance sets [36] defined over the new transition

system characterize may and must preorders respectively. In comparison to our work,

the typed calculus of Hennessy and Rathke is synchronous and is equipped with name

matching, whereas Lπ= is asynchronous, and Lπ is asynchronous with no name match-

ing. Further, Lπ= has no capability types and hence we obtain a simpler characterization

of may testing for it, which is based on the usual early style labeled transition system.

Finally, we have also a given an axiomatization of may testing, which is not pursued by

Hennessy and Rathke.

49

Chapter 3

The Actor Model as a Typed

Asynchronous π-Calculus

We impose on the π-calculus, the object paradigm proposed by the Actor Model. While

asynchrony and locality are inherent features of the Actor Model, there are several addi-

tional ones to be accounted for. These are captured through a type system that enforces

a certain discipline in the use of names [93]. The result is a typed π-calculus, called Aπ.

The formal connection thus established between the two models is exploited to use the

techniques developed in Chapter 2, to obtain an alternate characterization of may testing

for Actors [8].

The Actor Model postulates fairness in message delivery; the delivery of a message

can only be delayed for a finite but unbounded amount of time. But we do not account for

fairness here as it has no effect on the theory of may testing. May testing is concerned

only with the occurrence of an event after a finite computation, while fairness affects

only potentially infinite computations. The reader is referred to [91], where we present a

version of Aπ with fairness.

In Section 3.1, we give a brief and informal description of the Actor Model. In Section

3.2, we present the syntax, type system, and semantics of Aπ. In Section 3.3, we present

an alternate characterization of may testing in Aπ. In Section 3.4, we consider variants

50

Xn Xn+1

Y1

Zm

behavior

assume new

send messages

create actors

mail queue

mail queue

21 n n+1

m

1

Actor

Actor

. . . .

.

. . . .

. . .

Figure 3.1: A diagram illustrating computation in an actor system.

of Aπ that differ in name matching capability. In Section 3.5, we discuss related work

on actor semantics.

3.1 The Actor Model

A computational system in the Actor Model, called a configuration, consists of a collection

of concurrently executing actors and a collection of messages in transit [5]. Each actor

has a unique name (the uniqueness property) and a behavior, and communicates with

other actors via asynchronous messages. Actors are reactive in nature, i.e. they execute

only in response to messages received. An actor’s behavior is deterministic in that its

response to a message is uniquely determined by the message contents. Message delivery

in the Actor model is fair [24]. The delivery of a message can only be delayed for a finite

but unbounded amount of time.

51

An actor can perform three basic actions on receiving a message (see Figure 3.1: (a)

create a finite number of actors with universally fresh names, (b) send a finite number

of messages, and (c) assume a new behavior. Furthermore, all actions performed on

receiving a message are concurrent; there is no ordering between any two of them. The

following observations are in order here. First, actors are persistent in that they do not

disappear after processing a message (the persistence property). Second, actors cannot be

created with well known names or names received in a message (the freshness property).

3.2 The Calculus Aπ

The syntax of Aπ is the same as that of Lπ−
= except that recursive definitions are used

instead of replication. Specifically, the set of configurations is given by the following

grammar.

P := 0 | x(y).P | xy | (νx)P | P1|P2 | case x of (y1 : P1, . . . , yn : Pn) | B〈x̃; ỹ〉

We use recursive definitions instead of replication, as the former is more convenient in

expressing actor systems. It is well known that replication and recursive definitions are

equally expressive in that one can be encoded using the other [63].

Following is the intended interpretation of Aπ terms as actor configurations. The

nil term 0, represents an empty configuration. The output term xy, represents a con-

figuration with a single message targeted to x and with contents y. The input term

x(y).P represents a configuration with an actor x whose behavior is (ỹ)P . The restric-

tion (νx)P is the same as P , except that x is now private to P . The composition P1|P2

is a configuration containing all the actors and messages in P1 and P2. The configura-

tion case x of (y1 : P1, . . . , yn : Pn) behaves like Pi if x = yi, and like 0 if x 6= yi for

1 ≤ i ≤ n. If more than one branch is true, one of them is non-deterministically chosen.

This construct allows actor behaviors to be non-deterministic, thus deviating slightly

from the Actor Model. But this is not a severe deviation, as the non-determinism is

strictly internal; the choice can not be influenced by external interactions, such as the

52

receipt of a message (see the transition semantics in Section 3.2.2). The term B〈ũ; ṽ〉

is a behavior instantiation. The identifier B has a single defining equation of the form

B
def
= (x̃; ỹ)x1(z).P , where x̃ is a tuple of distinct names of length 1 or 2, x1 denotes

the first component of x̃, and x̃, ỹ together contain exactly the free names in x1(z).P .

The definition provides a template for an actor behavior. For an instantiation B〈ũ; ṽ〉

we assume len(ũ) = len(x̃), and len(ṽ) = len(ỹ).

Before presenting the type system, a few notational conventions (in addition to those

in Chapter 2) are in order. By x̃, ẑ we mean x̃, z if ẑ = {z}, and x̃ otherwise. Let

X ⊂ N . We write σ(X) to denote the set obtained by applying the substitution σ to

each element of X. We assume ⊥, ∗ /∈ N , and define X∗ = X ∪{⊥, ∗}. For f : X → X∗,

we define f ∗ : X∗ → X∗ as f ∗(x) = f(x) for x ∈ X and f(⊥) = f(∗) = ⊥. Further,

if σ is a substitution which is one-to-one on X, we define fσ : σ(X) → σ(X)∗ as

fσ(σ(x)) = σ(f(x)), where we let σ(⊥) = ⊥ and σ(∗) = ∗.

3.2.1 Type System

Not all terms represent actor configurations. The object paradigm embodied in the Actor

Model is to be captured through a type system. Strictly enforcing all actor properties

would make Aπ too weak to express certain communication patterns. One such scenario

is where, instead of assuming a new behavior immediately after receiving a message (as

required by persistence property), an actor has to wait until certain synchronization

conditions are met before processing the next message. For example, such a delaying

mechanism is required to express polyadic communication, where an actor has to delay

the assumption of a behavior and processing of other messages until all the arguments

are transfered. We therefore relax the persistence requirement, and allow actors to tem-

porarily assume a series of fresh names, one at a time, and resume the old name at a later

point. Basically, the synchronization task is delegated from one new name to another

until the last one releases the actor after certain synchronization conditions are met.

A typing judgment is of the form ρ; f ` P , where ρ is the set of free names in P that

denote actors in P , and f : ρ → ρ∗ is a function that relates actors in P to the temporary

53

names they have assumed currently. Specifically, f(x) = ⊥ means that x is a regular

actor name and not a temporary one, f(x) = ∗ means x is the temporary name of an

actor with a private name (bound by a restriction), and f(x) = y /∈ {⊥, ∗} means that

actor y has assumed the temporary name x. The function f has the following properties:

for all x, y ∈ ρ, f(x) 6= x, f(x) = f(y) /∈ {⊥, ∗} implies x = y, and f ∗(f(x)) = ⊥.

While the first property is obvious, the second states that an actor cannot assume more

than one temporary name at the same time, and the third states that temporary names

are not like regular actor names in that they themselves cannot temporarily assume new

names but can only delegate their capability of releasing the original actor to new names.

We define the following functions and relations that will be used in defining the type

rules.

Definition 3.1 Let f1 : ρ1 → ρ∗
1 and f2 : ρ2 → ρ∗

2.

1. We define f1 ⊕ f2 : ρ1 ∪ ρ2 → (ρ1 ∪ ρ2)
∗ as

(f1 ⊕ f2)(x) =







f1(x) if x ∈ ρ1, and f1(x) 6= ⊥ or x /∈ ρ2

f2(x) otherwise

Note that ⊕ is associative.

2. If ρ ⊂ ρ1 we define f |ρ : ρ → ρ∗ as

(f |ρ)(x) =







∗ if f(x) ∈ ρ1 − ρ

f(x) otherwise

3. We say f1 and f2 are compatible if f = f1⊕f2 has following properties: f = f2⊕f1,

and for all x, y ∈ ρ1∪ρ2, f(x) 6= x, f ∗(f(x)) = ⊥, and f(x) = f(y) /∈ {⊥, ∗} implies

x = y.
�

Definition 3.2 For a tuple x̃, we define ch(x̃) : {x̃} → {x̃}∗ as ch(ε) = {}, and if

len(x) = n, ch(x̃)(xi) = xi+1 for 1 ≤ i < n and ch(x̃)(xn) = ⊥.
�

54

NIL: ∅; {} ` 0 MSG: ∅; {} ` xy

ACT:
ρ; f ` P

{x} ∪ ẑ; ch(x, ẑ) ` x(y).P
if

ρ − {x} = ẑ, y /∈ ρ, and

f =

{

ch(x, ẑ) if x ∈ ρ
ch(ε, ẑ) otherwise

CASE:
∀1 ≤ i ≤ n ρi; fi ` Pi

(∪iρi); (f1 ⊕ f2 ⊕ . . . ⊕ fn) ` case x of (y1 : P1, . . . , yn : Pn)

if fi are mutually compatible

COMP:
ρ1; f1 ` P1 ρ2; f2 ` P2

ρ1 ∪ ρ2; f1 ⊕ f2 ` P1|P2
if ρ1 ∩ ρ2 = φ

RES:
ρ; f ` P

ρ − {x}; f |(ρ − {x}) ` (νx)P

INST: {x̃}; ch(x̃) ` B〈x̃; ỹ〉 if len(x̃) = 2 implies x1 6= x2

Table 3.1: Type rules for Aπ.

The type rules are shown in Table 3.1. Rules NIL and MSG are obvious. In the

ACT rule, if ẑ = {z} then actor z has assumed temporary name x. The condition

y /∈ ρ ensures that actors are not created with names received in a message. This is

the locality property discussed in Chapter 2. The conditions y /∈ ρ and ρ − {x} = ẑ

together guarantee the freshness property by ensuring that new actors are created with

fresh names. Note that it is possible for x to be a regular name, i.e. ρ − {x} = ∅, and

disappear after receiving a message, i.e. x /∈ ρ. We interpret this as the actor x assuming

a sink behavior that simply consumes all messages it receives. With this interpretation

the persistence property is not violated.

The compatibility check in CASE rule prevents errors such as two actors, each in a

different branch, assuming the same temporary name, or the same actor assuming differ-

ent temporary names in different branches. The COMP rule guarantees the uniqueness

property by ensuring that the two composed configurations do not contain actors with

the same name. In the RES rule, f is updated so that if x has assumed a temporary

name y in P , then y’s role as a temporary name is remembered but x is forgotten. The

55

INST rule assumes that if len(x̃) = 2 then B〈x̃; ỹ〉 denotes an actor x2 that has assumed

temporary name x1.

Type checking a preterm involves checking the accompanying behavior definitions.

For INST rule to be sound, for every definition B
def
= (x̃; ỹ)x1(z).P and substitution

σ = {ũ, ṽ/x̃, ỹ} that is one-to-one on {x̃}, the judgment {ũ}; ch(ũ) ` (x1(z).P)σ should

be derivable. From Lemma 3.2, it follows that this constraint is satisfied if {x̃}; ch(x̃) `

x1(z).P is derivable. Thus, a preterm is well-typed only if for each accompanying behavior

definition B
def
= (x̃; ỹ)x1(z).P , the judgment {x̃}; ch(x̃) ` x1(z).P is derivable.

The following lemma states a soundness property of the type system.

Lemma 3.1 If ρ; f ` P then ρ ⊂ fn(P), and for all x, y ∈ ρ, f(x) 6= x, f ∗(f(x)) = ⊥,

and f(x) = f(y) /∈ {⊥, ∗} implies x = y. Further, if ρ′; f ′ ` P then ρ = ρ′ and f = f ′.
�

Proof: By structural induction on P .
�

It is easy to show that the type system respects alpha equivalence , i.e. if P1 ≡α P2

then ρ; f ` P1 if and only if ρ; f ` P2. The proof is by induction on the length of a

derivation of P1 ≡α P2.

Not all substitutions on a term P yield terms. A substitution σ may identify distinct

actor names in P and therefore violate the uniqueness property. But, if σ renames

different actors in P to different names, then Pσ will be well typed.

Lemma 3.2 If ρ; f ` P and σ is one-to-one on ρ then σ(ρ); fσ ` Pσ.
�

Proof: Since the type system respects alpha equivalence, without loss of generality,

we may assume the hygiene condition that σ(x) = x for all x ∈ bn(P), and bn(P) ∩

σ(fn(P)) = ∅.

The proof is by induction on the length of a derivation of ρ; f ` P . It is straightforward

to verify the base cases where the derivation is a direct application of NIL, MSG or INST.

For the induction step, we consider only two cases; the others are simple.

1. P = x(y).P ′: Then the last step of derivation is

56

ACT:
ρ′; f ′ ` P ′

{x} ∪ ẑ; ch(x, ẑ) ` x(y).P ′
if

ρ′ − {x} = ẑ, y /∈ ρ′, and

f ′ =







ch(x, ẑ) if x ∈ ρ′

ch(ε, ẑ) otherwise

Note that by hygiene condition Pσ = σ(x)(y).(P ′σ). Since σ is an injection on

{x} ∪ ẑ so it is on ρ′, and thus by induction hypothesis σ(ρ′); f ′σ ` P ′σ. This,

together with ρ′ − {x} = ẑ, also implies σ(ρ′) − σ({x}) = σ(ẑ). By Lemma 3.1,

we have ρ′ ⊂ fn(P ′), and hence by the hygiene condition y /∈ σ(ρ′). Since σ is an

injection on {x} ∪ ẑ and ρ′ ⊂ {x} ∪ ẑ, we have f ′σ = ch(x, ẑ)σ = ch(σ(x), σ(ẑ)) if

σ(x) ∈ σ(ρ′), and ch(ε, ẑ)σ = ch(ε, σ(ẑ)) otherwise. We can now apply the ACT

rule to get σ({x})∪σ(ẑ); ch(σ(x), σ(ẑ)) ` σ(x)(y).(P ′σ), i.e. σ({x}∪ ẑ); ch(x, ẑ)σ `

σ(x)(y).(P ′σ).

2. P = case x of (y1 : P1, . . . , yn : Pn): The the last derivation step is

CASE:
∀1 ≤ i ≤ n ρi; fi ` Pi

(∪iρi); (f1 ⊕ f2 ⊕ . . . ⊕ fn) ` case x of (y1 : P1, . . . , yn : Pn)

Since σ is an injection on ∪iρi, so it is on ρi. Then, by induction hypothesis

σ(ρi); fiσ ` Piσ. The reader may verify that the facts fi are mutually compatible,

and σ is an injection on ∪iρi, together imply fiσ are mutually compatible. We

can now apply the CASE rule to get ∪iσ(ρi); f1σ ⊕ . . . ⊕ fnσ ` case xσ of (y1σ :

P1σ, . . . , ynσ : Pnσ). The result follows from the fact that ∪iσ(ρi) = σ(∪iρi) and

f1σ ⊕ . . . ⊕ fnσ = (f1 ⊕ . . . ⊕ fn)σ, which can be verified easily.
�

3.2.2 Operational Semantics

The transition rules for Aπ are the same as in Table 2.1 except that the MATCH and

RES rules are replaced by the rules shown in Table 3.2.

57

BRNCH: case x of (y1 : P1, . . . , yn : Pn)
τ

−→ Pi if x = yi

BEHV:
(x1(z).P){(ũ, ṽ)/(x̃, ỹ)}

α
−→ P ′

B〈ũ; ṽ〉
α

−→ P ′
B

def
= (x̃; ỹ)x1(z).P

Table 3.2: New transition rules for Aπ.

Note that to retain internal non-determinism the BRNCH rule has been so defined

instead of as

BRNCH:
Pi

α
−→ P ′

i

case x of (y1 : P1, . . . , yn : Pn)
α

−→ P ′
i

x = yi

in which case the choice is influenced by external interactions such as the receipt of a

message.

The structural congruence laws on Aπ terms are, laws 1 and 2 of asynchronous π-

calculus (Section 2.1), and the following

B〈ũ; ṽ〉 ≡ (x1(z).P){(ũ, ṽ)/(x̃, ỹ)} if







B
def
= (x̃; ỹ)x1(z).P,

len(ũ) = len(x̃), len(ṽ) = len(ỹ)

As usual, structurally congruent configurations have the same transitions.

The following theorem states that the type system respects the transition rules.

Theorem 3.1 If P is well-typed and P
α

−→ P ′ then P ′ is well-typed.

Proof: We prove a stronger statement which is that, if ρ; f ` P and P
α

−→ P ′, then

ρ′; f ′ ` P ′ for some ρ′ ⊂ ρ ∪ bn(α), and f ′.

The proof is by induction on the derivation of P
α

−→ P ′. There are two base cases

depending on whether the derivation is a direct application of INP or OUT rule. We

only consider the INP case as the other is immediate. We have P = x(y).P1, α = xz

and P ′ = P1{z/y}, for some x, y, z, P1. Then by ACT, MSG, and COMP rules, for some

ρ1, f1 we have ρ1; f1 ` P1, y /∈ ρ1, ρ = ρ1 ∪ {x}, and f1 = f |ρ1. Then σ = {z/y} is an

58

injection on ρ1, and by Lemma 3.2 it follows that σ(ρ1); f1σ ` P1σ. But since y /∈ ρ1, we

have σ(ρ1) = ρ1, f1σ = f1. Thus, we have ρ1; f1 ` P ′, and the theorem follows from the

fact that ρ1 ⊂ ρ.

For the induction step there are seven cases depending on which rule is used in the

last step of the derivation.

1. PAR: Then P = P1|P2, P ′ = P ′
1|P2 and the last derivation step is

PAR:
P1

α
−→ P ′

1

P1|P2
α

−→ P ′
1|P2

bn(α) ∩ fn(P2) = ∅

By COMP rule, for some ρ1, ρ2, f1, f2, we have ρ1; f1 ` P1, ρ2; f2 ` P2, ρ1 ∩ ρ2 = ∅,

ρ = ρ1 ∪ ρ2, and f = f1 ⊕ f2. By induction hypothesis, we have ρ′
1; f

′
1 ` P ′

1 for

some ρ′
1 ⊂ ρ1 ∪ bn(α), and f ′

1. By Lemma 3.1, ρ2 ⊂ fn(P2). From this and the

given fact that bn(α) ∩ fn(P2) = ∅ we conclude ρ′
1 ∩ ρ2 = ∅. Then by COMP rule

ρ′
1 ∪ ρ2; f

′
1 ⊕ f2 ` P ′

1|P2. The theorem follows from the fact that ρ′ = ρ′
1 ∪ ρ2 ⊂

ρ1 ∪ bn(α) ∪ ρ2 = ρ ∪ bn(α).

2. COM: Then P = P1|P2, P ′ = P ′
1|P

′
2, α = τ and the last derivation step is

COM:
P1

xy
−→ P ′

1 P2
xy
−→ P ′

2

P1|P2
τ

−→ P ′
1|P

′
2

By COMP rule, for some ρ1, ρ2, f1, f2, we have ρ1; f1 ` P1, ρ2; f2 ` P2, ρ1 ∩ ρ2 = ∅,

ρ = ρ1∪ρ2, and f = f1⊕f2. By induction hypothesis, we have ρ′
1; f

′
1 ` P ′

1 for some

ρ′
1 ⊂ ρ1andf ′

1, and ρ′
2; f

′
2 ` P ′

2 for some ρ′
2,⊂ ρ2 and f ′

2. Therefore ρ′
1 ∩ ρ′

2 = ∅, and

by the COMP rule ρ′
1 ∪ ρ′

2; f
′
1 ⊕ f ′

2 ` P ′
1|P

′
2. The theorem follows from the fact that

ρ′ = ρ′
1 ∪ ρ′

2 ⊂ ρ1 ∪ ρ2 = ρ.

59

3. RES: Then P = (νy)P1 and P ′ = (νy)P ′
1 and the last derivation step is

RES:
P1

α
−→ P ′

1

(νy)P1
α

−→ (νy)P ′
1

y /∈ n(α)

By HIDE rule, for some ρ1, f1, we have ρ1; f1 ` P1, ρ = ρ1 − {y}, and f = f1|ρ.

By induction hypothesis, ρ′
1; f

′
1 ` P ′

1 for some ρ′
1 ⊂ ρ1 ∪ bn(α), f ′

1. Then by

HIDE rule ρ′
1 − {y}; f ′

1|(ρ
′
1 − {y}) ` (νy)P ′

1. Since y /∈ n(α), we have ρ′
1 − {y} ⊂

(ρ1 − {y}) ∪ bn(α) = ρ ∪ bn(α), and the theorem follows.

4. OPEN: Then P = (νy)P1, P ′ = P ′
1, α = x(y) and the last derivation step is

OPEN:
P1

xy
−→ P ′

1

(νy)P1
x(y)
−→ P ′

1

x 6= y

By HIDE rule, for some ρ1, f1, we have ρ1; f1 ` P1, ρ = ρ1 −{y}, and f = f1|ρ. By

induction hypothesis, ρ′
1; f

′
1 ` P ′

1 for some ρ′
1 ⊂ ρ1 ∪ {y}, f ′

1. The theorem follows

from the fact that ρ1 ∪ {y} ⊂ ρ ∪ {y}.

5. CLOSE: Then P = P1|P2, P ′ = (νy)(P ′
1|P

′
2), α = τ and the last derivation step is

CLOSE:
P1

x(y)
−→ P ′

1 P2
xy
−→ P ′

2

P1|P2
τ

−→ (νy)(P ′
1|P

′
2)

y /∈ fn(P2)

By COMP rule, for some ρ1, ρ2, f1, f2, we have ρ1; f1 ` P1, ρ2; f2 ` P2, ρ1 ∩ ρ2 = ∅,

ρ = ρ1∪ρ2, and f = f1⊕f2. By induction hypothesis, we have ρ′
1; f

′
1 ` P ′

1 for some

ρ′
1 ⊂ ρ1 ∪ {y}, and f ′

1, and ρ′
2; f

′
2 ` P ′

2 for some ρ′
2 ⊂ ρ2, and f ′

2. By Lemma 3.1,

ρ2 ⊂ fn(P2). From this and the given fact that y /∈ fn(P2) = ∅ we conclude y /∈ ρ2

and hence ρ′
1 ∩ ρ2 = ∅. Then by COMP rule ρ′

1 ∪ ρ2; f
′
1 ⊕ f2 ` P ′

1|P2. Then by

HIDE rule (ρ′
1 ∪ ρ2) − {y}; (f ′

1 ⊕ f2)|((ρ
′
1 ∪ ρ2) − {y}) ` (νy)(P ′

1|P2). Since y /∈ ρ2,

we have (ρ′
1 ∪ ρ2) − {y} = (ρ′

1 − {y}) ∪ ρ2 ⊂ ρ1 ∪ ρ2 = ρ, and the theorem follows.

60

6. BRNCH: Then P = case x of (y1 : P1, . . . , yn : Pn), and P ′ = Pi which clearly is

well-typed.

7. BEHV: Then P = B〈ũ; ṽ〉, P ′ = P ′
1 and the last derivation step is

BEHV:
(x1(z).P1){(ũ, ṽ)/(x̃, ỹ)}

α
−→ P ′

1

B〈ũ; ṽ〉
α

−→ P ′
1

B
def
= (x̃; ỹ)x1(z).P1

By INST rule {ũ}; ch(ũ) ` B〈ũ; ṽ〉 and names in ũ are distinct. Since the definition

of B is well-typed, we have {x̃}; ch(x̃) ` x1(z).P1. Since names in ũ are distinct we

have σ = {(ũ, ṽ)/(x̃, ỹ)} is an injection on {x̃}. Then by Lemma 3.2 {ũ}; ch(ũ) `

(x1(z).P1)σ. Then by induction hypothesis ρ′; f ′ ` P ′
1 for some ρ′ ⊂ {ũ} ∪ bn(α),

and the theorem follows.
�

Since well-typed terms are closed under transitions, it follows that actor properties

are preserved during a computation. However, note that the source and the target of

a transition need not have the same typing judgment. This is because of two reasons.

First, actors may disappear. As the reader may recall, this is interpreted as the actor

assuming a sink behavior. Second, an actor with a temporary name may re-assume its

original name, or decide to never assume it.

An Example: Polyadic Communication

We show how the ability to temporarily assume a fresh name can be used to encode

polyadic communication in Aπ. We assume that the subject of a polyadic receive is not

a temporary name. In particular, in the encoding below, x cannot be a temporary name.

The idea behind translation is to let x temporarily assume a fresh name z which is used

to receive all the arguments without any interference from other messages, and re-assume

x after the receipt. For fresh u, z we have

[|x〈y1, . . . , yn〉|] = (νu)(xu | S1〈u; y1, . . . , yn〉)

Si
def
= (u; yi, . . . , yn)u(z).(zyi | Si+1〈u; yi+1, . . . , yn〉) 1 ≤ i < n

61

Sn
def
= (u; yn)u(z).zyn

[|x(y1, . . . , yn).P |] = x(u).(νz)(uz | R1〈z, x̂; u, ã〉)

Ri
def
= (z, x̂; u, ã)z(yi).(uz | Ri+1〈z, x̂; u, ã〉) 1 ≤ i < n

Rn
def
= (z, x̂; u, ã)z(yn).(uz | [|P |])

where ã = fn(x(y1, . . . , yn).P)− {x}, and x̂ = {x} if for some ρ, f , we have ρ ∪ {x}; f `

[|P |], and x̂ = ∅ otherwise.

3.3 Alternate Characterization of May Testing

As in any typed calculus, may testing in Aπ takes typing into account; an observer O

can be used to test P only if P |O is well typed. For a configuration P , define rcp(P) = ρ

if ρ; f ` P for some f . Then P |O is well-typed precisely when rcp(P) ∩ rcp(O) = ∅.

Thus, Definition 2.4 for
�

∼ρ carries over to Aπ except that P
�

∼ρ Q is defined only if

rcp(P), rcp(Q) ⊂ ρ.

The alternate characterization of may testing for Aπ turns out to be the same as

that for Lπ=. This shows that of all the constraints enforced by the type system, only

locality “weakens” the observer set. We modify the argument is Section 2.2 to establish

the alternate characterization. All the definitions in Section 2.2 apply unchanged, unless

mentioned otherwise. The relations �ρ on configurations is the same as in Definition

2.6, except that P �ρ Q is defined only if rcp(P), rcp(Q) ⊂ ρ. Lemma 2.1 holds

with essentially the same proof. However, the canonical observer construction has to be

changed since the observers defined for Lπ= need not be well-typed in Aπ.

Definition 3.3 (canonical observer) For a well-formed trace s, we define an observer

O(s) = (νx̃, z)(|yi∈χProxy(s, yi, z) | O′(s, z)), where z fresh

{x̃} = set of names occurring as argument of bound input actions in s

χ = set of names occuring as subject of output actions in s

62

O′(ε, z)
4
= µµ

O′((v̂)uv.s, z)
4
= uv|O′(s, z)

O′(uv.s, z)
4
= z(w1, w2).case w1 of (u : case w2 of (v : O′(s, z))) w1, w2 fresh

O′(u(v).s, z)
4
= z(w, v).case w of (u : O′(s, z)) w fresh

Proxy(ε, y, z)
4
= 0

Proxy((v̂)uv.s, y, z)
4
= Proxy(s, y, z)

Proxy((v̂)uv.s, y, z)
4
=







y(w).(z〈y, w〉 | Proxy(s, y, z)) w fresh if u = y

Proxy(s, y, z) otherwise

In the above,
4
= is used for macro definitions. The reader may verify that χ−{x̃}; f ` O(s)

where f maps every name in its domain to ⊥. Further, if s is ρ-well-formed we have

rcp(O(s)) ∩ ρ = ∅, because the set of names occurring as subject of output actions in a

ρ-well-formed trace is disjoint from ρ.
�

The observer O(s) consists of a collection of proxies and a central matcher. There is

one forwarding proxy for each external name a configuration sends a message to while

exhibiting s. The proxies forward messages to the matcher which analyzes the contents.

This forwarding mechanism, which is absent in the canonical observers for Lπ=, is essen-

tial for Aπ because of uniqueness of actor names. Note that the forwarding mechanism

uses polyadic communication, whose encoding was shown in Section 3.2.2.

These differences in the canonical observer construction necessitate a fresh proof of

Lemma 2.3. We extend the trace preorder ≺ defined in Table 2.2 with the following laws

for commutativity of outputs.

L5 s.(ŷ)xy.(v̂)uv.s′ ≺ s.(v̂)uv.(ŷ)xy.s′ if v̂ ∩ {x, y} = ∅ and ŷ ∩ {u, v} = ∅

L6 s.x(z).yz.s′ ≺ s′.y(z).xz.s if y 6= z and x 6= z

Note that L5 and L6 are symmetric in that if r ≺ s by any of these laws, then s ≺ r.

Further, since outputs are asynchronous, the order of consecutive outputs in a trace is

insignificant. Hence if r ≺ s by these laws and P
s

=⇒, then P
r

=⇒. Let �| be the reflexive

63

transitive closure of this extended relation ≺. Note that since inputs are synchronous in

our transition system, the parallel of Lemma 2.1 need not hold for �|.

Lemma 3.3 For a well-formed trace s, O(s)
r.µµ
=⇒ implies r �| s.

�

Proof: The proof is by induction on length of s. For the base case, we have s = ε. We

have O(ε) ≡ µµ. Hence r = ε, and the lemma trivially holds. For the induction step,

there are three cases:

1. s = xy.s′: Note that O(xy.s′) first waits for a message xy before generating an

event or sending any messages. From this observation, it follows that r is of form

(v̂1)u1v1. . . . (v̂n)unvn.xy.r0, where y /∈ ∪iv̂i. Then we also have

O(s)
xy

=⇒ O(s′)
r′

=⇒

where r′ = (v̂1)u1v1. . . . (v̂n)unvn.r0. By induction hypothesis, r′ �| s′. Then

xy.r′ �| xy.s′. By repeated application of L5 we deduce r �| xy.r′. The result

follows from transitivity of �|.

2. s = x(y).s′: Note that O(x(y).s′) first waits for a message xw for some w be-

fore generating an event or sending any messages. It follows that r is of form

(v̂1)u1v1. . . . (v̂n)unvn.(ŵ)xw.r0. We only consider the case where ŵ = ∅ and

w /∈ ∪1≤nv̂i, i.e. w is received as free input; the other cases are simpler. Then

we have

O(s)
xw

=⇒ O(s′{w/y})
r′

=⇒

where r′ = (v̂1)u1v1. . . . (v̂n)unvn.r0. By induction hypothesis, r′ �| s′{w/y}. Then

xw.r′ �| xw.(s′{w/y}). By L4, xw.(s′{w/y}) �| s. By repeated application of L5

we deduce r �| xw.r′. The result follows from transitivity of �|. Note that the

case where ŵ = ∅ and w ∈ ∪1≤nv̂i would involve L6.

3. s = xy.s′: It is easy to show

O(s) ≡ xy | O(s′)

64

There are three possible cases depending on whether xy fires, does not fire, or is

consumed by O(s′). We consider only the first and the last case.

• xy fires. It follows that r = r1.xy.r2, where y /∈ bn(r1). Then it is the case

that

O(s′)
r1.r2.µµ
=⇒

By induction hypothesis, r1.r2 �| s′. Then xy.r1.r2 �| xy.s′. By repeated

application of L2, we have r �| xy.r1.r2. The result follows by transitivity of

�|.

• xy is consumed internally. Then it is the case that

O(s′)
r1.xy.r2.µµ

=⇒

and r = r1.r2. By induction hypothesis r1.xy.r2 �| s′. Then xy.r1.xy.r2 �|

xy.s′. By L2 and L3 we have r = r1.r2 �| xy.r1.xy.r2, and the result follows

by transitivity of �|.

4. s = x(y).s′: It is easy to show

O(s) ≡ (νy)(xy | O(s′))

There are three possible cases depending on whether xy fires, does not fire, or is

internally consumed. We consider only the case where it does not fire. Since xy

never fires, all the interactions are performed by (νy)(O(s′)), that is

(νy)O(s′)
r.µµ
=⇒

During the computation above, y may be alpha renamed to other names. Further-

more, either the name is exported through some other message, or never exported

at all. The second case is simpler; so we only consider the case where the name

is exported at some point as a fresh name w, i.e r = r1.u(w).r2 where w /∈ n(r1).

65

Then we can deduce

O(s′{w/y})
r′.µµ
=⇒

where r′ = r1.uw.r2. By induction hypothesis, r′ �| s′{w/y}. Then x(w).r′ �|

x(w).s′{w/y}, and by L1, we have r �| x(w).r′. The result follows by transitivity

of �|, and that s is alpha equivalent to x(w).s′{w/y}.
�

Lemma 3.4 Let r �| s and P
r

=⇒. Then there is r′ � s such that P
r′

=⇒.

Proof: We only sketch the proof. Let r = rn ≺ . . . r1 ≺ s. We skip the application

of L5 and L6 in the chain above, and apply the other transformation to r in the same

order. This is possible because L5 and L6 merely reorder consecutive outputs, and hence

skipping an instance of these does not preclude the other transformations that follow.

However, note that a following instance of L3 might require additional applications of

L2 first. With this procedure we get a trace r′ that differs from r in only the order of

consecutive outputs, and r′ � s. Then since P
r

=⇒, we have P
r′

=⇒.
�

Lemma 2.3 holds in Aπ as direct consequence of Lemmas 3.3 and 3.4. Now, Theorem

2.3, which establishes the alternate characterization, holds in Aπ with formally the same

proof.

3.4 Variants of Aπ

We first consider a variant of Aπ, called Aπ 6=, which is equipped with the ability to

mismatch names. We use an if-then-else construct, and replace the CASE rule of Table

3.1 with the following.

COND:
ρ1; f1 ` C1 ρ2; f2 ` C2

ρ1 ∪ ρ2; f1 ⊕ f2 ` [x = y](C1, C2)
if f1 and f2 are compatible

For the operational semantics of Aπ 6=, the BRNCH rule of Table 3.2, is replaced with the

following

66

IF:
P1

α
−→ P ′

1

[x = y](P1, P2)
α

−→ P ′
1

x = y ELSE:
P2

α
−→ P ′

2

[x = y](P1, P2)
α

−→ P ′
2

x 6= y

The alternate characterization of may-testing for Aπ 6= is tighter than that for Aπ since

laws L3 and L4 are not required. L4 disappears because with mismatch capability, an

observer can discriminate between free and bound inputs. Further, since all receptionist

names of a configuration are treated as being private to the configuration, complementary

actions cannot be exhibited by a configuration. This, together with the absence of L4

makes L3 unnecessary (see Lemma 3.5). To sum up, the interpretation of the may pre-

order P
�

∼ρ Q now becomes: by consuming the same messages, Q can produce at least

the same messages as P .

Let �− be the reflexive transitive closure of laws L1 and L2 of Table 2.2. With minor

modifications to the proof, Lemma 2.1 holds for Aπ 6= with �− instead of �. The relation

�ρ is same as for Aπ except that �− is used instead of �. The canonical observer for

Aπ is modified to check for bound inputs using the ability to mismatch names.

Definition 3.4 (canonical observer) For a well-formed trace s and a set of names ρ,

we define

O(s, ρ) = (νx̃, z)(|xi∈χProxy(s, xi, z) | O′(s, ρ, z)),

where

O′(ε, ρ, z)
4
= µµ

O′((v̂)uv.s, ρ, z)
4
= uv|O′(s, ρ ∪ v̂, z)

O′(uv.s, ρ, z)
4
= z(w1, w2).[w1 = u ∧ w2 = v](O′(s, ρ, z), 0) w1, w2 fresh

O′(u(v).s, ρ, z)
4
= z(w, v).[w = u ∧ v /∈ ρ](O′(s, ρ ∪ {v}, z), 0) w fresh

where x̃, χ and Proxy are as defined in Definition 3.3. The reader may verify that χ −

{x̃}; f ` O(s, ρ) where f maps every name in its domain to ⊥.
�

The canonical observer construction takes as an argument a set of names ρ which is

presumed to contain all the free names in the configuration to be observed. Note how this

set is updated as the interaction proceeds. To verify that an input it receives is bound,

the observer checks if the input argument does not occur in ρ. This works because, if

67

P
(ŷ)xy
−→ then ŷ 6= ∅ if and only if y /∈ fn(P). The operations ∧ and /∈ can be encoded

using the conditional construct. Note that /∈ uses the ability to take an action when a

match fails.

Let �−
| be the reflexive transitive closure of laws L1, L2, L5, L6. Following is the

analogue of Lemma 3.3. Note that laws L3 and L4 are not used in the proof.

Lemma 3.5 For some ρ′, let s be a ρ′-well-formed trace such that s = s1.(ŷ)xy.s2 implies

x ∈ rcp(s1, ρ
′). Further, let r be a trace such that P

r
=⇒ for some P such that fn(P) ⊂ ρ.

Then O(s, ρ)
r.µµ
=⇒ implies r �−

| s.

Remark: The condition on s simply says that s cannot exhibit a pair of complementary

actions, i.e. an input and an output action with the same subject.

Proof: The proof is by induction on the length of s, and is similar to that of Lemma

3.3, which we modify. We only sketch the changes to cases 2,3, and 4.

1. s = x(y).s′: We deduce r is of form (v̂1)u1v1. . . . (v̂n)unvn.(ŵ)xw.r0, where w /∈ ρ.

We note that if P
(ẑ)xz
−→, then z ∈ fn(P) ∪ ẑ. Now, since w /∈ fn(P) and P

r
=⇒, it

follows that w ∈ ∪1≤nv̂i ∪ ŵ. Then we have

O(s, ρ)
x(w)
=⇒ O(s′{w/y}, ρ ∪ {w})

r′
=⇒

where r′ = (v̂′
1)u1v1 . . . (v̂′

n)unvn.r0, and v̂′
i = v̂i − {w}. Since O(s, ρ)

x(w)
=⇒, we have

w /∈ fn(O(s, ρ)), which in turn implies w /∈ fn(s). It follows that s′{w/y} is ρ′∪{w}-

well-formed. It is routine to verify the remaining premises for the induction step.

Then by induction hypothesis, r′ �−
| s′{w/y}. Then x(w).r′ �−

| x(w).(s′{w/y}).

By repeated application of L5 and L6 we deduce r �−
| x(w).r′. The result follows

from transitivity of �−
| , and the fact that we work modulo alpha equivalence on

traces.

2. s = (ŷ)xy.s′: We have

O(s, ρ) ≡ (νŷ)(xy | O(s′, ρ ∪ ŷ))

68

By the condition on s, x ∈ ρ′. Then since s is ρ′-well-formed, x cannot be the

target of an output in s′. It follows that x /∈ rcp(O(s′, ρ ∪ ŷ)). This precludes the

possibility of the message xy being consumed internally in cases 3 and 4 in the

proof of Lemma 3.3. The argument for the other possibilities is very similar.
�

Lemma 3.4 holds for Aπ 6=. Theorem 2.3 holds with simple modifications to the proof,

of which we present the modifications to the only-if part.

Theorem 3.2 P
�

∼ρ Q if and only if P �ρ Q.

Proof: (only if) Let P
�

∼ρ Q and P
s

=⇒ where s is ρ-well-formed. We have to show that

there is a trace r �− s such that Q
r

=⇒. Since we work modulo alpha equivalence on

traces, we can assume bn(s) ∩ fn(Q) = ∅. Then it is easy to show that O(s, fn(Q))
s.µµ
=⇒.

This can be zipped with P
s

=⇒ to get P |O(s, fn(Q))
µµ

=⇒, that is P may O(s, fn(Q)).

From P
�

∼ρ Q, we have Q may O(s, fn(Q)) and therefore Q|O(s, fn(Q))
µµ

=⇒. This can

be unzipped into Q
r′

=⇒ and O(s, fn(Q))
r′.µµ
=⇒. By definition of

�

∼ρ, rcp(P) ⊂ ρ. Using

this it is easy to show that if s = s1.(ŷ)xy.s2 then x ∈ rcp(s1, ρ). Then from Lemma 3.5,

it follows that r′ �−
| s. From Lemma 3.4, there is r �− s such that Q

r
=⇒.

�

We could consider a variant of Aπ with restricted matching capability along the lines

described in Section 2.4. Note that since the tested names in a case construct are

constants, i.e. are either free or bound by a restriction, it is possible to do away with

non-determinism in actor behaviors by requiring that the names are all distinct. Proofs

in Section 2.3 can be adapted to show that for this variant, the alternate characterization

of may testing is the same as that of Lπ−
=.

3.5 Discussion and Related Work

There has been considerable research on actor semantics in the past two decades. We set

our contribution in the context of the most prominent works. A significant fraction of the

research has been in formal semantics for high level concurrent programming languages

based on the Actor Model. The prominent ones are [7, 29], where a core functional

69

language is extended with actor coordination primitives. The main aim of these works

has been to design concurrent languages that could be useful in practice. Accordingly,

the languages assume high-level computational notions as primitives, and are embellished

with type systems that guarantee useful properties in object based settings. In contrast,

Aπ is a basic calculus that makes only the ontological commitments inherent in the Actor

Model, thus giving us a simpler framework for further theoretical investigations. The

simplicity also makes it feasible to demarcate the effect of each ontological commitment

on the theory. In Chapter 4, we show how Aπ can be used to give a translational

semantics for a simple actor based programming language.

In [88, 89], actors are modeled in rewriting logic which is widely acknowledged as a

universal model of concurrency [53, 59]. An actor system is modeled as a specific rewrite

theory, and established techniques are used to derive the semantics of the specification

and prove its properties. In a larger context, this effort belongs to a collection of works

that have demonstrated that rewriting logic provides a good basis to unify many different

concurrency theories. For example, there are also rewrite theory formulations of the π-

calculus [98]. In comparison, although our work is more limited in scope, it establishes a

connection between two popular models of concurrency that is deeper than is immediately

available from representing the two models in a unified basis. It can be seen as a more

elaborate investigation of the relationship between two specific rewrite theories, and

provides a formal connection that helps in adapting and transferring results in one theory

to the other.

There are several calculi that are inspired by the Actor Model and the π-calculus

[32, 43, 76]. But these are neither entirely faithful to the Actor Model, nor directly

comparable to π-calculus. For instance, they are equipped with primitives intrinsic to

neither of the models, or ignore actor properties such as uniqueness and persistence.

These works are primarily intended for investigation of object oriented concepts. An

exception is [32] whose purpose is an algebraic formulation of actors, but the calculus

is not comparable to π-calculus and lacks theoretical investigations beyond the basic

formulation.

70

Semantic models proposed for actor computations include event diagrams [24], inter-

action diagrams and interaction paths [90]. These models represent possible interactions

of an actor system at different levels of abstraction, with event diagrams the most con-

crete, and interaction paths the most abstract. The relation between these three domains

is studied in [90], where each domain is given an algebraic structure, and maps between

the domains are defined that are shown to preserve the algebraic structure. Such ho-

momorphisms allows one to relate specifications based on different models and transfer

results obtained in one domain to the other. We have shown that (a simple variant of) the

interaction paths model provides an alternate characterization for may-testing in actor

systems.

71

Chapter 4

A Simple Actor Language

Aπ can serve as the basis for actor based concurrent programming languages. As an

illustration, we give a formal semantics for a simple actor language (SAL) by translating

its programs into Aπ. The translation can be exploited to apply the characterizations

established in Chapter 3 to reason about programs in SAL. To keep the discussion simple,

we have considered a simple language, which nevertheless can serve as the core of a richer

language.

In Sections 4.1 and 4.2, we show how booleans, natural numbers and operations on

them can be represented as processes in Aπ. These data types, along with names, are

assumed as primitive in SAL. Of course, this exercise is not entirely necessary, and in

fact, a better strategy may be to directly consider an extended version of Aπ with basic

data types. The characterizations for Aπ can be adapted in a straightforward manner

to the extended calculus. We have chosen the other approach here, mainly to illustrate

that the type system of Aπ does not reduce the expressive power. In Section 4.3, we

describe SAL informally. In Section 4.4, we give the translational semantics for SAL. We

conclude the chapter in Section 4.5, with a discussion of related work on semantics for

actor based languages.

72

4.1 Booleans

Booleans are encoded as configurations with a single actor that is also a receptionist. In

the following, T defines the receptionist behavior for true, and F for false.

T
def
= (x)x(u, v, c).cu

F
def
= (x)x(u, v, c).cv

The behaviors accept messages containing three names, of which the third name is as-

sumed to be the customer name (see Section 3.2.2 for an encoding of polyadic communi-

cation). The behavior T replies back to the customer with the first name, while F replies

back with the second name.

The negation function can be encoded as follows

Not
def
= (x)x(u, c).(νv, y, z)(u〈y, z, v〉 | v(w).case w of(y : F 〈v〉, z : T 〈v〉))

Not(x) can be thought of as the function not available at name x. Evaluation of the

function is initiated by sending a message containing a value and a customer name, to x.

The customer eventually receives the negation of the value sent. The reader may verify

that

Not〈x〉 | F 〈u〉 | x〈u, c〉
c(v)
=⇒ T 〈v〉

Following is the encoding of boolean and

And
def
= (x)x(u, v, c).(νy, z1, z2)(u〈z1, z2, y〉 | v〈z1, z2, y〉 |

y(w1).y(w2).(cy |

case w1 of (

z1 : case w2 of (z1 : T 〈y〉, z2 : F 〈y〉),

z2 : F 〈y〉)))

73

The reader may verify the following

And〈x〉 | T 〈u〉 | F 〈v〉 | x〈u, v, c〉
c(y)
=⇒ F 〈y〉

The reader may also verify that for each behavior B defined above {x}; {x 7→ ⊥} ` B〈x〉.

4.2 Natural Numbers

Natural numbers are built from the constructors 0 and S. Accordingly, we define the

following two behaviors.

Zero
def
= (x)x(u, v, c).c〈u, x〉

Succ
def
= (x, y)x(u, v, c).c〈v, y〉

With this, natural numbers can be encoded as follows.

0(x)
4
= Zero〈x〉

Sn+10(x)
4
= (νy)(Succ〈x, y〉 | Sn0(y))

The number Sn0 is encoded as a sequence of n + 1 actors each pointing to the next, and

the last one pointing to itself. The first n actors have the behavior Succ and the last has

behavior Zero. Only the first actor is the receptionist to the entire configuration. As

in our encoding for booleans, both the behaviors accept messages with three names, the

last of which is assumed to denote the customer. The behavior Succ replies back to the

customer with the second name and the name of next actor in the sequence, while Zero

replies back with the first name and its own name.

We only show the encoding of the addition operation, and hope the reader is convinced

that it is possible to encode the others. Our aim is to define a behavior Add such that

Add〈x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉
c(w)
=⇒ Sn+m0(w)

74

We first define a behavior AddTo such that

AddTo〈x〉 | (νu)(Sn0(u) | x〈u, v, c〉) | Sm0(v) =⇒ (νu)(Sn+m0(u) | cu)

We will then use AddTo to define Add.

AddTo
def
= (x)x(u1, u2, c).(νy1, y2, w)(u2〈y1, y2, w〉 |

w(z1, z2).case z1 of (

y1 : cu1,

y2 : (νv)(Succ〈v, u1〉 | x〈v, z2, c〉 | AddTo〈x〉)))

Lemma 4.1 AddTo〈x〉 | (νu)(Sn0(u) | x〈u, v, c〉) | Sm0(v) =⇒ (νu)(Sn+m0(u) | cu)

Proof: We prove this by induction on m. For the base case, the reader may verify that

AddTo〈x〉 | (νu)(Sn0(u) | x〈u, v, c〉) | 0(v) =⇒ (νu)(Sn0(u) | cu)

For the induction step, assuming the given proposition we show

AddTo〈x〉 | (νu)(Sn0(u) | x〈u, v, c〉) | Sm+10(v) =⇒ (νu)(Sn+m+10(u) | cu)

AddTo〈x〉 | (νu)(Sn0(u) | x〈u, v, c〉) | Sm+10(v)

=⇒ AddTo〈x〉 | (νu)(Sn+10(u) | x〈u,w, c〉) | Sm0(w)

=⇒ (νu)(Sn+m+10(u) | cu) by induction hypothesis
�

We are now ready to define Add.

Add
def
= (x)x(u, v, c).(νy, z, w)(AddTo〈y〉 | 0(w) | y〈w, u, z〉 | z(w).(νy)(AddTo〈y〉 | y〈w, v, c〉))

Lemma 4.2 Add〈x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉
c(w)
=⇒ Sn+m0(w)

Proof:

Add〈x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉
τ

−→ (νy, z)(AddTo〈y〉 | (νw)(0(w) | y〈w, u, z〉) | Sn0(u) |

z(w).(νy)(AddTo〈y〉 | y〈w, v, c〉) | Sm0(v))

75

=⇒ (νy, z)((νw)(Sn0(w) | zw) | z(w).(νy)(AddTo〈y〉 | y〈w, v, c〉) | Sm0(v))

(by Lemma 4.1)
τ

−→ (νy)(AddTo〈y〉 | (νw)(Sn0(w) | y〈w, v, c〉) | Sm0(v))

=⇒ (νw)(Sn+m0(w) | cw) (by Lemma 4.1)
c(w)
=⇒ Sn+m0(w)

�

The reader may verify that for a natural number N , and each behavior B defined

above, {x}; {x 7→ ⊥} ` N(x), and {x}; {x 7→ ⊥} ` B〈x〉.

4.3 The Language SAL

A SAL program consists of a sequence of behavior definitions followed by a single (top

level) command.

Pgm ::= BDef1 ... BDefn Com

The behavior definitions are templates for actor behaviors. The top level command

creates an initial collection of actors and messages, and specifies the interface of the

configuration to its environment.

4.3.1 Expressions

Three types of primitive values - booleans, integers and names - are presumed. There

are literals for boolean and integer constants, but none for names. Primitive operations

include ∧,∨,¬ on booleans, +,−, ∗, = on integers, and case-of for matching names.

Expressions always evaluate to values of one of the primitive types. An expression may

contain identifiers which may be bound by formal parameters of the behavior definition

in which the expression occurs (see behavior definitions in Section 4.3.3). Identifiers are

lexically scoped in SAL. We let e range over the syntactic domain of expressions.

76

4.3.2 Commands

Following is the syntax for SAL commands.

Com ::= send [e1, ..., en] to x (message send)

become B(e1, ..., en) (new behavior)

let x1 = [recep] new B1(e1, ..., ei1),

. . . xk = [recep] new Bk(e1, ..., eik)

in Com (actor creations)

if e then Com1 else Com2 (conditional)

case x of (y1 : Com1 , . . . , yn : Comn) (name matching)

Com1 || Com2 (composition)

Message Send: Expressions e1 to en are evaluated, and a message containing the

resulting tuple of values is sent to actor x. The message is asynchronous as the execution

of the command does not involve actual delivery of the message.

New Behavior: This specifies a new behavior for the actor which is executing the

command. The identifier B should be bound by a behavior definition. Expressions e1 to

en are evaluated and the results are bound to the parameters in the acquaintance list of

B (see behavior definitions in Section 4.3.3). The resulting closure is the new behavior

of the actor. A become command cannot occur in the top level command of an actor

program, because such a command specifies the initial system configuration and not the

behavior of a single actor.

Actor Creations: Actors with the specified behaviors are created, the identifiers

x1, . . . , xn, that are all required to be distinct, denote names of the actors, and the

command Com is executed under the scope of these identifiers. The identifiers can be

optionally tagged with the qualifier recep, only in the top level command of a program.

The corresponding actors will be receptionists of the program configuration, and can

thus receive messages from the environment. The other actor names are private to the

77

configuration. While the scope of the identifiers declared as receptionists is the entire top

level command, the scope of the others is only the let command. A let command that

uses the recep qualifier should not be nested under another let or conditional construct.

Further, since actor names are unique, a name can not be declared as a receptionist more

than once in the entire top level command.

Conditional: The expression e should evaluate to a boolean. If the result is true,

command Com1 is executed, else Com2 is executed.

Name matching: The name x is matched against the names y1, . . . , yn. If there is a

match, the command corresponding to one of the matches is non-deterministically chosen

and executed. If there is no match, then there is no further execution of the command.

Composition: The two composed commands are executed concurrently.

A couple of observations are in order here. First, there is no notion of sequential

composition of commands. This is because all the actions an actor performs on receiving

a message are concurrent. Second, message passing in SAL is analogous to call-by-value

parameter passing; expressions in a send command are first evaluated and a message is

created with the resulting values. Alternately, we can think of a call-by-need message

passing scheme. But both the mechanisms are semantically equivalent because expres-

sions do not involve recursions and hence their evaluations always terminate.

4.3.3 Behavior Definitions

The syntax of behavior definitions is as follows.

BDef ::= def < beh name > (< acquaintence list >)[< input list >]

Com

end def

The identifier < beh name > is bound to an abstraction and the scope of this binding

is the entire program. The identifiers in acquaintance list are formal parameters of this

78

abstraction, and their scope is the body Com. These parameters are bound during a

behavior instantiation, and the resulting closure is an actor behavior. The identifiers in

input list are formal parameters of this behavior, and their scope is the body Com. They

are bound at the receipt of a message. The acquaintance and input lists contain all the

free identifiers in Com. The reserved identifier self can be used in Com as a reference

to the actor which has the behavior being defined. The execution of Com should always

result in the execution of at most a single become command, else the behavior definition

is said to be erroneous. This property is guaranteed statically by requiring that in any

concurrent composition of commands, at most one of the commands can contain a become.

If the execution of Com does not result in the execution of a become command, then

the corresponding actor is assumed to take on a sink behavior that simply ignores all the

received messages.

4.3.4 An Example

SAL is not equipped with high-level control flow structures such as recursion and itera-

tion. However, such structures can be encoded as patterns of message passing [38]. The

following implementation of the factorial function (adapted from [5]) shows how recur-

sion can be encoded. The example also illustrates customer passing style of programming

common in actor systems.

def Factorial ()[val, cust]

become Factorial() ||

if val = 0

then send [1] to cust

else let cont = FactorialCont(val, cust)

in send [val − 1, cont] to self

end def

def FactorialCont(val, cust)[arg]

79

 (a,Factorial(a))

[3,c]

[2,c1]

[1,c2]

[0,c3]

(c1,FactorialCont(3,c))

(c2,FactorialCont(2,c1))

(c3,FactorialCont(1,c2))

[1]

[1]

[2]

{cust,6}

Figure 4.1: A diagram illustrating computation of factorial 3. The vertical lines
denote time lines of actors. An arrow to the top of a time line denotes an actor
creation. Other arrows denote messages.

send [val ∗ arg] to cust

end def

A request to a factorial actor includes a positive integer n and the actor name cust to

which the result has to be sent. On receiving a message the actor creates a continuation

actor cont and sends itself a message with contents n − 1 and cont. The continuation

actor has n and cust as its acquaintances. Eventually a chain of continuation actors will

be created each knowing the name of the next in the chain (see Figure 4.1). On receiving

a message with an integer, the behavior of each continuation actor is to multiply the

integer with the one it remembers and send the reply to its customer. The program can

be proved correct by a simple induction on n. Note that the factorial actor can process

many requests concurrently.

Following is a top level command that creates a factorial actor that is also a recep-

tionist and sends a message with value 5 to it.

80

let x = [recep] new Factorial()

in send [5] to x

4.4 Formal Semantics of SAL

SAL expressions and commands are represented as Aπ terms, and their evaluation as

computation in these terms. SAL behavior definitions are represented as definitions in

Aπ. We now describe the translation of each syntactic domain of SAL.

4.4.1 Expressions

While SAL is equipped with booleans, integers and names as primitive types, only names

are primitive in Aπ. In Sections 4.1 and 4.2, we discussed encodings of booleans, natu-

rals, and operations on these types. The encoding of naturals can be extended to integers

in a fairly straightforward manner (by tagging for example). Now that we have a repre-

sentation of the basic constituents of expressions, what remains is the representation of

dependencies between the evaluation of subexpressions of an expression.

The translation of an expression takes as an argument, the name of a customer to

which the result of evaluation is to be sent. An identifier expression x is translated as

[|x|]c = cx

A constant (boolean or integer) expression e is translated as

[|e|]c = (νy)(e〈y〉 | cy)

where e is the encoding of the constant e. For an n−ary operator Op, the expression

Op(e1, ..., en) is encoded as

[|Op(e1, . . . , en)|]c = (νy1, . . . , yn+1, z)(Marshall(y1, . . . , yn+1, z) |

[|e1|]y1 | . . . | [|en|]yn | yn+1c | Op〈z〉)

81

where Op is the encoding of operator Op, and z, yi are fresh. The expressions e1 to en

are concurrently evaluated. The configuration Marshall(y1, . . . , yn+1, z) marshals their

results and the customer name into a single tuple, and forwards it to an internal actor

that implements Op. The marshaling configuration is defined as

Marshall(y1, . . . , yn, c) = (νu)(R〈y1, u〉 | . . . | R〈yn, u〉 | S1〈u, y1, . . . , yn, c〉)

where

R
def
= (x, y) x(u).y〈u, x〉

Si
def
= (x, yi, . . . , yn, v1, . . . , vi−1, c)

x(vi, w).case w of (

yi : Si+1〈x, yi+1, . . . , yn, v1, . . . , vi, c〉

yi+1 . . . yn : Si〈x, yi, . . . , yn, v1, . . . , vi−1, c〉 | x〈vi, w〉)

for 1 ≤ i < n

Sn
def
= (x, v1, . . . , vn−1, c) x(vn, w).c〈v1, . . . , vn〉

By structural induction on an expression e and name x, it is easy to show that

∅; {} ` [|e|]x.

4.4.2 Commands

Although the actions an actor performs on receiving a message are all concurrent, ex-

ecution of commands may involve sequentiality. For example, expressions need to be

evaluated before the results are used to send messages or instantiate a behavior. This

sequentiality is represented as communication patterns in the configurations that encode

commands. The translation of a command takes as an argument, the name of the actor

which executes the command. In the following, we assume that the names introduced

during the translation are all fresh.

82

Message send: We use the Marshall configuration to marshal the results of expression

evaluations into a polyadic message to the target.

[|send [e1, . . . , en] to z|]x = (νy1, . . . , yn)(Marshall(y1, . . . , yn, z) | [|e1|]y1 | . . . | [|en|]yn)

New behavior: We use an actor’s ability to temporarily assume a new name to wait

for the results of expression evaluations before assuming the new behavior.

[|become B(e1, . . . , en)|]x = (νy1,. . . , yn, z)([|e1|]y1 | . . . | [|en|]yn |

Marshall〈y1, . . . , yn, z〉 | z(u1, . . . , un).B〈x, u1, . . . , un〉)

where B is the identifier for the translation of behavior definition B (see Section 4.4.3).

Actor creation: The identifiers used in the let command are used as names for the

new actors. If not tagged by the recep qualifier, these names are bound by a restric-

tion. The actors are created at the beginning of command execution, but they assume a

temporary name until their behavior is determined.

[|let y1 = [recep] new B1(e1, . . . , ei1),

. . . yk = [recep] new Bk(e1, . . . , eik) in Com|]x =

(νỹ)([|become B1(e1, . . . , ei1)|]y1 | . . . | [|become Bk(e1, . . . , eik)|]yk | [|Com|]x)

where ỹ consists of all yi which have not been qualified with recep.

Conditional: We use a temporary actor that waits for the outcome of the test before

executing the appropriate command.

[|if e then Com1 else Com2|]x =

(νu)([|e|]u | u(z).(νv1, v2)(z〈v1, v2, u〉 | u(w).case w of (v1 : [|Com|]x, v2 : [|Com|]x))

Name matching:

[|case z of(y1 : Com1 , . . . , yn : Comn)|]x = case z of (y1 : [|Com1 |]x, . . . , yn : [|Comn |]x)

83

Concurrent Composition: The translation of concurrent composition is just the com-

position of individual translations.

[|Com1 || Com2|]x = [|Com1|]x | [|Com2|]x

This completes the translation of commands. Let Com be a command such that in

any of its subcommands that is a concurrent composition, at most one of the composed

commands contains a become. Further, assume that a name is declared as a receptionist

at most once, and that let constructs with receptionist declarations are not nested

under other let or conditional constructs. Let x be a fresh name. Then by structural

induction on Com, we can show that {x, ỹ}; f ` [|Com|]x if Com contains a become, and

∅; {ỹ} ` [|Com|]x otherwise, where ỹ is the set of all names declared as receptionists in

Com, and f is a function that maps all names in its domain to ⊥.

4.4.3 Behavior definitions

Behavior definitions in SAL are translated to behavior definitions in Aπ as follows

[|def B(ũ)[ṽ] Com end def |] = B
def
= (self ; ũ)self (ṽ).[|Com|]self

Note that the implicitly available reference self in a SAL behavior definition becomes

explicit in the acquaintance list after translation. Since the body of a behavior defi-

nition does not contain receptionist declarations, it follows that {self }; {self 7→ ⊥} `

self (ṽ).[|Com|]self . So the RHS is well-typed.

We have completed the translation of various syntactic domains in SAL, and are ready

to present the overall translation of a SAL program. Recall that a SAL program consists

of a sequence of behavior definitions and a single top level command.

[|BDef 1 ... BDef n Com|] = [|BDef 1|] . . . [|BDef n|] [|Com|]x

84

where x is fresh. Since the top level command cannot contain a become, its translation

does not use the argument x supplied. Indeed, {ỹ}; f ` [|Com|]x, where {ỹ} is the set of

all names declared as receptionists in Com, and f maps all names in {ỹ} to ⊥.

4.5 Discussion and Related Work

The translation we have given, can be exploited to use the testing theory developed for

Aπ, to reason about SAL programs. Note that the characterization of may-testing for

Aπ applies unchanged to SAL. This is because the set of experiments possible in SAL

have the same distinguishing power as the experiments in Aπ. Specifically, the canonical

observers constructed for Aπ (Section 3.3) are also expressible in SAL, and it follows

immediately from Lemmas 3.3 and 3.4 that these observers have all the distinguishing

power, i.e. are sufficient to decide
�

∼ρ.

Translational semantics for actor languages similar to SAL has been previously at-

tempted. In [25] a simple actor language is translated into linear logic formulae, and com-

putations are modeled as deductions in the logic. In [49] an actor-based object-oriented

language is translated into HACL extended with records [48]. These translations provide

a firm foundation for further semantic investigations. However, to reap the benefits of

these translations, one still has to explicitly characterize actor properties such as locality

and uniqueness in the underlying formal system, and identify the changes to the theory

due to them. For instance, the asynchronous π-calculus can be seen as the underlying

system of our translation, whereas only Aπ terms correspond to SAL programs, and

the characterization of may testing for Aπ is very different from that for asynchronous

π-calculus.

In [7], testing equivalence is studied on a practical actor language, which consists of

a functional core extended with the actor primitives for concurrency. Although no alter-

nate characterization for the operational notion of testing is established, proof techniques

that embody sufficient conditions are presented. The techniques are used to derive a set

of laws that could be used for instance, to prove correctness of certain compiler trans-

85

formations. In comparison, we have given an abstract characterization of may testing,

that we believe is more generally applicable and easy to use. Although, SAL is a very

simple language, it can be enriched with higher level programming constructs without

altering the characterization. This is corroborated by the work in [54, 55], where a high

level actor languages are translated to a more basic kernel languages (similar to SAL) in

such a way that the source and its translation exhibit the same set of traces.

86

Chapter 5

Decidability Results for Testing

Equivalences

In this chapter, we investigate decidability of may and must testing equivalences over

π-calculus processes. We also establish lower bounds for computational resources re-

quired to decide these equivalences. As one might expect, may and must equivalences

are undecidable over general π-calculus processes. We therefore focus on a simpler class

of processes, namely asynchronously communicating finite state machines that are open

to interaction with their environment. These systems can have an infinite state space

since their state includes the multiset of undelivered messages and since message deliver-

ies can be arbitrarily delayed. However, these systems constitute a very simple subclass

of π-calculus processes; communication uses finite alphabet and does not involve name

passing, there is no dynamic name generation, and the number of communicating ma-

chines is fixed. In fact, these systems constitute a subclass of asynchronous CCS [19].

Our choice of this simple model is justified because, as we will see, even simple extensions

of this model lead to undecidability of may and must testing.

We define parameterized may and must preorders,
�

∼ρ and
�

∼
M

ρ respectively, on asyn-

chronous finite state machines (AFSM). We show that the may preorder
�

∼∅ is decidable

for AFSMs and is EXPSPACE-hard, and that the preorder
�

∼ρ for ρ ≥ 2 is undecidable.

Similarly, we show that the parameterized must preorder
�

∼
M

ρ for ρ ≥ 2 is undecidable.

87

The decidability of
�

∼
M

∅ is much harder problem and is still open, but we present some

partial results in this direction. Decidability results for may testing were previously

known only for the simple class of finite state machines [45]. Our results extend this to a

more expressive class of infinite state systems. Further (as we will see) our undecidability

results sharply identify the decidability boundaries for may and must testing.

Following is the layout of this chapter. In Section 5.1, we formally define AFSMs

and prove some useful properties. In Section 5.2, we related AFSMs to other popular

asynchronous process models. In Section 5.3, we instantiate the framework of may and

must testing on AFSMs. In Section 5.4, we present decidability results for may testing,

and in Section 5.5 we present the results for must testing. We conclude the chapter in

Section 5.6 with a discussion and comments on possible directions for further work.

5.1 Asynchronous Finite State Machines

We assume disjoint infinite sets of names N and co-names N , and a bijection · : N → N .

We let
∑

range over finite sets of names, and write
∑

to denote the set {a | a ∈
∑

}. Let

M = (Q,
∑

∪
∑

,→, q0, F) be an FSM with τ -moves. Specifically, Q is the finite set of

states,
∑

∪
∑

the finite alphabet set, →⊆ Q×(
∑

∪
∑

∪{τ})×Q the transition relation,

q0 the start state, and F ⊆ Q the set of final states. We let p, q range over Q, and a, b, c

over
∑

. We call
∑

∪
∑

∪ {τ} the set of actions, and let α range over it. The actions

in
∑

are called input actions, the actions in
∑

the output actions, and τ the internal

action. We write α̂ to mean α if α 6= τ , and ε otherwise. The set
∑

∪
∑

is the set of

visible actions, and we let β range over it. We define the complementation function . on

visible actions so that the complement of an input is the corresponding output, and vice

versa.

We write p
α

−→ q instead of (p, α, q) ∈ →, p =⇒ q if p
τ

−→
∗

q, and p
α

=⇒ q if

p =⇒
α

−→=⇒ q. We call (
∑

∪
∑

)∗ the set of traces, and let r, s, t range over it. For

s = ε we write p
s

−→ q if p = q, and p
s

=⇒ q if p =⇒ q. For s = β.s′ we write p
s

−→ q

if p
β

−→
s′

−→ q, and p
s

=⇒ q if p
β

=⇒
s′

=⇒ q. We define L(p) = {s | p
s

=⇒ q, q ∈ F}, and

L(M) = L(q0). For a set S, we write P(S) to denote the powerset of S, and {|S|} to

88

denote the set of all (possibly infinite) multisets of S. We let B range over {|
∑

|}. For a

trace r, we write {|r|}i to denote the multiset of all input actions in r, and {|r|}o for the

multiset of all output actions in r. We define {|r|} = {|r|}i∪{|r|}o. The complementation

function is lifted from the set of visible actions to multisets of visible actions the obvious

way.

Definition 5.1 (asynchronous transitions) Given an FSM M = (Q,
∑

∪
∑

,→, q0, F),

we define the set of its configurations as Q × {|
∑

|}, and we define an (asynchronous)

transition relation −→A⊆ (Q × {|
∑

|}) × (
∑

∪
∑

∪ τ) × (Q × {|
∑

|}) as

1. (q, B)
a

−→A (q, B ∪ {a}).

2. (q, B)
a

−→A (q, B \ {a}) if a ∈ B.

3. (q, B)
τ

−→A (q′, B′) if any of the following is true

(a) q
τ

−→ q′, B′ = B.

(b) q
a

−→ q′, a ∈ B and B′ = B \ {a},

(c) q
a

−→ q′, B′ = B ∪ {a}.

The binary relations
s

−→A, =⇒A,
s

=⇒A on configurations are defined as expected. We

define LA(q, B) = {s | (q, B)
s

=⇒A (q′, B′), q′ ∈ F}. We write LA(q) as a shorthand for

LA(q, ∅), and define the asynchronous language of M , LA(M) = LA(q0).
�

We call an FSM M along with its asynchronous transition relation as an AFSM. The

set of states of an AFSM is the set of its configurations. A configuration is composed

of the control state of the AFSM and the message buffer. The buffer contains inputs

received from the environment and outputs produced by the AFSM, which have not yet

been consumed. Figure 5.1 illustrates asynchronous transitions of an example AFSM.

The terminology – AFSM – may be a bit misleading because the set of states of an

AFSM is infinite. For instance, for the AFSM of Figure 5.1 we can show that

(q1, {})
a

=⇒A (q1, {a
n, bm}) if n,m ≥ 0 and n ≡ m + 1 (mod 3)

89

a

a b

b

ab
q2

q3

q1

q4

q5

(q1, {})
a

−→A (q1, {a})
τ

−→A (q4, {})
τ

−→A (q5, {b})
τ

−→A (q1, {b, b})
b

−→A (q1, {b})
τ

−→A (q2, {})
τ

−→A (q3, {a})
τ

−→A (q1, {a, a})

Figure 5.1: An asynchronous transition sequence of an example AFSM.

Following is some notation and simple facts that will be useful later on. Let #(a,B)

denote the number of times a occurs in the multiset B. For a sequence of multisets Bi,

we define tiBi as the multiset which satisfies for all a, #(a,tiBi) = maxi#(a,Bi).

Lemma 5.1 (1) If B ⊆ B ′ then LA(q, B) ⊆ LA(q, B′). (2) If B1 ⊆ B2 ⊆ . . . and

B = tiBi, then LA(q, B) = ∪iLA(q, Bi).
�

For an FSM M , we now characterize the relationship between L(M) and LA(M).

This characterization will be useful in Section 5.4.

Definition 5.2 Given a set of names
∑

, let . be the smallest reflexive transitive relation

on (
∑

∪
∑

)∗ that is closed under the following rules

1. s1.s2 . s1.a.s2 2. s1.β.a.s2 . s1.a.β.s2

3. s1.s2 . s1.a.a.s2 4. s1.a.s2 . s1.s2

5. s1.a.β.s2 . s1.β.a.s2 6. s1.a.a.s2 . s1.s2

We lift . to sets of traces as R . S if for every s ∈ S there is r ∈ R such that r . s.

We define the closure of S under the relation ., denoted [S]., as the smallest set that

contains S and that is closed under ..
�

Strictly speaking, in Definition 5.2, we have defined a family of relations indexed by

the set
∑

, and hence . has to be annotated with
∑

. But to keep the notation simple,

we ignore this detail, and instead ensure that
∑

is clear from context.

The idea behind Definition 5.2 is that, if s . r and s ∈ LA(M), then r ∈ LA(M).

Rule 1 captures the fact that an AFSM can always receive an input from its environment,

while rule 2 captures the fact that it can perform the inputs in any order. Rule 3 states

90

that complementary asynchronous input and outputs can always be performed; the input

received can simply be buffered and output back to the environment in the next step.

Rules 4-6 are duals of the first 3 rules. Rule 5 states that outputs can be buffered and

emitted to the environment later, while rule 4 accounts for the case where an output is

buffered and never emitted. A buffered output can also be internally consumed by a later

input, and this is reflected in rule 6.

We are now ready to characterize the relationship between L(M) and LA(M).

Theorem 5.1 For an FSM M , LA(M) = [L(M)]..

Proof: Let M = (Q,
∑

∪
∑

,→, q0, F). First, [L(M)]. ⊆ LA(M) is a consequence of

the following two observations which are easy to prove: (i) L(M) ⊆ LA(M), and (ii) if

s ∈ LA(M) and s . r by a single (and hence arbitrarily many) application of rules in

Definition 5.2, then r ∈ LA(M). Next, we show LA(M) ⊆ [L(M)].. Suppose

(q0, ∅)
α1−→A (q1, B1)

α2−→A . . .
αn−→A (qn, Bn)

and r = α̂1. · · · .α̂n. We prove the stronger statement that there is s such that q
s

=⇒ qn,

s . r, and Bn = ({|r|}i ∪ {|s|}o) \ ({|r|}o ∪ {|s|}i). Intuitively, the message buffer Bn

contains all the inputs from the environment and the outputs by M , that have neither

been consumed by M nor output to the environment. From Definition 5.2, we see that

the above expression for Bn encodes the number of times rules 1 and 4 are applied in

any derivation of s . r; only for these rules does the expression evaluate to a non-empty

multiset when r is set to the RHS and s to the LHS of the rule. Specifically, for all

b ∈ N , #(b, Bn) equals the number of applications of rules 1 or 4 of Definition 5.2 with

the meta-variable a instantiated to b, in any derivation of s . r.

The proof is by induction on n. The base case n = 0 is trivial. For the induction

step, we may assume there is s′ such that q
s′

−→ qn−1, s′ . r′ = α̂1. · · · .α̂n−1, and Bn−1 =

({|r′|}i ∪ {|s′|}o) \ ({|r′|}o ∪ {|s′|}i). We now only consider the case where αn = a; the

other cases are similar. Then a ∈ Bn−1, and therefore for a given derivation of s . r,

91

there is an application of rule 1 or 4 of Definition 5.2 in the derivation. Let s = s′. We

have two subcases:

• The derivation of s′ . r′ contains an instance of rule 1. Then we can derive

s . r′.a = r from a derivation of s′ . r′, by replacing an instance of rule 1 with an

instance of rule 3, and delaying the output introduced to the very end by repeated

application of rule 5.

• The derivation of s′ . r′ contains an instance of rule 4. Then we can derive

s . r′.a = r from a derivation of s′ . r′, by replacing an instance of rule 4 with

repeating applications of rule 5 that delay the output a to the very end.

Note that in both cases Bn = Bn−1 \ {a} = ({|r|}i ∪ {|s|}o) \ ({|r|}o ∪ {|s|}i). Thus the

induction hypothesis also holds for n.
�

Note that Theorem 5.1 implies that L(M) ⊆ LA(M) and that LA(M) is closed under

..

5.2 Related Asynchronous Process Models

It is a relatively simple exercise to show that AFSMs are a special class of π-calculus

processes by encoding a given AFSM as a π-calculus process. Popular models of concur-

rency besides the asynchronous π-calculus include Multiset Automata (MSA) [17], Petri

nets [70], Vector Addition Systems [70], and asynchronous CCS [19]. Multiset Automata

are a special class of Petri nets [17], which are in turn a special type of asynchronous

CCS processes [33]. Asynchronous CCS is itself a fragment of π-calculus (see Figure 5.2).

Vector addition systems are known to be equivalent to Petri nets [70].

AFSMs are simpler than all of these models and can be best seen as a special class

kind of MSAs with τ transitions. The central difference between an MSA and an AFSM

is that in an AFSM the labels on the transitions are intimately linked to the operations

on the multiset buffer. AFSMs also exactly correspond to the fragment of asynchronous

CCS without the restriction operator, and with the following two constraints

92

AFSM

Multiset Automata

Asynchronous CCS

Vector Addition Systems = Petri Nets

FSM

π−Asynchronous Calculus

Figure 5.2: A hierarchy of asynchronous computational models.

• Every process identifier occurring inside a recursion is guarded with an action prefix.

• Whenever two processes are composed in a recursive definition one of them is a

collection of messages, i.e. of form a1| . . . |an.

Due to the simplicity of AFSMs, some of the verification problems we consider in the

following sections are decidable over AFSMs, but are undecidable over MSAs and hence

over all other more expressive process models. Further, since the parameterized may

and must preorders emulate privatization of certain names to the process being tested,

the undecidability results for parameterized may and must testing that we present in

Sections 5.4 and 5.5, imply that the parameterized equivalences become undecidable

over the fragment of asynchronous CCS mentioned above even if we allow the restriction

operator to occur only outside recursion.

5.3 Testing Equivalences Over AFSMs

We now instantiate the notions of may and must testing on AFSMs, and present semantic

characterizations that will be useful in the sections that follow. Note that the fact that

93

AFSMs are a special class of asynchronous π-calculus processes does not by itself imply

that the characterizations of testing equivalences for asynchronous π-calculus also apply

to AFSMs. This is because the set of observers that can be used for testing in π-calculus

is strictly larger than that in AFSMs.

We begin with a formal definition of may testing on AFSMs.

Definition 5.3 (asynchronous experiment) Let M1 = (Q1,
∑

1 ∪
∑

1,→1, q1, F1) and

M2 = (Q2,
∑

2 ∪
∑

2,→2, q2, F2). An asynchronous experiment with M1 and M2 is of form

(p|q, B), where p ∈ Q1, q ∈ Q2, and B ∈ {|
∑

1 ∪
∑

2 |}. We define a transition relation

on asynchronous experiments as (p|q, B) −→A (p′|q′, B′) if

1. a ∈ B,B′ = B \ {a}, and p
a

−→ p′, q = q′ or p = p′, q
a

−→ q′.

2. B′ = B ∪ {a}, and p
a

−→ p′, q = q′ or p = p′, q
a

−→ q′.

3. B′ = B, and p
τ

−→ p′, q = q′ or p = p′, q
τ

−→ q′.

We define the relation, =⇒A, on asynchronous experiments as the reflexive transitive

closure of −→A.
�

We are now ready to define parameterized may testing on AFSMs. In the following,

for ρ ⊆ N we say that M respects the interface ρ, if ρ ∩
∑

= ∅. Thus, if M respects ρ,

it performs neither input nor output actions at names in ρ.

Definition 5.4 (parameterized asynchronous may testing)

We say M1 may M2 if (q1|q2, ∅) =⇒A (p1|p2, B) for some p2 ∈ F2. For ρ ⊆ N , we

say M1

�

∼ρ M2 if for every M that respects the interface ρ, we have M1 may M implies

M2 may M . We say M1 'ρ M2 if M1

�

∼ρ M2 and M2

�

∼ρ M1. We write
�

∼ as a shorthand

for
�

∼∅, and similarly ' for '∅.

Theorem 5.2 characterizes the parameterized asynchronous may preorder. For a set

of names ρ and a trace s, we write sdρ for the trace obtained from s by deleting all the

actions in ρ ∪ ρ. For a set of traces L, we define Ldρ to be the set of all traces s in L

94

such that sdρ = s. Note that Ldρ is not the usual lifting of the function ·dρ on traces, to

sets of traces.

Theorem 5.2 (characterization of parameterized may testing)

Let M1 = (Q1,
∑

1 ∪
∑

1,→1, q1, F1), and M2 = (Q2,
∑

2 ∪
∑

2,→2, q2, F2). Let
∑

=
∑

1 ∪
∑

2, and M ′
2 = (Q2,

∑

∪
∑

,→2, q2, F2). Then M1

�

∼ρ M2 if and only if LA(M1)dρ ⊆

LA(M ′
2)dρ.

�

We skip the proof as it is a simple adaptation of the proof for characterization of

(unparameterized) may testing for asynchronous CCS [19], using the ideas presented in

Chapter 2 to account for the parameterization. Note that, we consider M ′
2 instead of M2

due to the following reason. If
∑

1 \(
∑

2 ∪ρ) 6= ∅ then there is always an s ∈ LA(M1) but

s /∈ LA(M2). But on the other hand, since inputs of a process are not observable due to

asynchrony, it is not necessary that M1 /
�

∼ρ M2.

We now instantiate parameterized must testing on AFSMs.

Definition 5.5 (asynchronous must testing) We say M1 must M2 if for every max-

imal computation

(q1|q2, ∅) −→A (q11|q21, B1) −→A (q12|q22, B2) −→A (q13|q23, B3) −→A · · ·

q2 ∈ F2 or q2i ∈ F2 for some i. For an interface ρ, we say M1

�

∼
M

ρ M2 if for every FSM

M that respects ρ, we have M1 must M implies M2 must M . We say M1 'M
ρ M2 if

M1

�

∼
M

ρ M2 and M2

�

∼
M

ρ M1. We write
�

∼
M

as a shorthand for
�

∼
M

∅ , and similarly 'M

for 'M
∅ .

�

An aspect of process behavior that must testing is sensitive to is divergence, where

a process may engage in an infinite sequence of internal transitions without allowing the

environment’s computation to progress. Divergence is observable in must testing, for

example by the observer that simply makes an internal transition to an accept state; a

process passes the test proposed by this observer if and only if it does not diverge.

95

Definition 5.6 (divergence) Let M = (Q,
∑

∪
∑

,→, q0, F). We say a configuration

(q, B) (asynchronously) converges, written (q, B) ↓A, if there is no infinite sequence of

transitions

(q, B)
τ

−→A (q1, B1)
τ

−→A (q2, B2)
τ

−→A . . .

For s ∈ (
∑

∪
∑

)∗, we say (q, B) converges along s, written (q, B) ↓A s, if whenever s′ is

a prefix of s and (q, B)
s′

=⇒A (q′, B′), it is the case that (q′, B′) ↓A. We write (q, B) ↑A s,

if it is not the case that (q, B) ↓A s. We write q ↓A as a shorthand for (q, ∅) ↓A, and

similarly for q ↓A s, q ↑A, and q ↑A s. We write M ↓A s if q0 ↓A s, and similarly for

M ↑A s.
�

Intuitively, (q, B) ↓A s means that the configuration (q, B) can never reach a diverging

state after asynchronously exhibiting any prefix of s. Another aspect of the process

behavior that is relevant to must testing is the set of all actions a process can perform

after exhibiting a given trace.

Definition 5.7 (acceptance sets) Let M = (Q,
∑

∪
∑

,→, q0, F). For s ∈ (
∑

∪
∑

)∗

and a configuration (q, B) of M , we define

(q, B) after s = {(q′, B′) | (q, B)
s

=⇒A (q′, B′)}

We write q after s as a shorthand for (q, ∅) after s. For a set of configurations C and

L ⊆
∑

, we say C must L if and only if for each (q, B) ∈ C there exists a ∈ L such that

(q, B)
a

=⇒A. We write M after s for q0 after s.
�

Informally, (q, B) after s is the set of all configurations that (q, B) can reach after

performing a sequence of asynchronous transitions whose visible content is s. For a set

of configurations C, C must L if every configuration in C, possibly after a sequence of

internal transitions, can perform an output at least one of the co-names in L. Note

that we are only concerned with L ⊆
∑

, i.e only with sets of output actions, because

asynchronous inputs are not observable. We are now ready to define an alternate preorder

on AFSMs, which characterizes the must preorder.

96

Definition 5.8 (alternate must preorder) Let M1 = (Q1,
∑

∪
∑

,→1, q1, F1), M2 =

(Q2,
∑

∪
∑

,→2, q2, F2). For a set of names ρ, let
∑′ =

∑

\ρ. We say M1 �m
ρ M2 if for

every L ⊂
∑′ and s ∈ (

∑′ ∪
∑′)∗ if M1 ↓A s then (a) M2 ↓A s, and (b) M1 after s must L

implies M2 after s must L.
�

The following theorem characterizes the parameterized must preorder on AFSMs.

We again skip the proof as it is a simple adaptation of the proof for characterization of

(unparameterized) must preorder over asynchronous CCS [19].

Theorem 5.3 (characterization of must testing)

Let M1 = (Q1,
∑

1 ∪
∑

1,→1, q1, F1), and M2 = (Q2,
∑

2 ∪
∑

2,→2, q2, F2). Let
∑

=
∑

1 ∪
∑

2, M ′
1 = (Q1,

∑

∪
∑

,→1, q1, F1), and M ′
2 = (Q2,

∑

∪
∑

,→2, q2, F2). Then

M1

�

∼
M

ρ M2 if and only if M ′
1 �

m
ρ M ′

2.
�

5.4 Decidability Results for May Testing

We first show that the unparameterized may preorder
�

∼ over AFSMs is decidable, and

that the problem is EXPSPACE-hard. We then show that the parameterized may pre-

order
�

∼ρ is undecidable for |ρ| ≥ 2.

By Theorem 5.2, we have a decision procedure for
�

∼ if we can decide LA(M1) ⊆

LA(M2) for arbitrary M1 and M2. We now give a decision procedure for the language

containment problem over AFSMs. The reader may note that in comparison the lan-

guage containment problem over the more general class of MSA (with τ -transitions) is

undecidable [40].

Deciding if LA(M1) ⊆ LA(M2) involves comparing two infinite state systems. The

following lemma provides a handle to deal with this problem.

Lemma 5.2 Let M1 and M2 be FSMs with alphabet
∑

1 and
∑

2 respectively, and let
∑

1 ⊆
∑

2. Then LA(M1) ⊆ LA(M2) if and only if L(M1) ⊆ LA(M2).

Proof: This is an easy consequence of Theorem 5.1. Since L(M1) ⊆ LA(M1), we have

LA(M1) ⊆ LA(M2) implies L(M1) ⊆ LA(M2). Conversely, suppose L(M1) ⊆ LA(M2).

97

Let .1 be the relation as defined in Definition 5.2 with respect to the alphabet
∑

1, and

similarly .2 with respect to the alphabet
∑

2. Then L(M1) .1 LA(M1), and LA(M2) is

closed under .2. Since
∑

1 ⊆
∑

2, LA(M2) is also closed under .1. Then L(M1) ⊆ LA(M2)

implies LA(M1) ⊆ LA(M2).
�

For the case
∑

1 6⊆
∑

2, it is easy to show that LA(M1) ⊆ LA(M2) if and only if

LA(M1) = ∅. Now, checking for emptiness of LA(M1) 6= ∅ is the same as checking for

emptiness of L(M1), and decision procedures for this are well known. So, from now on

we may assume that
∑

1 ⊆
∑

2.

As a consequence of Lemma 5.2, in order to decide LA(M1) ⊆ LA(M2), we only need

to compare the (synchronous) transitions of a finite state system with (asynchronous)

transitions of an infinite state system. Figure 5.3 shows a naive attempt at a decision

procedure that exploits this simplification. The arguments to procedure contained are

a control state p of M1 = (Q1,
∑

1 ∪
∑

1,→1, q1, F1) and a set of configurations C of

M2 = (Q2,
∑

2 ∪
∑

2,→2, q2, F2). The idea is that the procedure returns true if and only

if L(p) ⊆ LA(C), where LA(C) = ∪(q,B)∈CLA(q, B). Thus, to decide if LA(M1) ⊆ LA(M2)

the procedure is to be invoked with arguments (q1,M1, {(q2, ∅)},M2).

The procedure contained recursively matches the synchronous transitions of M1 start-

ing from p, with asynchronous transitions of M2 starting from any configuration in C.

Without loss of generality, we assume that M1 does not have any τ transitions between

its control states, because otherwise we can eliminate the τ actions by the usual τ -

elimination procedure without changing L(M1). In line 8, we assume a subroutine reach

such that for a trace s, reach(C, s,M2) = ∪(p2,B)∈C {(p′2, B
′) | (p2, B)

s
=⇒A (p′2, B

′)}.

Figure 5.3 does not provide a decision procedure since the procedure contained need

not terminate due to two reasons. First, the recursion in lines 6 and 9 is in general

unbounded. Second, the set reach(C, a,M) may not be finite. For instance for the

98

1 contained(p, M1, C, M2)
2 if p ∈ F1 and ε /∈ LA(C) then return false
3 for all a ∈

∑

1
, p′ ∈ Q1

4 if p
a

−→1 p′ then
5 C′ := {(p2, B ∪ {a}) | (p2, B) ∈ C}
6 if not contained(p′, M1, C

′, M2) then return false

7 if p
a

−→1 p′ then
8 C′ := reach(C, a, M2)
9 if not contained(p′, M1, C

′, M2,) then return false
10 end for
11 return true
12 end contained

Figure 5.3: A naive attempt at deciding the asynchronous language containment prob-
lem

AFSM M of Figure 5.1, we have

reach({(q1, {a})}, a,M) =



















(q1, {an, bm}) (q2, {an+1, bm})

(q3, {an+2, bm}) (q4, {an, bm+1})

(q5, {an, bm+2})

∣

∣

∣

∣

∣

∣

n,m ≥ 0

n ≡ m (mod 3)



















Finally, we also have to provide a procedure to check if ε ∈ LA(C) in line 2.

We use the following idea to bound the number of recursive calls. We define C ′ � C

if for every (q, B′) ∈ C ′ there is (q, B) ∈ C such that B ′ ⊆ B. Note that as a con-

sequence of Lemma 5.1.1, C ′ � C implies LA(C ′) ⊆ LA(C). But this implies that

an invocation contained(p,M1, C,M2) is redundant if there was a previous invocation

contained(p,M1, C
′,M2) such that C ′ � C. This is because, if the previous invoca-

tion contained(p,M1, C
′,M2) returned true, then L(p) ⊆ LA(C ′) ⊆ LA(C), and hence

we know that contained(p,M1, C,M2) should return true. On the other hand, if con-

tained(q,M1, C
′,M2) returned false, then the procedure would already have terminated

by returning false.

The following lemma states a useful property of the relation �.

99

Lemma 5.3 Given a sequence C1, C2, . . ., where Ci ∈ P(Q × {|
∑

|}) are finite sets,

there exist m,n such that m < n and Cm � Cn.

Proof: A direct consequence of applying Higman’s lemma [39] to natural numbers

extended with ω.
�

Note that finiteness of Ci does not preclude Ci from containing configurations (q, B)

where B is infinite.

To avoid computation of the possibly infinite set reach (C, a,M), we compute a finite

set of configurations C ′ such that LA(C ′) = LA(reach(C, a,M)), and use C ′ instead in

line 8 of Figure 5.3.

Definition 5.9 For sets of configurations C1 and C2, we say C2 covers C1 if (1) C1 �

C2, and (2) (q, B) ∈ C2 implies there are B1 ⊆ B2 ⊆ . . . such that B = tiBi and

(q, Bi) ∈ C1.

For instance, for the AFSM in Figure 5.1 and the set C ′ = { (qi, {a
ω, bω}) | 1 ≤

i ≤ 5 }, we have C ′ covers reach({(q1, {a})}, a,M). We write aω ∈ B to denote that

B contains infinitely many a’s, and adapt the usual multiset operations and relations

accordingly. For instance, {|a, bω|}∪{|a, b|} = {|a, a, bω|}, and {|a, bω|}\{|a, b|} = {|bω|}.

Following lemma is an easy consequence of Lemma 5.1.

Lemma 5.4 If C2 covers C1 then LA(C1) = LA(C2).

Our plan is to compute a finite set of configurations C ′ such that C ′ covers reach(C, a,

M). We first consider the case where the set C contains a single configuration. We use

Karp and Miller’s algorithm for computing the coverability tree of Petri Nets [46], which

applies to AFSMs since they are a special class of Petri nets. This is the subroutine

cover shown in Figure 5.4. Roughly, cover((q, B),M) returns a set of configurations that

covers all the configurations that M can reach starting from (q, B) and by a sequence of

asynchronous transitions labeled with τ . In line 3, we write Bω to denote {|aω | a ∈ B|}.

Note that, we have assumed that M has no τ -transitions (between the control states).

100

1 append(v, (q, B))
2 if ∃i s.t. v(i) = (q, Bi) and B ⊆ Bi then return v
3 if ∃i s.t. v(i) = (q, Bi) and Bi ⊆ B then return v.(q, Bi ∪ (B \ Bi)

ω)
4 return v.(q, B)
5 end append

6 cover((q, B), (Q,
∑

∪
∑

,→, q0, F))
7 V := {(q, B)}
8 repeat
9 V ′ := V ; V := ∅
10 for all v ∈ V ′

11 let v = v′.(q′, B′)
12 for all a ∈

∑

, q′′ ∈ Q

13 if q′
a

−→ q′′ and a ∈ B′ then
14 V := V ∪ append(v, (q′′, B′ \ {a}))

15 if q′
a

−→ q′′ then
16 V := V ∪ append(v, (q′′, B′ ∪ {a}))
17 end for all
18 end let
19 end for all
20 until V = V ′

21 return configs(V)
22 end cover

Figure 5.4: Karp and Miller algorithm for computing the coverability sets.

101

The expression configs(V) returns the set of all configurations that occur in the paths

(sequences of configurations) in V .

We recall from [46] that the procedure cover terminates for any input ((q, B),M), and

returns a finite set of configurations such that cover({(q, B)},M) covers reach({(q, B)}, ε,

M). For a given a, we then extract a set C ′ from cover({(q, B)},M) such that C ′ covers

reach({(q, B)}, a,M).

Lemma 5.5 For M = (Q,
∑

∪
∑

,→, q0, F), q ∈ Q, and B ∈ {|
∑

|}, the following

statements are true.

1. ε ∈ LA(q, B) if and only if (q′, B′) ∈ cover((q, B),M) for some q′ ∈ F .

2. For a given a ∈
∑

, let C = {(q′, B′ \ {a}) | (q′, B′) ∈ cover((q, B),M), a ∈ B ′}.

Then C covers reach({(q, B)}, a,M).

Proof:

1. Suppose ε ∈ LA(q, B). Then (q, B) =⇒A (q′, B′) for some q′ ∈ F . Then, since C

covers reach((q, B), ε,M), we have (q′, B′′) ∈ C for some B′′ ⊇ B′. Conversely, sup-

pose (q′, B′) ∈ C for some q′ ∈ F . Then again since C covers reach((q, B), ε,M),

we have (q, B) =⇒A (q′, B′′) for some B′′ ⊆ B′, which implies ε ∈ LA(q, B).

2. Suppose (q′, B′) ∈ reach({(q, B)}, a,M). Then, (q, B)
a

=⇒A (q′, B′), which implies

(q, B) =⇒A (q′, B′∪{a})
a

−→A (q′, B′). Then, (q′, B′∪{a}) ∈ reach({(q, B)}, ε,M),

and since cover((q, B),M) covers reach({(q, B)}, ε,M), we have (q ′, B′′) ∈ cover

((q, B),M) for some B ′′ ⊇ B′∪{a}. But then (q′, B′′ \{a}) ∈ C and B′′ \{a} ⊇ B′.

We have shown reach({(q, B)}, a,M) � C. Now, suppose that (q ′, B′) ∈ C. Then

(q′, B′∪{a}) ∈ cover((q, B),M). Since cover((q, B),M) covers reach({(q, B)}, ε,M),

there are B1 ⊆ B2 ⊆ . . . such that (q′, Bi) ∈ reach({(q, B)}, ε,M) and tiBi =

B′ ∪ {a}. Then there is n such that a ∈ Bi for all i ≥ n. Then, we have

(q′, Bi \ {a}) ∈ reach({(q, B)}, a,M) for all i ≥ n, and ti≥n(Bi \ {a}) = B′. Thus,

we have shown that C covers reach({(q, B)}, a,M).
�

102

1 contained(p1,M1, C,M2)
2 L := L ∪ (p1, C)
3 C ′′ := ∪(p,B)∈Ccover((p,B),M2)
4 if p1 ∈ F1 and for all (p2, B) ∈ C ′′ p2 /∈ F2 then return false
5 for all a ∈

∑

1, p′1 ∈ Q1

6 if p1
a

−→1 p′1 then
7 C ′ := {(p2, B ∪ {a}) | (p2, B) ∈ C}
8 if (p′1, C

′) not covered by L then
9 if not contained(p′

1,M1, C
′,M2) then return false

10 if p1
a

−→1 p′1 then
11 C ′ := {(p,B \ {a})|(p,B) ∈ C ′′, a ∈ B}
12 if (p′1, C

′) not covered by L then
13 if not contained(p′

1,M1, C
′,M2) then return false

14 end for
15 return true
16 end contained

Figure 5.5: An algorithm for deciding asynchronous language containment of AFSMs.

We are now ready to present the correct version of the procedure contained.

Theorem 5.4 There is an algorithm, which given M1 and M2, decides if LA(M1) ⊆

LA(M2).

Proof: Figure 5.5 shows the algorithm, which differs from the procedure in Figure 5.3

as follows.

In line 4, instead of checking if ε ∈ LA(C), we use Lemma 5.5.1 and check for

the equivalent condition that for some p2 ∈ F2 and B, (p2, B) ∈ C ′′ where C ′′ =

∪(p,B)∈Ccover((p,B),M2). In line 11, we exploit Lemmas 5.5.2 and 5.4 to use the set

{(p,B \ {a})|(p,B) ∈ C ′′, a ∈ B} which is always finite (because the output of cover is

finite), instead of reach(C, a,M) which can in general be infinite.

To ensure termination, we use the variable L to remember all the inputs with which

contained has been invoked so far, and we recursively call contained with input (p′
1, C

′)

(lines 9 and 13) only if it is not redundant. The variable L is initially set to ∅. We say

103

(q, C) is covered by L if there is (q, C ′) ∈ L such that C ′ � C. Thus, an input (p′1, C
′) is

redundant if and only if it is covered by L.

We now show that contained terminates for an input (p, C) provided C is a finite

set. The proof is by contradiction. Suppose contained doesn’t terminate for an input

(p, C), where C is a finite set. Then contained is called an infinite number of times

with arguments, say (pi, Ci), each of which is added to L. The sequence (pi, Ci) has a

subsequence (pk, Cki
) for some k, since |Q1| is finite. Since C is finite it follows that each

Cki
is finite. Then by Lemma 5.3, there are m,n such that m < n and Ckm

� Ckn
.

But this is impossible because when contained is called with arguments (pk, Ckn
), the

argument is already covered by L. Contradiction.
�

We now contrast our algorithm with the usual procedure for deciding synchronous

language containment over FSMs. To decide L(M1) ⊆ L(M2) the usual procedure is

to first construct ¬M2 such that L(¬M2) = L(M2), then construct M1 ∩ ¬M2 such

that L(M1 ∩ ¬M2) = L(M1) ∩ L(¬M2), and finally check if L(M1 ∩ ¬M2) = ∅. This

procedure cannot be used for deciding LA(M1) ⊆ LA(M2) because we cannot in general

construct ¬M2, i.e. the set of asynchronous languages of FSMs is not closed under

complementation.

Although we do not have a clear upper bound on the running time of the algorithm

contained, we show that the asynchronous language containment problem is EXPSPACE-

hard.

Theorem 5.5 The asynchronous language containment problem for FSMs is

EXPSPACE-hard.

Proof: We reduce the halting problem of counter machines of size n, whose counters are

bounded by 22n

, to the given problem. The halting problem for such counter machines

is known to be EXPSPACE-complete [42]. We use a construction first presented by

Lipton [51]; for a more recent exposition, see [28]. Given a counter machine C, Lipton

constructs an unlabeled Petri Net P = (S, T, F, µ) with designated places sinit and shalt

104

such that P reaches any marking with a token in place shalt if and only if C halts. In

addition, Lipton’s construction has the following properties

1. The number of places and transitions is O(n), and P can be constructed in time

that is a polynomial in n.

2. The initial marking µ has no tokens in any place, except sinit which has one token.

3. The set of places S can be partitioned into 3 sets: Sc, which keeps track of the

control state of the counter machine C; Sr, which are used in some recursive com-

putation that P makes; and Sv, which keeps track of the values of the counters of

C and some additional variables needed in the simulation of C. Each of the sets

Sc, Sr, Sv is of size O(n), and the designated places sinit and shalt belong to Sc.

4. The preset and postset of any transition t involve exactly one place in Sc, at most

one place in Sr, and at most one place in Sv. In other words, |Sc ∩ •t| = 1,

|Sr ∩ •t| ≤ 1, and |Sv ∩ •t| ≤ 1; similar conditions hold for t•.

We will construct AFSMs M1 and M2 such that La(M1) ⊆ La(M2) if and only if P

reaches a marking with a token in place shalt. The construction of M1 and M2 will be

done in time which is a polynomial in n. We first describe M2 that simulates the net P .

Let Q = {r, w}×Sc×(Sr∪{−})×(Sv∪{−}), and let
∑

= Sr∪Sv∪{A} for A 6∈ Sr∪Sv.

Define,

M2 = (Q,
∑

∪
∑

,→, (r, 〈sinit,−,−〉), Q)

where the transition relation is defined by the following rules. For s ∈ Sc, a ∈ Sr, v ∈ Sv,

t ∈ T , x, x′ ∈ Sr ∪ {−} and y, y′ ∈ Sv ∪ {−},

• (r, 〈s,−, y〉)
a
→ (r, 〈s, a, y〉)

• (r, 〈s, x,−〉)
v
→ (r, 〈s, x, v〉)

• (r, 〈s, x, y〉)
τ
→ (w, 〈s′, x′, y′〉), where •t = {s, x, y} and t• = {s′, x′, y′}

105

• (w, 〈s, a, y〉)
ā
→ (w, 〈s,−, y〉)

• (w, 〈s, x, v〉)
v̄
→ (w, 〈s, x,−〉)

• (w, 〈s,−,−〉)
τ
→ (r, 〈s,−,−〉)

• (r, 〈shalt, x, y〉)
Ā
→ (w, 〈shalt, x, y〉)

A marking of places in the net P is encoded as the message buffer of M . To simu-

late a transition of P , M reads its message buffer and non-deterministically makes a

transition that is enabled, i.e. whose preset has all places with non-zero marking. Af-

ter the transition, M performs output actions so that its message buffer corresponds to

the new marking that P reaches after its transition. Finally, M2 emits a special mes-

sage Ā when there is a token in shalt. Now observe that Ā ∈ La(M2) if and only if

(r, 〈sinit,−,−〉) ⇒A (r, 〈shalt,−,−〉), which in turn can happen if and only if P reaches a

marking with a token in shalt. In addition, |Q| = O(n3),
∑

= O(n), and so |M2| = O(n6).

Moreover M2 can be constructed in O(n6) time given P .

Finally, M1 = ({q1, q2}, {A} ∪ {Ā},→, q1, q2), where the only transition in M1 is

q1
Ā
→ q2. Observe that La = [{Ā}].. Hence, we have, La(M1) ⊆ La(M2) if and only if

Ā ∈ La(M2) if and only if (r, 〈sinit,−,−〉) ⇒A (r, 〈shalt,−,−〉) if and only if P reaches a

marking with a token in shalt if and only if C halts.
�

Now, by Theorems 5.5 and 5.2, the asynchronous may preorder relation
�

∼ is decidable

and is EXPSPACE-hard. Further, since ' =
�

∼ ∩
�

∼
−1

, it follows that deciding ' is also

EXPSPACE-hard. We now show that the parameterized may equivalence is in general

undecidable.

Theorem 5.6 The parameterized asynchronous may equivalence 'ρ on AFSMs is un-

decidable.

Proof: We reduce the language equality problem for labeled Petri nets, which is known

to be undecidable [35], to the given problem. Specifically, given Petri nets P1 and P2 we

106

construct AFSMs M1,M2, and ρ such that L(P1) ⊆ L(P2) if and only if LA(M1)dρ ⊆

LA(M2)dρ. We are then done by Theorem 5.2.

We now construct for a given Petri net P an AFSM M that simulates P . The

construction is along the lines of the one presented in the proof of Theorem 5.5, but

it works for arbitrary Petri nets and also accounts for the transition labels of the net.

Suppose P = (S, T, F, λ, µ) is a Petri net, where S and T are disjoint sets of places and

transitions, F ⊆ (S×T)∪ (T ×S) is the flow relation, λ : T → L is the labeling function,

and µ : S → N is the initial marking. Without any loss of expressive power we may

assume that µ leaves a single token at exactly one of the places. Define

M = ({r, w} × P(S),
∑

∪
∑

,→, (w, {µ}), {r, w} × P(S))

where
∑

= S ∪ L ∪ {A} for some A /∈ S ∪ L, {µ} denotes the singleton {s} such that

µ(s) 6= 0, and the transition relation → is defined by the following rules. For X ⊆ P(S),

s ∈ S and t ∈ T :

• (r,X)
s

−→ (r,X ∪ {s}) if s /∈ X.

• (r,X)
λ(t)
−→ (w, (X \ •t) ∪ t•) if •t ⊆ X.

• (w,X)
s

−→ (w,X \ {s}) if s ∈ X.

• (w, ∅)
A

−→ (r, ∅).

where •t = {s | s ∈ S, (s, t) ∈ F} and t• = {s | s ∈ S, (t, s) ∈ F} are the preset and

postset of the transition t.

Now, given Petri nets P1 and P2, let M1 and M2 be the AFSMs constructed as above.

Let ρ = S1 ∪ S2, and let L be the set used to label transition in P1 and P2. First,

suppose L(P1) 6⊆ L(P2). Then there is r such that r ∈ L(P1) and r /∈ L(P2). Suppose

r = l1.l2. · · · .ln. Let r′ = A.l1.A.l2.A. · · · .ln.A. Then r′ ∈ LA(M1)dρ, but r′ /∈ LA(M2)dρ,

and hence LA(M1)dρ 6⊆ LA(M2)dρ. Now, suppose L(P1) ⊆ L(P2). Let

L1 = {A.l1.A. · · · .ln.A | l1. · · · .ln ∈ L(P1)}

L2 = {A.l1.A. · · · .ln.A | l1. · · · .ln ∈ L(P2)}

107

It is clear from the construction of M1 and M2 that LA(M1)dρ = [L1]. and LA(M2)dρ =

[L2]., where the relation . is defined with respect to the alphabet L ∪ {A}. Now, since

L(P1) ⊆ L(P2), we have L1 ⊆ L2, which implies [L1]. ⊆ [L2]. and hence LA(M1)dρ ⊆

LA(M2)dρ.
�

Note that the undecidability of 'ρ implies undecidability of
�

∼ρ. Further, it is known

that the language equality problem for labeled Petri nets is undecidable even for Petri nets

with two unbounded places [44]. From this it can be easily shown that 'ρ is undecidable

even for ρ such that |ρ| = 2.

5.5 Decidability Results for Must Testing

We first show that the parameterized must equivalence 'M
ρ is undecidable.

Theorem 5.7 The parameterized asynchronous must equivalence 'M
ρ on FSMs is unde-

cidable.

Proof: We reduce the halting problem of counter machines to the given problem. We

exploit Jancar’s proof of undecidability of bisimilarity of Petri nets [44]. For a given

counter machine C, Jancar constructs two labeled petri nets with the same underlying

net, P1 = (S, T, F, λ, µ1) and P2 = (S, T, F, λ, µ2), which are bisimilar if and only if C

does not halt. In particular, P1 and P2 have the following properties.

1. For all t ∈ T , λ(t) 6= τ .

2. If C halts, then L(P1) 6= L(P2).

3. If C does not halt, then P1 and P2 are bisimilar.

Let λ : T → L, and
∑

= L∪S ∪{A} for A /∈ L∪S. Let M1 = (Q,
∑

∪
∑

,→, q1, F) and

M2 = (Q,
∑

∪
∑

,→, q2, F) be the FSMs constructed out of P1 and P2 as in the proof of

Theorem 5.6. Actually, the nets that Jancar constructs have initial markings that may

not be of the type assumed in the construction of the AFSMs. But our construction

can be modified the obvious way to account for this; the AFSM initially performs an

108

appropriate number of output actions. Further, this modification can be done in such a

way that, since P1 and P2 differ only in their initial marking, M1 and M2 differ only in

their initial states.

We show that for ρ = S, M1 '
M
ρ M2 if and only if C does not halt. From property 1

above, it follows that for every r ∈ (
∑

∪
∑

)∗, M1 ↓A r and M2 ↓A r. Now, we have two

cases to consider:

• C halts: From property 2, L(P1) 6= L(P2). Without loss of generality, we may

assume, there is l1.ln ∈ L∗ such that l1.ln ∈ L(P1), l1.ln−1 ∈ L(P2), but

l1.ln /∈ L(P2). Then, for r = A.l1.A.ln−1.A.ln, we have M1 after r /must {ln}

but M2 after r must {ln}. Then by Theorem 5.3, M1 /'M
ρ M2.

• C does not halt: From property 3, P1 and P2 are bisimilar. Suppose for some

r ∈ ((L ∪ {A}) ∪ (L ∪ {A}))∗ and X ⊆ L ∪ {A}, M1 after r /must X. We show

M2 after r /must X. With a similar argument for the converse, it follows by

Theorem 5.3 that M1 'M
ρ M2. By our assumption, (q1, ∅)

r
=⇒A (p1, B1) for some

(p1, B1) such that (p1, B1) /must X. Then X ∩ B1 = ∅ and by Theorem 5.1, for

some r1 ∈ (
∑

∪
∑

)∗, q1
r1=⇒ p1 and r1 . r. Moreover, as shown in the proof of

Theorem 5.1, B1 = ({|r|}i ∪ {|r1|}o) \ ({|r|}o ∪ {|r1|}i). Further, since we know

that M1 ↓A r, without loss of generality we may assume that (p1, B1)
τ

/−→. Now,

since P1 and P2 are bisimilar, we have L(P1) = L(P2). Then from the way M1 and

M2 are constructed, it follows that there is r2 ∈ (
∑

∪
∑

)∗ such that q2
r2=⇒ p2 and

r2dρ = r1dρ. Then (q2, ∅)
r

=⇒A (p2, B2), for some B2 such that for all a ∈ L∪ {A},

#(a,B2) = #(a,B1). Then X ∩ B2 = ∅. Now, for all l ∈ X ∩ L, it cannot

be the case that (p2, B2)
l

=⇒A, because l /∈ B2 and M2 never performs output

actions in L. Thus if X ⊂ L then it follows that (p2, B2) /must X and hence

M2 after r /must X. On the other hand, suppose A ∈ X. Then A /∈ B2, and

hence the only way (p2, B2)
A

=⇒A is if p2
l

=⇒ for some l ∈ B2 ∩ L. Now, since

(p1, B1)
τ

/−→, we have p1

l

/=⇒. But then from q1
r1=⇒ p1

l

/=⇒, q2
r2=⇒ p2

l
=⇒, and

r1dρ = r2dρ, it would follow that the Petri nets P1 and P2 are not bisimilar, which

109

is a contradiction. Hence (p2, B2)
A

/=⇒, and thus in all cases (p2, B2) /must X. This

implies M2 after r /must X.

We have shown that M1 'M
ρ M2 if and only if the counter program C does not halt.

Hence the asynchronous parameterized must equivalence is undecidable.
�

Theorem 5.7 implies that the parameterized preorder
�

∼
M

ρ is also undecidable. The

decidability of unparameterized must preorder
�

∼
M

is still open. We end this section with

a partial result in this direction.

For an FSM M = (Q,
∑

∪
∑

,→, q0, F) we define the asynchronous divergence lan-

guage L↑
a(M) = {s | s ∈ (

∑

∪
∑

)∗, q0 ↑A s}. By Theorem 5.3, given FSMs M1 and M2

with alphabet
∑

∪
∑

, a necessary condition for M1

�

∼
M

M2 is that L↑
a(M2) ⊆ L↑

a(M1).

Note that, checking for this condition is an important problem by itself; by viewing M2

as an implementation of the specification M1, it checks that the implementation diverges

only as allowed by the specification.

Now, we present a decision procedure which given M1 and M2, checks if L↑
a(M2) ⊆

L↑
a(M1). We use the following lemma, which Rackoff proved for the more general case

of Petri nets [75]. Since AFSMs are just a special class of Petri nets, this result is also

applicable for AFSMs.

Lemma 5.6 (Rackoff [75]) Let M = (Q,
∑

∪
∑

,→, q0, F) be an FSM of size n. Then

for q ∈ Q, and a finite B ∈ {|
∑

|}, (q, B) ↑A, if and only if there is transition sequence

(q, B)
τ

−→A (q1, B1)
τ

−→A . . .
τ

−→A (qk, Bk)
τ

−→A (q′, B′)

and 1 ≤ i ≤ k such that qi = q′, Bi ⊆ B′ and k ≤ 2cn log n for some constant c that is

independent of n, q and B.
�

We now reduce the problem of deciding containment of asynchronous divergence lan-

guages to the problem of containment of asynchronous languages, for which we gave a

decision procedure in Section 5.4.

110

Lemma 5.7 For an FSM M = (Q,
∑

∪
∑

,→, q0, F), there is a finite B0 ∈ {|
∑

|} such

that for all q ∈ Q, if (q, B) ↑A then (q, B ∩ B0) ↑A.

Proof: Let n = |Q ∪
∑

|. We show the multiset B0 ∈ {|
∑

|} such that #(a,B0) =

2cn log n for all a ∈
∑

, where c is the constant in Lemma 5.6, satisfies the property stated

above. Now, suppose (q, B) ↑A. Then by Lemma 5.6, there is a transition sequence

(q, B) =⇒A (q′, B1) =⇒A (q′, B2) of length ≤ 2cn log n for some B2 ⊇ B1. Let B′ =

B ∩ B0, and B′′ = (B′ ∪ (B1 \ B)) \ (B \ B1). Then clearly, (q, B ′) =⇒A (q′, B′′) =⇒A

(q′, B′′ ∪ (B2 \B1)), the length of which is the same as that of (q, B) =⇒A (q′, B2). Then

again by Lemma 5.6, (q, B ′) ↑A.
�

Lemma 5.8 For an FSM M , there is an FSM M ′ such that L↑
a(M) = La(M

′).

Proof: Let M = (Q,
∑

∪
∑

,→, q0, F). We construct M ′ = (Q′,
∑

∪
∑

,→′, q′, F ′) that

simulates M , and at any time can non-deterministically choose to examine the contents

of its message buffer. If it finds the buffer to be large enough for M to be able to diverge

from its current state, then M ′ jumps to an accepting state.

Specifically, let Q = {q1, . . . , qn}. For each qi, define the set Bi as follows. If (qi, B) ↓A

for every B then Bi = ∅. Else Bi is the finite set {Bi1, . . . , Bik} such that if (qi, B) ↑A

then B ⊇ Bij for some Bij ∈ Bi, and Bil ⊆ Bim implies Bil = Bim. As a consequence of

Lemma 5.7, we know that such a Bi exists. In fact, it can be computed as follows. Let

B0 be the multiset produced by Lemma 5.7. Enumerate all B ⊆ B0, and check for each

if (qi, B) ↑A (Lemma 5.6 gives us a procedure for this), and let Bi be the set of all such

minimal B’s for which (qi, B) ↑A.

Let Q′ = {(qi, B) | B = ∅, or B ⊆ B ′ for some B′ ∈ Bi} ∪ {f} (note that Bi may be

empty), q′ = (q0, ∅), and F ′ = {f}. The transition function →′ is defined as

(qi, ∅)
α

−→′ (qj, ∅) if qi
α

−→ qj

(qi, B)
a

−→′ (qi, B ∪ {a}) if (B ∪ {a}) ⊆ B ′ for some B′ ∈ Bi

(qi, B)
τ

−→′ f if B = B′ for some B′ ∈ Bi

f
a

−→′ f for all a ∈
∑

111

Note that the transition (sub)graph of M ′ with only the nodes (qi, ∅) is isomorphic to

the transition graph of M . Thus M ′ can simulate M . But at any time, M ′ can non-

deterministically choose to “examine” the message buffer contents. It is easy to check

that La(M
′) = L↑

a(M).
�

Theorem 5.8 There is an algorithm, which given FSMs M1 and M2, decides if L↑
a(M1) ⊆

L↑
a(M2).

Proof: An immediate consequence of Lemma 5.8 and Theorem 5.4. Note that the proof

of Lemma 5.8 not only shows the existence of M ′, but also effectively constructs it.
�

5.6 Discussion and Related Work

We have introduced a class of asynchronous infinite state systems called AFSMs, and

related it to other asynchronous process models in the literature. We have investigated

decidability of may and must testing equivalences over AFSMs. We have shown that

the unparameterized may preorder is decidable over AFSMs. In comparison, decision

procedures for may testing were previously known only for the simple class of finite

state machines [45]. We have also shown that the parameterized may and must testing

equivalences are undecidable over AFSMs. The decidability of unparameterized must

testing is still open.

AFSMs relate to lossy channel systems investigated in [3, 4, 15]. Specifically, they

can be viewed as finite control systems interacting with an unreliable (or noisy) buffer,

where messages can be randomly lost to or received from the environment. But unlike

in typical lossy channel systems where the message losses are invisible, message losses

and additions are the only visible actions in AFSMs. The idea is that these transitions

are viewed as interactions between the process and its environment, and we are only

interested in the observable behavior of such open systems.

Lossy channel systems with ordered message deliveries such as the lossy FIFO chan-

nel systems [3] have been used for modeling and verifying communication protocols [4].

112

AFSMs (with unordered message deliveries) can serve as convenient abstractions for ver-

ification of such systems with ordered message deliveries [15]. Specifically, one can ab-

stract systems with ordered message deliveries as asynchronously communicating finite

state machines inorder to approximately decide verification problems which are either

undecidable on the concrete system or for which there are no decision procedures. For

instance, decision procedures are known for only checking the language containment of

a lossy FIFO channel system and a finite state system [2], or more generally for model

checking lossy systems with respect to sub-logics of µ-calculus [15]. In comparison, we

have given decision procedures for checking language containment between two infinite

state AFSMs. Further, AFSMs can be used to specify properties that are not regular

and hence not expressible in µ-calculus. One such example is the language of an AFSM

with a singleton alphabet, one state which is both an initial and a final state, and no

transitions. The language of this machine is the set of all traces in which every prefix

has at least as many inputs as outputs, which is not regular.

An important lesson we learn from our investigation is that asynchrony makes verifi-

cation of testing equivalences extremely difficult. Specifically, both the unparameterized

may and must testing are decidable in PSPACE over FSMs [45] which are the synchronous

analogue of AFSMs. In comparison, by Theorem 5.5, deciding the unparameterized may

preorder over AFSMs is EXPSPACE-hard. Further, the parameterized may and must

testing over FSMs are also decidable in PSPACE roughly due to the following reason -

comparing FSMs M1 and M2 according to a may or must preorder that is parameterized

by a set of names ρ, is the same as comparing the FSMs by an unparameterized pre-

order after removing in both the FSMs all the transitions
α

−→ with α ∈ ρ ∪ ρ. A similar

situation does not hold for AFSMs.

Our investigations leave some problems open, of which the major ones are the follow-

ing. First, although we have shown that deciding language containment for AFSMs is

EXPSPACE-hard, we do not have a clear upper bound on its complexity. Moreover, the

lower bound follows from showing a lower bound on a very special class of membership

problem for AFSMs, which is in fact decidable in EXPSPACE-space. Thus, obtaining im-

113

proved upper and lower bounds for our problems is an important future exercise. In our

paper, we consider three problems for AFSMs: membership, language containment and

divergence language containment. Our reductions demonstrate that these problems are

of increasing computational difficulty. In the absence of clear upper and lower bounds,

even investigating the complexity of these problems relative to each other would be a

useful next step. Another interesting direction to explore would be look at the model

checking problem for AFSMs with respect to modal logics, in the vein of [17, 15]. These

problems may be amenable to tighter complexity analysis.

Another problem of interest for future research is deciding bisimilarity of AFSMs. We

conjecture that bisimilarity is decidable over AFSMs, and this is supported by the fact

that language equivalence (which is coarser than bisimilarity) is decidable over AFSMs

(Theorem 5.4). In contrast, note that bisimilarity is undecidable over the more expressive

asynchronous model of MSA’s [17].

114

Chapter 6

Executable Specification in Maude

In this chapter, we give an executable specification of asynchronous π-calculus [92] and

the Actor model, and the may testing preorder between finitary (non-recursive) processes

in these models. Specifically, we specify the π-calculus and the Actor model as theories

in rewriting logic, and use the Maude tool that supports rewriting logic, for executing

these specifications.

We consider the variant of asynchronous π-calculus with both match and mismatch

capabilities on names (Section 2.1), and specify its labeled transition semantics in rewrit-

ing logic. This specification uses conditional rewrite rules with rewrites in conditions and

the CINNI calculus [86] for managing names and bindings in the π-calculus. We then

specify the type system described in Sections 3.2.1 and 3.4, in membership equational

logic, to obtain an executable specification of Aπ 6=, which is the variant of Actor model

described in Section 3.4.

We then obtain an executable specification of may preorder over finitary processes in

both these calculi using the metalevel facilities in Maude. We use the metalevel facilities

to compute the set of all traces exhibited by a given process, and use this to decide the

may preorder between processes by comparing their trace sets according to the alternate

characterization of may testing presented in Theorem 2.1 (Section 2.1) and Theorem 3.2

(Section 3.4). Note that the may preorder over the variant of asynchronous π-calculus

is unparameterized, whereas the preorder over Aπ 6= is parameterized. The techniques

115

presented in this Chapter can be easily adapted to obtain an executable specification

of Lπ= (Section 2.2), Lπ−
=(Section 2.4), Lπ (Section 2.3), and the parameterized may

preorder over them.

Following is the layout of this chapter. Section 6.1.1 describes the specification of the

syntax of asynchronous π-calculus, together with the corresponding CINNI operations we

use. Section 6.1.2 describes the operational semantics specified by means of conditional

rewrite rules. Section 6.1.3 presents the specification of trace semantics, and Section 6.2

contains the specification of the may preorder over asynchronous π-calculus. Section

6.3 describes the specification of the type system for Aπ 6=, and the parameterized may

preorder over it. Section 6.4 concludes the paper with a discussion of related research

and directions for further work.

6.1 Specification of Asynchronous π-Calculus

We consider the variant of asynchronous π-calculus with both match and mismatch ca-

pability of names, that is described at the end of Section 2.1.

6.1.1 Syntax

The sort Chan is used to represent channel names and each of the non-constant syn-

tax constructors is declared as frozen, so that the corresponding arguments cannot be

rewritten by rules; this will be justified at the end of Section 6.1.2.

sort Chan .

sorts Guard Trm .

op _(_) : Chan Qid -> Guard .

op nil : -> Trm .

op _<_> : Chan Chan -> Trm [frozen] .

op _._ : Guard Trm -> Trm [frozen] .

op _|_ : Trm Trm -> Trm [frozen assoc comm] .

op new[_]_ : Qid Trm -> Trm [frozen] .

116

op if_=_then_else_fi : Chan Chan Trm Trm -> Trm [frozen] .

op !_ : Trm -> Trm [frozen] .

To represent substitution on π-calculus processes (and traces, see Section 6.1.3) at

the language level we use CINNI as a calculus for explicit substitutions [86]. This gives a

first-order representation of terms with bindings and capture-free substitutions, instead

of going to the metalevel to handle names and bindings. The main idea in such a

representation is to keep the bound names inside the binders as it is, but to replace its

use by the name followed by an index which is a count of the number of binders with

the same name it jumps before it reaches the place of use. Following this idea, we define

terms of sort Chan as indexed names as follows.

op _{_} : Qid Nat -> Chan [prec 1] .

We introduce a sort of substitutions Subst together with the following operations:

op [_:=_] : Qid Chan -> Subst .

op [shiftup_] : Qid -> Subst .

op [shiftdown_] : Qid -> Subst .

op [lift__] : Qid Subst -> Subst .

The first two substitutions are basic substitutions representing simple and shiftup

substitutions; the third substitution is a special case of simple substitution; the last one

represents complex substitution where a substitution can be lifted using the operator

lift. The intuitive meaning of these operations is described in Table 6.1 (see [86] for

more details). Using these, explicit substitutions for π-calculus processes are defined

equationally. Some interesting equations are the following:

vars CX CY : Chan .

eq S (CX(Y) . P) = (S CX)(Y) . ([lift Y S] P) .

eq S (new [X] P) = new [X] ([lift X S] P) .

117

[a := x] [shiftup a] [shiftdown a] [lift a S]

a{0} 7→ x a{0} 7→ a{1} a{0} 7→ a{0} a{0} 7→ [shiftup a] (S a{0})
a{1} 7→ a{0} a{1} 7→ a{2} a{1} 7→ a{0} a{1} 7→ [shiftup a] (S a{1})

· · · · · · · · · · · ·
a{n+1} 7→ a{n} a{n} 7→ a{n+1} a{n+1} 7→ a{n} a{n} 7→ [shiftup a] (S a{n})
b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ b{m} b{m} 7→ [shiftup a] (S b{m})

Table 6.1: The CINNI operations.

6.1.2 Operational Semantics

We define the sort Action and the corresponding operations as follows:

sorts Action ActionType .

ops i o : -> ActionType .

op f : ActionType Chan Chan -> Action .

op b : ActionType Chan Qid -> Action .

op tauAct : -> Action .

The operators f and b are used to construct free and bound actions respectively.

Name substitution on actions is defined equationally as expected.

The inference rules in Table 2.1 are modeled as conditional rewrite rules with the

premises as conditions of the rule.1 Since rewrites do not have labels unlike the labeled

transitions, we make the label a part of the resulting term; thus rewrites corresponding

to transitions in the operational semantics are of the form P ⇒ {α}Q.

Because of the INP and OPEN rules, the transitions of a term can be infinitely

branching. Specifically, in case of the INP rule there is one branch for every possible

name that can be received in the input. In case of the OPEN rule, there is one branch for

every name that is chosen to denote the private channel that is being emitted (note that

the transition rules are defined only modulo α-equivalence). To overcome this problem,

we define transitions over pairs of the form [CS] P, where CS is a set of channel names

containing all the names that the environment with which the process interacts, knows

about. The set CS expands during bound input and output interactions when private

names are exchanged between the process and its environment.

1The symmetric versions missing in the table need not be implemented because the process construc-

tors + and | have been declared as commutative.

118

The infinite branching due to the INP rule is avoided by allowing only the names in

the environment set CS to be received in free inputs. Since CS is assumed to contain all

the free names in the environment, an input argument that is not in CS would be a private

name of the environment. Now, since the identifier chosen to denote the fresh name is

irrelevant, all bound input transitions can be identified to a single input. With these

simplifications, the number of input transitions of a term become finite. Similarly, in the

OPEN rule, since the identifier chosen to denote the private name emitted is irrelevant,

instances of the rule that differ only in the chosen name are not distinguished.

We discuss in detail the implementation of only a few of the inference rules; the reader

is referred to Appendix B for a complete list of all the rewrite rules for Table 2.1.

sorts EnvTrm TraceTrm .

subsort EnvTrm < TraceTrm .

op [_]_ : Chanset Trm -> EnvTrm [frozen] .

op {_}_ : Action TraceTrm -> TraceTrm [frozen] .

Note that the two operators are also declared above with the frozen attribute, for-

bidding in this way rewriting of their arguments, as justified at the end of this section.

The following non-conditional rule is for free inputs.

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>

{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

The next rule we consider is the one for bound inputs. Since the identifier chosen to

denote the bound argument is irrelevant, we use the constant ’U for all bound inputs,

and thus ’U{0} denotes the fresh channel received. Note that in contrast to the BINP

rule of Table 2.1, we do not check if ’U{0} is in the free names of the process performing

the input, and instead we shift up the channel indices appropriately, in both the set of

environment names CS and the process P in the righthand side and condition of the rule.

This is justified because the transition target is within the scope of the bound name in

the input action. Note also that the channel CX in the action is not shifted down because

it is out of the scope of the bound argument. The set of environment names is expanded

119

by adding the received channel ’U{0} to it. Finally, we use a special constant flag of

sort Chan, to ensure termination. We add an instance of flag to the environment set of

the rewrite in condition, so that the BINP rule is not fired again while evaluating the

condition. Without this check, we will have a non-terminating execution in which the

BINP rule is repeatedly fired.

crl [BInp] : [CS] P => {b(i,CX,’U)} [’U{0} [shiftup ’U] CS] P1

if (not flag in CS) /\

CS1 := flag ’U{0} [shiftup ’U] CS /\

[CS1] [shiftup ’U] P => {f(i,CX,’U{0})} [CS1] P1 .

The following rule treats the case of bound outputs.

crl [Open] : [CS] (new [X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1

if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

Like in the case of bound inputs, we identify all bound outputs to a single instance

in which the identifier X that appears in the restriction is chosen as the bound argument

name. Note that in both the righthand side of the rule and in the condition, the indices of

the channels in CS are shifted up, because they are effectively moved across the restriction.

Similarly, the channel indices in the action in the righthand side of the rule are shifted

down since the action is now moved out of the restriction. Note also that the exported

name is added to the set of environment names, because the environment that receives

this exported name can use it in subsequent interactions.

The PAR inference rule is implemented by two rewrite rules, one for the case where

the performed action is free, and the other where the action is bound. The rewrite rule

for the latter case is discussed next, while the one for the former case is simpler and

appears in the appendix.

var IO : ActionType

crl [Par] : [CS] (P | Q) =>

{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)

if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

120

Note that the side condition of the PAR rule in Table 2.1, which avoids confusion of

the emitted bound name with free names in Q, is achieved by shifting up channel indices

in Q. This is justified because the righthand side of the rule is under the scope of the

bound output action. Similarly, the channel indices in the environment are also shifted

up. Further, the set of environment names is expanded by adding the exported channel

Y{0}.

Finally, we consider the rewrite rule for CLOSE. The process P emits a bound name

Y, which is received by process Q. Since the scope of Y after the transition includes Q, the

rewrite involving Q in the second condition of the rule is carried out within the scope of

the bound name that is emitted. This is achieved by adding the channel Y{0} to the set

of environment names and shifting up the channel indices in both CS and Q in the rewrite.

Note that since the private name being exchanged is not emitted to the environment,

we neither expand the set CS in the righthand side of the rule nor shift up the channel

indices in it.

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)

if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>

{f(i,CX,Y{0})} [CS2] Q1 .

We conclude this section with the following note. The operator { } is declared frozen

because further rewrites of the process term encapsulated in a term of sort TraceTrm are

useless. This is because all the conditions of the transition rules only involve one step

rewrites (the righthand side of these rewrites can only match a term of sort TraceTrm

with a single action prefix). Further note that, to prevent rewrites of a term to a non

well-formed term, all the constructors for π-calculus terms (Section 6.1.1) have been

declared frozen; in the absence of this declaration we would have for instance rewrites

of the form P | Q => {A}.P1 | Q to a non well-formed term.

6.1.3 Trace Semantics

We introduce a sort Trace as supersort of Action to specify traces.

121

sorts Trace TTrace .

subsort Action < Trace .

op epsilon : -> Trace .

op _._ : Trace Trace -> Trace [assoc id: epsilon] .

op [_] : Trace -> TTrace .

We define the operator [] to represent a complete trace. The motivation for doing

so is to restrict the equations and rewrite rules defined over traces to operate only on

a complete trace instead of a part of it. The following equation defines α-equivalence

on traces. Note that in a trace TR1.b(IO,CX,Y).TR2 the action b(IO,CX,Y) binds the

identifier Y in TR2.

ceq [TR1 . b(IO,CX,Y) . TR2] =

[TR1 . b(IO,CX,’U) . [Y := ’U{0}] [shiftup ’U] TR2]

if Y =/= ’U .

Because the operator op { } : Action TraceTrm -> TraceTrm is declared as frozen,

a term of sort EnvTrm can rewrite only once, and so we cannot obtain the set of finite

traces of a process by simply rewriting it multiple times in all possible ways. The prob-

lem is solved as in [96], by specifying the trace semantics using rules that generate the

transitive closure of one step transitions as follows:

sort TTrm .

op [_] : EnvTrm -> TTrm [frozen] .

var TT : TraceTrm .

crl [reflx] : [P] => {A} Q if P => {A} Q .

crl [trans] : [P] => {A} TT

if P => {A} Q /\ [Q] => TT /\ [Q] =/= TT .

We use the operator [] to prevent infinite loops while evaluating the conditions of

the rules above. If this operator were not used, then the lefthand side of the rewrite

in the condition would match the lefthand side of the rule itself, and so the rule itself

122

could be used in order to solve its condition. This operator is also declared as frozen to

prevent useless rewrites inside [].

We can now use the search command of Maude 2.0 to find all possible traces of a

process. The traces appear as prefix of the one-step successors of a TTrm of the form

[[CS] P]. For instance, the set of all traces exhibited by [mt] new [’y] (’x0 < ’y0 >

| ’x0(’u) . nil) (where mt denotes the empty channel set), can be obtained by using

the following search command.

Maude> search [[mt] new [’y] (’x{0} < ’y{0} > | ’x{0}(’u) . nil)] =>!

X:TraceTrm .

search in APITRACESET : [[mt]new[’y](’x{0} < ’y{0} > | ’x{0}(’u) . nil)] =>!

X:TraceTrm .

Solution 1 (state 1)

states: 7 rewrites: 17344 in 110ms cpu (150ms real) (157672 rewrites/second)

X:TraceTrm --> {b(i, ’x{0}, ’u)}[’u{0}]new[’y](nil | ’x{0} < ’y{0} >)

Solution 2 (state 2)

states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

X:TraceTrm --> {tauAct}[mt]new[’y](nil | nil)

Solution 3 (state 3)

states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

X:TraceTrm --> {b(o, ’x{0}, ’y)}[’y{0}]nil | ’x{0}(’u) . nil

Solution 4 (state 4)

states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

X:TraceTrm --> {b(i, ’x{0}, ’u)}{b(o, ’x{0}, ’y)}[’y{0} ’u{0}]nil | nil

Solution 5 (state 5)

states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

X:TraceTrm --> {b(o, ’x{0}, ’y)}{b(i, ’x{0}, ’u)}[’y{0} ’u{0}]nil | nil

Solution 6 (state 6)

123

states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

X:TraceTrm --> {b(o, ’x{0}, ’y)}{f(i, ’x{0}, ’y{0})}[’y{0}]nil | nil

No more solutions.

states: 7 rewrites: 17344 in 110ms cpu (170ms real) (157672 rewrites/second)

The command returns all TraceTrms that can be reached from the given TTrm, and

that are terminating (the ‘!’ in =>! specifies that the target should be terminating).

The required set of traces can be obtained by simply extracting from each solution

{a1}...{an}TT the sequence a1...an and removing all tauActs in it. Thus, we have

obtained an executable specification of the trace semantics of asynchronous π-calculus.

6.2 Specification of the May Preorder

We encode the trace preorder defined by the laws L1, L2 and L3 in Table 2.2 as rewrite

rules on terms of the sort TTrace of complete traces. Note that L4 is not required for

the variant of asynchronous π-calculus with mismatch capability on names.

The relation r ≺ s if cond, is encoded as s => r if cond. The reason for this form of

representation will be justified soon. The function ({y})· on traces is defined equationally

by the operation bind. The constant bot of sort Trace is used by the bind operation to

signal error.

op bind : Qid Trace -> Trace .

op bot : -> Trace .

var TR : Trace . var IO : ActionType.

ceq TR . bot = bot if TR =/= epsilon .

ceq bot . TR = bot if TR =/= epsilon .

eq bind(X , epsilon) = epsilon .

eq bind(X , f(i,CX,CY) . TR) = if CX =/= X{0} then

if CY == X{0} then ([shiftdown X] b(i, CX , X)) . TR

124

else ([shiftdown X] f(i, CX , CY)) . bind(X , TR) fi

else bot fi .

eq bind(X , b(IO,CX,Y) . TR) = if CX =/= X{0} then

if X =/= Y then ([shiftdown X] b(i, CX , Y)) . bind(X , TR)

else ([shiftdown X] b(IO, CX , Y)) . bind(X , swap(X,TR)) fi

else bot fi .

The equation for the case where the second argument to bind begins with a free

output is not shown as it is similar. Note that the channel indices in actions until the

first occurrence of X{0} as the argument of a free input are shifted down as these move

out of the scope of the binder X. Further, when a bound action with X as the bound

argument is encountered, the swap operation is applied to the remaining suffix of the

trace. The swap operation simply changes the channel indices in the suffix so that the

binding relation is unchanged even as the binder X is moved across the bound action.

This is accomplished by simultaneously substituting X{0} with X{1}, and X{1} with X{0}.

Finally, note that when X{0} is encountered as the argument of a free input, the input

is converted to a bound input. If X{0} is first encountered at any other place, an error

is signaled by returning the constant bot.

The encoding of the preorder relation on traces is now straightforward.

crl [Drop] : [TR1 . b(i,CX,Y) . TR2] => [TR1 . bind(Y , TR2)]

if bind(Y , TR2) =/= bot .

rl [Delay] : [(TR1 . f(i,CX,CY) . b(IO,CU,V) . TR2)] =>

[(TR1 . b(IO,CU,V) . ([shiftup V] f(i, CX , CY)) . TR2)] .

crl [Delay] : [(TR1 . b(i,CX,Y) . f(IO,CU,CV) . TR2)] =>

[(TR1 . bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2))]

if bind(Y , f(IO,CU,CV) . f(i,CX,Y{0}) . TR2) =/= bot .

crl [Annihilate] : [(TR1 . b(i,CX,Y) . f(o,CX,Y{0}) . TR2)] =>

[TR1 . bind(Y , TR2)]

if bind(Y , TR2) =/= bot .

125

Note that in the first Delay rule, the channel indices of the free input action are shifted

up when it is delayed across a bound action, since it gets into the scope of the bound

argument. Similarly, in the second Delay rule, when the bound input action is delayed

across a free input/output action, the channel indices of the free action are shifted down

by the bind operation. The other two subcases of the Delay rule, namely, where a free

input is to be delayed across a free input or output, and where a bound input is to be

delayed across a bound input or output, are not shown as they are similar. Similarly, for

Annihilate, the case where a free input is to be annihilated with a free output is not

shown.

We now describe our implementation of verification of the may preorder between finite

processes, i.e. processes without replication, by exploiting the trace-based characteriza-

tion of may testing discussed in Section 6.2. Let [|P |] be the set of traces exhibited by the

process P , and define [|P |] � [|Q|] if for every s ∈ [|Q|] there is r ∈ [|P |] such that r � s,

where � is the reflexive transitive closure of the laws L1, L2 and L3 in Table 2.2. Recall

from Section 2.1 that P
�

∼ Q if and only if [|Q|] � [|P |].

The finiteness of a process P only implies that the length of traces in [|P |] is bounded,

but the number of traces in [|P |] can be infinite (even modulo α-equivalence) because the

INP rule is infinitely branching. To avoid the problem of having to compare infinite sets,

we observe that

[|Q|] - [|P |] if and only if [|Q|]fn(P,Q) - [|P |]fn(P,Q),

where for a set of traces S and a set of names ρ we define Sρ = {s ∈ S | fn(s) ⊆ ρ}.

Now, since the traces in [|P |] and [|Q|] are finite in length, it follows that the sets of

traces [|P |]fn(P,Q) and [|Q|]fn(P,Q) are finite modulo α-equivalence. In fact, the set of traces

generated for [[fn(P,Q)] P] by our implementation described in Section 6.1.2, contains

exactly one representative from each α-equivalence class of [|P |]fn(P,Q).

Given processes P and Q, we generate the set of all traces (modulo α-equivalence)

of [[fn(P,Q)] P] and [[fn(P,Q)] Q] using the metalevel facilities of Maude 2.0. As

126

mentioned in Section 6.1.3, these terms, which are of sort TTrm, can be rewritten only

once. The term of sort TraceTrm obtained by rewriting contains a finite trace as a

prefix. To create the set of all traces, we compute all possible one-step rewrites. This

computation is done at the metalevel by the function TTrmtoNormalTraceSet that uses

two auxiliary functions TTrmtoTraceSet and TraceSettoNormalTraceSet.

op TTrmtoTraceSet : Term -> TermSet .

op TraceSettoNormalTraceSet : TermSet -> TermSet .

op TTrmtoNormalTraceSet : Term -> TermSet .

eq TTrmtoNormalTraceSet(T) = TraceSettoNormalTraceSet(TTrmtoTraceSet(T)) .

The function TTrmTraceSet uses the function allOneStepAux(T,N) that returns the

set of all one-step rewrites (according to the rules in Sections 6.1.2 and 6.1.3, which

are defined in modules named PISEMANTICS and PITRACE, of the term T which is the

metarepresentation of a term of sort TTrm, skipping the first N solutions. In the following

equations, the operator u stands for set union.

Notice the use of the operation metaSearch, which receives as arguments the metarep-

resented module to work in, the starting term for search, the pattern to search for, a side

condition (empty in this case), the kind of search (which may be ’* for zero or more

rewrites, ’+ for one or more rewrites, and ’! for only matching normal forms), the depth

of search, and the required solution number. It returns the term matching the pattern,

its type, and the substitution produced by the match; to keep only the term, we use the

projection getTerm.

op PITRACE-MOD : -> Module .

eq PITRACE-MOD = [’PITRACE] .

var N : MachineInt . vars T X : Term .

op allOneStepAux : Term MachineInt Term -> TermSet .

op TraceTermToTrace : Term -> Term .

eq TTrmtoTraceSet(T) = allOneStepAux(T,0,’X:TraceTrm) .

127

eq allOneStepAux(T,N,X) =

if metaSearch(PITRACE-MOD,T,X,nil,’+,1,N) == failure

then ’epsilon.Trace

else TraceTermToTrace(getTerm(metaSearch(PITRACE-MOD,T,X,nil,’+,1,N)))

u allOneStepAux(T,N + 1,X) fi .

The function TraceTrmToTrace (whose equations are not shown), used in allOneStep-

Aux, extracts the trace a1.a2...an out of a metarepresentation of a term of sort TraceTrm

of the form {a1}{a2}...{an}TT. The function TraceSettoNormalTraceSet uses the

metalevel operation metaReduce to convert each trace in a trace set to its α-normal

form. The operation metaReduce takes as arguments a metarepresented module and a

metarepresented term in that module, and returns the metarepresentation of the fully

reduced form of the given term using the equations in the given module, together with

its corresponding sort or kind. Again, the projection getTerm leaves only the resulting

term.

eq TraceSettoNormalTraceSet(mt) = mt .

eq TraceSettoNormalTraceSet(T u TS) =

getTerm(metaReduce(TRACE-MOD,’‘[_‘] [T]))

u TraceSettoNormalTraceSet(TS) .

We implement the relation - on sets defined in Section 6.2 as the predicate <<. We

check if P
�

∼ Q by computing this predicate on the metarepresented trace sets [|P |]fn(P,Q)

and [|Q|]fn(P,Q) as follows. For each (metarepresented) trace T in [|P |]fn(P,Q), we compute

the reflexive transitive closure of T with respect to the laws shown in Table 2.2. The laws

are implemented as rewrite rules in the module TRACE-PREORDER. We then use the fact

that [|Q|]fn(P,Q) - [|P |]fn(P,Q) if and only if for every trace T in [|P |]fn(P,Q) the closure of T

and [|Q|]fn(P,Q) have a common element.

op TRACE-PREORDER-MOD : -> Module .

eq TRACE-PREORDER-MOD = [’TRACE-PREORDER] .

var N : MachineInt . vars T T1 T2 X : Term .

var TS TS1 TS2 : TermSet .

128

op _<<_ : TermSet TermSet -> Bool .

op _<<<_ : TermSet Term -> Bool .

op TTraceClosure : Term -> TermSet .

op TTraceClosureAux : Term Term MachineInt -> TermSet .

op _maypre_ : Term Term -> Bool .

eq TS2 << mt = true .

eq TS2 << (T1 u TS1) = TS2 <<< T1 and TS2 << TS1 .

eq TS2 <<< T1 = not disjoint?(TS2 , TTraceClosure(T1)) .

eq T1 maypre T2 = TTrmtoNormalTraceSet(T2) << TTrmtoNormalTraceSet(T1) .

The computation of the closure of T is done by the function TTraceClosure. It uses

TTraceClosureAux to compute all possible (multi-step) rewrites of the term T using the

rules defined in the module TRACE-PREORDER, again by means of the metalevel operation

metaSearch.

eq TTraceClosure(T) = TTraceClosureAux(T,’TT:TTrace,0) .

eq TTraceClosureAux(T,X,N) =

if metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N) == failure

then mt

else getTerm(metaSearch(TRACE-PREORDER-MOD,T,X,nil,’*,maxMachineInt,N))

u TTraceClosureAux(T,X,N + 1) fi .

This computation is terminating as the number of traces to which a trace can rewrite

using the trace preorder laws is finite modulo α-equivalence. This follows from the fact

that the length of a trace is non-increasing across rewrites, and the free names in the

target of a rewrite are also free names in the source. Since the closure of a trace is finite,

metaSearch can be used to enumerate all the traces in the closure. Note that although

the closure of a trace is finite, it is possible to have an infinite rewrite that loops within

a subset of the closure. Further, since T is a metarepresentation of a trace, metaSearch

can be applied directly to T inside the function TTraceClosureAux(T,X,N).

We end this section with a small example, which checks for the may-testing pre-

order between the processes P = a(u).b(v).(νw)(wv|au) + b(u).a(v).(bu|bw) and Q =

129

b(u).(bu|bw). We define constants TP and TQ of sort TTrm, along with the following

equations:

eq TP = [[’a{0} ’b{0} ’w{0}]

’a{0}(’u) . ’b{0}(’v) . new[’w](’w{0} < ’v{0} > | ’a{0} < ’u{0} >)

+ ’b{0}(’u) . ’a{0}(’v) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

eq TQ = [[’a{0} ’b{0} ’w{0}]

’b{0}(’u) . (’b{0} < ’u{0} > | ’b{0} < ’w{0} >)]

The metarepresentation of these TTrms can now be obtained by using ’TP.TTrm and

’TQ.TTrm, and we can then check for the may-testing preorder between the given pro-

cesses as follows:

Maude> red ’TP.TTrm maypre ’TQ.TTrm .

reduce in PITRACESET : ’TP.TTrm maypre ’TQ.TTrm .

rewrites: 791690 in 2140ms cpu (2160ms real) (361422 rewrites/second)

result Bool: true

Maude> red ’TQ.TTrm maypre ’TP.TTrm .

reduce in PITRACESET : ’TQ.TTrm maypre ’TP.TTrm .

rewrites: 664833 in 1620ms cpu (1640ms real) (410390 rewrites/second)

result Bool: false

Thus, we have P
�

∼ Q, but Q /
�

∼ P . The reader can check that indeed, [|Q|]fn(P,Q) -

[|P |]fn(P,Q), but [|P |]fn(P,Q) /- [|Q|]fn(P,Q).

6.3 Specification of Aπ 6=

We now give an executable specification of Aπ 6= (Section 3.4) and of the parameterized

may preorder over it. We first extend the syntax of asynchronous π-calculus specified in

Section 6.1.1 with recursive definitions, and specify the type system that captures the

Actor primitives. We then extend the semantics specified in Section 6.1.2 by adding a

new rewrite rule for behavior instantiations, and finally adapt the techniques presented

in Section 6.2 to implement the parameterized may preorder.

130

We introduce the sort Defn for recursive definitions and the sort Context to represent

a collection of definitions.

sorts Defn Context .

subsort Defn < Context .

op _:=(_;_)_ : Qid QidTuple QidTuple Term -> Defn [prec 8] .

op emptycontext : -> Context .

op _,_ : Context Context -> Context [assoc id: emptycontext prec 9] .

op context : -> Context .

The constant context is used to keep all the recursive definitions that can be used

in specifying processes. This syntax for recursive definitions and some useful operations

on them are defined in the module APICONTEXT shown in Appendix B.

Behavior instantiations and name substitutions on instantiations are defined as fol-

lows.

op _<_;_> : Qid ChanTuple ChanTuple -> Term [prec 2] .

eq S B < t1 ; t2 > = B < S t1 ; S t2 > .

We now specify the type system for Aπ 6=. The function f : ρ → ρ∗ that is used to

keep track of the temporary names of actors (see Section 3.2.1) is represented as a set

of pairs; the pair (x, y) denoting the fact that the actor y has temporarily assumed the

name x. We introduce the sort NameMap to represent these name mapping functions.

sorts LiftChan Pair NameMap.

subsort Chan < LiftChan .

op * : -> LiftChan .

op bot : -> LiftChan .

op (__) : Chan LiftChan -> Pair .

The constructors for NameMap, which are not shown above, are the usual set con-

structors. Following is the specification of the operator ⊕ over name maps, that was

introduced in Definition 3.1.

131

op _oplus_ : NameMap NameMap -> NameMap .

op delete : Chan NameMap -> NameMap .

op domain : NameMap -> Chanset .

eq emptymap oplus M = M .

eq { (X X’) } oplus M = if (X’ =/= bot or not X in domain(M))

then { (X X’) } cup delete(X , M)

else M fi .

eq { (X X’) , E } oplus M = if (X’ =/= bot or not X in domain(M))

then { (X X’) } cup ({ E } oplus delete(X , M))

else { E } oplus M fi .

eq delete(X , emptymap) = emptymap .

eq delete(X , { (Y Y’) }) = if X == Y then emptymap else { (Y Y’) } fi .

eq delete(X , { (Y Y’) , E }) = delete(X , { (Y Y’) }) cup delete(X , { E }) .

eq domain(emptymap) = emptymap .

eq domain({ (X X’) }) = { X } .

eq domain({ (X X’) , E }) = { X } cup domain({ E }) .

The following operators represent the other functions on name maps, that are intro-

duced in Definition 3.1.

op hide : Qid NameMap -> NameMap .

op compatible? : NameMap NameMap -> Bool .

Recall that for a well typed Aπ 6= term P , there is a unique set of names ρ and a

unique name mapping function f such that ρ; f ` P . The set ρ contains the receptionist

names and f keeps track of temporary names of actors in P . We now define operations

that compute these ρ and f for a given P , assuming that P is well typed.

op recep : Term -> Chanset .

op chanMap : Term -> NameMap .

op chain : ChanTuple -> ChanMap .

132

eq recep(nil) = emptychanset .

eq recep(CX < CY >) = emptychanset .

eq recep(CX (X) . P) = { CX } cup down(X , recep(P)) .

eq recep(P | Q) = recep(P) cup recep(Q) .

eq recep(new [X] P) = down(X , recep(P)) .

eq recep([CX = CY] (P , Q)) = recep(P) cup recep(Q) .

eq recep(B < t1 ; t2 >) = toset(t1) .

eq chanMap(nil) = emptymap .

eq chanMap(CX < CY >) = emptymap .

eq chanMap(CX (X) . P) =

if | down(X , recep(P)) \ { CX } | == 0 then { (CX bot) }

else { (CX pick(down(X , recep(P)) \ { CX })) ,

(pick(down(X , recep(P)) \ { CX }) bot) } fi .

eq chanMap(P | Q) = chanMap(P) oplus chanMap(Q) .

eq chanMap(new [X] P) = hide(X , chanMap(P)) .

eq chanMap(if CX = CY then P else Q fi)) = chanMap(P) oplus chanMap(Q) .

eq chanMap(B < t1 ; t2 >) = chain(t1) .

The operator chain implements the function defined in Definition 3.2. For each

channel Y{n} in the set CS, down(X,CS) decrements the index n if Y = X, and leaves Y{n}

unchanged otherwise. The function pick(CS) returns some element in CS.

We are now ready to specify the type rules. We introduce a sort ActorConfig for

well typed terms. The type rules are all encoded as conditional membership axioms.

sort ActorConfig .

subsort ActorConfig < Term .

op chainCondition : NameMap Chan Chanset -> Bool .

mb nil : ActorConfig .

mb CX < CY > : ActorConfig .

cmb CX (X) . P : ActorConfig if P : ActorConfig and

133

s(s(0)) > | down(X , recep(P)) \ { CX } | and

chainCondition(chanMap(P),[shiftup X] CX, recep(P)) and

not X { 0 } in recep(P) .

cmb P | Q : ActorConfig if P : ActorConfig and

Q : ActorConfig and recep(P) cap recep(Q) == emptychanset .

cmb if CX = CY then P else Q fi : ActorConfig if P : ActorConfig and

Q : ActorConfig and compatible?(chanMap(P), chanMap(Q)) .

cmb new [X] P : ActorConfig if P : ActorConfig .

cmb B < t1 ; t2 > : ActorConfig if defined?(B , D) and

arity1(B,context) == length(t1) and

arity2(B,context) == length(t2) and

if length(t1) == s(s(0))

then pick(t1 , s(0)) =/= pick(t2 , s(s(0)))

else true fi .

eq chainCondition(emptymap , CX , emptychanset) = true .

eq chainCondition({ (CY bot) } , CX , { CY }) = true .

ceq chainCondition({ (CX CY) , (CY bot) } , CX , { CX , CY }) = true

if CX =/= CY .

In the type rule for behavior instantiations, note that we refer to the constant context

that is defined in module APICONTEXT (see Appendix B). This constant contains the

collection of all the behavior definitions that can be used in specifying processes. The

operators arity1 and arity2 are also defined in APICONTEXT.

Recall that type checking a term involves type checking all the behavior definitions

it uses. We define the operator welldefined? to check if all behavior definitions in a

given context are well typed.

op welldefined? : Context -> Bool .

op welltyped? : Context Context -> Bool .

op qidTupleToChanMap : Qidtuple -> Pairset .

eq welldefined?(context) = unique?(context) and wellformed?(context) and

welltyped?(emptycontext , context) .

134

eq welltyped?(D,emptycontext) = true .

eq welltyped?(D,(B := (q1 ; q2) CX(X) . P , D’)) =

CX(X) . P : ActorConfig and

recep(CX(X) . P) == tochanset(q1 , 0) and

chanMap(CX(X) . P) == qidTupleToChanMap(q1) and

welltyped?((D,B := (q1 ; q2) CX(X) . P),D’) .

eq qidTupleToChanMap(emptyqidtuple) = emptychanset .

eq qidTupleToChanMap(X) = { ((X{0}) bot) } .

eq qidTupleToChanMap(X Y q) = { ((X{0}) (Y{0})) } cup qidTupleToChanMap(Y q) .

The operator unique? checks if each behavior identifier has a unique definition.

The operator wellformed? checks for syntactic constrains on each definition B
def
=

(ũ; ṽ)x(y).P , such as 1 ≤ length(ũ) ≤ 2, u1 == x and that the identifiers in the

tuple ũ, ṽ are all distinct. These operators are defined in the module APICONTEXT

shown in Appendix B. The operator welltyped? checks if for each definition B
def
=

(ũ; ṽ)x(y).P , the judgment {ũ}; ch(ũ) ` P holds. For a tuple of identifiers QT and nat-

ural n, tochanset(QT,n) returns a set of channels that contains the channel X{n} for

each identifier X in QT.

For the operational semantics of Aπ 6= we only need to introduce the following rewrite

rule for behavior instantiations, in addition to the rewrite rules for asynchronous π-

calculus given in Section 6.1.2.

op defn : Qid Context -> Defn .

op inst : Defn Chantuple -> Term .

crl [Behv] : [CS1] B < CT1 ; CT2 > => [CS2] P

if [CS1] inst(defn(B), CT1 CT2) => [CS2] P .

The operator defn returns the definition of a given constant from the implicit context

of definitions, and the operator inst instantiates a behavior definition with a given tuple

135

of channel names. The reader is referred to the module APICONTEXT in Appendix B

for the definition of these operators.

We now describe our implementation of verification of parameterized may preorder

between finite (non-recursive) Aπ 6= processes. Following the ideas in Section 6.2, we

exploit the fact that P
�

∼ρ Q if and only if [|Q|] -ρ [|P |] if and only if [|Q|]fn(P,Q)
-ρ

[|P |]fn(P,Q)
. We use the metalevel facilities in Maude to compute the trace sets [|P |]fn(P,Q)

and [|Q|]fn(P,Q)
as before, and compare these trace sets according to Theorem 3.2. The

main difference here as opposed to the procedure described in Section 6.2 is that we

consider only the ρ-well-formed traces in [|Q|]fn(P,Q)
, and compute the reflexive transitive

closure of such traces according to only the laws L1 and L2 of Table 2.2.

op APITRACE-MOD : -> Module .

eq APITRACE-MOD = [’APITRACE] .

op << : TermSet TermSet Term -> Bool .

op <<< : TermSet Term Term -> Bool .

op maypre : Term Term Term -> Bool .

eq <<(TS2,mt,T2) = true .

eq <<(TS2, (T1 u TS1), T2) = <<<(TS2, T1, T2) and <<(TS2, TS1, T2) .

eq <<<(TS2,T1,T2) = not (metarwf(T1,T2) and disjoint?(TS2 , TTraceClosure(T1))) .

eq metarwf(T1,T2) = (getTerm(metaReduce(APITRACE-MOD, ’rwf[T1 , T2])) == ’true.Bool) .

eq maypre(T1,T2,T3) = <<(TTrmtoNormalTraceSet(T2), TTrmtoNormalTraceSet(T1), T3) .

The operators << and maypre, which implement -ρ and
�

∼ρ respectively, now take an

additional third argument which is a metarepresentation of the set of channel names ρ.

The definition of TTraceClosure in Section 6.2 is modified so that it computes the closure

of a metarepresented trace T according to only the laws L1 and L2 of Table 2.2. In the

equation for <<<, we consider only the ρ-well-formed traces; metarwf(T1,T2) checks for

a given metarepresentation T1 of a trace and a metarepresentation T2 of a set of channel

names ρ, whether the trace is ρ-well-formed. The function metarwf uses the metalevel

facility metaReduce in Maude. The function rwf, which checks if a trace is ρ-well-formed,

136

is assumed to be defined in the module APITRACE. Following is a specification of rwf,

which closely follows Definition 2.5.

op rwf : Trace Chanset -> Bool [frozen] .

eq rwf(epsilon , CS) = true .

eq rwf(f(i,CX,CY) . TR , CS) = rwf(TR , CS) .

eq rwf(b(i,CX,Y) . TR , CS) = rwf(TR , [shiftup Y] CS) .

eq rwf(f(o,CX,CY) . TR , CS) = (not CX in CS) and rwf(TR , CS) .

eq rwf(b(o,CX,Y) . TR , CS) = (not CX in CS) and rwf(TR , Y{0} [shiftup Y] CS) .

6.4 Discussion and Related Work

We have described an executable specification in Maude of the operational semantics of

an asynchronous version of the π-calculus and Aπ 6=. In addition, we have also specified

the unparameterized may preorder for π-calculus processes, and the parameterized may

preorder for Aπ 6= processes. The new features introduced in Maude 2.0, including rewrites

in conditions, the frozen attribute, and the metaSearch operation, have been essential

for the development of this executable specification.

The first specification of the π-calculus operational semantics in rewriting logic was

developed by Viry in Elan [97]. The operational semantics specified by Viry was in the

reduction style, where first an equivalence is imposed on syntactic processes (typically

to make syntax more abstract with respect to properties of associativity and/or com-

mutativity of some operators), and then some reduction or rewrite rules express how

the computation proceeds by communication between processes. In contrast, we have

specified an operational semantics in the labeled transition system style according to the

SOS approach introduced by Plotkin [73]. Viry’s specification makes use of de Bruijn

indexes, explicit substitutions, and reduction strategies in Elan [14]. This presentation

was later improved by Stehr [86] by making use of a generic calculus for explicit substi-

tutions, known as CINNI, which combines the best of the approaches based on standard

variables and de Bruijn indices.

137

Our work took the work described above as a starting point, together with recent

work by Verdejo and Mart́ı-Oliet [96] showing how to use the new features of Maude

2.0 in the implementation of a semantics in the labeled transition system style for CCS.

For instance, the ideas of using conditional rewrite rules with rewrites in conditions to

represent the transition rules, and using the frozen attribute to control the application

of rules, were first introduced in [96].

An interesting direction of further work is to extend our implementation to include the

algorithm in Section 5.4 that is applicable to a large class of non-finitary asynchronous

π-calculus processes. This would first involve extracting the asynchronous finite state

machine model (if possible) out of a given π-calculus processes. Another direction of

work is to look for interesting concrete applications to which these implementations can

be applied.

138

Chapter 7

Conclusion

We have investigated the theory of may testing equivalence over several variants of π-

calculus. The variants incorporate computational phenomena such as asynchrony, local-

ity, the object-paradigm, and restricted name matching, which are not part of the basic

π-calculus. For each variant, we presented a characterization of a generalized version

of may testing, which provides a powerful proof technique for establishing equivalences

between programs. We exploited this characterization to get a complete axiomatization

of the may preorder for the finitary fragment of each variant, and a fully automated al-

gorithm for establishing may equivalences over a class of infinite state systems. We have

also presented an executable specification of the variants and may testing over them, in

Maude 2.0.

We have shown how the theory of testing over π-calculus and its variants can be

applied to concurrent object-based models such as the Actor model. A practical sequel

to this would be to apply our results to the language of Specification Diagrams (SDs)

[84, 85]. SDs provide a graphical notation for specifying message passing behaviors

of open distributed object systems. They have an intuitive appeal like other popular

graphical languages such as UML [80] and MSC [77]. SDs share several similarities to

the various calculi we have studied; they allow dynamic generation of names and name

passing as in the π-calculus, they have asynchronous communication and enforce locality

as in Lπ, and they enforce the uniqueness property of names as in Aπ. In addition, they

139

are equipped with imperative features such as variables, environments, and assignments,

and logical features such as assertions and constraints which are more appropriate for

specification languages. By recasting SDs as an extension of asynchronous π-calculus

with locality, it is likely that both our theory of may testing and the implementation

techniques in Maude can be lifted in a straightforward manner to SDs. The result would

be a tool that can be used to execute diagrams and establish semantic correspondence

between different diagrams. The language of SDs is designed in such a way that one can

describe systems at various levels of abstraction, ranging from high-level specifications

to concrete diagrams with low-level implementation details. Our theory of may testing

would provide powerful techniques to establish semantic correspondence between such

diagrams at different levels of abstraction.

Another direction of work would be to complete the testing scenario by considering

must testing over all the variants of π-calculus. We have so far only briefly considered a

few algorithmic questions related to must testing in Chapter 5. The characterization of

must testing on asynchronous π-calculus is not known, although characterizations over

asynchronous CCS are known [19]. Further, the effect of other computational features of

interest such as locality, object-paradigm, and restricted name matching is not known.

Must testing in Aπ poses an additional challenge due to fairness. Unlike in may testing,

it is known that fairness makes a difference in must testing [67].

140

Bibliography

[1] M. Abadi and A. Gordon. Reasoning about cryptographic protocols in the spi cal-

culus. In CONCUR’97: Concurrency Theory, Springer Lecture Notes in Computer

Science, volume 1243, pages 59–73, July 1997.

[2] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Tsay Yih-Kuen. Algo-

rithmic analysis of programs with well quasi-ordered domains. Information and

Computation, 160:109–127, 2000.

[3] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable chan-

nels. In IEEE International Symposium on Logic in Computer Science, 1993.

[4] Parosh Aziz Abdulla and Bengt Jonsson. Channel representations in protocol veri-

fication. In CONCUR, pages 1–15, 2001.

[5] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT

Press, 1986.

[6] G. Agha. Concurrent Object-Oriented Programming. Communications of the ACM,

33(9):125–141, September 1990.

[7] G. Agha, I. Mason, S. Smith, and C. Talcott. A Foundation for Actor Computation.

Journal of Functional Programming, 1996.

[8] G. Agha and P. Thati. An algebraic theory of actors and its application to a simple

object-based language. In Festschrift in honor of Ole-Johan Dahl. Springer Verlag,

2003. to be published in Lecture Notes in Computer Science.

141

[9] R. Amadio, I.Castellani, and D. Sangiorgi. On Bisimulations for Asynchronous π-

Calculus. In Proceedings of CONCUR ’96. Springer-Verlag, 1996. LNCS 1119.

[10] M. Boreale and R. De Nicola. Testing Equivalences for Mobile Processes. In Third

International Conference on Concurrency Theory, LNCS 630, pages 2–16. Springer-

Verlag, August 1992. LNCS 630.

[11] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asyn-

chronous processes.

[12] M. Boreale, R. De Nicola, and R. Pugliese. A theory of may testing for asynchronous

languages. In Foundations of Software Science and Computation Structures, pages

165–179, 1999. LNCS 1578.

[13] M. Boreale and D. Sangiorgi. Bisimulation in Name Passing Calculi without Match-

ing. Proceedings of LICS, 1998.

[14] P. Borovanský, C. Kirchner, H. Kirchner, P. E. Moreau, and M. Vittek. ELAN:

A logical framework based on computational systems. In José Meseguer, ed-

itor, Proceedings First International Workshop on Rewriting Logic and its Ap-

plications, WRLA’96, Asilomar, California, September 3–6, 1996, volume 4 of

Electronic Notes in Theoretical Computer Science, pages 35–50. Elsevier, 1996.

http://www.elsevier.nl/locate/entcs/volume4.html.

[15] Ahmed Bouajjani and Richard Mayr. Model checking lossy vector addition systems.

In STACS, pages 323–333, 1999.

[16] G. Boudol. Asynchrony and the π-Calculus. Technical Report 1702, Department of

Computer Science, Inria Univeristy, May 1992.

[17] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over Infinite States.

In Handbook of Process Algebra, pages 545–623. Elsevier Publishing, 2001.

142

[18] C. Callsen and G. Agha. Open Heterogeneous Computing in ActorSpace. Journal

of Parallel and Distributed Computing, pages 289–300, 1994.

[19] I. Castellini and M. Hennesy. Testing theories for asynchronous languages. In

FSTTCS, pages 90–101, 1998. LNCS 1530.

[20] S. Christensen. Decidability and Decomposition in Process Algebras. PhD thesis,

Department of Computer Science, University of Edinburgh, 1993.

[21] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite

state concurrent systems using temporal logic specifications. ACM Transactions on

Programming Languages and Systems, 8(2):244–263, 1986.

[22] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[23] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F. Que-

sada. Towards Maude 2.0. In Kokichi Futatsugi, editor, Proceedings Third Interna-

tional Workshop on Rewriting Logic and its Applications, WRLA 2000, Kanazawa,

Japan, September 18–20, 2000, volume 36 of Electronic Notes in Theoretical Com-

puter Science, pages 297–318. Elsevier, 2000. http://www.elsevier.nl/locate/

entcs/volume36.html.

[24] W.D. Clinger. Foundations of Actor Semantics. PhD thesis, Massachusetts Institute

of Technology, AI Laboratory, 1981.

[25] J. Darlington and Y. K. Guo. Formalizing actors in linear logic. In International

Conference on Object-Oriented Information Systems, pages 37–53. Springer-Verlag,

1994.

[26] D.Sangiorgi. A theory of bisimulation for π-calculus. In Proceedings of CONCUR,

1993. LNCS 715.

[27] D.Sangiorgi and D. Walker. Some results on barbed equivalences in π-calculus. In

Proceedings of CONCUR, 2001.

143

[28] J. Esparza. Decidability and Complexity of Petri Net problems — An Introduction.

In Advances in Petri Nets, volume 1491 of Lecture Notes inComputer Science, pages

374–428. Springer, 1998.

[29] F.Dagnat, M.Pantel, M.Colin, and P.Salle. Typing concurrent objects and actors.

In L’Objet – Mthodes formelles pour les objets (L’OBJET), volume 6, pages 83–106,

2000.

[30] C. Fournet and G. Gonthier. The Reflexive Chemical Abstract Machine and the

Join Calculus. Proceedings of POPL, 1996.

[31] S. Frolund. Coordinating Distributed Objects: An Actor-Based Approach for Syn-

chronization. MIT Press, November 1996.

[32] M. Gaspari and G. Zavattaro. An Algebra of Actors. Technical Report UBLCS-97-4,

Department of Computer Science, Univeristy of Bologna (Italy), May 1997.

[33] U. Goltz and A. Mycroft. On the relationship of ccs and petri nets. In Proceedings

of ICALP, pages 196–208, 1984. LNCS 172.

[34] M . Hack. Decidability questions for Petri nets. PhD thesis, Massachusetts Institute

of Technolgy, Lobratory of Computer Science, 1976.

[35] M. Hack. Decision problems for Petri nets and vector addition systems. Technical

Report MAC, Memo 53, MIT, 1975.

[36] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.

[37] M. Hennessy and J. Rathke. Typed behavioral equivalences for processes in the

presence of subtyping. Technical report, University of Sussex, Computer Science,

March 2001.

[38] C. Hewitt. Viewing Control Structures as Patterns of Message Passing. Journal of

Artificial Intelligence, 8(3):323–364, September 1977.

144

[39] G. H. Higman. Ordering by divisibility in abstract algebras. Proceedings of London

Mathematical Society, 3:326–336, 1952.

[40] Y. Hirshfeld. Petri nets and the equivalence problem. In Lecture Notes in Computer

Science 832, pages 165–174. Springer Verlag, 1993.

[41] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.

In Fifth European Conference on Object-Oriented Programming, July 1991. LNCS

512, 1991.

[42] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages, and

computation. Addison Wesely, 1979.

[43] J-L.Colao, M.Pantel, and P.Salle. Analyse de linarit par typage dans un calcul

d’acteurs primitifs. In Actes des Journes Francophones des Langages Applicatifs

(JFLA), 1997.

[44] P. Jancar. Undecidability of bisimilarity for petri nets and some related problems.

Theoretical Computer Science, 148:281–301, 1995.

[45] P.C. Kanellakis and S.A.Smolka. CCS expressions, finite state processes, and three

problems of equivalence. Information and Computation, 86(1):48–68, May 1990.

[46] R. Karp and R. Miller. Parallel program schemata. Journal of Computing System

Science, 3:147–195, 1969.

[47] N. Kobayashi, B. Pierce, and D. Turner. Linearity and the π-calculus. 23rdACM

Symposium on Principles of Programming Languages, pages 358–371, 1996.

[48] N. Kobayashi and A. Yonezawa. Higher-order concurrent linear logic programming.

In Theory and Practice of Parallel Programming, pages 137–166, 1994.

[49] N. Kobayashi and A. Yonezawa. Towards foundations of concurrent object-oriented

programming – types and language design. Theory and Practice of Object Systems,

1(4), 1995.

145

[50] A. J. Korenjak and J. E. Hopcroft. Simple deterministic langauges. In IEEE Sym-

posium on Automata and Switching Theory, pages 36–46, 1966.

[51] R. Lipton. The Reachability Problem Requires Exponential Space. Technical Re-

port 62, Yale University, 1976.

[52] C. Manning. Acore: The design of a core actor language and its compiler. Master’s

thesis, MIT, Artificial Intelligence Laboratory, 1987.

[53] N. Mart’i-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-

work, 1993.

[54] I. A. Mason and C. L. Talcott. Actor languages: Their syntax, semantics, translation,

and equivalence. Theoretical Computer Science, 220:409 – 467, 1999.

[55] I.A. Mason and C.Talcott. A semantically sound actor translation. In ICALP 97,

pages 369–378, 1997. LNCS 1256.

[56] M.Boreale and D.Sangiorgi. Some congruence properties for π-calculus bisimilarities.

In Theoretical Computer Science 198, 1998.

[57] M. Merro. On equators in asynchronous name-passing calculi without matching.

Electronic Notes in Theoretical Computer Science, 27, 1999.

[58] M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In Proceeding

of ICALP ’98. Springer-Verlag, 1998. LNCS 1443.

[59] J. Meseguer. Rewriting Logic as a Unified Model of Concurrency. Technical Report

SRI-CSI-90-02, SRI International, Computer Science Laboratory, February 1990.

[60] R. Milner. A complete inference system for a class of regular behaviors. Journal of

Computing and Systems Science, 28:439–466, 1984.

[61] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

146

[62] R. Milner. Interactions, turing award lecture. Communications of the ACM,

36(1):79–97, January 1993.

[63] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Univer-

sity Press, 1999.

[64] R. Milner, J. Parrow, and D. Walker. A calculus of Mobile Processes, Part II.

Technical Report ECS-LFCS-89-86, Department of Computer Science, Edinburgh

University, June 1989.

[65] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and

II). Information and Computation, 100:1–77, 1992.

[66] E. F. Moore. Gedanken experiments on sequential machines. In Automata studies,

pages 129–153, 1956.

[67] V. Natarajan and R. Cleaveland. Divergence and fair testing. In International

Conference on Automata Languages and Programming (ICALP), pages 648–659,

1995.

[68] R. De Nicola and M. Hennesy. Testing equivalence for processes. Theoretical Com-

puter Science, 34:83–133, 1984.

[69] J. Parrow and D. Sangiorgi. Algebraic Theories of Name-Passing Calculi. Informa-

tion and Computation, 120(2), 1995.

[70] J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall, 1981.

[71] B. C. Pierce and D. Sangiorgi. Typing and Subtyping for Mobile Processes. Journal

of Mathematical Structures in Computer Science, 6(5):409–454, 1996.

[72] B. C. Pierce and D. N. Turner. Pict: A programming Language Based on the

π-Calculus. Technical Report CSCI-476, Indiana University, March 1997.

[73] G. D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Computer Science Dept., Aarhus University, September 1981.

147

[74] A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE Com-

puter Society Press, 1977.

[75] C. Rackoff. The covering and boundedness problems for vector addition systems.

Theoretical Computer Science, 6:223–231, 1978.

[76] A. Ravara and V. Vasconcelos. Typing non-uniform concurrent objects. In CON-

CUR, pages 474–488, 2000. LNCS 1877.

[77] ITU-T Recommendation Z.120. Message sequence charts, 1996.

[78] A. Regev, W. Silverman, and E. Shapiro. Representation and simulation of bio-

chemical processes using the π-calculus process algebra. In Proceedings of the Pacific

Symposium of Biocomputing, pages 459–470, 2001.

[79] R.Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings of 19th International

Colloquium on Automata, Languages and Programming (ICALP ’92). Springer Ver-

lag, 1992. LNCS 623.

[80] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference

Manual. Addison-Wisely, 1998.

[81] D. Sangiorgi. Typed π-Calculus at Work: A Proof of Jone’s Transformation on

Concurrent Objects. Theory and Practice of Object-Oriented Systems, 1997.

[82] D. Sangiorgi. An Interpretation of Typed Objects into Typed π-Calculus. Informa-

tion and Computation, 143(1), 1998.

[83] D. Sangiorgi. The Name Discipline of Uniform Receptiveness. Theoretical Computer

Science, 221, 1999.

[84] S. Smith and C. Talcott. Modular reasoning for actor specification diagrams. In For-

mal Methods in Object-Oriented Distributed Systems. Kluwer Academic Publishers,

1999.

148

[85] S. Smith and C. Talcott. Specification diagrams for actor systems. Higer-Order and

Symbolic Computation, 2002. To appear.

[86] M. O. Stehr. CINNI — A generic calculus of explicit substitutions and its application

to λ-, ς- and π-calculi. In Kokichi Futatsugi, editor, Proceedings Third International

Workshop on Rewriting Logic and its Applications, WRLA 2000, Kanazawa, Japan,

September 18–20, 2000, volume 36 of Electronic Notes in Theoretical Computer

Science, pages 71–92. Elsevier, 2000. http://www.elsevier.nl/locate/entcs/

volume36.html.

[87] D.C. Sturman. Modular Specification of Interaction in Distributed Computing. PhD

thesis, University of Illinois at Urbana Champaign, 1996.

[88] C. Talcott. An Actor Rewriting Theory. In Electronic Notes in Theoretical Computer

Science 5, 1996.

[89] C. Talcott. Interaction Semantics for Components of Distributed Systems. In

E.Najm and J.B. Stefani, editors, Formal Methods for Open Object Based Distributed

Systems. Chapman & Hall, 1996.

[90] C. Talcott. Composable semantic models for actor theories. Higher-Order and

Symbolic Computation, 11(3), 1998.

[91] P. Thati. Towards an Algebraic Formulation of Actors. Master’s thesis, Computer

Science, University of Illinois at Urbana Champaign, 2000.

[92] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous

π-calculus and may testing in Maude 2.0. In International Conference on Rewriting

Logic and its Applications, 2002. Electronic Notes in Theoretical Computer Science,

vol. 71.

[93] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for actors. In Formal

Methods for Open Object-based Distributed Systems, March 2002.

149

[94] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous calculi

with locality and no name matching. In Proceedings of the 9th International Con-

ference on Algebraic Methodology and Software Technology, pages 222–238. Springer

Verlag, September 2002. LNCS.

[95] N. Venkatasubramanian and C. Talcott. Meta-Architectures for Resource Manage-

ment in Open Distributed Systems. In ACM Symposium on Principles of Distributed

Computing, August 1995.

[96] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In International

Conference on Rewriting Logic and its Applications, 2002. Electronic Notes in The-

oretical Computer Science, vol. 71.

[97] P. Viry. Input/output for ELAN. In José Meseguer, editor, Proceedings First In-

ternational Workshop on Rewriting Logic and its Applications, WRLA’96, Asilo-

mar, California, September 3–6, 1996, volume 4 of Electronic Notes in Theoretical

Computer Science, pages 51–64. Elsevier, 1996. http://www.elsevier.nl/locate/

entcs/volume4.html.

[98] P. Viry. A rewriting implementation of π-calculus. Technical Report TR-96-30, 26

1996.

[99] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

150

APPENDIX A

Proofs for Chapter 2

Proof of Lemma 2.6.1: Since we work modulo alpha equivalence on process, without

loss of generality we may assume the hygiene condition w, y /∈ bn(P0). The proof is by

induction on the derivation of P0
(v̂)uv
−→ P1. For the base case, we have P0 = u(z).Q,

P1 = Q{v/z}, the last derivation step is an application of INP rule, and v̂ ∩ fn(P0) =

∅. By hygiene condition z 6= w, y. Let P ′
0 ∈ P0[w/y]. Then P ′

0 = u(z).Q′ for some

Q′ ∈ Q[w/y]. By INP rule we have, u(z).Q′ uv
−→ Q′{v/z}. Since w /∈ v̂ it follows that

u(z).Q′ (v̂)uv
−→ Q′{v/z}. Now, since z 6= w, y, we have Q′{v/z} ∈ Q{v/z}[w/y] and the

lemma follows.

For the induction step, there are three cases.

1. P0 = Q0|R, P1 = Q1|R, and the last derivation step is an application of PAR rule:

PAR:
Q0

(v̂)uv
−→ Q1

Q0|R
(v̂)uv
−→ Q1|R

v̂ ∩ fn(R) = ∅

Then P ′
0 = Q′

0|R
′ for some Q′

0 ∈ Q0[w/y] and R′ ∈ R[w/y]. By induction hypothesis

we have Q′
0

(v̂)uv
−→ Q′

1 for some Q′
1 ∈ Q1[w/y]. From w /∈ v̂ and v̂ ∩ fn(R) = ∅ we

deduce v̂∩fn(R′) = ∅. Then by PAR rule we have Q′
0|R

′ (v̂)uv
−→ Q′

1|R
′, and the lemma

follows from the fact that Q′
1|R

′ ∈ P1[w/y].

151

2. P0 = (νz)Q0, P1 = (νz)Q1 and the last derivation step is an application of RES

rule:

RES:
Q0

(v̂)uv
−→ Q1

(νz)Q0
(v̂)uv
−→ (νz)Q1

z /∈ {u, v}

By the hygiene condition, we have z 6= w, y. Then P ′
0 = (νz)Q′

0 for some Q′
0 ∈

Q0[w/y]. By induction hypothesis, Q′
0

(v̂)uv
−→ Q′

1 for some Q′
1 ∈ Q1[w/y]. Then by

RES rule we have (νz)Q′
0

(v̂)uv
−→ (νz)Q′

1, and the lemma follows from the fact that

(νz)Q′
1 ∈ P1[w/y].

3. P0 =!Q0, P1 = Q1 and the last derivation step is an application of REP rule:

REP:
Q0|!Q0

(v̂)uv
−→ Q1

!Q0
(v̂)uv
−→ Q1

Then P ′
0 =!Q′

0 for some Q′
0 ∈ Q0[w/y]. Since Q′

0|!Q
′
0 ∈ (Q0|!Q0)[w/y], by induction

hypothesis we have Q′
0|!Q

′
0

(v̂)uv
−→ Q′

1 for some Q′
1 ∈ Q1[w/y]. Then by REP rule we

have !Q′
0

(v̂)uv
−→ Q′

1, and the lemma follows.
�

Proof Lemma 2.6.2: Since we work modulo alpha equivalence on process, without

loss of generality we may assume the hygiene condition w, y /∈ bn(P0). The proof is by

induction on the derivation of P0
(v̂)uv
−→ P1. There are two base cases.

1. P0 = uv, P1 = 0 and the last derivation step is an application of OUT rule.

OUT: uv
uv
−→ 0

Then P ′
0 = u′v′ for some u′ ∈ u[w/y] and v′ ∈ v[w/y]. By OUT rule we have

u′v′ u′v′

−→ 0, and the lemma follows.

2. P0 = (νv)Q0, P1 = Q1 and the last derivation step is an application of OPEN rule.

OPEN:
Q0

uv
−→ Q1

(νv)Q0
u(v)
−→ Q1

u 6= v

152

By hygiene condition, we have v 6= w, y. Then P ′
0 = (νv)Q′

0 for some Q′
0 ∈ Q0[w/y].

By induction hypothesis Q′
0

u′v′

−→ Q′
1 for some u′ ∈ u[w/y], v′ ∈ v[w/y], and Q′

1 ∈

Q1[w/y]. Further, since y 6= v we have v′ = v, and since w 6= v we have u′ 6= v.

Then by RES rule we have (νv)Q′
0

u′(v)
−→ Q′

1, and the lemma follows.

For the induction step there are three cases.

1. P0 = Q0|R, P1 = Q1|R, and the last derivation step is an application of PAR rule.

PAR:
Q0

(v̂)uv
−→ Q1

Q0|R
(v̂)uv
−→ Q1|R

v̂ ∩ fn(R) = ∅

Then P ′
0 = Q′

0|R
′ for some Q′

0 ∈ Q0[w/y] and R′ ∈ R[w/y]. By induction hy-

pothesis, Q′
0

α
−→ Q′

1 for some Q′
1 ∈ Q1[w/y] and α as stated in the lemma. We

have bn(α) = v̂. From w /∈ v̂ and v̂ ∩ fn(R) = ∅ we deduce bn(α) ∩ fn(R′) = ∅.

Then by PAR rule Q′
0|R

′ α
−→ Q′

1|R
′, and the lemma follows from the fact that

Q′
1|R

′ ∈ P1[w/y].

2. P0 = (νz)Q0, P1 = (νz)Q1, and the last derivation step is an application of RES

rule:

RES:
Q0

(v̂)uv
−→ Q1

(νz)Q0
(v̂)uv
−→ (νz)Q1

z 6= u, v

By hygiene condition we have z 6= w, y. Then P ′
0 = (νz)Q′

0 for some Q′
0 ∈ Q0[w/y].

By induction hypothesis, Q′
0

α
−→ Q′

1 for some Q′
1 ∈ Q1[w/y] and α as stated in the

lemma. Further since z /∈ {w, y, u, v} we have z /∈ n(α). Then by RES rule we have

(νz)Q′
0

α
−→ (νz)Q′

1, and the lemma follows from the fact that (νz)Q′
1 ∈ P1[w/y].

3. P0 =!Q0, P1 = Q1 and the last derivation step is an application of REP rule:

REP:
Q0|!Q0

(v̂)uv
−→ Q1

!Q0
(v̂)uv
−→ Q1

153

Then P ′
0 =!Q′

0 for some Q′
0 ∈ Q0[w/y]. Since Q′

0|!Q
′
0 ∈ (Q0|!Q0)[w/y], by induction

hypothesis we have Q′
0|!Q

′
0

α
−→ Q′

1 for some Q′
1 ∈ Q1[w/y] and α as stated in the

lemma. Then by REP rule we have !Q′
0

α
−→ Q′

1, and the lemma follows.
�

Proof of Lemma 2.6.3: Since we work modulo alpha equivalence on process, without

loss of generality we may assume the hygiene condition w, y /∈ bn(P0, P1). The proof is

by induction on derivation of P0
τ

−→ P1. There are two base cases depending on the last

derivation step.

1. P0 = Q0|R0, P1 = Q1|R1 and the last derivation step is

COM:
Q0

uv
−→ Q1 R0

uv
−→ R1

Q0|R0
τ

−→ Q1|R1

Then P ′
0 = Q′

0|R
′
0 for some Q′

0 ∈ Q0[w/y] and R′
0 ∈ R0[w/y]. By Lemma 2.6.2,

Q′
0

u′v′

−→ Q′
1 for some Q′

1 ∈ Q1[w/y], u′ ∈ u[w/y] and v′ ∈ v[w/y]. There are two

subcases.

(a) u′ = u: Since random substitution on processes does not change input prefixes,

it follows that R′
0

uv′

−→ R′
1, R′

1 ∈ R1[w/y]. Using COM we have Q′
0|R

′
0

τ
−→

Q′
1|R

′
1. Then condition 1 of lemma holds with P ′

1 = Q′
1|R

′
1.

(b) u′ = w: Then u = y. Since random substitution on processes does not change

input prefixes, it follows that R′
0

yv′

−→ R′
1, R′

1 ∈ R1[w/y]. Then by PAR rule

we have P ′
0 = Q′

0|R
′
0

wv′

−→ Q′
1|R

′
0

yv′

−→ Q′
1|R

′
1. Then condition 2 of lemma holds

with z = v′ and ẑ = ∅, Q = Q1|R1, and P ′
1 = Q′

1|R
′
1.

2. P0 = Q0|R0, P1 = (νv)(Q1|R1) and the last derivation step is

CLOSE:
Q0

u(v)
−→ Q1 R0

uv
−→ R1

Q0|R0
τ

−→ (νv)(Q1|R1)
v /∈ fn(R0)

154

Then P ′
0 = Q′

0|R
′
0 for some Q′

0 ∈ Q0[w/y] and R′
0 ∈ R0[w/y]. By hygiene condition

v 6= w, y. Then by Lemma 2.6.2, we have Q′
0

u′(v)
−→ Q′

1 for some Q′
1 ∈ Q1[w/y] and

u′ ∈ u[w/y]. There are two subcases.

(a) u′ = u: Since random substitution on processes does not change input prefixes,

it follows that R′
0

uv
−→ R′

1, R′
1 ∈ R1[w/y]. From v 6= w, y and v /∈ fn(R0) we

deduce v /∈ fn(R′
0). Using COM we have Q′

0|R
′
0

τ
−→ (νv)(Q′

1|R
′
1). Then

condition 1 of lemma holds with P ′
1 = (νv)(Q′

1|R
′
1).

(b) u′ = w: Then u = y. Since random substitution on processes does not change

input prefixes, it follows that R′
0

yv
−→ R′

1, R′
1 ∈ R1[w/y]. From v 6= w, y

and v /∈ fn(R0) we deduce v /∈ fn(R′
0). Then by PAR rule we have P ′

0 =

Q′
0|R

′
0

w(v)
−→ Q′

1|R
′
0

yv
−→ Q′

1|R
′
1. Then condition 2 of the lemma holds with

z = v and ẑ = {v}, Q = Q1|R1, and P ′
1 = Q′

1|R
′
1.

For the induction step, there are three cases.

1. P0 = Q0|R, P1 = Q1|R, and the last derivation step is an application of PAR rule:

PAR:
Q0

τ
−→ Q1

Q0|R
τ

−→ Q1|R

Then P ′
0 = Q′

0|R
′ for some Q′

0 ∈ Q0[w/y] and R′ ∈ R[w/y]. By induction hypothesis

we have two cases.

(a) Q′
0

τ
−→ Q′

1 for some Q′
1 ∈ Q1[w/y]. Then by PAR rule, P ′

0 = Q′
0|R

′ τ
−→ Q′

1|R
′

and condition 1 of the lemma holds with P ′
1 = Q′

1|R
′.

(b) Q1 ≡ (νẑ)S, w, y /∈ ẑ, Q′
0

(ẑ)wz.yz
−→ S ′ for some S ′ ∈ S[w/y]. Without loss

of generality we may assume ẑ ∩ fn(R) = ∅. Then P1 ≡ (νẑ)(S|R), and

ẑ ∩ fn(R′) = ∅. Then by PAR rule P ′
0 = Q′

0|R
′ (ẑ)wz.yz

−→ S ′|R′. Then condition

2 of the lemma holds.

155

2. P0 = (νv)Q0, P1 = (νv)Q1 and the last derivation step is an application of RES

rule:

RES:
Q0

τ
−→ Q1

(νv)Q0
τ

−→ (νv)Q1

By hygiene condition, we have v 6= w, y. Then P ′
0 = (νv)Q′

0 for some Q′
0 ∈ Q0[w/y].

By induction hypothesis we have two cases.

(a) Q′
0

τ
−→ Q′

1 for some Q′
1 ∈ Q1[w/y]. Then by RES rule, (νv)Q′

0
τ

−→ (νv)Q′
1

and condition 1 of the lemma holds with P ′
1 = (νv)Q′

1.

(b) Q1 ≡ (νẑ)S, w, y /∈ ẑ, Q′
0

(ẑ)wz.yz
−→ S ′ for some S ′ ∈ S[w/y]. Without loss of

generality we may assume v /∈ ẑ. There are two subcases:

• v = z. Then ẑ = ∅. Then by OPEN rule P ′
0 ≡ (νv)Q′

0

w(v).yv
−→ S ′. Then

condition 2 of the lemma holds with z = v, ẑ = {v}, P1 ≡ (νv)S and

P ′
1 = S ′.

• v 6= z: Then by RES rule P ′
0 ≡ (νv)Q′

0

(ẑ)wz.yz
−→ (νv)S ′. Then condition 2

of the lemma holds with P1 ≡ (νẑ)(νv)S and P ′
1 = (νv)S ′.

3. The case where the last derivation step is an application of REP rule is straight-

forward.
�

Proof of Lemma 2.9: Since we work modulo alpha equivalence on processes, without

loss of generality we may assume the hygiene condition w /∈ bn(P). The proof is by

induction on the derivation of P
xy
−→ P1. For the base case, we have P = x(z).Q,

P1 = Q{y/z}, and the last derivation step is an application of INP rule. Then, by INP

rule and w /∈ fn(P), we have x(z).Q
x(w)
−→ Q{w/z}. Furthermore, by locality, z occurs

only in output terms in Q{w/z}. Therefore, Q{w/z} ∈ Q{y/z}[w/y], from which the

lemma follows.

For the induction step, there are three cases.

156

1. P = Q|R, P1 = Q1|R, and the last derivation step is an application of PAR rule:

PAR:
Q

xy
−→ Q1

Q|R
xy
−→ Q1|R

From w /∈ fn(P), it follows that w /∈ fn(Q) and w /∈ fn(R). Since w /∈ fn(Q),

by induction hypothesis we have Q
x(w)
−→ Q′

1 for some Q′
1 ∈ Q1[w/y]. Then, since

w /∈ fn(R), by PAR rule we have Q|R
x(w)
−→ Q′

1|R. By letting P ′
1 = Q′

1|R, the lemma

follows from Q′
1|R ∈ P1[w/y].

2. P = (νz)Q, P1 = (νz)Q1 and the last derivation step is an application of RES rule:

RES:
Q

xy
−→ Q1

(νz)Q
xy
−→ (νz)Q1

z /∈ {x, y}

By hygiene condition w 6= z and hence w /∈ fn(Q). Then by induction hypothesis,

Q
x(w)
−→ Q′

1 for some Q′
1 ∈ Q1[w/y]. Now, since z /∈ {x,w}, by RES rule we have

(νz)Q
x(w)
−→ (νz)Q′

1, and the lemma follows from (νz)Q′
1 ∈ P1[w/y].

3. P =!Q, P1 = Q1 and the last derivation step is an application of REP rule:

REP:
Q|!Q

xy
−→ Q1

!Q
xy
−→ Q1

Since w /∈ fn(Q|!Q), by induction hypothesis, Q|!Q
x(w)
−→ Q′

1 for some Q′
1 ∈ Q1[w/y].

Then by REP rule we have !Q
x(w)
−→ Q′

1, and the lemma follows.
�

Proof of Lemma 2.11: Let r ∈ F (s, x, y). We prove by induction on the derivation of

r, that r is ρ-well-formed. The base case where r = ε ∈ F (ε, x, y) is obvious. For the

induction step there are three cases one for each rule of Definition 2.8.

157

1. s = (v̂)uv.s′, r = (v̂)uv.r′ and r′ ∈ F (s′, x, y). Suppose r = (v̂)uv.r1.(ŵ)zw.r2.

Now, s′ is ρ-well-formed, and by induction hypothesis r′ is ρ-well-formed. Then we

have z /∈ rcp(r1, ρ) = rcp((v̂)uv.r1, ρ). Hence r is ρ-well-formed.

2. s = (v̂)uv.s′, r = (v̂)uv.r′ and r′ ∈ F (s′, x, y). Suppose r = (v̂)uv.r1.(ŵ)zw.r2.

Now, s′ is (ρ∪v̂)-well-formed. Then by induction hypothesis r′ is (ρ∪v̂)-well-formed.

Then z /∈ rcp(r1, ρ ∪ v̂) = rcp((v̂)uv.r1, ρ). Further, since s is ρ-well-formed, u /∈ ρ.

Hence r is ρ-well-formed.

3. r = (ŵ)xw.yw.[ŵ]r′, for some r′ ∈ F (s, x, y). Let r = (ŵ)xw.yw.[ŵ](r1.(v̂)uv.r2).

Since [ŵ]r′ 6= ⊥, we have r = (ŵ)xw.yw.([ŵ]r1).(v̂)uv.r′2 for some r′2. Now, by

induction hypothesis r′ is ρ-well-formed. Then u /∈ rcp(r1, ρ). Since [ŵ]r1 changes

only the first bound input with argument w in r1 (if any), it follows that rcp(r1, ρ) =

rcp([ŵ]r1, ρ) = rcp((ŵ)xw.yw.[ŵ]r1). Now, since y /∈ ρ, we conclude that r is ρ-

well-formed.
�

Lemma A.1 (Boreale et al. [11]) If P
s

=⇒ then P{z/y}
s{z/y}
=⇒ .

�

We say s1.xw.s2{w/y} �{w/y} s1.x(y).s2. If s3 is normal and s1 �σ1 s2 �σ2 s3, then

we say s1 �σ1⊕σ2 s3, where

σ1 ⊕ σ2 =



















σ1(x) if σ1(x) 6= x

σ2(x) if σ2(x) 6= x

x otherwise

Note that, normality of s3 implies that σ1 ⊕ σ2 is well-defined. The reader may check

the following simple lemma.

Lemma A.2 If s �σ r then len(s) = len(r). Further, if s = s1.s2, r is normal and

r = r1.r2 with len(r1) = len(s1), then there exist σ1, σ2 such that s1 �σ1 r1, s2 �σ2 r2σ1,

and σ = σ1 ⊕ σ2.

158

Proof: By induction on the length of derivation of s �σ r.
�

Lemma A.3 For a finite process P (with no replication), if P
s.(ẑ)yz
=⇒ Q and ẑ∩{w} = ∅,

then there is P ′ ∈ P [w/y]i such that P ′ s.(ẑ)wz
=⇒ Q.

Proof: By induction on the derivation of P
s.(ẑ)yz
=⇒ Q.

�

We define random substitution on substitutions as follows

σ[w/y] = {σ[u 7→ v] | v ∈ σ(u)[w/y]}

Lemma A.4 For clarity, in the following, we write P [w/y]o for random output substitu-

tion on processes instead of P [w/y] (as in definition 2.7). Let y ∈ ρ, s is ρ-well-formed,

t ∈ T (s, ρ), s �σ t, P be a finite process, and P
s

=⇒ Q. Then for every P1 ∈ P [w/y]o

there is P ′ ∈ P1[w/y]i, Q′ ∈ Q[w/y]o, σ′ ∈ σ[w/y], such that P ′ s′
=⇒ Q′ and s′ �σ′ t.

Proof: Without loss of generality we may assume that s and t are ρ ∪ {w}-normal. Let

P1 ∈ P [w/y]o. The proof is by induction on the length of computation P
s

=⇒ Q. The

base case is obvious. For the induction step, let

P
s1=⇒ Q1

α
−→ Q

There are two cases depending on α.

• α 6= τ : Since s1.α �σ t, by Lemma A.2, we have t = t1.θ, and for some σ1, σ2

such that σ = σ1 ⊕ σ2, s1 �σ1 t1 and α �σ2 θσ1. By induction hypothesis there

exist P ′ ∈ P1[w/y]i, Q′
1 ∈ Q1[w/y]o, σ′

1 ∈ σ1[w/y], such that P ′ s′1=⇒ Q′
1 such that

s′1 �σ′

1
t1. There are two subcases.

– α = (v̂)uv: Since s is ρ-well-formed and y ∈ ρ we deduce u 6= y. We only

consider the case where α = uy. The case where v 6= y is simpler. Since

s is ρ-well-formed, by Lemma 2.12, so is t. The subject of outputs in a ρ-

well-formed template are not bound by previous bound outputs. Therefore,

159

θσ1 = θ. Therefore, since uy �σ2 θσ1, we deduce θ = u(v1) for some v1, and

σ2 = {y/v1}. Since Q1
uy
−→, by Lemma 2.6.2 we have Q′

1

uy′

−→ Q′ for some

Q′ ∈ Q[w/y]o and y′ ∈ y[w/y]. Let α′ = uy′, σ′
2 = {y′/v1}, and σ′ = σ′

1 ⊕ σ′
2.

For the same reason as for θσ1 = θ, we have θσ′
1 = θ. Then we have α′ �σ′

2
θσ′

1.

Then since s1 �σ′

1
t1, s′1.α

′ �σ′ t1.θ. Further σ′ ∈ σ[w/y]. Now the lemma

holds with P ′ s′1.α′

=⇒ Q′.

– α = (v̂)uv: We only consider the cases where α is uy and (v̂)yv, y /∈ {u, v}.

The case where α is yy is similar to these two, and the case where α is uv for

y 6= u, v is simple. Note that we have σ2 is identity, and therefore σ = σ1 and

α = θσ1.

∗ α = uy: From α = θσ1 we deduce θ = u1v1, σ1(u1) = u, and σ1(v1) = y.

Let y′ = σ′
1(v1). From σ′

1 ∈ σ1[w/y] it follows that y′ ∈ {y, w}. From

Lemmas 2.6.1 and 2.9 it follows Q′
1

uy′

−→ Q′ for some Q′ ∈ Q[w/y]o. Then

we have s′1.uy′ �σ′

1
t1.θ, because θσ′

1 = uy′. The lemma holds with P ′ s′1.uy′

=⇒

Q′.

∗ α = (v̂)yv: From α = θσ1 we deduce θ = (v̂1)u1v1, σ1(u1) = y, σ1(v1) = v.

By Lemma 2.6.1 we have Q′
1

(v̂)yv
−→ Q′ for some Q′ ∈ Q[w/y]o. Since

σ′
1 ∈ σ1[w/y], we have σ′

1(u1) ∈ {w, y}. There are two cases. If σ′
1(u1) = y:

Then we have s′1.(v̂)yv �σ′

1
t1.θ, because θσ′

1 = (v̂)yv. The lemma holds

with P ′ s′1.(v̂)yv
=⇒ Q′. On the other hand, if σ′

1(u1) = w, then by Lemma

A.3, there is P ′′ ∈ P ′[w/y]i such that P ′′ s′1.(v̂)wv
=⇒ Q′ (note that since t

is ρ ∪ {w}-normal {w} ∩ v̂ = ∅). Note that P ′′ ∈ P1[w/y]i. Then we

have s′1.(v̂)wv �σ′

1
t1.θ, because θσ′

1 = (v̂)wv. The lemma holds with

P ′′ s′1.(v̂)wv
=⇒ Q′.

• α = τ : Then s1 = s, and s1 �σ t. Then by induction hypothesis, there exist

P ′ ∈ P1[w/y]i, Q′
1 ∈ Q1[w/y]o, σ′ ∈ σ[w/y], such that P ′ s′

=⇒ Q′
1 for s′ �σ′ t. From

Q1
τ

−→ Q, by Lemma 2.6.3, we have two cases:

160

– There is Q′ ∈ Q[w/y]o such that Q′
1

τ
−→ Q′. The lemma follows trivially with

P ′ s′
=⇒ Q′.

– We have Q ≡ (νẑ)R, w, y /∈ ẑ, and there is R′ ∈ R[w/y]o such that Q′
1

(ẑ)wz
−→

yz
−→

R′. Then applying Lemma A.3 to P ′ s′.(ẑ)wz.yz
=⇒ R′ we have, there is P ′′ ∈

P ′[w/y]i such that P ′′ s′.(ẑ)wz.wz
=⇒ R′. But then P ′′ s′

=⇒ (νẑ)R′. Now, since

w, y /∈ ẑ, we have (νẑ)R′ ∈ Q[w/y]o. The lemma holds with P ′′ s′
=⇒ (νẑ)R′,

because P ′′ ∈ P1[w/y]i.

�

We define 〈ŷ〉s as follows.

〈ŷ〉s =































s if ŷ = ∅ or y 6∈ fn(s)

s1.x(y).s2 if ŷ = {y} and there are s1, s2, x s.t.

s = s1.xy.s2 and y 6∈ fn(s1) ∪ {x}

⊥ otherwise

Proof of Lemma 2.16:

1. First we prove P
�

∼ρ Q implies (νx)P
�

∼ρ−{x} (νx)Q. Suppose for an observer

O such that rcp(O) ∩ (ρ − {x}) = ∅, we have (νx)P |O
µµ

=⇒. Let z be fresh.

Using Lemma A.1, we have ((νx)P |O){z/x}
µµ

=⇒. Since x is not free in (νx)P

we have (νx)P |O{z/x}
µµ

=⇒. Now x is not free in O{z/x}, and so we have

(νx)(P |O{z/x})
µµ

=⇒. This implies P |O{z/x}
µµ

=⇒. But P
�

∼ρ Q, and rcp(O)∩ ρ =

∅. Therefore, Q|O{z/x}
µµ

=⇒. It follows that (νx)(Q|O{z/x})
µµ

=⇒. And since

x is not free in O{z/x}, we also have (νx)Q|O{z/x}
µµ

=⇒. Since z is not free in

O, we have O{z/x}{x/z} = O. Therefore, using Lemma A.1 again, we deduce

((νx)Q|O{z/x}){x/z}
µµ

=⇒, i.e. (νx)Q|O
µµ

=⇒ since z is not free in (νx)Q.

Now we prove rcp(R) ∩ ρ = ∅ and P
�

∼ρ Q imply P |R
�

∼ρ Q|R. Suppose for an

observer O such that rcp(O) ∩ ρ = ∅, we have (P |R)|O
µµ

=⇒. Then P |(R|O)
µµ

=⇒.

161

Now, rcp(R|O) ∩ ρ = ∅. Then since P
�

∼ρ Q, we have Q|(R|O)
µµ

=⇒. This, in turn

implies that (Q|R)|O
µµ

=⇒ and the lemma follows.

2. Let xy|P
s

=⇒ where s is ρ-well-formed, and t ∈ T (s, ρ). We have xw|P ∈

(xy|P)[w/y]. Then by Lemma A.4, it follows that there is P ′ ∈ P [w/y]i such

that xw|P ′ s′
=⇒ for some s′ � t. Now, (νw)(xw|P ′)

〈{w}〉s′

=⇒ , and 〈{w}〉s′ � t. Then

it follows that (νw)(xw|
∑

P ′∈P [w/y]i
P ′)

〈{w}〉s′

=⇒ .
�

Proof of Lemma 2.19.1: Let e(s{z/y})
r

=⇒ for a ρ-well-formed r. Without loss

of generality we can assume bn(s) ∩ {z, y} = ∅, and s is ρ-normal. The proof is by

induction on the length of s. The base case s = ε is obvious. Let s = α.s1, then

s{z/y} = α{z/y}.s1{z/y}. For the induction step there are two cases depending on α.

1. α = (ŵ)xw : We only consider the case x = y, which is central to the proof;

the case x 6= y is simpler. Then α{z/y} = (ŵ′)zw′ where w′ = w{z/y}, and

e(s{z/y}) = (νŵ′)(zw′|e(s1{z/y})). We consider the case z ∈ ρ which is more

interesting; the case z /∈ ρ is similar. Since z ∈ ρ and r is ρ-well-formed, the

message zw′ cannot fire in e(s{z/y})
r

=⇒. So there are two possibilities.

• zw′ is consumed internally. Then e(s1{z/y})
r1=⇒ for some r1 = r2.zw′.r3 such

that r = 〈ŵ′〉(r2.r3). Since r is ρ-well-formed, we have r1 is (ρ ∪ ŵ′)-well-

formed. By induction hypothesis there is a (ρ∪ ŵ′)-well-formed cotemplate r′1

such that e(s1)
r′1=⇒ and e(r′1{z/y})

r1=⇒. Now, e(s)
r′

=⇒ where r′ = (ŵ)yw.r′1.

Note that r′ is a cotemplate that is ρ-well-formed because y /∈ ρ. Further,

e(r′{z/y}) = (νŵ′)(zw′|e(r′1{z/y})). Therefore, e(r′{z/y})
r

=⇒.

• zw′ is not consumed. Then e(s1{z/y})
r1=⇒ for some r1 such that r = 〈ŵ′〉r1.

Since r is ρ-well-formed, we have r1 is (ρ ∪ ŵ′)-well-formed. By induction

hypothesis there is a (ρ ∪ ŵ′)-well-formed cotemplate r′1 such that e(s1)
r′1=⇒

and e(r′1{z/y})
r1=⇒. Now, e(s)

r′
=⇒ where r′ = 〈ŵ〉r′1. Note that r′ is a ρ-

well-formed cotemplate. Further, e(r′{z/y}) = (νŵ′)(e(r′1{z/y})). Therefore,

e(r′{z/y})
r

=⇒.

162

2. α = x(w): We only consider the more interesting case where x = y. Then α{z/y} =

z(w) and e(s{z/y}) = z(w).e(s1{z/y})). Then r = (v̂)zv.r1 for some r1 such that

e(s1{z/y}{v/w})
r1=⇒. Note that r1 is ρ-well-formed. Since s is cowell-formed,

so is s{z/y}, and therefore w does not occur free as the subject of an input in

s1{z/y}. Further, since s is ρ-normal, w /∈ ρ. Then, by induction hypothesis,

e(s1{z/y})
r2=⇒ for some ρ-well-formed cotemplate r2 such that e(r2{v/w})

r1=⇒.

Now, applying the induction hypothesis again on s1{z/y}, we get e(s1)
r3=⇒ for

some ρ-well-formed cotemplate r3 such that e(r3{z/y})
r2=⇒. Now, the reader can

verify the following claim: for cotemplates t1, t2, t3, if e(t1)
t2=⇒ and e(t2)

t3=⇒ then

e(t1)
t3=⇒. Using this claim and Lemma A.1 we conclude e(r3{z/y}{v/w})

r1=⇒.

Now, e(s)
r′

=⇒ where r′ = y(w).r3. Since r3 is ρ-well-formed cotemplate, so is

r′. Further, e(r′{z/y}) = z(w).e(r3{z/y})
(v̂)zv
−→ e(r3{z/y}{v/w})

r1=⇒. Therefore,

e(r′{z/y})
r

=⇒.
�

Proof of Lemma 2.19.2: Following is a proof sketch. Since we work modulo alpha

equivalence on traces, we assume bn(r) ∩ fn(P) = ∅. If s and s′ are alpha equivalent

then so are e(s) and e(s′). Then, since α equivalent processes have the same transitions,

we can assume s is normal. The proof is by induction on the length of the computation

e(s)
r

=⇒. The base case is trivial. For the induction step we can write

e(s)
α

−→ Q
r1=⇒,

for some Q and r1. We have three cases based on α:

• α = (ŷ)xy: Then s = 〈ŷ〉(s1.xy.s2) for some s1, s2 where s1 does not contain any

inputs, and Q = e(s1.s2). Further, since P
〈ŷ〉(s1.xy.s2)

=⇒ we can show P
(ŷ)xy
=⇒ P1

s1.s2=⇒.

Since e(s1.s2)
r1=⇒, by induction hypothesis, P1

r1=⇒. The lemma follows from

P
(ŷ)xy.r1
=⇒ .

• α = (ŷ)xy: Then s = s1.x(u).s2 for some s1, s2 such that x /∈ bn(s1), and s1 contains

no inputs, and Q = e(s1.s2{y/u}). By normality of s, u /∈ n(s1), and hence we can

163

write Q = e((s1.s2){y/u})). Further, from P
s1.x(u).s2

=⇒ , u /∈ n(s1), and x /∈ bn(s1) we

also have P
x(u)
=⇒ P1

s1.s2=⇒. Further, since ŷ ∩ fn(P) = ∅, P
(ŷ)xy
=⇒ P1{y/u}. Then by

Lemma A.1 we have P1
(s1.s2){y/u}

=⇒ . By induction hypothesis P1{y/u}
r1=⇒, and the

lemma follows from P
(ŷ)xy.r1
=⇒ .

• α = τ : Then we have e(s)
(ŷ)xy.xy
−→ Q′, s = 〈ŷ〉(s1.xy.s2.x(u).s3), s1 and s2 con-

tain only outputs, Q′ = e(s1.s2.s3{y/u}), and Q = (νŷ)Q′ = e(〈ŷ〉(s1.s2.s3{y/u})).

Since P
〈ŷ〉(s1.xy.s2.x(u).s3)

=⇒ , we have P
〈ŷ〉(s1.xy.s2.xy.s3{y/u})

=⇒ by Lemma A.1. The comple-

mentary input and output actions can be preponed so that P =⇒ P1
〈ŷ〉(s1.s2.s3{y/u})

=⇒ .

By induction hypothesis P1
r1=⇒, and the lemma follows.

�

Proof of Lemma 2.19.3: That (νŷ)e(r)
r′

=⇒ is immediate. The proof of (νŷ)e(r) = e(r′)

is by a straightforward induction on the length of r. The idea is to push (νŷ) inwards

as far as possible. To push across a restriction, we can use I1, A3, A8 and A19, and the

fact that (νx)0 = 0 which can be derived using A2, A14, A19. To push across a message

we can use A8, and to push across an input we can use A11. If at any point, (νŷ) cannot

be pushed further, either case 2 of the definition of r′ applies, or A11 can be used and

case 1 applies. If (νŷ) can be pushed all the way in, we can use A3 and (νx)0 = 0, and

case 3 applies.
�

Proof of Lemma 2.19.4: The proof is by induction on the length of s. Without loss

of generality, we may assume bn(s)∩ {z, y} = ∅. The base case s = ε is obvious. For the

induction step, there are three cases:

1. s = (v̂)uv.s1: For t′ ∈ T (s{z/y}, ρ), we have t′ = (v̂′)u′v′.t′1, where u′ = u{z/y}

v′ = v{z/y} and t′1 ∈ T (s1{z/y}, ρ). By induction hypothesis, there is t1 ∈ T (s1, ρ)

such that t1{z/y} � t′1 using only L4. But we have (v̂)uv.t1 ∈ T ((v̂)uv.s1, ρ), and

((v̂)uv.t1){z/y} = (v̂′)u′v′.t1{z/y} � (v̂′)u′v′.t′1 = t′, using only L4.

2. s = u(v).s1: For t′ ∈ T (s{z/y}, ρ) we have t′ = u′(v).t′1, where u′ = u{z/y} and

t′1 ∈ T (s1{z/y}, ρ ∪ {v}). By induction hypothesis, there is t1 ∈ T (s1, ρ ∪ {v})

164

such that t1{z/y} � t′1 using only L4. But we have u(v).t1 ∈ T (u(v).s1, ρ), and

(u(v).t1){z/y} = u′(v).t1{z/y} � u′(v).t′1 = t′, using only L4.

3. s = uv.s1: There are two subcases.

• v = y: Then s{z/y} = u′z.s1{z/y} where u′ = u{z/y}. There are two more

subcases:

– z ∈ ρ: For t′ ∈ T (s{z/y}, ρ) we have t′ = u′(w).t′1, where w fresh,

and t′1 ∈ T (s2, ρ ∪ {w}) for some s2 ∈ s1{z/y}[w/z]. Using the fact

that y cannot occur free in the input actions of s, we can show show

s2 = s3{z/y} for some s3 ∈ s1[w/z]. Clearly, s3 does not contain free oc-

currences of y in input actions. Then by induction hypothesis, there is t1 ∈

T (s3, ρ ∪ {w}) such that t1{z/y} � t′1 using only L4. It is easy see that,

since w is fresh, t1{z/w} ∈ T (s1, ρ). Then we have uy.t1{z/w} ∈ T (s, ρ).

Then (uy.t1{z/w}){z/y} = u′z.t1{z/w}{z/y} = u′z.t1{z/y}{z/w} ≺

u′(w).t1{z/y} � u′(w).t′1 = t′, where the relation ≺ is by L4.

– z /∈ ρ: For t′ ∈ T (s{z/y}, ρ) we have t′ = u′z.t′1, where t′1 ∈ T (s1{z/y}, ρ).

By induction hypothesis, there is t1 ∈ T (s1, ρ) such that t1{z/y} � t′1

using only L4. But we have uy.t1 ∈ T (uy.s1, ρ), and (uy.t1){z/y} =

u′z.t1{z/y} � u′z.t′1 = t′ using only L4.

• v 6= y: Then s{z/y} = u′v.s1{z/y} where u′ = u{z/y}. There are two

subcases.

– v /∈ ρ: Then for t′ ∈ T (s{z/y}, ρ) we have t′ = u′v.t′1, where t′1 ∈

T (s1{z/y}, ρ). By induction hypothesis, there is t1 ∈ T (s1, ρ) such that

t1{z/y} � t′1 using only L4. But we have uv.t1 ∈ T (s, ρ), and (uv.t1){z/y} =

u′v.t1{z/y} � u′v.t′1 = t′ using only L4.

– v ∈ ρ: Then for t′ ∈ T (s{z/y}, ρ) we have t′ = u′(w).t′1, where w fresh,

t′1 ∈ T (s2, ρ∪ {w}) for some s2 ∈ s1{z/y}[w/v]. Using the fact that y oc-

curs free only in output actions of s1, we can show s2 = s3{z/y} for some

165

s3 ∈ s1[w/v]. Clearly, y does not occur free in input actions of s3. Then

by induction hypothesis, there is t1 ∈ T (s3, ρ ∪ {w}) such that t1{z/y} �

t′1 using only L4. But we have u(w).t1 ∈ T (s, ρ), (u(w).t1){z/y} =

u′(w).t1{z/y} � u′(w).t′1 = t′, using only L4.
�

166

APPENDIX B

Executable Specification in Maude

B.1 Specification of Asynchronous π-Calculus

Following is the module APISEMANTICS that contains the rewrite rules for the operational

semantics of asynchronous π-calculus (Table 2.1). The function genQid used in the

condition of the last Res rule generates an identifier that is fresh, i.e. an identifier not

used to construct channel names in the set passed as the argument to the function.

mod PISEMANTICS is

inc PISYNTAX .

inc CHANSET .

inc TRACE .

sorts EnvTrm TraceTrm .

subsort EnvTrm < TraceTrm .

op [_]_ : Chanset Trm -> EnvTrm [frozen] .

op {_}_ : Action TraceTrm -> TraceTrm [frozen] .

op notinfn : Qid Trm -> Prop .

vars N : Nat . vars X Y Z : Qid .

vars CX CY : Chan . var CS CS1 CS2 : Chanset .

vars A : Action . vars P1 Q1 P Q : Trm .

var SUM : SumTrm . var IO : ActionType .

167

eq notinfn(X,P) = not X{0} in freenames(P) .

rl [Inp] : [CY CS] (CX(X) . P) =>

{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Inp] : [CY CS] ((CX(X) . P) + SUM) =>

{f(i,CX,CY)} ([CY CS] ([X := CY] P)) .

rl [Tau] : [CS] (tau . P) => { tauAct } ([CS] P) .

rl [Tau] : [CS] ((tau . P) + SUM) => { tauAct } ([CS] P) .

crl [BInp] : [CS] P => {b(i,CX,’u)} [’u{0} [shiftup ’u] CS] P1

if (not flag in CS) /\

CS1 := flag ’u{0} [shiftup ’u] CS /\

[CS1] [shiftup ’u] P => {f(i,CX,’u{0})} [CS1] P1 .

rl [Out] : [CS] CX < CY > => { f(o,CX,CY) } ([CS] nil) .

crl [Par] : [CS] (P | Q) => {f(IO,CX,CY)} ([CS] (P1 | Q))

if [CS] P => {f(IO,CX,CY)} ([CS] P1) .

crl [Par] : [CS] (P | Q) =>

{b(IO,CX,Y)} [Y{0} ([shiftup Y] CS)] (P1 | [shiftup Y] Q)

if [CS] P => {b(IO,CX,Y)} ([CS1] P1) .

crl [Com] : [CS] (P | Q) => {tauAct} ([CS] (P1 | Q1))

if [CS] P => {f(o,CX,CY)} ([CS] P1) /\

[CY CS] Q => {f(i,CX,CY)} ([CY CS] Q1) .

crl [Close] : [CS] (P | Q) => {tauAct} [CS] new [Y] (P1 | Q1)

if [CS] P => {b(o,CX,Y)} [CS1] P1 /\

[Y{0} [shiftup Y] CS] [shiftup Y] Q =>

{f(i,CX,Y{0})} [CS2] Q1 .

168

crl [Res] : [CS] (new [X] P) =>

{[shiftdown X] f(IO,CX,CY)} [CS] (new [X] P1)

if CS1 := [shiftup X] CS /\

[CS1] P => {f(IO,CX,CY)} [CS1] P1 /\

(not X{0} in (CX CY)) .

crl [Res] : [CS] (new [X] P) => {tauAct} [CS] (new [X] P1)

if [CS] P => {tauAct} [CS] P1 .

crl [Res] : [CS] (new [X] P) =>

{[shiftdown X] b(o,CX,Z)} [Z{0} CS] new[X]([Y := Z{0}] P1)

if Z := genQid(X{0} CS freenames(P)) /\

[[shiftup X] CS] P => {b(o,CX,Y)} [CS1] P1 /\

X{0} =/= CX .

crl [Open] : [CS] (new[X] P) => {[shiftdown X] b(o,CY,X)} [X{0} CS1] P1

if CS1 := [shiftup X] CS /\

[CS1] P => {f(o,CY,X{0})} [CS1] P1 /\ X{0} =/= CY .

crl [If] : [CS1] (if CX = CX then P else Q fi) => {A} [CS2] P1

if [CS1] P => {A} [CS2] P1 .

crl [Else] : [CS1] (if CX = CY then P else Q fi) => {A} [CS2] Q1

if CX =/= CY /\ [CS1] Q => {A} [CS2] Q1 .

crl [Rep] : [CS1] (! P) => {A} [CS2] P1

if [CS1] (P | (! P)) => {A} [CS2] P1 .

endm

169

B.2 Specification of Aπ 6=

Following is the module that specifies behavior definitions and operations on them. For

a tuple of identifiers QT and natural n, distinct?(QT) checks if each component of QT is

distinct, pick(QT,n) returns in the nth component of QT, and tochanset(QT,n) returns

a set of channels that contains the channel X{n} for each identifier X in QT.

fmod APICONTEXT is

including APISYNTAX .

protecting QIDTUPLE .

sorts Defn Context .

subsort Defn < Context .

*** Constructors for definitions

op _:=(_;_)_ : Qid QidTuple QidTuple Term -> Defn [prec 8] .

op emptycontext : -> Context .

op _,_ : Context Context -> Context [assoc id: emptycontext prec 9] .

op context : -> Context .

*** Checking for well-definedness

var X : Qid .

var CX : Chan .

var P : Term .

vars B B’ : Qid .

vars QT QT1 QT2 : QidTuple .

op defined? : Qid Context -> Bool .

op unique? : Context -> Bool .

op wellformed? : Context -> Bool .

170

ops arity1 arity2 : Qid Context -> Nat .

*** check if a constant is defined

eq defined?(B, emptyContext) = false .

eq defined?(B, (B’ := (QT1 ; QT2) P , D)) = B == B’ or defined?(B, D) .

*** check if all constants have at most one definition

eq unique?(emptyContext) = true .

eq unique?((B := (QT1 ; QT2) P , D)) = (not defined?(B, D)) and unique?(D) .

*** check for well-formedness of definitions, arities, freenames and such ...

eq wellformed?(emptyContext) = true .

eq wellformed?((B := (QT1 ; QT2) CX(X) . P , D’)) =

length(QT1) > 0 and s(s(s(0))) > length(QT1) and

distinct?(QT1 QT2) and

pick(QT1 , s(0)){0} == CX and

freenames(CX(X) . P) subset

(tochanset(QT1 , 0) cup tochanset(QT2 , 0)) .

eq arity1(B , (B’ := (QT1 ; QT2) P, D)) = if B == B’ then length(QT1)

else arity1(B , D) fi .

eq arity2(B , (B’ := (QT1 ; QT2) P, D)) = if B == B’ then length(QT2)

else arity2(B , D) fi .

**

*** instantiating behavior definitions

**

op defn : Qid Context -> Defn .

171

op inst : Defn ChanTuple -> Term .

op subst : Term QidTuple ChanTuple -> Term .

var CT : ChanTuple .

eq defn(B, (B’ := (QT1 ; QT2) P , D)) = if B == B’ then B’ := (QT1 ; QT2) P

else defn(B, D) fi .

eq inst(B := (QT1 ; QT2) P, CT) = subst(P , QT1 QT2 , CT) .

eq subst(P , emptyQidTuple , emptyChanTuple) = P .

eq subst(P , X QT , CX CT) = [X := CX] subst(P , QT , CT) .

endfm

172

Vita

Prasannaa Thati was born in Rayadurg, India, on September 15, 1976. He graduated

from the Indian Institute of Technology, Kanpur in 1997 with a BTech in Computer

Science and Engineering and a minor in Discrete Mathematics. He then joined the

University of Illinois at Urbana Champaign for graduate studies in Computer Science

under the supervision of Prof. Gul Agha. He obtained a MS in Computer Science in

August 2000, an MS in Mathematics in December 2002, and a PhD in Computer Science

in October 2003. Prasannaa Thati’s primary research interest is in formal specification

and verification of computer systems.

173

