
AVIS’04 Preliminary Version

Verification of Asynchronous Systems with
Unbounded and Unordered Message Buffers

Prasanna Thati, and Mahesh Viswanathan

Department of Computer Science, UIUC, Urbana-Champaign, USA

Abstract

We present algorithms for verifying safety and liveness properties of a class of sys-
tems, executing and communicating asynchronously. These systems will be modeled
by a variant of finite state machines with unbounded and unordered message buffers,
and hence will have an infinite state space. We present algorithms for deciding two
weak preorder relations over such systems, namely language containment and gen-
eralized divergence language containment. This is in contrast to previous results
that either decide equivalences between infinite state systems [25,7,29] or preorders
between an infinite state system and a finite state system [2,1,6,13]. We also estab-
lish EXPSPACE lower bounds for the verification problems we investigate, and we
show that our algorithms can be applied to decide the may testing equivalence on
such systems.

Key words: asynchrony, verification, safety, liveness, may testing.

1 Introduction

Asynchrony is a common feature of distributed systems, where not only the
execution of different system components but also the communication be-
tween them is asynchronous. Specifically, there is no assumption about the
relative speed of execution of different system components, and messages can
be buffered for arbitrarily long periods of time and be delivered to their tar-
get in arbitrary order. The state of such a system includes a message buffer
containing the undelivered messages. Since there is no assumption about the
order of message deliveries, this buffer is unordered. Further, since messages
are subject to arbitrary delays, the message buffer can be of unbounded size.
Note that this implies that such systems can have an infinite state space.
The systems we consider are in addition open, i.e. they can asynchronously
exchange messages with their environment.

We focus on verifying the class of asynchronous systems that can be mod-
eled as a (finite) collection of asynchronously communicating finite state ma-
chines (FSMs). The FSMs send and receive messages from a shared message
buffer which is a multiset of undelivered messages. The buffer is also allowed

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Thati, and Viswanathan

to input and output messages to the environment. Further, there is no as-
sumption about the relative speed of execution of different FSMs. Such a
system can be equivalently seen as consisting of a single FSM with a message
buffer (that is open to interactions with the environment); the single FSM can
be thought of as the product of several FSMs in the natural way. We call such
a system as an asynchronous finite state machine (AFSM).

Our model of AFSMs is interesting for several reasons. First, while FSMs
are exactly the processes expressible in regular CCS [23], AFSMs are the pro-
cesses that can be expressed in the asynchronous extension of regular CCS [8].
Secondly, systems with unordered message buffers such as AFSMs can serve
as convenient abstractions for verification of systems with ordered message
deliveries [6]. For example, AFSMs can be used as abstractions for verifying
properties of (lossy) FIFO-channel systems [3]. Finally, the simplicity of the
AFSMs turns out to be useful for identifying the decidability boundaries for
the problems we are interested in. We will see that enriching the model in
even simple ways, leads to undecidability.

In this paper, we present algorithms to solve two problems. The first al-
gorithm decides the language containment problem for AFSMs, which can be
used to reason about safety properties [4]. Second, we present an algorithm to
decide containment of the v-liveness language of AFSMs. The v-liveness lan-
guage of an AFSM is the set of all traces after exhibiting which the AFSM can
perform v repeatedly. Checking v-liveness language containment of AFSMs
can be used to verify special kinds of liveness properties [21]. Although we
do not have precise upper bounds on the running time or space requirements
of these algorithms, we prove lower bounds for the resource requirements of
these problems, demonstrating the computational difficulty of these problems.

We show that our algorithm for language containment can be used to
decide the may testing equivalence between AFSMs. The may testing equiva-
lence is a notion of process equivalence that is known to be useful for reasoning
about safety properties [26]. So far, decision procedures for may testing were
known for only the simple class of FSMs [19]; our results provide the first deci-
sion procedure over an interesting class of asynchronous infinite state systems.
As one may expect, deciding may equivalence over AFSMs is computationally
more complex than deciding it over FSMs. We also consider a generalized
version of may equivalence which incorporates certain encapsulation mecha-
nisms that constrain the interactions between a system and its environment.
We show that the generalized equivalence is undecidable over AFSMs, but is
decidable over FSMs.

Related Work: Many computational models for asynchrony have been stud-
ied before. The most popular ones include Basic Parallel Processes (BPP) [9],
Multiset Automata (MSA) [7], Petri nets [27] and Vector Addition Systems
[27]. BPPs are a special class of MSAs, which in turn are restrictions of Petri
nets. Vector Addition Systems and Petri nets are equivalent in expressive
power. The model of AFSMs, that we consider here, can be most directly

2

Thati, and Viswanathan

seen as a special kind of MSA with τ -transitions (or ε-transitions), where the
labels on the transitions are restricted in a particular way; more details can
be found in Section 2. This restriction turns out to be crucial for decidabil-
ity, because the problems that we consider 1 are known to be undecidable for
BPPs (and hence for MSAs and Petri nets).

Decision procedures for verification problems such as reachability, bisimi-
larity and language containment are known for a general class of infinite state
systems called the well-structured transition systems [1,13]. Since AFSMs are
well structured transition systems these decision procedures apply to them as
well. But these results do not subsume the problems we address in this paper.
Specifically, the algorithms in [1,13] such as those for simulation and language
containment only deal with comparing an infinite state system with a finite
state system. For instance, there is no known procedure for deciding language
containment between two arbitrary (possibly infinite) well-structured transi-
tion systems. In comparison, we address the problems of language containment
and v-liveness language containment between two infinite state AFSMs.

AFSMs also relate to lossy channel systems investigated in [2,3,6]. Specif-
ically, they can be viewed as finite control systems interacting with an unre-
liable (or noisy) buffer, where messages can be randomly lost to or received
from the environment. But unlike in typical lossy channel systems where the
message losses are invisible, message losses and additions are the only visible
actions in AFSMs. The idea is that these transitions are viewed as interac-
tions between the process and its environment, and we are only interested in
the observable behavior of such open systems.

Lossy channel systems such as those in [2,6] are instances of well-structured
transition systems, and even for these special instances there are no results
for comparing two infinite state systems in the sense mentioned above. For
example, [2] gives a decision procedure for only checking the language contain-
ment between a lossy channel system and a finite state system and [6] only
considers model checking with respect to sub-logics of µ-calculus. Note that
AFSMs can be used to specify properties not expressible in µ-calculus (see
Section 2).

Overview: The technique we use for deciding language containment over
AFSMs relates to the tree saturation method described in [13] for well struc-
tured transition systems. But in addition, since AFSMs are a special subclass
of Petri nets, we are able to exploit Karp-Miller’s algorithm for construct-
ing coverability trees which is crucial for decision procedure. Karp-Miller’s
algorithm is not applicable to arbitrary well-structured transition systems 2 .
We solve the v-liveness language-containment problem by reducing it to the
language containment problem. The key idea in this reduction is to relate

1 Bisimulation is known to be decidable for BPPs but not for the other models [24,9]
2 General conditions on transition systems for which the Karp-Miller algorithm works are
presented in [12,10]

3

Thati, and Viswanathan

the v-liveness at a state to the size of the message buffer in that state. We
establish this relationship by generalizing Rackoff’s lemma for unlabeled Petri
nets (that gives an upperbound on the depth of coverability trees) to AFSMs
that can be seen as a special class of Petri nets with labeled noisy transitions.

Following is the layout of the rest of the paper. In Section 2, we formally
define AFSMs and prove some properties which will be useful in later sections.
In Section 3, we present the algorithm for language containment problem, and
in Section 4 we present the algorithm for v-liveness language containment.
Section 5 applies our algorithms to decide may equivalence over AFSMs. Fi-
nally, in Section 6 we conclude with a few comments on possible directions for
further work. Most of the proofs have been omitted due to space constraints,
but can all be found in [31].

2 Asynchronous Finite State Machines

We assume disjoint infinite sets of names N and co-names N , and a bijection
· : N → N . We let

∑

range over finite sets of names, and write
∑

to
denote the set {a | a ∈

∑

}. Let M = (Q,
∑

∪
∑

,→, q0, F) be an FSM with
τ -moves. Specifically, Q is the finite set of states,

∑

∪
∑

the finite alphabet
set, →⊆ Q × (

∑

∪
∑

∪ {τ}) × Q the transition relation, q0 the start state,
and F ⊆ Q the set of final states. We let p, q range over Q, and a, b, c over

∑

.
We call

∑

∪
∑

∪ {τ} the set of actions, and let α range over it. The actions
in

∑

are called input actions, the actions in
∑

the output actions, and τ the
internal action. We write α̂ to mean α if α 6= τ , and ε otherwise. The set
∑

∪
∑

is the set of visible actions, and we let β range over it.

We write p
α

−→ q instead of (p, α, q) ∈ →, p =⇒ q if p
τ

−→
∗

q, and p
α

=⇒ q
if p =⇒

α
−→=⇒ q. We call (

∑

∪
∑

)∗ the set of traces, and let r, s, t range
over it. For s = ε we write p

s
−→ q if p = q, and p

s
=⇒ q if p =⇒ q. For

s = β.s′ we write p
s

−→ q if p
β

−→
s′

−→ q, and p
s

=⇒ q if p
β

=⇒
s′

=⇒ q. We
define L(p) = {s | p

s
=⇒ q, q ∈ F}, and L(M) = L(q0). For a set S, we write

P(S) to denote the powerset of S, and {|S|} to denote the set of all (possibly
infinite) multisets of S. We let B range over {|

∑

|}.

Definition 2.1 [AFSM] An AFSM is an FSM with a message buffer that
is open to asynchronous interactions with the environment. Specifically, the
set of configurations (states) of an AFSM with an underlying FSM M =
(Q,

∑

∪
∑

,→, q0, F) is Q × {|
∑

|}, its initial configuration is (q0, {}), its
final configurations are F ×{|

∑

|}, and its (asynchronous) transition relation
−→A⊆ (Q×{|

∑

|})× (
∑

∪
∑

∪ τ)× (Q×{|
∑

|}) is defined by the following
rules

(i) (q, B)
a

−→A (q, B ∪ {a})

(ii) (q, B)
a

−→A (q, B \ {a}) if a ∈ B

(iii) (q, B)
τ

−→A (q′, B′) if any of the following is true

4

Thati, and Viswanathan

a

a b

b

ab
q2

q3

q1

q4

q5

(q1, {})
a

−→A (q1, {a})
τ

−→A (q4, {})
τ

−→A (q5, {b})
τ

−→A (q1, {b, b})
b

−→A (q1, {b})
τ

−→A (q2, {})
τ

−→A (q3, {a})
τ

−→A (q1, {a, a})

Fig. 1. An asynchronous transition sequence of an example AFSM.

(a) q
τ

−→ q′, B′ = B
(b) q

a
−→ q′, a ∈ B and B′ = B \ {a}

(c) q
a

−→ q′, B′ = B ∪ {a}

The binary relations
s

−→A, =⇒A,
s

=⇒A on configurations are defined as ex-
pected. We define the language of a configuration as LA(q, B) = {s | (q, B)

s
=⇒A

(q′, B′), q′ ∈ F}. We write LA(q) as a shorthand for LA(q, ∅). An AFSM with
the underlying FSM M will also be denoted by M , but it should be clear
from the context as to what is being referred to. We define the asynchronous
language of an AFSM M as LA(M) = LA(q0).

Thus, an AFSM’s state is composed of the control state of the underlying
FSM and a message buffer. The buffer contains inputs received from the
environment and outputs produced by the underlying FSM, which have not
yet been consumed. The first two transition rules of Definition 2.1 are for
asynchronous exchange of messages between the buffer and the environment.
Note that the control state does not change in these transitions. Rule 3 is for
internal transitions where the underlying FSM sends or receives messages from
the buffer. Note that only the transitions that involve interactions with the
environment are labeled with visible actions. Figure 1 illustrates a transition
sequence of an example AFSM. The terminology – AFSM – may be a bit
misleading because the set of states of an AFSM is infinite. For the AFSM of
Figure 1 we can show that

(q1, {})
a

=⇒A (q1, {a
n, bm}) if n,m ≥ 0 and n ≡ m + 1 (mod 3)

An alternate way of defining the acceptance condition would be to consider
the final buffer state in addition to the control state. Specifically, the set of
final states F could be a subset of Q × {|

∑

|} and

LA(M) = {s | (q0, ∅)
s

=⇒A (q, B), for some (q, B ′) ∈ F such that B′ ⊆ B}

Such an acceptance condition is familiar in the Petri net literature and is
known to be equivalent to the acceptance condition used in Definition 2.1.

Following is some notation and simple facts that will be useful later on.
Let #(a,B) denote the number of times a occurs in the multiset B. For a
sequence of multisets Bi, we define tiBi as the multiset which satisfies for all
a, #(a,tiBi) = maxi#(a,Bi).

Lemma 2.2 (1) If B ⊆ B ′ then LA(q, B) ⊆ LA(q, B′). (2) If B1 ⊆ B2 ⊆ . . .
and B = tiBi, then LA(q, B) = ∪iLA(q, Bi).

�

5

Thati, and Viswanathan

Now, we establish the relationship between L(M) and LA(M); namely
that LA(M) is the smallest set that contains L(M) and that is closed under
the relation . defined below. This characterization will be very useful in later
sections.

Definition 2.3 For a set of names
∑

, let . be the smallest reflexive transitive
relation on (

∑

∪
∑

)∗ that is closed under the following rules

1. s1.s2 . s1.a.s2 2. s1.β.a.s2 . s1.a.β.s2

3. s1.s2 . s1.a.a.s2 4. s1.a.s2 . s1.s2

5. s1.a.β.s2 . s1.β.a.s2 6. s1.a.a.s2 . s1.s2

We lift . to sets of traces as R . S if for every s ∈ S there is r ∈ R such that
r . s. We define the closure of S under the relation ., denoted [S]., as the
smallest set that contains S and that is closed under ..

Strictly speaking, in Definition 2.3, we have defined a family of relations
indexed by the set

∑

, and hence . has to be annotated with
∑

. But to
keep the notation simple, we ignore this detail, and instead ensure that

∑

is clear from context. The six rules above succinctly capture the asynchrony
in message exchanges between an AFSM and its environment; the idea being
that if s . r and s ∈ LA(M), then r ∈ LA(M). Rule 1 captures the fact
that an AFSM is always input enabled, while rule 2 says that an AFSM
can perform inputs in any order. Rule 3 states that an input followed by a
complementary output can always be performed; the input received can be
buffered and output back to the environment in the next step. Rules 4-6 are
duals of the first 3 rules. Rule 5 states that outputs can be buffered and
emitted to the environment later, while rule 4 accounts for the case where
an output is buffered and not yet emitted. A buffered output can also be
internally consumed instead of being emitted, and this is reflected in rule 6.

Theorem 2.4 For an FSM M , LA(M) = [L(M)]..

Remark: Thus, L(M) ⊆ LA(M), and LA(M) is closed under ..

AFSMs are a special class of MSAs with τ -transitions [7]. The central
difference between an MSA and an AFSM is that in an AFSM the labels on
the transitions are intimately linked to the operations on the multiset buffer.
The labels on the transitions of an AFSM, uniquely determine the changes
to the multiset buffer. Due to this important restriction, the verification
problems we consider in Section 3 and 4 are decidable, quite unlike the case
of MSAs for which they are known to be undecidable.

Note that using AFSMs as a specification language, we can express prop-
erties that are not regular and hence not expressible in modal logics like µ-
calculus and LTL. One such example is the language of an AFSM with a
singleton alphabet, one state which is both an initial and a final state, and
no transitions. The language of this machine is the set of all traces in which
every prefix has at least as many inputs as outputs, which is not regular. Thus

6

Thati, and Viswanathan

results on model checking of infinite state systems with respect to sub-logics
of µ-calculus [6,7] do not subsume the results presented here.

3 Verifying Safety Properties

In this section, we will present an algorithm that allows us to verify safety
properties of AFSMs. A safety property can be interpreted as a prefix-closed
set of traces S [4]. We are interested in safety properties S which can be
represented by an AFSM M2 such that S = LA(M2). An AFSM M1 is said
to satisfy a safety property S if LA(M1) ⊆ S. Thus, verifying if M1 satisfies
a safety property represented by M2, corresponds to deciding if LA(M1) ⊆
LA(M2). Note that, since S is prefix closed, every control state M2 is also
a final state. But in the following, we will present a decision procedure for
the more general problem of deciding LA(M1) ⊆ LA(M2) for arbitrary M2.
The reader may note that the language containment problem over the more
general class of MSA (with τ -transitions) is undecidable [16].

Note that deciding LA(M1) ⊆ LA(M2) involves comparing two infinite state
systems. The following lemma, which is an easy consequence of Theorem 2.4,
provides a handle to deal with this problem.

Lemma 3.1 Let M1 and M2 have alphabet
∑

1 and
∑

2 respectively, and let
∑

1 ⊆
∑

2. Then LA(M1) ⊆ LA(M2) if and only if L(M1) ⊆ LA(M2).
�

For the case
∑

1 6⊆
∑

2, it is easy to show that LA(M1) ⊆ LA(M2) if and
only if LA(M1) = ∅. Now, checking for emptiness of LA(M1) 6= ∅ is the same
as checking for emptiness of L(M1), and decision procedures for this are well
known. So, from now on we may assume that

∑

1 ⊆
∑

2.

As a consequence of Lemma 3.1, in order to decide LA(M1) ⊆ LA(M2),
we only need to compare the (synchronous) transitions of a finite state sys-
tem with (asynchronous) transitions of an infinite state system. Figure 2
shows a naive attempt at a decision procedure that exploits this simplifi-
cation. The arguments to procedure contained are a control state p of M1 =
(Q1,

∑

1 ∪
∑

1,→1, q1, F1) and a set of configurations C of M2 = (Q2,
∑

2 ∪
∑

2,
→2, q2, F2). The idea is that the procedure returns true if and only if L(p) ⊆
LA(C), where LA(C) = ∪(q,B)∈CLA(q, B). Thus, to decide if LA(M1) ⊆
LA(M2) the procedure is to be invoked with arguments (q1,M1, {(q2, ∅)},M2).

The procedure contained recursively matches the synchronous transitions
of M1 starting from p, with asynchronous transitions of M2 starting from any
configuration in C. Without loss of generality, we assume that M1 does not
have any τ transitions between its control states, because otherwise we can
eliminate the τ actions by the usual τ -elimination procedure without changing
L(M1). In line 8, we assume a subroutine reach such that for a trace s,
reach(C, s,M2) = ∪(p2,B)∈C {(p′2, B

′) | (p2, B)
s

=⇒A (p′2, B
′)}.

Figure 2 does not provide a decision procedure since the procedure con-
tained need not terminate due to two reasons. First, the recursion in lines 6

7

Thati, and Viswanathan

1 contained(p, M1, C, M2)
2 if p ∈ F1 and ε /∈ LA(C) then return false
3 for all a ∈

∑

1
, p′ ∈ Q1

4 if p
a

−→1 p′ then
5 C′ := {(p2, B ∪ {a}) | (p2, B) ∈ C}
6 if not contained(p′, M1, C

′, M2) then return false

7 if p
a

−→1 p′ then
8 C′ := reach(C, a, M2)
9 if not contained(p′, M1, C

′, M2,) then return false
10 end for
11 return true
12 end contained

Fig. 2. A naive attempt at deciding the asynchronous language containment problem

and 9 is in general unbounded. Second, the set reach(C, a,M) may not be
finite. For instance for the AFSM M of Figure 1, we have

reach({(q1, {a})}, a,M) =



















(q1, {a
n, bm}) (q2, {a

n+1, bm})

(q3, {a
n+2, bm}) (q4, {a

n, bm+1})

(q5, {an, bm+2})

∣

∣

∣

∣

∣

∣

n,m ≥ 0

n ≡ m (mod 3)



















Finally, we also have to provide a procedure to check if ε ∈ LA(C) in line 2.

We use the following idea to bound the number of recursive calls. We
define C ′ � C if for every (q, B ′) ∈ C ′ there is (q, B) ∈ C such that B ′ ⊆ B.
Note that as a consequence of Lemma 2.2.1, C ′ � C implies LA(C ′) ⊆
LA(C). But this implies that an invocation contained(p,M1, C,M2) is re-
dundant if there was a previous invocation contained(p,M1, C

′,M2) such that
C ′ � C. This is because, if the previous invocation contained(p,M1, C

′,M2)
returned true, then L(p) ⊆ LA(C ′) ⊆ LA(C), and hence we know that con-
tained(p,M1, C,M2) should return true. On the other hand, if contained(q,M1,
C ′,M2) returned false, then the procedure would already have terminated by
returning false.

The following lemma states a useful property of the relation �.

Lemma 3.2 Given a sequence C1, C2, . . ., where Ci ∈ P(Q × {|
∑

|}) are
finite sets, there exist m,n such that m < n and Cm � Cn.

�

Note that finiteness of Ci does not preclude Ci from containing configura-
tions (q, B) where B is infinite.

To avoid computation of the possibly infinite set reach (C, a,M), we com-
pute a finite set of configurations C ′ such that LA(C ′) = LA(reach(C, a,M)),
and use C ′ instead in line 8 of Figure 2.

8

Thati, and Viswanathan

Definition 3.3 For sets of configurations C1 and C2, we say C2 covers C1 if
(1) C1 � C2, and (2) (q, B) ∈ C2 implies there are B1 ⊆ B2 ⊆ . . . such that
B = tiBi and (q, Bi) ∈ C1.

For instance, for the AFSM in Figure 1 and the set C ′ = { (qi, {aω, bω}) | 1 ≤
i ≤ 5 }, we have C ′ covers reach({(q1, {a})}, a,M). We write aω ∈ B to denote
that B contains infinitely many a’s, and adapt the usual multiset operations
and relations accordingly. For instance, {|a, bω|} ∪ {|a, b|} = {|a, a, bω|}, and
{|a, bω|} \ {|a, b|} = {|bω|}. The following lemma is an easy consequence of
Lemma 2.2.

Lemma 3.4 If C2 covers C1 then LA(C1) = LA(C2).
�

Our plan is to compute a finite set of configurations C ′ such that C ′ covers
reach(C, a,M). We first consider the case where the set C contains a single
configuration. We use Karp and Miller’s algorithm for computing the cov-
erability tree of Petri Nets [20], which applies to AFSMs since they are a
special class of Petri nets. This is the subroutine cover shown in Figure A.1
in the appendix. We recall from [20] that the procedure cover terminates
for any input ((q, B),M), and returns a finite set of configurations such that
cover({(q, B)},M) covers reach({(q, B)}, ε,M). For a given a, we then extract
a set C ′ from cover({(q, B)},M) such that C ′ covers reach({(q, B)}, a,M).

Lemma 3.5 For M = (Q,
∑

∪
∑

,→, q0, F), q ∈ Q, and B ∈ {|
∑

|}, the
following statements are true.

(i) ε ∈ LA(q, B) if and only if (q′, B′) ∈ cover((q, B),M) for some q′ ∈ F .

(ii) For a given a ∈
∑

, let C = {(q′, B′\{a}) | (q′, B′) ∈ cover((q, B),M), a ∈
B′}. Then
C covers reach({(q, B)}, a,M).

�

We are now ready to present the correct version of the procedure contained.

Theorem 3.6 There is an algorithm, which given M1 and M2, decides if
LA(M1) ⊆ LA(M2).

Proof. Figure 3 shows the algorithm, which differs from the procedure in
Figure 2 as follows.

In line 4, instead of checking if ε ∈ LA(C), we use Lemma 3.5.1 and check
for the equivalent condition that for some p2 ∈ F2 and B, (p2, B) ∈ C ′′ where
C ′′ = ∪(p,B)∈Ccover((p,B),M2). In line 11, we exploit Lemmas 3.5.2 and 3.4
to use the set {(p,B \{a})|(p,B) ∈ C ′′, a ∈ B} which is always finite (because
the output of cover is finite), instead of reach(C, a,M) which can in general
be infinite.

To ensure termination, we use the variable L to remember all the inputs
with which contained has been invoked so far, and we recursively call contained
with input (p′1, C

′) (lines 9 and 13) only if it is not redundant. The variable L
is initially set to ∅. We say (q, C) is covered by L if there is (q, C ′) ∈ L such

9

Thati, and Viswanathan

1 contained(p1,M1, C,M2)
2 L := L ∪ (p1, C)
3 C ′′ := ∪(p,B)∈Ccover((p,B),M2)
4 if p1 ∈ F1 and for all (p2, B) ∈ C ′′ p2 /∈ F2 then return false
5 for all a ∈

∑

1, p′1 ∈ Q1

6 if p1
a

−→1 p′1 then
7 C ′ := {(p2, B ∪ {a}) | (p2, B) ∈ C}
8 if (p′1, C

′) not covered by L then
9 if not contained(p′

1,M1, C
′,M2) then return false

10 if p1
a

−→1 p′1 then
11 C ′ := {(p,B \ {a})|(p,B) ∈ C ′′, a ∈ B}
12 if (p′1, C

′) not covered by L then
13 if not contained(p′

1,M1, C
′,M2) then return false

14 end for
15 return true
16 end contained

Fig. 3. An algorithm for deciding asynchronous language containment of AFSMs.

that C ′ � C. Thus, an input (p′1, C
′) is redundant if and only if it is covered

by L.

We now show that contained terminates for an input (p, C) provided C is a
finite set. The proof is by contradiction. Suppose contained doesn’t terminate
for an input (p, C), where C is a finite set. Then contained is called an infinite
number of times with arguments, say (pi, Ci), each of which is added to L. The
sequence (pi, Ci) has a subsequence (pk, Cki

) for some k, since |Q1| is finite.
Since C is finite it follows that each Cki

is finite. Then by Lemma 3.2, there
are m,n such that m < n and Ckm

� Ckn
. But this is impossible because

when contained is called with arguments (pk, Ckn
), the argument is already

covered by L. Contradiction.
� �

Note that, given M1,M2 the above algorithm only decides if LA(q1, ∅) ⊆
LA(q2, ∅). We can decide if LA(q1, B1) ⊆ LA(q2, B2) for arbitrary B1, B2 as
follows. Consider an FSM M ′

1 (resp. M ′
2) that first performs as many output

transitions as messages in B1 (resp. B2) and then behaves like M1 (resp. M2).
Clearly LA(M ′

i) = LA(qi, Bi), and hence LA(q1, B1) ⊆ LA(q1, B2) if and only
if LA(M ′

1) ⊆ LA(M ′
2).

We now contrast our algorithm with the usual procedure for deciding syn-
chronous language containment over FSMs. To decide L(M1) ⊆ L(M2) the
usual procedure is to first construct ¬M2 such that L(¬M2) = L(M2), then
construct M1 ∩ ¬M2 such that L(M1 ∩ ¬M2) = L(M1) ∩ L(¬M2), and fi-
nally check if L(M1 ∩ ¬M2) = ∅. This procedure cannot be used for deciding
LA(M1) ⊆ LA(M2) because we cannot in general construct ¬M2, i.e. the set
of asynchronous languages of FSMs is not closed under complementation.

10

Thati, and Viswanathan

Although we do not have a clear upper bound on the running time of the
algorithm contained, we know that the asynchronous language containment
problem is EXPSPACE-hard.

Theorem 3.7 The asynchronous language containment problem for FSMs is
EXPSPACE-hard.

�

The reader may contrast Theorem 3.7 with the fact that deciding if L(M1) ⊆
L(M2) is only PSPACE-complete.

4 Verifying Liveness Properties

In this section, we will present an algorithm that allows us to verify a special
class of liveness properties of AFSMs. Liveness properties [21] guarantee that
something “good” will eventually happen and are identified with sets that
can be expressed as a countable intersection of sets of the form UΣω, where
U ⊆ Σ∗ and Σω is the collection of infinitely long strings over Σ. We will
investigate verifying a special class of liveness properties, where the property
is a countable intersection of the sets UnΣω, where Un = Uvn for some string
v over Σ and U ⊆ Σ∗. If the liveness property is represented by an AFSM
M2, then verifying M1 with respect to M2 requires checking if

{uvω | (q1, ∅)
uvω

=⇒A} ⊆ {uvω | (q2, ∅)
uvω

=⇒A}

where q1 and q2 are the initial states of the underlying FSMs M1 and M2

respectively, and v is some fixed string.

Definition 4.1 [liveness language] For a sequence v ∈ (
∑

∪
∑

)∗, we say v
is (asynchronously) live at a configuration (q1, B1), written (q1, B1) ↑v

A, if

(q1, B1)
vω

=⇒A, i.e. there is an infinite sequence of transitions

(q1, B1)
v

=⇒A (q2, B2)
v

=⇒A (q3, B3)
v

=⇒A . . .

We also require that if v = ε then for every i the computation (qi, Bi)
v

=⇒A

(qi+1, Bi+1) involves atleast one transition step. For u ∈ (
∑

∪
∑

)∗, we say v
is live at (q, B) after u, written (q, B) ↑v

A u, if (q, B)
u

=⇒A (q′, B′) for some
(q′, B′) such that (q′, B′) ↑v

A. We write q ↑v
A as a shorthand for (q, ∅) ↑v

A, and
similarly for q ↑v

A u. We define the asynchronous v-liveness language L↑v
A (M)

of M as L↑v
A (M) = {u | u ∈ (

∑

∪
∑

)∗, q0 ↑
v
A u}.

Intuitively, (q, B) ↑v
A u means that the configuration (q, B), after exhibiting

u, may reach a state at which v is “live” and so it can exhibit vω. Observe
that, if v = ε, (q, B) ↑ε

A u means that (q, B) may diverge after exhibiting u.
Thus, checking if a configuration diverges is a special case of checking if a
sequence v is live at it.

Now, we present a decision procedure which given M1, M2, and v, checks
if L↑v

A (M2) ⊆ L↑v
A (M1). Our approach is to reduce this problem to the asyn-

chronous language containment problem, for which we gave a decision proce-
dure in Section 3. Decidability of this problem should be contrasted with the

11

Thati, and Viswanathan

fact that even the special case of checking divergence language containment of
MSA is undecidable. This is because the language containment problem for
MSA, which is known to be undecidable [16], can be reduced to the problem
of checking divergence language containment.

Definition 4.2 For v ∈ (
∑

∪
∑

)∗, a sequence of transitions

(q1, B1)
v

=⇒A (q2, B2)
v

=⇒A · · ·
v

=⇒A (qk, Bk)
v

=⇒A (q′, B′)

is called a v-self-covering path starting at (q1, B1) if there is an 1 ≤ i ≤ k, such
that qi = q′, Bi ⊆ B′, and if v = ε then the computation (qi, Bi) =⇒A (q′, B′)
involves atleast one transition step.

It is an easy exercise to show that (q1, B1) ↑v
A if and only if there is a

v-self-covering path starting at (q1, B1). We can, in fact, strengthen this char-
acterization further by bounding the length of the v-self-covering path. This
is formally stated in the following lemma.

Lemma 4.3 Let M = (Q,
∑

∪
∑

,→, q0, F) be such that |Q ∪
∑

| = n. Then
for v ∈ (

∑

∪
∑

)∗, q1 ∈ Q, B1 ∈ {|
∑

|}, (q1, B1) ↑v
A if and only if there is a

transition sequence

(q1, B1)
v

=⇒A (q2, B2)
v

=⇒A · · ·
v

=⇒A (qk, Bk)
v

=⇒A (q′, B′)

that is a v-self-covering path such that the total number of transition steps
(input, output, and τ -transitions) ` ≤ 22cn log n

(m + 1)cnn+1

, where m = |v| and
c is a constant independent of n, q, B1,m and v.

�

The above lemma is a generalization of Rackoff’s result [28] for Petri nets;
Rackoff proves the analogue of this lemma for the special case of v = ε. The
proof of the above lemma is essentially an adaptation of Rackoff’s argument
to handle arbitrary traces v; such an adaptation is possible because AFSMs
are a special class of Petri nets.

Using Lemma 4.3, we can show that given a string v and an AFSM M , we
can effectively construct another AFSM M ′ whose asynchronous language is
the same as the asynchronous v-liveness language of M .

Lemma 4.4 Given M and v ∈ (
∑

∪
∑

)∗, we can effectively construct M ′

such that L↑v
A (M) = LA(M ′).

�

It follows from Lemma 4.4 and Theorem 3.6 that the problem of decid-
ing containment of asynchronous v-liveness languages can be reduced to the
problem of containment of asynchronous languages.

Theorem 4.5 There is an algorithm, which given M1 and M2, and v ∈
(
∑

∪
∑

)∗, decides if L↑v
A (M1) ⊆ L↑v

A (M2).
�

Theorem 4.6 The asynchronous v-liveness language containment problem
for FSMs is EXPSPACE-hard.

�

12

Thati, and Viswanathan

5 The May Testing Equivalence

In this section, we show that the algorithm for language containment can
be used to decide the may testing equivalence over AFSMs. The may test-
ing equivalence is an instance of the general notion of behavioral equivalence
where, roughly, two processes are said to be equivalent if they are indistin-
guishable in all contexts of use. Specifically, a context in may testing consists
of an observing process that runs in parallel and interacts with the process
being tested. The observer can in addition signal a success while interacting
with the process being tested, and a process is said to pass the test proposed
by the observer if there is at least one run in which the observer succeeds.
Two process are said to be indistinguishable if they pass exactly the same set
of tests.

In the following, we consider a generalized version of may testing that we
first introduced in [30]. Specifically, we parameterize the equivalence with a
set of names ρ which determine the set of observers that are used to decide the
equivalence. The names in ρ are treated as being private to the processes being
compared, and only the observers that do not interact at these names are used
to decide the parameterized equivalence. The usual (unparameterized) may
equivalence corresponds to the case where ρ = ∅.

We first define parameterized may testing over AFSMs.

Definition 5.1 [asynchronous experiment] An asynchronous experiment with
M1 and M2 is of form (p|q, B), where p ∈ Q1, q ∈ Q2, and B ∈ {|

∑

1 ∪
∑

2 |}.
We define a transition relation on asynchronous experiments as (p|q, B) −→A

(p′|q′, B′) if

(i) a ∈ B,B′ = B \ {a}, and p
a

−→ p′, q = q′ or p = p′, q
a

−→ q′.

(ii) B′ = B ∪ {a}, and p
a

−→ p′, q = q′ or p = p′, q
a

−→ q′.

(iii) B′ = B, and p
τ

−→ p′, q = q′ or p = p′, q
τ

−→ q′.

We define the relation, =⇒A, on asynchronous experiments as the reflexive
transitive closure of −→A.

Definition 5.2 [asynchronous may testing]
For a set of names ρ, we say that M respects the interface ρ if ρ ∩

∑

= ∅.
We say M1 may M2 if (q1|q2, ∅) =⇒A (p1|p2, B) for some p2 ∈ F2. We say
M1 vρ M2 if for every M that respects the interface ρ, we have M1 may M
implies M2 may M . We say M1 'ρ M2 if M1 vρ M2 and M2 vρ M1. Note
that vρ is a preorder and 'ρ is an equivalence. We write v as a shorthand
for v∅.

By interpreting the observer reaching a success state as something “bad”
happening, the may preorder can be used to reason about safety properties;
M1 vρ M2 can be interpreted as M1 is a safe implementation of the specifica-
tion M2, because if the specification M2 is guaranteed to not cause anything
bad to happen in a context that respects the interface ρ, then the implemen-

13

Thati, and Viswanathan

tation M1 would also not cause anything bad to happen in the same context.

Theorem 5.3 presents an alternate characterization of the parameterized
may preorder, that does not involve a universal quantification over observers.
We skip the proof as it is a simple adaptation of a similar characterization
over the more general model of asynchronous CCS [5,8]. A few definitions are
in order before the theorem. For a set of names ρ and a trace s, we write sdρ
for the trace obtained from s by deleting all the actions in ρ ∪ ρ. For a set of
traces L, we define Ldρ to be the set of all traces s in L such that sdρ = s.
Note that Ldρ is not the usual lifting of the function ·dρ on traces, to sets of
traces.

Theorem 5.3 (characterization of may testing)
Let M1 = (Q1,

∑

1 ∪
∑

1,→1, q1, F1), and M2 = (Q2,
∑

2 ∪
∑

2,→2, q2, F2).

Let
∑

=
∑

1 ∪
∑

2, and M ′
2 = (Q2,

∑

∪
∑

,→2, q2, F2). Then M1 vρ M2 if
and only if LA(M1)dρ ⊆ LA(M ′

2)dρ.
�

Thus, may testing is characterized by trace semantics, and only the traces
that are consistent with the interface ρ are to be considered for deciding
vρ. Further, note that we consider consider M ′

2 instead of M2 because if
∑

1 \(
∑

2 ∪ρ) 6= ∅ then there is always an s ∈ LA(M1)dρ but s /∈ LA(M2)dρ.
But on the other hand, since inputs of a process are not observable due to
asynchrony, it is not necessary that M1 /vρ M2.

For the special case of ρ = ∅, Theorem 5.3 says that M1 v M2 if and
only if LA(M1) ⊆ LA(M2). Then by Theorems 3.6 and 3.7 it follows that the
unparameterized may preorder v is decidable over AFSMs and is EXPSPACE-
hard. Further, since ' = v ∩ v−1, it follows that deciding ' is also EXPSPACE-
hard. The reader may compare this with the fact that v is only PSPACE-
complete over FSMs [19].

For arbitrary ρ, the relation 'ρ (and hence vρ) is undecidable over AFSMs.
This can be shown by reducing the language equality problem for labeled Petri
nets, which is known to be undecidable [14], to deciding 'ρ over AFSMs. In
fact, from the fact that the language equality problem for labeled Petri nets
with even two unbounded places [18] is undecidable, it follows that 'ρ is
undecidable over AFSMs even for |ρ| = 2.

Theorem 5.4 The relation 'ρ is undecidable over AFSMs.
�

On the other hand, vρ (and hence 'ρ) is decidable in PSPACE over FSMs.
This is a simple consequence of the following two facts. First, we can show
that for FSMs M1 and M2, M1 vρ M2 if and only if L(M1)dρ ⊆ L(M2)dρ.
Second, L(M)dρ = L(Mdρ) where Mdρ is the FSM obtained by removing all
the transitions

α
−→ in M with α ∈ ρ ∪ ρ (note that in contrast LA(M)dρ 6=

LA(Mdρ)).

14

Thati, and Viswanathan

6 Conclusion

In this paper, we have addressed the problem of verifying asynchronous sys-
tems with unbounded and unordered message buffers. We have focused on a
simple model of computation, namely AFSM, which is an asynchronous vari-
ant of finite state machines. We have presented algorithms that can be used to
verify safety and special kinds of liveness properties of AFSMs. AFSMs are an
interesting class of infinite state systems for which many problems of interest
such as the ones we consider are decidable but undecidable for MSAs [7], lossy
channel systems [2,6] and well-structured transition systems in general [1,13].

Our investigations leave some problems open, of which the major ones are
the following. First, although we have shown that deciding language contain-
ment for AFSMs is EXPSPACE-hard, we do not have a clear upper bound on
its complexity. Further, the proof of Theorem 3.7 shows that even deciding the
membership of a specific string in the language of an AFSM is EXPSPACE-
hard. Thus, obtaining improved upper and lower bounds for our problems
is an important future exercise. We have considered three problems for AF-
SMs: membership, language containment and v-liveness containment. Our
reductions demonstrate that these problems are of increasing computational
difficulty. In the absence of clear upper and lower bounds, even investigating
the complexity of these problems relative to each other would be a useful next
step. Another interesting direction to explore would be look at the model
checking problem for AFSMs with respect to modal logics, in the vein of [7,6].
These problems may be amenable to tighter complexity analysis.

An alternative to may testing is the notion of must testing [26], which
is known to be useful for reasoning about liveness properties. Recall that in
may testing a process is said to pass a test proposed by an observer if there
is at least one computation in which the observer reaches a success state.
In contrast, in must testing a process is said to pass a test only if in every
possible computation the observer reaches a success state. We have shown
that the parameterized must equivalence is undecidable over AFSMs, even for
parameter sets with two elements. The proof uses a technique that Jancar
introduced to prove undecidability of bisimilarity over Petri nets [18]. We do
not present the details here due to space constrains. However, the decidability
of unparameterized must equivalence is still open.

References

[1] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Tsay Yih-Kuen.
Algorithmic analysis of programs with well quasi-ordered domains. Information

and Computation, 160:109–127, 2000.

[2] Parosh Aziz Abdulla and Bengt Jonsson. Verifying programs with unreliable
channels. In IEEE International Symposium on Logic in Computer Science,
1993.

15

Thati, and Viswanathan

[3] Parosh Aziz Abdulla and Bengt Jonsson. Channel representations in protocol
verification. In CONCUR, pages 1–15, 2001.

[4] B. Alpern and F. B. Schneider. Recognizing safety and liveness. Distributed

Computing, 2:117–126, 1987.

[5] M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on
asynchronous processes.

[6] Ahmed Bouajjani and Richard Mayr. Model checking lossy vector addition
systems. In STACS, pages 323–333, 1999.

[7] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification over Infinite
States. In Handbook of Process Algebra, pages 545–623. Elsevier Publishing,
2001.

[8] I. Castellini and M. Hennesy. Testing theories for asynchronous languages. In
FSTTCS, pages 90–101, 1998. LNCS 1530.

[9] S. Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, Department of Computer Science, University of Edinburgh, 1993.

[10] A. Emerson and K. Namjoshi. On model checking for nondeterministic infinite
state systems. In IEEE Symposium on Logic in Computer Science, 1998.

[11] J. Esparza. Decidability and Complexity of Petri Net problems — An
Introduction. In Advances in Petri Nets, volume 1491 of Lecture Notes

inComputer Science, pages 374–428. Springer, 1998.

[12] A. Finkel. A generalization of the procedure of karp miller to well structured
transition systems. In ICALP, volume 267 of Lecture Notes in Computer

Science, pages 499–508, 1987.

[13] Alain Finkel and Ph. Schnoebelen. Well-structured transition systems
everywhere! Theoretical Computer Science, 256(1):63–92, 2001.

[14] M. Hack. Decision problems for Petri nets and vector addition systems.
Technical Report MAC, Memo 53, MIT, 1975.

[15] G. H. Higman. Ordering by divisibility in abstract algebras. Proceedings of

London Mathematical Society, 3:326–336, 1952.

[16] Y. Hirshfeld. Petri nets and the equivalence problem. In Lecture Notes in

Computer Science 832, pages 165–174. Springer Verlag, 1993.

[17] J.E. Hopcroft and J.D. Ullman. Introduction to automata theory, languages,

and computation. Addison Wesely, 1979.

[18] P. Jancar. Undecidability of bisimilarity for petri nets and some related
problems. Theoretical Computer Science, 148:281–301, 1995.

[19] P.C. Kanellakis and S.A.Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):48–68, May
1990.

16

Thati, and Viswanathan

[20] R. Karp and R. Miller. Parallel program schemata. Journal of Computing

System Science, 3:147–195, 1969.

[21] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In R. Parikh,
editor, Logics of Programs, volume 193 of Lecture Notes in Computer Science,
pages 196–218. Springer, 1985.

[22] R. Lipton. The Reachability Problem Requires Exponential Space. Technical
Report 62, Yale University, 1976.

[23] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[24] F. Moller. Infinite Results. In Proceedings of CONCUR, volume 1119 of Lecture

Notes in Computer Science, pages 195–216. Springer, 1996.

[25] F. Moller. A Taxonomy of Infinite State
Processes. In Electronic Notes in Computer Science, volume 1998. Elsevier,
http://www.elsevier.nl/locate/entcs/volume18.html, 1998.

[26] R. De Nicola and M. Hennesy. Testing equivalence for processes. Theoretical

Computer Science, 34:83–133, 1984.

[27] J. L. Peterson. Petri Net Theory and the Modelling of Systems. Prentice-Hall,
1981.

[28] C. Rackoff. The covering and boundedness problems for vector addition
systems. Theoretical Computer Science, 6:223–231, 1978.

[29] G. Sénizergues. The equivalence problem for deterministic pushdown automata
is decidable. In ICALP, volume 1256 of Lecture Notes in Computer Science,
pages 671–681, 1997.

[30] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous
calculi with locality and no name matching. In Proceedings of the 9th

International Conference on Algebraic Methodology and Software Technology,
pages 222–238. Springer Verlag, September 2002. LNCS.

[31] Prasanna Thati and Mahesh Viswanathan. Verification of asynchronous
systems with unbounded and unordered message buffers. Technical Report
UIUC DCS-R-2003-2397, Department of Computer Science, University of
Illinois at Urbana Champaign, 2003.

A Appendix

We define the complementation function . on visible actions so that the com-
plement of an input is the corresponding output, and vice versa. For a trace
r, we write {|r|}i to denote the multiset of all input actions in r, and {|r|}o for
the multiset of all output actions in r. We define {|r|} = {|r|}i ∪ {|r|}o. The
complementation function is lifted from the set of visible actions to multisets
of visible actions the obvious way.

17

Thati, and Viswanathan

Proof of Theorem 2.4: Let M = (Q,
∑

∪
∑

,→, q0, F). First, [L(M)]. ⊆
LA(M) is a consequence of the following two observations which are easy to
prove: (i) L(M) ⊆ LA(M), and (ii) if s ∈ LA(M) and s . r by a single (and
hence arbitrarily many) application of rules in Definition 2.3, then r ∈ LA(M).
Next, we show LA(M) ⊆ [L(M)].. Suppose

(q0, ∅)
α1−→A (q1, B1)

α2−→A . . .
αn−→A (qn, Bn)

and r = α̂1. · · · .α̂n. We prove the stronger statement that there is s such that
q

s
=⇒ qn, s . r, and Bn = ({|r|}i ∪ {|s|}o) \ ({|r|}o ∪ {|s|}i). Intuitively,

the message buffer Bn contains all the inputs from the environment and the
outputs by M , that have neither been consumed by M nor output to the
environment. From Definition 2.3, we see that the above expression for Bn

encodes the number of times rules 1 and 4 are applied in any derivation of
s . r; only for these rules does the expression evaluate to a non-empty multiset
when r is set to the RHS and s to the LHS of the rule. Specifically, for all
b ∈ N , #(b, Bn) equals the number of applications of rules 1 or 4 of Definition
2.3 with the meta-variable a instantiated to b, in any derivation of s . r.

The proof is by induction on n. The base case n = 0 is trivial. For the

induction step, we may assume there is s′ such that q
s′

−→ qn−1, s′ . r′ =
α̂1. · · · .α̂n−1, and Bn−1 = ({|r′|}i ∪ {|s′|}o) \ ({|r′|}o ∪ {|s′|}i). We now only
consider the case where αn = a; the other cases are similar. Then a ∈ Bn−1,
and therefore for a given derivation of s . r, there is an application of rule 1
or 4 of Definition 2.3 in the derivation. Let s = s′. We have two subcases:

• The derivation of s′ . r′ contains an instance of rule 1. Then we can derive
s . r′.a = r from a derivation of s′ . r′, by replacing an instance of rule 1
with an instance of rule 3, and delaying the output introduced to the very
end by repeated application of rule 5.

• The derivation of s′ . r′ contains an instance of rule 4. Then we can derive
s . r′.a = r from a derivation of s′ . r′, by replacing an instance of rule
4 with repeating applications of rule 5 that delay the output a to the very
end.

Note that in both cases Bn = Bn−1 \ {a} = ({|r|}i ∪ {|s|}o) \ ({|r|}o ∪ {|s|}i).
Thus the induction hypothesis also holds for n.

�

Proof of Lemma 3.1: This is an easy consequence of Theorem 2.4. Since
L(M1) ⊆ LA(M1), we have LA(M1) ⊆ LA(M2) implies L(M1) ⊆ LA(M2).
Conversely, suppose L(M1) ⊆ LA(M2). Let .1 be the relation as defined in
Definition 2.3 with respect to the alphabet

∑

1, and similarly .2 with respect
to the alphabet

∑

2. Then L(M1) .1 LA(M1), and LA(M2) is closed under .2.
Since

∑

1 ⊆
∑

2, LA(M2) is also closed under .1. Then L(M1) ⊆ LA(M2)
implies LA(M1) ⊆ LA(M2).

�

Proof of Lemma 3.2: A simple consequence of Higman’s lemma [15] for

18

Thati, and Viswanathan

well-quasi-orders (applied to natural numbers extended with ω).
�

Proof of Lemma 3.5:

(i) Suppose ε ∈ LA(q, B). Then (q, B) =⇒A (q′, B′) for some q′ ∈ F .
Then, since C covers reach((q, B), ε,M), we have (q′, B′′) ∈ C for some
B′′ ⊇ B′. Conversely, suppose (q′, B′) ∈ C for some q′ ∈ F . Then again
since C covers reach((q, B), ε,M), we have (q, B) =⇒A (q′, B′′) for some
B′′ ⊆ B′, which implies ε ∈ LA(q, B).

(ii) Suppose (q′, B′) ∈ reach({(q, B)}, a,M). Then, (q, B)
a

=⇒A (q′, B′),

which implies (q, B) =⇒A (q′, B′ ∪ {a})
a

−→A (q′, B′). Then, (q′, B′ ∪
{a}) ∈ reach({(q, B)}, ε,M), and since cover((q, B),M) covers reach({(q, B)}, ε,M),
we have (q′, B′′) ∈ cover((q, B),M) for some B ′′ ⊇ B′ ∪ {a}. But then
(q′, B′′\{a}) ∈ C and B′′\{a} ⊇ B′. We have shown reach({(q, B)}, a,M) �
C. Now, suppose that (q′, B′) ∈ C. Then (q′, B′∪{a}) ∈ cover((q, B),M).
Since cover((q, B),M) covers reach({(q, B)}, ε,M), there are B1 ⊆ B2 ⊆
. . . such that (q′, Bi) ∈ reach({(q, B)}, ε,M) and tiBi = B′ ∪ {a}. Then
there is n such that a ∈ Bi for all i ≥ n. Then, we have (q′, Bi \ {a}) ∈
reach({(q, B)}, a,M) for all i ≥ n, and ti≥n(Bi \ {a}) = B′. Thus, we
have shown that C covers reach({(q, B)}, a,M).

�

The cover routine: Roughly, cover((q, B),M) in Figure A.1 returns a set
of configurations that covers all the configurations that M can reach starting
from (q, B) and by a sequence of asynchronous transitions labeled with τ . In
line 3, we write Bω to denote {|aω | a ∈ B|}. Note that, we have assumed that
M has no τ -transitions (between the control states); such transitions, if any,
can be eliminated by the usual τ -elimination procedure. The expression con-
figs(V) returns the set of all configurations that occur in the paths (sequences
of configurations) in V .

Proof sketch of Theorem 3.7: We reduce the halting problem of counter
machines of size n, whose counters are bounded by 22n

, to the given problem.
The halting problem for such counter machines is known to be EXPSPACE-
complete [17]. We use a construction first presented by Lipton [22]; for a more
recent exposition, see [11]. Given a counter machine C, Lipton constructs a
Petri net P of size polynomial in n, such that P reaches a marking with a
token in a pre-designated place if and only C halts. Lipton’s procedure can
be adapted in a straightforward manner to construct an AFSM M such that
the string µ ∈ LA(M) for a designated alphabet µ, if and only if C halts.
Importantly, although AFSMs are a restricted class of Petri nets, it is possible
to construct an M whose size is polynomial in n. Now, consider an AFSM M ′

whose synchronous language L(M ′) = {µ}. Then LA(M ′) ⊆ LA(M) if and

19

Thati, and Viswanathan

1 append(v, (q, B))
2 if ∃i s.t. v(i) = (q, Bi) and B ⊆ Bi then return v
3 if ∃i s.t. v(i) = (q, Bi) and Bi ⊆ B then return v.(q, Bi ∪ (B \ Bi)

ω)
4 return v.(q, B)
5 end append

6 cover((q, B), (Q,
∑

∪
∑

,→, q0, F))
7 V := {(q, B)}
8 repeat
9 V ′ := V ; V := ∅
10 for all v ∈ V ′

11 let v = v′.(q′, B′)
12 for all a ∈

∑

, q′′ ∈ Q

13 if q′
a

−→ q′′ and a ∈ B′ then
14 V := V ∪ append(v, (q′′, B′ \ {a}))

15 if q′
a

−→ q′′ then
16 V := V ∪ append(v, (q′′, B′ ∪ {a}))
17 end for all
18 end let
19 end for all
20 until V = V ′

21 return configs(V)
22 end cover

Fig. A.1. (An adaptation of) Karp and Miller’s algorithm for computing the cover-
ability sets.

only if the given counter machine C halts.
�

Proof sketch of Lemma 4.3: We present the main ideas in the proof,
highlighting the points of departure from Rackoff’s proof for vector addition
systems.

The proof is most easily presented by viewing the AFSM M as a vector
addition system, which are the same as Petri Nets. In the rest of the proof,
we will assume that configurations of M are represented as vectors in Z

n, for
some canonical ordering of the states Q and names

∑

. Each transition step in
the AFSM can be viewed as the result of adding a vector in Z

n to the current
configuration. For example, the transition from q

a
−→ q′ can correspond to

adding the vector that has −1 in the position of q, 1 in the position of q ′, −1 in
the position of a, with all other positions being 0. We will say c

v
=⇒A c′ if one

can add a sequence of vectors, whose labels correspond to taking v interspersed
with τ ’s, to c to get c′. Finally a path c1

v
=⇒A c2

v
=⇒A · · ·

v
=⇒A ck

v
=⇒A c′ is

v-self-covering if there is an 1 ≤ i ≤ k such that ci ≤ c′, and if v = ε then the
computation ci =⇒A c′ involves atleast one transition step.

20

Thati, and Viswanathan

There are a couple of concepts that Rackoff defines, that we will find
useful as well: an i-bounded, v-self covering path, and an i—r-bounded, v-
self-covering path. An i-bounded, v-self covering path is a v-self-covering path
such that each configuration in the path is a vector whose first i coordinates
are ≥ 0. Observe that any legal sequence of transitions ensures that the
configuration of the AFSM in each step can be represented as c ∈ Z

n such
that each coordinate c(k) ≥ 0; so i-bounded, v-self-covering paths need not
correspond to legal transition sequences of the AFSM, since the coordinates
i+1 to n of the configurations could be < 0. An i—r-bounded, v-self-covering
path is a self covering path where the first i coordinates of each configuration
on the path is between 0 and r; once again the coordinates between i + 1 and
n of configurations could be any integer.

The lemma can, therefore, be proved by showing an upper bound on the
length of an n-bounded, v-self-covering path. This is proved by inductively
obtaining bounds on the length of an i-bounded, v-self-covering paths. But
in order to obtain bounds on i-bounded paths, we will need a lemma that
will bound the length of i—r-bounded, v-self-covering paths. Since the ideas
used to obtain bounds on n-bounded, v-self-covering paths from the bound on
i—r-bounded, v-self-covering paths are identical to those of Rackoff, modulo
some minor modifications, we skip that proof here and refer the reader to
Rackoff’s original paper [28].

We will now sketch the proof that bounds the length of an i—r-bounded,
v-self-covering path. Let ρ ≡ c1

v
=⇒A c2

v
=⇒A · · ·

v
=⇒A ck

v
=⇒A d1

v
=⇒A

· · ·
v

=⇒A d` be a minimal i—r-bounded, v-self-covering path, such that c1 is
the vector representation of (q1, B1), and d1 ≤ d`. For a vector c ∈ Z

n, let
Πi(c) ∈ Z

i be the projection of c onto the first i coordinates. Since ρ is a
minimal path, it must be the case that Πi(c1), Π

i(c2) . . . Πi(ck) are all distinct;
thus k ≤ ri ≤ rn. Further, for any p, q, the length of any continuous block of
τ -steps (without visible actions in between) in the sequence cp

v
=⇒A cq must

once again be at most ri ≤ rn, for similar reasons. Hence the length of the

sequence c1
v∗

=⇒A ck is at most rn · (m + 1) · rn, where m = |v|.

Let us now focus on bounding the length of d1, . . . d`. Call a sequence of
x1

u
=⇒A x2

u
=⇒A · · ·

u
=⇒A xt a simple u-loop if Πi(xj1) 6= Πi(xj2) for j1 6= j2

and Πi(x1) = Πi(xt), where u ∈ (
∑

∪
∑

)∗. Now, suppose x1, . . . xt is a simple
u-loop in d1, . . . d`. Consider the sequence of transitions obtained by removing
the sequence of transitions appearing in the loop x1 . . . xt. The sequence of
vectors obtained, starting from d1, by taking this shortened sequence of tran-
sitions, will be called the path obtained after removing the u-loop x1 . . . xt.
Observe that removing x1 . . . xt results in a path, which when projected, will
continue to be the projection of an i—r-bounded path, with two important
differences: first, the resulting path will not necessarily be self-covering; sec-
ond, if u 6= ε then the resulting path may not be one that has label vh, for
some h. Since Rackoff considers unlabeled sequences, he does not deal with
the second problem. In order to deal with the first problem, Rackoff first

21

Thati, and Viswanathan

removes a series of simple loops to get a much shorter sequence that is once
again an i—r-bounded path, but is no longer self covering, while keeping track
of the “vector weight” of the loops removed. Care is taken, when removing the
loops, to ensure that all of the vectors in the set {Πi(d1), . . . Π

i(d`)} appear
in the shortened path; only the multiplicity of these vectors changes. This
ensures that the original path can be obtained by adding a non-negative lin-
ear combination of loops to the shortened path. The desired path of bounded
length is then obtained by searching for another linear combination of loops,
whose total weight is equal to the weight of the loops removed. This new lin-
ear combination of loops obtained by solving a feasible linear program. The
desired bounds follow from the bounds on the solution size of a feasible linear
program.

In the presence of labels, the labels of the loops removed needs to be taken
into account. The natural choices for loops that can be removed would be
those that are labeled ε or vh for some h. In order to bound ` we will need to
remove loops labeled vh. However, since the final solution will be obtained by
solving a linear program, care must be taken to ensure that the loops that need
to be added need not be “very long”. This is a problem for loops labeled vh

which have arbitrarily many τ -steps in between. We circumvent this problem
by removing loops in two stages: first we remove loops labeled ε to ensure
that none of the contiguous sequences of τ -steps are too long, and then we
remove those labeled vh. The length of the path after the first stage would be
at most (m + 1)(rn + 1)2`, and after the second stage, we will have ensured
that the shortened path is of length at most (m + 1)(rn + 1)2(rn + 1)2. This
ensures that the original path can be obtained from the shortened path by
adding a linear combination of loops of bounded length. Then once again the
desired i—r-bounded, v-self-covering path is obtained by searching of a linear
combination of loops to add to the shortened path, by solving a feasible linear
program.

�

Lemma A.1 For M = (Q,
∑

∪
∑

,→, q0, F), and v ∈ (
∑

∪
∑

)∗, there is a
finite B0 ∈ {|

∑

|} such that for all q ∈ Q, if (q, B) ↑v
A then (q, B ∩ B0) ↑v

A.

Proof. Let n = |Q ∪
∑

|. We show the multiset B0 ∈ {|
∑

|} such that
#(a,B0) = 22cn log n

(m + 1)cnn+1

for all a ∈
∑

, where c is the constant in
Lemma 4.3 and m = |v|, satisfies the property stated above. Now, suppose

(q, B) ↑v
A. Then by Lemma 4.3, there is a transition sequence (q, B)

v∗

=⇒A

(q′, B1)
v+

=⇒A (q′, B2) of length ≤ 22cn log n

(m + 1)cnn+1

for some B2 ⊇ B1. Let

B′ = B ∩B0, and B′′ = (B′ ∪ (B1 \B)) \ (B \B1). Then clearly, (q, B ′)
v∗

=⇒A

(q′, B′′)
v+

=⇒A (q′, B′′ ∪ (B2 \ B1)), the length of which is the same as that of

(q, B)
v+

=⇒A (q′, B2). Then again by Lemma 4.3, (q, B′) ↑v
A.

� �

22

Thati, and Viswanathan

Proof of Lemma 4.4: Let M = (Q,
∑

∪
∑

,→, q0, F). We construct M ′ =
(Q′,

∑

∪
∑

,→′, q′, F ′) that simulates M , and at any time can non-deterministically
choose to examine the contents of its message buffer. If it finds the buffer to
be large enough for M to be able to exhibit vω from its current state, then M ′

jumps to an accepting state.

Specifically, let Q = {q1, . . . , qn}. For each qi, define the set Bi as follows.

If (qi, B) 6
vω

=⇒A for every B then Bi = ∅. Else Bi is the finite set {Bi1, . . . , Bik}
such that: (a) (qi, B) ↑v

A if and only if B ⊇ Bij for some Bij ∈ Bi, and (b)
Bil ⊆ Bim implies Bil = Bim. As a consequence of Lemma A.1, we know
that such a Bi exists. In fact, it can be computed as follows. Let B0 be the
multiset produced by Lemma A.1. Enumerate all B ⊆ B0, and check for each
if (qi, B) ↑v

A (Lemma 4.3 gives us a procedure for this), and let Bi be the set
of all such minimal B’s for which (qi, B) ↑v

A.

Let Q′ = {(qi, B) | B = ∅, or B ⊆ B ′ for some B′ ∈ Bi} ∪ {f} (note that
Bi may be empty), q′ = (q0, ∅), and F ′ = {f}. The transition function →′ is
defined as

(qi, ∅)
α

−→′ (qj, ∅) if qi
α

−→ qj

(qi, B)
a

−→′ (qi, B ∪ {a}) if (B ∪ {a}) ⊆ B ′ for some B′ ∈ Bi

(qi, B)
τ

−→′ f if B = B′ for some B′ ∈ Bi

Note that the transition (sub)graph of M ′ with only the nodes (qi, ∅) is
isomorphic to the transition graph of M . Thus M ′ can simulate M . But
at any time, M ′ can non-deterministically choose to “examine” the message
buffer contents, by using the second and third transition rules above. It is
easy to check that LA(M ′) = L↑v

A (M).
�

Proof of Theorem 4.5: An immediate consequence of Lemma 4.4 and The-
orem 3.6. Note that the proof of Lemma 4.4 not only shows the existence of
M ′, but also effectively constructs it.

�

Proof of Theorem 4.6: The problem of asynchronous language containment
can be reduced in polynomial time to the problem of v-liveness language con-
tainment; the theorem then follows from Theorem 3.7. Let M1 and M2 be two
finite state machines over the alphabet

∑

. Consider a µ 6∈
∑

. For each final

state q of M1, add the transition q
µ

−→A q to obtain machine M ′
1. Observe

that LA(M1) = L↑v
A (M ′

1) ∩ (
∑

∪
∑

)∗, where v = µ. Similarly, construct M ′
2

from M2. Thus LA(M1) ⊆ LA(M2) iff L↑v
A (M1) ⊆ L↑v

A (M2).
�

Proof of Theorem 5.4: We reduce the language equality problem for la-

23

Thati, and Viswanathan

beled Petri nets, which is known to be undecidable [14], to the given problem.
Specifically, given Petri nets P1 and P2 we construct AFSMs M1,M2, and ρ
such that L(P1) ⊆ L(P2) if and only if LA(M1)dρ ⊆ LA(M2)dρ. We are then
done by Theorem 5.3.

Suppose P = (S, T, F, λ, µ) is a Petri net, where S and T are disjoint sets
of places and transitions, F ⊆ (S×T)∪(T ×S) is the flow relation, λ : T → L
is the labeling function, and µ : S → N is the initial marking. Without any
loss of generality we may assume that µ leaves a single token at exactly one of
the places, because otherwise one can always construct another Petri net that
that satisfies this condition and has the same language. We can construct an
AFSM that “simulates” the net as follows. Let

M = ({r, w} × P(S),
∑

∪
∑

,→, (w, {µ}), {r, w} × P(S))

where
∑

= S∪L∪{A} for some A /∈ S∪L, {µ} denotes the singleton {s} such
that µ(s) 6= 0, P(S) denotes the powerset of S, and the transition relation →
is defined by the following rules. For X ⊆ P(S), s ∈ S and t ∈ T :

• (r,X)
s

−→ (r,X ∪ {s}) if s /∈ X.

• (r,X)
λ(t)
−→ (w, (X \ •t) ∪ t•) if •t ⊆ X.

• (w,X)
s

−→ (w,X \ {s}) if s ∈ X.

• (w, ∅)
A

−→ (r, ∅).

where •t = {s | s ∈ S, (s, t) ∈ F} and t• = {s | s ∈ S, (t, s) ∈ F} are the
preset and postset of the transition t. A marking of places in the Petri net P is
encoded as the message buffer of M . To simulate a transition of P , M reads its
message buffer and non-deterministically makes a transition that is enabled,
i.e. whose preset has all places with non-zero marking. The transition in M
has the same label as the corresponding transition in P . After the transition,
M performs output actions so that its message buffer corresponds to the new
marking that P reaches after its transition.

Now, given Petri nets P1 and P2, let M1 and M2 be as constructed above.
Let ρ = S1 ∪ S2, and let L be the set used to label transitions in P1 and
P2. First, suppose L(P1) 6⊆ L(P2). Then there is r such that r ∈ L(P1) and
r /∈ L(P2). Suppose r = l1.l2. · · · .ln. Let r′ = A.l1.A.l2.A. · · · .ln.A. Then
r′ ∈ LA(M1)dρ, but r′ /∈ LA(M2)dρ, and hence LA(M1)dρ 6⊆ LA(M2)dρ. Now,
suppose L(P1) ⊆ L(P2). Let

L1 = {A.l1.A. · · · .ln.A | l1. · · · .ln ∈ L(P1)}

L2 = {A.l1.A. · · · .ln.A | l1. · · · .ln ∈ L(P2)}

It is clear from the construction of M1 and M2 that LA(M1)dρ = [L1]. and
LA(M2)dρ = [L2]., where the relation . is defined with respect to the alphabet
L ∪ {A}. Now, since L(P1) ⊆ L(P2), we have L1 ⊆ L2, which implies [L1]. ⊆
[L2].. But since we assume

∑

1 \(
∑

2 ∪ρ) = ∅ (see Section 5), it follows that

24

Thati, and Viswanathan

LA(M1)dρ ⊆ LA(M2)dρ.
�

In the following, let ∼ denote strong bisimilarity.

Theorem A.2 (q1, B1) ∼ (q2, B2) if and only if B1 = B2 and q1 ∼ q2.

Proof. (if) Suppose q1 ∼ q2, and let G be a bisimulation with (q1, q2) ∈ G.
It is easy to verify that H = {((p,B), (q, B)) | (p, q) ∈ G} is a bisimulation.

(only if) Suppose (q1, B1) ∼ (q2, B2) and let H be a bisimulation with
((q1, B1), (q1, B2)) ∈ H. Note that since the contents of message buffers can
be (exactly) observed with a sequence of output transitions (without any τ
transitions), it is clear that for any ((p,B), (q, B ′)) ∈ H we have B = B ′. We
show that G = {(p, q) | ((p,B), (q, B)) ∈ H} is a bisimulation. For (p, q) ∈ G
we are to show that if p

α
−→ p′ then q

α
−→ q′ such that (q, q′) ∈ G and vice

versa. We only consider the case where α is an input, the other cases are
similar. Let p

a
−→ p′. Now, since (p, q) ∈ G there is some ((p,B), (q, B)) ∈ H.

Then (p,B)
a

−→ (p,B ∪ {a})
τ

−→ (p′, B), and since H is a bisimulation we
have (q, B)

a
−→ (q, B ∪ {a})

τ
−→ (q′, B′) such that ((p′, B), (q′, B′)) ∈ H. But

then B = B′ which in turn implies that q
a

−→ q′, and we have (p′, q′) ∈ G.
The argument for q

a
−→ q′ is similar. So G is a bisimulation.

� �

25

	Introduction
	Asynchronous Finite State Machines
	Verifying Safety Properties
	Verifying Liveness Properties
	The May Testing Equivalence
	Conclusion
	References
	Appendix

